Pedestrian
Detection Combining RGB and
Dense LIDAR Data
C. Premebida1,
J. Carreira1,2,
J. Batista1
and U. Nunes1
1ISR, DEEC, Univ. of Coimbra.
2UC Berkeley
- Dense depth-map upsampling method using only LIDAR
- 3D Velodyne and camera fusion (experiments: KITTI
dataset)
- Def. Part-Models + SVM-based rescoring strategy
- High performance on KITTI benchmarking
Results on the KITTI dataset (Fusion-DPM):
http://www.cvlibs.net/datasets/kitti/eval_object.php
Paper: pdf (825KB)
IEEE, IROS' 14
\cite: bib
|
|
Implementations
Notes:
our solution depends on Discriminatively
trained deformable part models
R. B.
Girshick, P. F. Felzenszwalb, and D. McAllester, “Discriminatively
Trained Deformable Part Models, Release 5”
LIBSVM is also necessary libsvm-3.12
README, .m and .cpp (mex) files: download