
Instituto de Engenharia de Sistemas e Computadores

de Coimbra

Institute of Systems Engineering and Computers
INESC - Coimbra

Teresa Gomes

Luís Fernandes

A note on

�A simple algorithm to search all MCs in networks�

No. 11 2010

ISSN: 1645-2631

Instituto de Engenharia de Sistemas e Computadores de Coimbra
INESC - Coimbra

Rua Antero de Quental, 199; 3000-033 Coimbra; Portugal
www.inescc.pt

Work partially �nancially supported by programme COMPETE of the EC Community
Support Framework III and cosponsored by the EC fund FEDER and national funds
(FCT - PTDC/EEA-TEL/101884/2008).



A note on �A simple algorithm to search all MCs in

networks�

Teresa Gomes(1,2) and Luís Fernandes(1,2)

(2)Departamento de Engenharia Electrotécnica e de Computadores da FCTUC,

Pólo 2 da Univ. Coimbra, 3030-290 Coimbra, Portugal

(3)INESC-Coimbra, Rua Antero de Quental 199,

3000-033 Coimbra, Portugal.

e-mail: teresa@deec.uc.pt, a2003107513@alunos.deec.uc.pt

August 6, 2010

Abstract

Minimal Cuts are relevant tools for evaluating a network's reliability. In [3] an
algorithm is proposed for searching all the MCs in a network. This note has the
purpose of clarifying the algorithm in [3], so that it can be correctly implemented.

1 Introduction

Minimal cuts (MCs) are used as tools in network reliability [3, 2], which is a di�cult

problem [1].

In [3] an algorithm is proposed for obtaining all MCs which separate a speci�c s-t node

pair. After careful analysis we detected that the algorithm was incomplete (or ambiguous)

and that it contained two incorrections (or possibly misprints). It is also noted that the

author failed to point out that the algorithm requires the previous removal of all nodes

irrelevant for the calculation of the searched MCs.

The purpose of this note is the clari�cation of an e�cient algorithm so that it can be

correctly implemented.

2 Notation

The notation proposed in [3] will be used in this document. Let G = (V,E) be a connected

undirected network with node set V = {s, t, 1, 2, . . . , n− 2} and edge set E (where n

1



designates the number of nodes in G). The nodes s and t, are the designated source and

sink node respectively.

Each element in E is an unordered pair of adjacent nodes (for example euv, evu, is an

arc between nodes u and v). Using the network in �gure 1, e12 or e21 is the edge between

nodes 1 and 2.

Figure 1: Example network from [3].

Let E(U) designate the set of edges of the sub-graph of G induced by node set U ,

U ⊂ V .

De�nition 2.1. E(U) = {euv : ∀ u, v ∈ U ⊆ V ∧ euv ∈ E}

The residual sub-network of G(V,E) after removing V \U (also represented by U −V )

nodes, where U ⊂ V , is designated by G(U,E(U). For example, if U = {s, 1, 2}, the

network G(U,E(U)) (after removing V \U = {3, 4, t} from G(V,E)) is given by: G(U =

{s, 1, 2}, E(U) = {es1, es2, e12}).

A set of edges E ′ is a cut if this set disconnects the network. A cut E ′ is a Minimal Cut

(MC) if no subset of E ′ disconnects the network. A mininmal cut can also be designated

by min-cut. An s-t MC is a min-cut that separates nodes s and t.

The algorithm proposed in [3], which searches for all MCs which separate a speci�c

s-t node pair, requires the de�nition of the additional terms:

• an node u is an adjacent node to a node set U (U ⊂ V ), if there is an edge between

node u and at least one node in U

• a s-t cut is an edge set such that no path from the source node s to the sink node t

exists after removing it

2



• A MC is a cut set such that if any arc is removed from this cut set, then the

remaining set is no longer a cut set.

• A MCV candidate is a node subset such that its removal will disconnect the source

node (s) and the sink node (t) in the corresponding network.

• A MCV is an MCV candidate in G(V,E), say U , such that the edge set from the

nodes in U to the nodes in V \U is a MC.

So a MCV candidate is associated with a s-t cut and and a MCV is associated with a

s-t MC.

A MC(U) is a set of edges that separates nodes U from the nodes in V \U in G(V,E).

De�nition 2.2. Given a graph G = (V,E), the edge set from the nodes in U to the nodes

in V \U is MC(U), MC(U) = {euv : ∀ u ∈ U ⊆ V ∧ v /∈ U ∧ euv ∈ E}.

A set U is a MCV in G(V,E) if and only if MC(U) is a MC which separates nodes s

and t � by Theorem 1 in [3] � assuming s ∈ U and t ∈ V \U .

The network is assumed to satisfy the following conditions [3]:

• Nodes do not fail.

• The networks graph is connected and free of self-loops.

• Each edge has two states: working or failed.

• All �ows in the network obey the conservation law.

We do not see the relevance of the last condition because no other reference to �ows is

made in [3].

3 The algorithm

The original algorithm is in appendix A. The corrected version of the algorithm di�ers

from the original versions as follows.

3



Algorithm Min-Cut: Modi�ed version of the Algorithm in appendix, assuming all
irrellevant nodes for the calculation of the s-t MCs have been removed.
Data: A connected graph G = (V,E), with node set V , edge set E, a source node

s and a target node t
Result: P , the set of MCV s in G = (V,E)

1 i← 0, k ← 0, S ← {s}, U0 ← {s}, T ← V − {s}, N0 ← {t}
2 P ← {s}
3 Step 1:

4 D = T −Ni

5 if Exists a node u ∈ D adjacent to S then

6 S ∪ {u} is a MCV candidate

7 Go to Step 2

8 else

9 Go to Step 4

10 Step 2:

11 if G = (T − {u}, E(T − {u})) is a connected network then

12 S ∪ {u} is a MCV
13 Go to Step 3

14 else

15 Any node set containing S ∪ {u} is not a MCV
16 erase(u,D)

17 Go back to line 5 (in Step 1)

18 Step 3:

19 i← i+ 1, k ← k + 1
20 S ← S ∪ {u}
21 Uk ← S
22 P ← P ∪ {Uk}
23 T ← T − {u}
24 Ni ← Ni−1
25 Go back to Step 1

26 Step 4:

27 if i = 1 then

28 STOP

29 else

30 Remove the last node, say v, in S
31 i← i− 1
32 Ni ← Ni ∪ {v}
33 T ← T ∪ {v}
34 Go back to Step 1

• In line 2 the initial set in P is made equal to {s}, instead of ∅, otherwise that MCV

would never be added to P .

4



Also in Example 1 [3, page 1701, line -4] in Step 3 P = P ∪ {U1} where P was

initially ∅ and U1 = {s, 1} (and U0 would never be added to P ).

• In line 4 the auxiliary set D was included, and initially is equal to T − Ni. The

purpose of this set is to keep track of the elements of T − Ni that have not been

excluded as elements that may be part of an MCV candidate. When for a given

u ∈ D the condition evaluated in line 11 returns the value false, then according to

line 15 �any node set containing S ∪ {u} is not a MCV � and the algorithm must

search for another node in T −Ni, adjacent to S in Step 1, but before that can occur

node u is erased from D (see line 16), so that it is never selected again in Step 1.

• In the original algorithm the step sequence is clearly indicated in every step except

at the end of Step 2 after �Otherwise, any node set contains S∪{u} is not a MCV �.

Clearly Step 3 can not follow Step 2 when S ∪ {u} is not an MCV . Step 4 can

not follow Step 2, because the algorithm needs to try other nodes in T\Ni, without

changing i. Moreover, if the algorithm proceeded to step 4 it would not be a Depth

First Search as stated in [3]. Hence the only logical next step, in the original

algorithm at the end of Step 2 after �Otherwise, any node set contains S ∪ {u} is

not a MCV �, is Step 1.

Because of the introduction of the auxiliary set D, we have in line 17 of the modi�ed

version �Go back to line 5� instead of simply �go to step 1� (which is missing in the

original version).

• In Step 4, line 27 the stopping condition of the algorithm was modi�ed to i = 0, in

order to allow the generation of all the problem solutions.

With i = 0 the algorithm would stop after generating U6 = {s, 1, 4}, as can be seen if

we resume Example 1 in [3] where it was left (with T = {2, 3, 4, t}, i = 1, N1 = {2, t}) and

after correcting Step 1 in page 1073, where is T\N2 should be T\N1. In our continuation

of that example it is assumed that in Step 2 whenever �any node set containing S ∪ {u}

is not a MCV � the algorithm goes to Step 1 in search for a unexamined node in T −Ni.

5



Resuming Example 1 [3]:

Step 1. Since node 3 ∈ (T\N1 = {3, 4}) is adjacent to S = {s, 1}, go to Step 2.

Step 2. u = 3, G = (T − {u}, E(T − {u})) is not a a connected network, then any node

set containing S ∪ {u} is not a MCV and go to Step 1.

Step 1. Since node 4 ∈ (T\N1 = {3, 4}) is adjacent to S = {s, 1}, go to Step 2.

Step 2. u = 4, G = (T − {u}, E(T − {u})) is a connected network, then S ∪ {u} is a

MCV and go to Step 3.

Step 3. i← i+ 1, that is i← 2;

k ← k + 1, that is k ← 6;

Uk ← S ∪ {u = 4}, that is U6 = {s, 1, 4}

S ← S ∪ {u}, that is S ← {s, 1, 4}

P ← P ∪ {Uk}, that is P = {U1, U2, U3, U4, U5, U6}

T ← T − {u}, that is T = {2, 3, t}

Ni ← Ni−1, that is N2 = {2, t}

Go back to Step 1

Step 1. Since node 3 ∈ (T\N2 = {3}) is adjacent to S = {s, 1, 4}, go to Step 2.

Step 2. u = 3, G = (T − {u}, E(T − {u})) is not a a connected network, then any node

set containing S ∪ {u} is not a MCV and go to Step 1.

Step 1. Since there are no more nodes in (T\N2 = {3}) to evaluate, go to step 4.

Step 4. Remove the last node, say v = 4, in S, that is S = {s, 1}

i← i− 1, that is i← 1

Ni ← Ni ∪ {v}, that is N1 = {2, 4, t}

T ← T ∪ {v} that is T = {2, 3, 4, t}

Go back to Step 1

Step 1. Since node 3 ∈ (T\N1 = {3}) is adjacent to S = {s, 1}, go to Step 2.

6



Step 2. u = 3, G = (T − {u}, E(T − {u})) is not a a connected network, then any node

set containing S ∪ {u} is not a MCV and go to Step 1.

Step 1. Since there are no more nodes in (T\N1 = {3}) to evaluate, go to step 4.

Step 4. i = 1: the original algorithm would stop without generating U7 and U8.

The importance of removing irrelevant nodes before using the (modi�ed) algorithm for

obtaining all the s-t MCs, can be easily illustrated adding a spur to the network graph.

If a spur is added at node 1 (adding edge e15), when node 1 is examined (with i = k =

0, S = U0 = {s}, T = {1, 2, 3, 4, 5, t}, N0 = {t}), in Step 1 , G = (T − {u}, E(T − {u}))

is a disconnected network because node 5 becomes an isolated node, and U1 would not

be obtained. Hence Ui, i = 2, 3, 4, 5, 6, would not be generated because according to the

algorithm any node set containing S∪{1} = {s, 1} could not be aMCV ! This results from

Property 2 in [3] which is only valid if, for each considered s-t node pair, the irrelevant

nodes for paths between s and t have been previously removed.

7



A Original Algorithm

Algorithm Min-Cut: Find MCVs in a network G(V,E)

Data: A connected graph G = (V,E), with node set V , edge set E, a source node
s and a target node t

Result: P , the set of MCV s in G = (V,E)
1 i← 0, k ← 0, S ← {s}, U0 ← {s}, T ← V − {s}, N0 ← {t}
2 P ← ∅
3 Setp 1:

4 if Exists a node u ∈ T −Ni adjacent to S then

5 S ∪ {u} is a MCV candidate

6 Go to Step 2

7 else

8 Go to Step 4

9 Step 2:

10 if G = (T − {u}, E(T − {u})) is a connected network then

11 S ∪ {u} is a MCV
12 Go to Step 3

13 else

14 Any node set containing S ∪ {u} is not a MCV

15 Step 3:

16 i← i+ 1, k ← k + 1
17 S ← S ∪ {u}
18 Uk ← S
19 P ← P ∪ {Uk}
20 T ← T − {u}
21 Ni ← Ni−1
22 Go back to Step 1

23 Step 4:

24 if i = 1 then
25 STOP

26 else

27 Remove the last node, say v, in S
28 i← i− 1
29 Ni ← Ni ∪ {v}
30 T ← T ∪ {v}
31 Go back to Step 1

8



References

[1] C. J. Colbourn. The combinatorics of network reliability. The International Series of

Monographs on Computer Science. Oxford University Press, 1987.

[2] D. R. Shier. Network Reliability and Algebraic Structures. Claredon Press - Oxford,

1991.

[3] Wei-Chang Yeh. A simple algorithm to search for all MCs in networks. European

Journal of Operational Research, 175(3):1694�1705, November 2006.

9


