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Abstract

Many network providers consider sufficient to implement protection schemes which
ensure their network (or certain connections in their network) is 100% reliable in sin-
gle failure scenarios. In this context, a working path and a protection path, can be
used to set up a connection, such that only one of them will be affected by the failure
of a single network element

A network element may affect several arcs in an optical or MPLS network, due
to the multi-layer nature of telecommunication networks. This lead to the concept
of shared risk link group (SRLG). To ensure global path protection against a failure
affecting a single SRLG, a SRLG diverse path pair must be calculated. The problem
of finding a shared risk link group (SRLG) diverse path pair was shown to be NP-
Complete.

An algorithm for enumerating SRLG diverse paths, by non decreasing total cost
will be presented. The paths may be node or arc disjoint, and may satisfy a length
constraint. Furthermore, the possibility of ordered enumeration of diverse SRLG
paths will enable a multi-objective routing approach, with survivability requirements.

1 Introduction

Bandwidth usage optimization is one of the main issues when protection schemes are used
in telecommunication networks. In global path protection, the the path that carries the
associated traffic flow under normal operating conditions is called the Active Path (AP),
and the path that carries that traffic when some failure affects the AP is called the Backup
Path (BP).

Many network providers consider sufficient to implement protection schemes which
ensure their network (or certain connections in their network) is 100% reliable in single
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failure scenarios. Because telecommunication networks are intrinsically multi-layered, a
single failure at a lower level usually corresponds to a multi-failure scenario at an upper
layer.

A failure risk may represent a fiber cut, a card failure at a node, a software failure, or
any combination of these factors [5], which may affect one or more links at a given network
layer. In this context, the concept of shared risk link group (SRLG) allows an upper layer
to select, for a given AP, a BP, which avoids every SRLG that may affect the selected AP.
Note that this may not be feasible for all possible APs. That is a SRLG diverse path set
maybe defined as a set o paths, between an origin and a destination such that no pair
of paths can be simultaneously affected by any given failure (or risk) in a single failure
scenario. Therefore, to ensure global path protection against a single failure affecting a
single SRLG, a SRLG diverse path pair must be calculated.

The problem of finding a shared risk link group (SRLG) diverse path pair has been
shown to be NP-Complete [5]. The minimum-cost diverse routing, in which the objective is
finding two paths, SRLG diverse, with minimal total arc cost (also designated the min-sum
problem), is also NP-Complete [5]. Hu et al. [5] proposed an integer linear programming
(ILP) formulation for the min-sum problem, and provide numerical results showing that
the ILP formulation quite effective in networks with a few hundreds of nodes.

A similar problem is the min-min problem which seeks to minimise the cost of the
shorter path (the AP). In [6] an algorithm (CoSE) is proposed for finding a min-min
SRLG disjoint path pair, which is based in the CoLE algorithm [9] proposed for solving
the min-min problem for link disjoint routing.

The necessity of calculating SRLG diverse path pairs arises in optical and MPLS net-
works, where certain connections require two paths, the AP and the BP, in order to satisfy
Service Level Agreements (SLA) regarding reliability. The possibility of enumerating, by
non-decreasing cost, SRLG diverse path pairs, may allow more elaborate, and possibly
more efficient, forms of SRLG diverse routing. For example, the ordered enumeration of
diverse SRLG paths will make possible a multi-objective routing approach, with surviv-
ability requirements, similar to the one considered in [2].

The report is organised as follows. In the next section the notation and the problem
formulation are given. An algorithm for enumerating SRLG diverse paths, by non decreas-
ing cost of their total (additive) cost is presented in section 3. The path pairs may be node
or arc disjoint, and with length constraints, as briefly explained in sections 4 and 5. This is
a work in progress, therefore no results regarding the efficiency of the proposed algorithm
will be included at this time.

2 Notation and problem definition

The algorithm in section 3 is based on Algorithm 1 in [2]. Therefore we will use a notation
similar to the one in [2].

Let G = (N,A) be a directed network with node set N = {v1, v2, . . . , vn} and arc
set A = {a1, a2, . . . , am} (where n and m designate the number of nodes and arcs in G
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respectively). Let a non-negative cost function (or metric) in the arcs, be defined:

cvavb
≥ 0, (va, vb) ∈ A (1)

where cvavb
represents the cost of using arc (va, vb). The cost c(p) of a path p in G with

respect to metric c is:
c(p) =

∑
(va,vb)∈p

cvavb
. (2)

Definition 2.1 A path p is said to be simple (or loopless) if all its nodes are different.

We will use the word path to refer to simple paths, and will only use the expression “simple
path” when required, namely in the algorithm.

Let path p = 〈v1, a1, v2, . . . , vi−1, ai−1, vi〉, be given as an alternate sequence of nodes and
arcs from G, such that the tail of ak is vk and the head of ak is vk+1, for k = 1, 2, . . . , i−1 (all
the vi in p are different). Let the set of nodes in p be V ∗(p) and the set of arcs in p be A∗(p).
Two paths p = 〈v1, a1, v2, . . . , vi−1, ai−1, vi〉 and q are arc-disjoint if A∗(p) ∩ A∗(q) = ∅.
Two paths p and q are disjoint if V ∗(p) ∩ V ∗(q) = ∅, and are internally disjoint [1] if
{v2, . . . , vi−1} ∩ V ∗(q) = ∅. We will say that two paths are node disjoint if they are
internally disjoint.

Let R be a set representing the risks (failures) in the functional network. Each risk may
correspond to a fiber cut, a card failure at a node, a software failure, or any combination of
these factors. Let Ar represent the sub-set of network arcs (or links) in the network logical
representation (corresponding to a capacitated graph) that can be affected by risk r ∈ R.
Thence Ar is a SRLG (Shared Risk Link Group associated with r). Let, as in [5],

rp = {r ∈ R : path p contains elements of Ar} (3)

The SRLG problem can be defined as follows [5].

Definition 2.2 Find two paths p and q, between a pair of nodes, such that rp ∩ rq = ∅.
We also say that p and q are two SRLG diverse paths (with respect to R).

The first addressed problem is to enumerate node disjoint simple path pairs (pi, qi)
(i = 1, 2, . . .), in G, from a source s to a destination node t (s 6= t), which are SRLG
diverse, by non decreasing total cost of the pair, defined by:

c[(pi, qi)] = c(pi) + c(qi), i = 1, 2, . . . (4)

where pi and qi have the same source and sink node.
Let Ra be the set of risks that can affect arc a ∈ A:

Ra = {r : a ∈ Ar}, ∀a ∈ A (5)

Ra can be obtained from Ar (r = 1, . . . , |R|) and,

rp = ∪a∈pRa (6)

which is much more adequate for generating SRLG diverse paths in the proposed algorithm.
If a path pair (p, q) is SRLG diverse then it is arc disjoint (regardless of whether the

the network is directed or not).
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Definition 2.3 Two arcs, ai, aj ∈ A are SRLG diverse if Rai
∩Raj

= ∅.

Definition 2.4 An arc a ∈ A is SRLG diverse with a path p if Ra ∩ rp = ∅.

The algoritm proposed in section 3 is based on algorithm 1 in [2], wich uses the MPS
algorithm [8], in its loopless version [7]. Algorithm MPS is a ‘deviation’ algorithm. Each
time a path p is chosen from a set of candidate paths, X, new paths may be added to X.
In the context of the algorithm the node vk of path p, from which a new candidate path
is generated, is the deviation node of that new path (which coincides with p up to vk). In
a path the link the tail of which is the deviation node, is called the deviation arc of that
path [8]. By definition s is the deviation node of p1 (the shortest path from s to t). The
concatenation of path p, from vi to vj, with path q, from vj to vl, is the path p � q, from
vi to vl, which coincides with p from i to vj and with q from vj to vl.

Let Tt designate a tree where there is a unique path from any node vi to t (tree rooted
at t as defined in [8]) and πvi

denote the cost of the path p, from vi to t, in Tt; the reduced
cost c̄vivj

of arc (vi, vj) ∈ A associated with Tt is c̄vivj
= πvj

− πvi
+ cvivj

. So all arcs in Tt

have a null reduced cost. The reduced cost of path p is given by
∑

(vi,vj)∈p c̄vivj
and it can

be proved that c(p) = c̄(p) + πs. The advantage of using reduced costs was first noted by
Eppstein [4] and they are shown by theorems 8 and 9 in [8] and by theorem 2.1 in [7] (in
the context of the MPS algorithm) to lead to less arithmetic operations and to sub-path
generation simplification.

Let Tt be the tree of the shortest paths from all nodes to t and Tt(vj) the shortest path
from vj to t in Tt (hence πvi

= c[Tt(vj)]). The sub-path from vk to vj in p is represented
by subp(vk, vj). The set of arcs of A of G = (N,A) is arranged in the sorted forward star
form – for details see [3]. That is, the set A is sorted in such a way that, for any two arcs
(vi, vj), (vk, vl) ∈ A, (vi, vj) < (vk, vl) if vi < vk or (vi = vk and c̄vivj

≤ c̄vkvl
).

3 Node disjoint and SRLG diverse path pairs

The algorithm is based on the Algorithm 1 in [2] for enumerating node disjoint path
pairs, by non-increasing total additive cost. That algorithm requires a network topology
transformation as described in the next subsection.

3.1 Network topology modification

Let s, t be a source and destination network in G. Let Pxy be the set paths (loopless or
not) from node x to node y in G. Let G′ = (N ′, A′) be a transformed network where, such
that [2]:

• the former nodes are duplicated: N ′ = N ∪ {v′i : vi ∈ N}

• the former arcs are duplicated, and a new one, linking t and the new node s′, is
added: A′ = A ∪ {a′ = (v′a, v

′
b) : a = (va, vb) ∈ A} ∪ {(t, s′)}
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• c(v′a, v′b) = c(va, vb), ∀(va, vb) ∈ A

• c(t, s′) = 0

• Ra′ = Ra, ∀a, a′ ∈ A′

In this new network the source node is s and the destination node is t′. Each path form s
to t′ in G′ is such that:

p = q � (t, s′) � q′ (7)

where q ∈ Pst and q′ ∈ Ps′t′ . If q and q′ are simple and do not share corresponding nodes
in N and N ′ (except s, s′ and t, t′) then they are disjoint simple paths. If, additionally,
Rq ∩Rq′ = ∅, then q and q′ are SRLG diverse.

If Tt is calculated before transforming the network, then Tt′ can easily be obtained. This
process of building Tt′ ensures that Tt′(s) = p � (t, s′) � p′, where p and p′ correspond to the
same path. In the transformed network, πv′

i
= c(Tt(vi)),∀v′i ∈ N ′\N and πvi

= πv′
i

+ πs′ ,
for any vi ∈ N [2]1.

In remark 1 of [2] it is suggested that there is no need to explicitly represent the new
arcs in G′ except the new arc (t, s′), because every new arc is a copy of another existing
arc, and c̄v′

iv
′
j

= c̄vivj
. However, implementing remark 1 is only feasible if Tt′ is built as

described in the previous paragraph – a fact which is not pointed out in [2].
If at least two different paths, p and q, with the same minimal cost exist from vi

to t, (with the successor of vi in p different from the successor of vi in q), then, using
Dijkstra’s algorithm in G′ for calculating Tt′ , we may obtain Tt′(vi) = (vi, vj) � Tt′(vj) and
Tt′(v

′
i) = (v′i, v

′
k)�Tt′(v

′
k), with vj 6= vk (and v′j 6= v′k). When this happens, two different arcs

with the “same tail”, vi and v′i, will belong to Tt′ , and when building the sorted forward
star form of the arcs A ∩ (t, s′), both arcs must be the first arc with tail vi, which is not
possible! This detail is extremely important because the MPS algorithm [8], which is the
base of Algorithm 1 in [2], requires the ordering of the arcs in the ordered forward star
form, such that the first arc with tail vi (equivalent to v′i) ∀vi ∈ A, belongs to Tt′ , in order
to be able to generate every path by non-decreasing order of its cost.

3.2 The algorithm

In the algorithm we will use a notation similar to the one in [2]. A infeasibility test can be
made at the very beginning of the algorithm:

• if we can not find at least two arcs with tail node s, which are SRLG diverse, then
there is no solution;

• if we can not find at least two arcs with head node t, which are SRLG diverse, then
there is no solution.

1In [2], where is πi = πi′ + πs should be πi = πi′ + πs′ .
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If this infeasibility test fails, then we can proceed to try and find SRLG diverse path pairs.

Algorithm 1: Determination of the k shortest SRLG diverse simple path pairs.

Data: Network graph G = (N,A) and a source destination node pair (s, t)
Result: S, the set of the k shortest SRLG diverse simple path pairs from s to t
if the infeasibility test is successfully then Stop end1

Remove from A arcs emerging form s or incident in t, which can not be SRLG2

protected. Remove from A all arcs with tail node t // Network pruning

Tt′ ← tree of the shortest paths from i ∈ N ′ to t′ concerning c // T ′t (i′) = Tt(i)3

p← Tt′(s)4

if p is not defined then Stop end5

c̄vivj ← πvj
− πvi

+ cvivj
, ∀(vi, vj) ∈ A′// Calculates reduced costs6

Represent A′ in the sorted forward star form concerning c̄7

// Consider: p = (s ≡ v1, v2, ..., vy−1, vy ≡ t), (s, v2) can be SRLG protected

dp ← s // Deviation node of p, the first candidate path8

X ← {p}9

S = ∅ // Set of identified SRLG diverse simple path pairs10

while X 6= ∅ ∧ |S| < k do11

p← path in X such that c̄(p)) is minimum12

if (p is simple) ∧ Disjoint(p) ∧ SRLGDiverse(p) then13

S ← S ∪ {p}14

end15

X ← X\{p}16

i← min index such that vi = dp17

break ← false // Candidate paths might be derived from p18

repeat19

l← index such that al = (vi, vi+1)20

repeat21

l← l + 122

vj ← head node of al // if l > m+ 1 then vj ← 023

if (vi is the tail node of al)∧ EquivalentPair(subp(s, vi) � al � Tt′(vj)))24

then
break ← true // No candidate paths will derive from p at vi25

end26

until break ∨(vi is not the tail node of al)∨ [(al does not form a loop with27

subp(s, vi))∧ SRLGDiverse(subp(s, vi) � al) ∧ Disjoint(subp(s, vi) � al)]
if (¬ break ) ∧ (vi is the tail node of al) then28

q ← subp(s, vi) � al � Tt′(vj); dq ← vi29

X ← X ∪ {q}30

end31

vi ← vi+1 // Next node of p32

until (vi = t′) ∨ ¬(subp(s, vi) is simple) ∨ ¬ Disjoint(subp(s, vi)) ∨33

¬ SRLGDiverse(subp(s, vi))
end34
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In order to speed up path generation, the network should be pruned of the arcs with
tail s and head t such that no SRLG diverse paths can be obtained if they belong to any of
the paths. We will say that the remaining arcs of tail s and head t can be SRLG protected
(by at least another arc of tail s or head t, respectively). These arcs can be identified
during the infeasibility test and removed from the network2 before running the Dijkstra
algorithm for obtaining Tt′ .

A path, z, obtained in the augmented network (see sub-section 3.1 or [2, section3.2]),
is made of p � (t, s′) � q and we assume it has deviation node dz, deviation arc ah, and that
the first arc in p is af (where af = ah if the deviation node is s). Paths will only be placed
in the set of candidate paths if:

• the deviation node, dz, belongs to N and the path subz(s, dz) � ah is simple;

• the deviation node, dz, belongs to N ′\N :

– the path subz(s′, dz) � ah is simple;

– c(subz(s, t)) ≥ c(subz(s′, t′)) (or c(p) ≥ c(q)). Note that c(q) = c(subz(s′, dz) �
ah), and that c(q) = c(z)− c(p).

– the paths subz(s, t) and subz(s′, dz) � (ah) are node-disjoint;

– ah is SRLG diverse with subz(s, t).

In algorithm 1 we chose to remove from the network graph arcs which are not useful
for obtaining SRLG diverse path pairs. This is not strictly necessary, but improves the
algorithm efficiency.

Note that in set X all paths are simple, disjoint and SRLG diverse up to and includ-
ing the deviation arc. Due to this fact we have replaced all the interior while cycles of
Algorithm 1 [2] with repeat until cycles.

Function Disjoint(z), z = p � (t, s′) � q, returns true if p and q are node disjoint.
Function SRLGDiverse(z) returns true if p and q are SRLG diverse. At steps 27 and
33 the value of functions Disjoint() and SRLGDiverse() is true whenever vi belongs to
N . This implies that the evaluation of disjointness or SRLG diverseness is only effectively
required at steps 27 and 33 of the algorithm when the deviation node belongs toN ′\N . Also
note that for the calculation of SRLGDiverse(subp(s, vi) � al), in step 27, it is sufficient
to evaluate if subp(s, vi) is SRLG diverse with arc al.

Function EquivalentPair() was first introduced in [2], for including remark 2 in Al-
gorithm 1. Due to remark 2 in [2] we may choose to store paths pairs that c̄[subp(s, t)] ≤
c̄[subp(s′, t′)] or c̄[subp(s, t)] ≥ c̄[subp(s′, t′)]. If we choose to store in X paths q such that
c̄[subq(s, t)] ≥ c̄[subq(s

′, t′)], then function EquivalentPair() will only be required when
vi belongs to N ′\N – that is step 24 could be rewritten:

2In order to reduce the need for graph transformation, these arcs can be simply be marked as useless,
as long as an adequate Dijkstra’s algorithm is implemented.
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(vi ∈ N ′\N) ∧ (vi is the tail node of al)∧
EquivalentPair(subp(s, vi) � al � Tt′(head node of al)).

Function EquivalentPair(z) returns true whenever c̄[subz(s, t)] < c̄[subz(s′, t′)]. Consider
that vi belongs to N ′\N and let q = subp(s, vi)�al �Tt′(head node of al), in step 24. In this
case subp(s, t) = subq(s, t), therefore the execution of EquivalentPair() can be simply
the evaluation of c̄[subp(s, t)]︸ ︷︷ ︸

c̄[subq(s, t)]

< c̄(q)− c̄[subp(s, t)]︸ ︷︷ ︸
c̄[subq(s

′, t′)]

.

4 Link disjoint SRLG diverse path pairs

If the path pair does not need to be node disjoint, then the only modification required in
algorithm 1 is the suppression of the function Disjoint(), assuming each arc belongs to at
least one SRLG.

5 SRLG diverse path pairs with length constraints

Let z = p � (t, s′) � q, represent a path pair (p, q). If the path pairs have length restrictions
(maximum number of allowed arcs), then, two new conditions must be evaluated: the depth
of the deviation node i ∈ p and j′ ∈ q must less then the length restriction (assuming node
s has depth 0).
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