
Instituto de Engenharia de Sistemas e Computadores de Coimbra

Institute of Systems Engineering and Computers

INESC - Coimbra

Teresa Gomes, José Craveirinha e Lúısa Jorge

An effective algorithm for obtaining minimal cost

pairs of disjoint paths with dual arc costs

No.5 2006

ISSN: 1645-2631

Instituto de Engenharia de Sistemas e Computadores de Coimbra

INESC - Coimbra

Rua Antero de Quental, 199; 3000-033 Coimbra; Portugal

www.inescc.pt

An effective algorithm for obtaining minimal cost pairs of disjoint

paths with dual arc costs

Teresa Gomesa,b, José Craveirinhaa,b and Lúısa Jorgeb,c

a Dept. of Electrical and Computer Engineering, Pólo II of Coimbra University

3030-290 Coimbra, Portugal

b INESC-Coimbra, Rua Antero de Quental 199

3000-033 Coimbra, Portugal

c Polytechnic Institute of Bragança

Campus de Sta Apolónia, 5301-857 Bragança, Portugal

Email: {teresa,jcrav}@deec.uc.pt ljorge@inescc.pt

Abstract

Routing optimisation in some types of networks requires the calculation of the

minimal cost pair of disjoint paths such that the cost functions associated with the

arcs in the two paths are different.

In the first part of this report an exact algorithm for solving this NP-complete

problem is proposed. A formal proof of the correctness of the algorithm is presented.

Extensive experimentation is presented to show the effectiveness of this algorithm:

most solutions are optimal and are calculated very quickly; only a very small fraction

of the solutions is sub-optimal. In real time applications this algorithm can be

modified to ensure that a solution (that is either optimal or sub-optimal) is obtained

in a bounded CPU time.

In the second part of this report it is shown that the previous algorithm can be

extended to collect all the minimal cost pair of disjoint paths. A proof of the cor-

rectness of this extension is presented. Experimental results are shown for directed

networks.

Keywords OR in telecommunications, paths with minimal cost sum, dual arc costs,

disjoint paths

0Work partially supported by programme POSI of the III EC programme cosponsored by FEDER

and national funds.

Part I

The minimal cost pair of disjoint paths with

dual arc costs

1 Introduction

1.1 Background and Motivation

In today’s telecommunications networks it is necessary, for reliability reasons, to

use protection schemes involving the calculation of two (or more) disjoint paths for each

node-to-node connection, especially when large amounts of traffic have to be routed in

the network. This concern is particularly relevant in optical networks, namely WDM

(Wavelength Division Multiplexing) networks due to the very high rates supported by

lightpaths, and in the Internet using MPLS (Multiprotocol Label Switching). In this

context the problem of obtaining (arc or node) disjoint paths, for increasing network

reliability while minimising bandwidth consumption, is extremely important. In telecom-

munication networks, when diverse routing is used, the path that carries traffic under

normal conditions is called the active path (AP), and the path that carries traffic when

some failure affects the active path is called the backup path (BP).

In a network, with certain type of route protection schemes, the minimisation of

bandwidth usage can be achieved by solving the min-sum problem: finding k disjoint

paths between two (distinct) nodes s and t such that the sum of the cost of the routes

is minimised. A polynomial time algorithm for solving this problem was proposed in [13]

and a more efficient version for k = 2 was presented in [14]. In this type of problem the

arc costs are uniform, that is they have the same value regardless of the considered path.

A similar problem, called the min-max problem [7] which involves the minimisation

of the cost of the more expensive path of the disjoint path pairs for each node pair, was

shown (Li et al. [7]) to be NP-complete even for k = 2, for the four possible variants of

the problem: arc or node disjoint paths and directed or undirected networks.

Xu et al. [15] tackle a related problem, called min-min, which seeks to minimise the

2

cost of the shorter path (of the disjoint path pair). These authors prove that the min-min

problem is NP-complete, whether the network is directed or undirected, with uniform arc

costs. Therefore this implies the problem to be NP-complete in dual arc cost networks.

In order to reduce bandwidth usage, it is desirable to allow bandwidth sharing among

BPs of disjoint APs. This is a condition that leads to networks with non-uniform arc

costs, that is networks with different arc costs in the APs and BPs. In fact the reserved

bandwidth in each arc of a BP associated with a given AP is less than or equal to the

bandwidth that would be required in that same arc by the AP. Hence the problem of

finding a pair of disjoint paths (the AP and the BP) leads to the min-sum problem with

ordered dual costs, or MSOD problem. This problem was shown to be NP-complete for

undirected and directed networks in [15] and [6], respectively.

In [15] an effective heuristic (designated as COLE – COnflicting Link Exclusion) for

solving the min-min problem, is proposed. This approach is based on the use of a shortest

path algorithm and on the identification of the so-called conflicting link set, with the links

which should be avoided in the calculation of the AP, in order to guarantee that a disjoint

BP can be found. This approach was also applied to a MSOD problem.

Several heuristics for obtaining an asymmetrically weighted pair of disjoint paths with

minimal cost, a particular type of the MSOD problem, are described in [6]. The proposed

heuristics are based on k-shortest path searching, Suurballe’s algorithm [14], integer linear

programming, linear relaxation and minimum cost network flow (MCNF) techniques.

According to the computational results presented for networks up to 400 nodes, the MCNF

heuristic yields the best performance in terms of cost and running time. Note that the

problem addressed in the present paper considers arbitrary dual arc costs, unlike MSOD

where an order relation has to be fulfilled by the dual costs.

The problem of finding k disjoint paths from s to t (two distinct nodes), in a network

with k different costs on every arc such that the total cost of the paths is minimised, was

studied in [8]. The paths may be arc or node disjoint and the networks may be directed

or undirected. Firstly it is proved that this problem is strongly NP-complete even for

k = 2, when the relationship between the k arc costs (in the same arc) is arbitrary.

Two polynomial-time heuristics for the problem of finding disjoint paths with min-sum

objective function when the cost structure is not uniform, were then proposed. Worst-case

3

bounds were obtained for both heuristics.

In [5] the problem of dynamic routing of restorable bandwidth-guaranteed LSPs (Label

Switched Paths) in MPLS networks was addressed, and algorithms for setting up such

LSPs were proposed. This problem has, as a sub-problem, the determination of a minimal

cost pair of disjoint paths with different path-costs. In [5] it was considered that the worst

case guarantee in [8] was not good enough for this purpose, so a different approach to

the problem of finding a pair of disjoint paths with different arc costs, was presented.

This was based on a mathematical programming formulation of the problem. In order

to obtain lower bounds on the optimal solution value of this problem, a relaxation of

the integrity constraints was considered, as well as the dual of this linear programming

problem. A heuristic that calculates a disjoint pair of paths, as well as upper and lower

bounds for the optimal disjoint path pair cost, was then described.

The approach of Ho et al. [4] to the problem of survivable routing requires solving the

min-sum problem concerning the cost of the active and backup disjoint path pair, where

the protection path depends on the chosen active path (this a problem similar to the one

addressed in [5]). In [4] this problem is formulated as an Integer Linear Programming

Process. Since the problem is NP-complete two heuristics are also proposed: the Iterative

Two-Step-Approach (ITSA) and the Maximum Likehood Relaxation (MLR). The MLR

is a modified Dijkstra’s algorithm which has polynomial time complexity. The ITSA

was already outlined in [6] where it was designated as an Enhancement to the Two-

Step-Approach (TSA). The TSA uses a shortest path algorithm for obtaining the active

path, then removes the arcs of the active path from the network; finally the shortest

path algorithm is used again for obtaining the backup path. ITSA iteratively inspects

k-shortest paths as active paths, in an ascending order of cost, from source to destination.

The TSA is used in every iteration of the ITSA until the optimal path pair is obtained or a

stopping criterion is satisfied. The efficiency of the ITSA is determined by the efficiency of

the k-shortest path algorithm. However, according to [12], the ITSA can work extremely

well in solving the diverse routing problem with shared protection.

The interest in developing an exact and effective solution to the problem of obtaining

the minimal cost pair of disjoint paths with arbitrary dual arc costs, having in mind

possible applications, provided the motivation for this report.

4

1.2 Contribution of the report

In the first part of this report we propose an exact algorithm for finding an arc disjoint

path pair, with minimal cost in a network with dual arc costs. The algorithm is based

on the resolution of two k-shortest path problems in an articulate manner, so that an

optimal stopping condition is formulated.

Experimental results with random generated networks show that the algorithm solves

the problem exactly in practically all the cases in directed networks, the cases of failure

being due to memory exhaustion alone. In the small percentage of cases in which an

optimal solution is not attained the solution provided by the algorithm is sub-optimal. If

execution time is important, as in automatic routing calculation procedures with stringent

resolution times, a CPU time limit can be implemented per node pair, leading to a

truncated version of the algorithm.

An exact algorithm for obtaining the minimal cost pair of disjoint paths with dual arc

costs and an extension of that algorithm for obtaining minimal cost pairs of disjoint paths

with dual arc costs are presented, respectively in the first and second part of this report.

The first part is organised in the following manner. In the next section the prob-

lem is formalised, the notation is introduced and the algorithm is presented; the control

conditions of the algorithm are also discussed. Section 2 also presents the proof of the cor-

rectness of the algorithm, as well as its application in the context of undirected networks

and its variant for the problem with length constrained paths. Extensive experimental

results with randomly generated directed networks having different cost ranges are pre-

sented and analysed in section 3. Finally, some conclusions are drawn in section 4 which

concludes part 1 one the paper.

The second part consists in sections 5 and 6. In section 5 the algorithm for obtaining

all the minimal cost pairs of disjoint paths with dual arc costs is introduced, followed

by the proof of its correctness. Finally experimental results with randomly generated

directed networks having different cost ranges are presented and analysed in section 6.

5

2 Proposed Approach

2.1 Problem formalisation

Let G = (V, E) be a directed network with node set V and arc set E, where two

different non-negative cost functions (or metrics) in the arcs are defined:

η(j) : E → IN0 (j = 1, 2) (1)

η(j)((va, vb)) = c(j)
vavb

(va, vb) ∈ E (2)

The cost C(j) of a (loopless) path p in G with respect to metric η(j), is:

C(j)(p) =
∑

(va,vb)∈p

c(j)
vavb

(3)

Let path p, p = 〈v1, e1, v2, . . . , vi−1, ei−1, vi〉, be given as an alternate sequence of

nodes and arcs from G, such that the tail of ek is vk and the head of ek is vk+1, for

k = 1, 2, . . . , i − 1 (all the vi in p are different). Let the set of nodes in p be Vs(p) and

the set of arcs in p be Es(p). Two paths p = 〈v1, e1, v2, . . . , vi−1, ei−1, vi〉 and q are arc

disjoint if Es(p)∩Es(q) = ∅. Two paths p and q are disjoint if Vs(p)∩ Vs(q) = ∅, and are

internally disjoint if {v2, . . . , vi−1} ∩ Vs(q) = ∅ [1]. We will say that two paths are node

disjoint if they are internally disjoint.

The addressed problem is to find a pair (p, q) of arc (node) disjoint paths which

minimises the total (combined) cost of the pair defined by:

C((p, q)) = C(1)(p) + C(2)(q) (4)

We recall that in [8] this problem was proved to be NP-complete.

An algorithm which solves this problem by using a k-shortest path enumeration al-

gorithm (such as MPS [11] in its loopless version [10]), and an algorithm for finding the

shortest path between a pair of nodes (for example the Dijkstra algorithm) will be pre-

sented. Note that although Yen’s algorithm has the lowest worst case complexity among

k-shortest path ranking algorithms [16, 9], we prefer to use MPS because, in [10] , exper-

imental results show that this algorithm is more efficient than Yen’s.

6

2.2 Notation

Let p
(1)
h be the h-shortest (loopless) path from s to t with respect to metric η(1)

(obtained by MPS, for example). Let q(p
(1)
h)(2) be the shortest path from s to t with

respect to η(2) (obtained using the Dijkstra algorithm) in the graph G(1) obtained from G

by removing (temporarily) the arcs in p
(1)
h .

Let p
(2)
k be the k-shortest (loopless) path for s to t with respect to η(2). Let q(p

(2)
k)(1)

be the shortest path from s to t with respect to η(1) in the graph G(2), obtained from G

by removing (temporarily) the arcs in p
(2)
k .

Let Ah = (p
(1)
h , q(p

(1)
h)(2)), Bk = (q(p

(2)
k)(1), p

(2)
k), C(Ah) = C(1)(p

(1)
h) + C(2)(q(p

(1)
h)(2)),

and C(Bk) = C(1)(q(p
(2)
k)(1)) + C(2)(p

(2)
k).

2.3 Main steps of the algorithm

A k-shortest path enumeration algorithm, using arc costs c
(1)
ij , obtains the paths p

(1)
h ,

h = 1, 2, The arcs of each path p
(1)
h are temporarily removed from the network graph

and the shortest path with respect to metric η(2), q(p
(1)
h)(2) (disjoint with p

(1)
h) is obtained

in the resulting graph (using for example the Dijkstra algorithm) by using arc costs c
(2)
ij

(with the cost of the removed arcs equal to ∞). In this manner, (procedure A) it is

possible to keep track of the current best candidate pair of paths found so far, the one

with cost minh C(Ah).

Now let the arc costs c
(2)
ij be used for obtaining the k shortest paths p

(2)
k , k = 1, 2,

For each p
(2)
k all its arcs are temporarily removed from the network graph and the shortest

path with respect to metric η(1), disjoint with p
(2)
k , is obtained. In this manner (procedure

B) it is also possible to keep track of the current best candidate pair of paths found so

far, the one with cost mink C(Bk). Procedure B can be considered as ’symmetrical’ to

procedure A.

We will show that if these two procedures are executed in an articulate manner, when

the current best pairs of paths have identical cost (in procedures A and B), the optimal

arc-disjoint path pair has been found (for networks with integral costs) if C(1)(p
(1)
h) =

C(1)(q(p
(2)
k)(1)) and C(2)(p

(2)
k) = C(2)(q(p

(1)
h)(2)).

The main steps of the proposed algorithm, designated DP2LC, are:

7

1. Find the first path pair A using procedure A.

2. Find the first path pair B using procedure B.

3. If A and B satisfy the optimal path pair condition Then Stop Else

(a) Repeat

i. While A has to be improved Do

search for a new pair A with cost lower than or equal to B, using procedure

A EndWhileDo

ii. While B has to be improved Do

search for a new pair B with cost lower than or equal to A, using procedure

B EndWhileDo

Until A and B satisfy the optimal path pair condition.

EndIf

The meaning of “A(B) has to be improved” will be made clear in the next sub-section.

2.4 Detailed description of the algorithm

In the algorithm the current best path pair is stored in A = (p(1), q(p(1))(2)) and

B = (q(p(2))(1), p(2)) in procedures A and B,respectively. The j-th element (j = 1, 2) of

A or B is the path which was obtained by using metric η(j). Whenever a path p(1) (p(2))

does not have a disjoint path q(p(1))(2)) (q(p(2))(1) the cost of A (B) is ∞.

The proof of the correctness of the proposed algorithm requires a more detailed de-

scription of the algorithm, which will now be presented:

1. Find the first pair of disjoint paths, by using MPS in the graph with costs c
(1)
ij , and

using Dijkstra in the pruned network, with costs c
(2)
ij :

(a) u← 0

(b) Do

i. u← u + 1;

ii. MPS (loopless) generates p(1)
u , and Dijkstra finds q(p(1)

u)(2).

8

While C(Au) =∞

2. Find the first pair of disjoint paths, by using MPS in the graph with costs c
(2)
ij , and

using Dijkstra in the pruned network, with costs c
(1)
ij :

(a) v ← 0

(b) Do

i. v ← v + 1;

ii. MPS (loopless) generates p(2)
v , and Dijkstra finds q(p(2)

v)(1).

While C(Bv) =∞

3. Identify (and generate) an optimal pair of disjoint paths according to the rule:

If
[
C(1)(p(1)

u) = C(1)(q(p(2)
v)(1))

]
∧

[
C(2)(p(2)

v) = C(2)(q(p(1)
u)(2))

]
Then one pair (p(1)

u = q(p(2)
v)(1), p(2)

v = q(p(1)
u)(2)) or two different pairs of identical

cost are found and they are both optimal.

Else find an optimal pair:

(a) A← Au

(b) B ← Bv

(c) Repeat

i. Procedure A:

While [C(B) < C(A)] ∨
[
C(1)(p(1)) < C(1)(q(p(2))(1)) ∧ C(A) = C(B)

]
Do

A. u← u + 1

B. MPS (loopless) generates p(1)
u , and Dijkstra generates q(p(1)

u)(2)

C. If C(Au) < C(A) Then A← Au

Else If C(Au) = C(A) ∧ C(A) = C(B) Then A← Au EndIf EndIf

EndWhileDo

ii. Procedure B:

While [C(A) < C(B))] ∨
[
C(2)(p(2)) < C(2)(q(p(1))(2)) ∧ C(A) = C(B)

]
Do

A. v ← v + 1

B. MPS (loopless) generates p(2)
v , and Dijkstra generates q(p(2)

v)(1)

9

C. If C(Bv) < C(B) Then B ← Bv

Else If C(Bv) = C(B) ∧ C(A) = C(B) Then B ← Bv EndIf EndIf

EndWhileDo

Until
[
C(1)(p(1)) = C(1)(q(p(2))(1))

]
∧

[
C(2)(p(2)) = C(2)(q(p(1))(2))

]
EndIf

The first two steps of the algorithm consist of obtaining the first pair of disjoint paths,

A and B, in each procedure. Then the main cycle (step 3c) seeks the improvement of A

and B, until they become two pairs with identical cost (that is with equal total cost and

with equal cost for each cost function).

The cycle in step 3(c)i is executed when C(B) < C(A), so that the solution of proce-

dure A catches up (or overcomes) the best current solution obtained by procedure B. The

cycle in step 3(c)i is also executed when C(B) = C(A) and C(1)(p(1)) < C(1)(q(p(2))(1)), so

that procedureAmay check whether or not there exists a path pair Au = (p(1)
u , q(pu(1)(2))),

with C(1)(p(1)) < C(1)(p(1)
u) < C(1)(q(p(2))(1)), of cost lower than C(A) or until C(1)(p(1)

u) =

C(1)(q(p(2))(1)) and C(Au) = C(A). Step 3(c)iC guarantees that the best current pair A is

always updated when a lower cost pair is found in procedure A or when C(A) = C(B) and

C(Au) = C(A). When cycle 3(c)i ends, A (the best current path pair of this procedure)

is either such that C(A) < C(B), and A has overcome B (the current best solution of

procedure B), or C(Au) = C(A) = C(B) and therefore A and B are both optimal path

pairs because C(1)(p(1)) = C(1)(q(p(2))(1)) .

A similar argument can be made regarding step 3(c)ii. The cycle in step 3(c)ii is

executed when C(A) < C(B), so that procedure B improves its solution until it catches

up (or overcomes) the best current solution of procedure A. The cycle in step 3(c)ii

is also executed when C(B) = C(A) and C(2)(p(2)) < C(2)(q(p(1))(2)), so that proce-

dure B may check whether or not there exists a path pair Bv = (q(p(2)
v)(1), p(2)

v), with

C(2)(p(2)) < C(2)(p(2)
v) < C(2)(q(p(1))(2)), with cost lower than C(B), or until C(2)(p(2)

v) =

C(1)(q(p(2))(1)) and C(Bv) = C(B). Step 3(c)iiC guarantees that the best current pair B

is always updated when a lower cost pair is found in procedure B or when C(A) = C(B)

and C(Bv) = C(B). When cycle 3(c)ii ends, B (the best current path pair of this proce-

dure) is such that either C(B) < C(A), and B has overcome A (the current best solution

10

of procedure A), or C(Bv) = C(B) = C(A) and therefore A and B are both optimal path

pairs because C(2)(p(2)
v) = C(1)(q(p(2))(1)).

The output of the algorithm is composed of two pairs (A and B) which either are

equal or have equal cost, and in both cases they are the (or an) optimal pair.

The previous approach can also be used for obtaining the minimum cost disjoint path

pair with constraints on the maximum number of arcs allowed per path, a problem of

interest in various applications, namely in telecommunication networks. If an algorithm

(such as KD in [3]) for enumerating the k-shortest paths with length constraints was used

instead of a k-shortest path enumeration algorithm (MPS loopless) and if the Bellman-

Ford (see [2]) algorithm was used instead of the Dijkstra algorithm, the obtained pair

would be the optimal disjoint path pair satisfying the desired length constraint.

2.5 Some comments on the control conditions of the algorithm

The optimal stopping condition of the algorithm (in step 3c) is[
C(1)(p(1)) = C(1)(q(p(2))(1))

]
∧

[
C(2)(p(2)) = C(2)(q(p(1))(2))

]
(5)

instead of C(A) = C(B) and in steps 3(c)i, 3(c)ii is not simply C(B) < C(A) and

C(A) < C(B), respectively, because when:

C(1)(p
(1)
h) + C(2)(q(p

(1)
h)(2)) = C(2)(p

(2)
k) + C(1)(q(p

(2)
k)(1)) (6)

C(1)(p
(1)
h) 6= C(1)(q(p

(2)
k)(1)) (7)

C(2)(p
(2)
k) 6= C(2)(q(p

(1)
h)(2)) (8)

the algorithm could stop with a non optimal solution.

Consider the example: C(Au) = C(Bv) = 10 but C(1)(p(1)
u) = 2, C(2)(q(p(1)

u)(2)) = 8,

C(2)(p(2)
v) = C(1)(q(p(2)

v)(1)) = 5, when A = Au and B = Bv. A path pair Aw, w > u such

that C(1)(p(1)
w) = 3 and C(2)(q(p(1)

w)(2)) = 6, so that C(Aw) = 9 is less than C(Au) might

exist and would not be found by the algorithm. If the stopping condition was simply

C(A) = C(B) the algorithm would terminate because C(Au) = C(Bv) = 10 and the

better solution with cost 9 would not be sought (a similar analysis could be made for the

paths obtained in procedure B).

It would not be sufficient to have the conjunction (5) as a stopping rule (the correct

optimal stopping rule) and in steps 3(c)i, 3(c)ii to use the conditions C(B) < C(A) and

11

C(A) < C(B), respectively, because when C(A) = C(B) but (7) and (8) are true, none

of the procedures A or B would seek to improve its solution (because C(A) = C(B)),

and the algorithm would be in an endless loop (because the optimal stopping condition

in (5) would never be verified). For the same reason, when C(A) = C(B) but the optimal

stopping condition is not verified (but the minimal cost pair has been reached, although

we have no proof of that at this step) the current best pair must be updated in step 3(c)iC

(3(c)iiC)) when C(Au) = C(A) (C(Bv) = C(B)), changing A (B) so that a pair such that

C(1)(p(1)) = C(1)(q(p(2))(1))∧C(A) = C(B) (C(2)(p(2)) = C(2)(q(p(1))(2))∧C(A) = C(B)),

is obtained.

Finally, the reason why in steps 3(c)i and 3(c)ii the stopping condition to improve

solutions in procedures A and B was written as:

[C(B) < C(A)] ∨
[
C(1)(p(1)) < C(1)(q(p(2))(1)) ∧ C(A) = C(B)

]
(9)

[C(A) < C(B)] ∨
[
C(2)(p(2)) < C(2)(q(p(1))(2)) ∧ C(A) = C(B)

]
(10)

will be justified. Consider that C(A) = C(B) and that p(1) = p
(1)
h and p(2) = p

(2)
k , but

C(1)(p
(1)
h) 6= C(1)(q(p

(2)
k)(1)). If C(1)(p

(1)
h) > C(1)(q(p

(2)
k)(1)) (and C(2)(p

(2)
k) > C(2)(q(p

(1)
h)(2)))

then q(p
(2)
k)(1) must coincide with some p(1)

w , 1 ≤ w < h, and therefore the pair Aw would

have already been generated but it was not the optimal pair otherwise it would have been

the stored path – a similar reasoning can be used for q(p
(1)
h)(2)). So in fact equations

(6)-(8) can be written simply as:

C(1)(p
(1)
h) + C(2)(q(p

(1)
h)(2)) = C(2)(p

(2)
k) + C(1)(q(p

(2)
k)(1)) (11)

C(1)(p
(1)
h) < C(1)(q(p

(2)
k)(1)) (12)

C(2)(p
(2)
k) < C(2)(q(p

(1)
h)(2)) (13)

This means that when the paths stored in A and B have equal costs but C(1)(p
(1)
h) <

C(1)(q(p
(2)
k)(1)) (and C(2)(p

(2)
k) < C(2)(q(p

(1)
h)(2))) the stored path may not be the optimal

one (as shown in the previous example), and path generation must be continued until

either C(A) (in step 3(c)i) or C(B) (in step 3(c)ii) is improved or paths of equal cost are

obtained in different phases of both procedures, so that the optimal stopping condition

of the algorithm (see equation (5)) is satisfied.

12

2.6 Proof of the correctness of the algorithm

The proof takes into account the control and stopping conditions of the algorithm

(explained in the previous section) and shows that if the pair(s) of paths found by the

algorithm was (were) not optimal then an absurd situation would arise. The proof of the

algorithm also assumes that A = (p(1), q(p(1))(2)) (B = (q(p(2))(1), p(2))), obtained in step

3(c)i (3(c)ii), corresponding to procedure A (B), when u (v) paths have been generated by

the k-shortest path enumeration algorithm, using metric η(1) (η(2)), is such that C(A) =

mini C((p
(1)
i , q(2)(p

(1)
i)), i = 1, · · · , u (C(B) = mini C((q(p(2))(1), p(2))), i = 1, · · · , v).

Note that the first pair of disjoint paths was obtained, for procedures A and B, in

steps 1 and 2. In step 3, it is stated that if “
[
C(1)(p(1)

u) = C(1)(q(p(2)
v)(1))

]
∧

[
C(2)(p(2)

v)

= C(2)(q(p(1)
u)(2))

]
” then either p(1)

u = q(p(2)
v)(1) and p(2)

v = q(p(1)
u)(2) or two different pairs

of identical cost have been found and they are both optimal.

Lemma 2.1 (Minimal cost of the disjoint path before step 3) If, when entering

step 3, the condition
[
C(1)(p(1)

u) = C(1)(q(p(2)
v)(1))

]
∧

[
C(2)(p(2)

v) = C(2)(q(p(1)
u)(2))

]
is true

then pairs of disjoint paths in G have been found, Au and Bv, and copt, the minimal cost

of the pairs of disjoint paths in G, has been found: copt = C(Au) = C(Bv).

Proof: By construction, paths p(1)
u (p(2)

v) are obtained by non decreasing order of their

cost, with respect to metric η(1) (η(2)). Immediately after step 1, p(1)
u is the path of

minimal cost with respect to metric η(1) which has a disjoint path in G. Using the Dijkstra

algorithm the path q(p(1))(2), of minimal cost with respect to metric η(2), was found in

G(1). Perfectly analogous conclusions apply to paths p(2)
v , q(p(2)

v)(1) obtained immediately

after step 2. If C(1)(p(1)
u) = C(1)(q(p(2)

v)(1)), then the first element of Bv is (by step 1) a

path with cost equal to the cost of the first shortest path with respect to metric η(1) which

had a disjoint path in G; the second element of Bv, p(2)
v , is (by step 2) a path of minimal

cost with respect to metric η(2), which had a disjoint path in G. Therefore Bv is formed

by two disjoint paths p(2)
v and q(p(2)

v)(1), each with minimal possible cost with respect to

metrics η(j), j = 1, 2, respectively. Therefore C(Bv) is the minimal cost of any disjoint

path pair with dual arc cost, copt. A similar argument can be made regarding path pair

Au. 2

We present a reductio ad absurdum proof of the correctness of the algorithm from step

3 onwards.

13

Proposition 2.1 (Correctness of the algorithm) At the end of step 3 the minimum

of the cost of all the disjoint path pairs in G, copt, was found, and an optimal path pair

was identified.

Proof: If the first two pairs, found in step 1 and 2, were such that when entering step 3,

the condition
[
C(1)(p(1)

u) = C(1)(q(p(2)
v)(1))

]
∧

[
C(2)(p(2)

v) = C(2)(q(p(1)
u)(2))

]
is true, then by

lemma 2.1 the minimal cost of any disjoint path pair with dual arc cost, copt = C(Au) =

C(Bv) has been found; A = Au and B = Bv are both optimal pairs of disjoint paths.

Otherwise the main cycle 3c is executed and when step 3 ends because the condition

expressed by equation (5) is true, then the minimal cost of the disjoint path pairs, copt =

C(A) = C(B), in G, was found.

Let us assume that: A = Ah = (p
(1)
h , q(p

(1)
h)(2)), B = Bk = (p

(2)
k , q(p

(2)
k)(1)), which

means that p
(1)
h is the h-th shortest path in G with respect to metric η(1), p

(2)
k is the k-th

shortest path in G with respect to metric η(2) and that:

[
C(1)(p

(1)
h) = C(1)(q(p

(2)
k)(1))

]
∧

[
C(2)(p

(2)
k) = C(2)(q(p

(1)
h)(2))

]
(14)

This means that the minimum cost arc-disjoint path pair found by procedures A and B

is Ah and Bk, respectively, and that the algorithm stopping rule in (14) is satisfied.

If the pairs of disjoint paths (of equal cost) found by the algorithm were not optimal,

this would meant that a pair of disjoint paths of lower cost exists.

Firstly consider that the optimal disjoint path pairs, obtained by procedures A and

B, are identical:

p
(1)
h = q(p

(2)
k)(1) (15)

p
(2)
k = q(p

(1)
h)(2) (16)

For a better path to exist, there must exist a p
(1)
i , i > h (C(1)(p

(1)
i) ≥ C(1)(p

(1)
h)), such

that:

C(1)(p
(1)
i) + C(2)(q(p

(1)
i)(2)) < C(1)(p

(1)
h) + C(2)(q(p

(1)
h)(2)) (17)

Since C(1)(p
(1)
i) ≥ C(1)(p

(1)
h) this implies that the only way the previous inequality can

be true is if C(2)(q(p
(1)
i)(2)) < C(2)(q(p

(1)
h)(2)). But, by equation (16), p

(2)
k = q(p

(1)
h)(2) and

therefore C(2)(q(p
(1)
i)(2)) < C(2)(p

(2)
k) and q(p

(1)
i)(2) would have to coincide with some p

(2)
j ,

1 ≤ j < k.

14

But all paths p
(2)
j , j = 1, 2, . . . , k − 1, with cost lower than p

(2)
k , have already been

generated and the corresponding minimal cost arc disjoint path has already been found

(in procedure B); the pair with cost C(Bj), j = 1, 2, . . . , k− 1 was calculated and its cost

was not the stored one, which means that its cost was higher than C(Bk). Therefore no

disjoint path pair Ai, with C(1)(p
(1)
i) + C(2)(q(pi)

(2)) < C(Ah), i > h, can exist.

Secondly, if

C(1)(p
(1)
h) = C(1)(q(p

(2)
k)(1)) (18)

C(2)(p
(2)
k) = C(2)(q(p

(1)
h)(2)) (19)

but the two disjoint pairs of paths are not equal,

Ah 6= Bk (20)

then both disjoint pairs are still optimal (and more than one solution exists). To prove

this let us assume that a better disjoint path pair can be found: p
(1)
i , i > h (C(1)(p

(1)
i) ≥

C(1)(p
(1)
h)):

C(1)(p
(1)
i) + C(2)(q(p

(1)
i)(2)) < C(1)(p

(1)
h) + C(2)(q(p

(1)
h)(2)) (21)

or

C(Ai) < C(Ah) (22)

This inequality can only be true if C(2)(q(p
(1)
i)(2))) < C(2)(q(p

(1)
h)(2)), which implies, by

equation (19), that C(2)(q(p
(1)
i)(2))) < C(2)(p

(2)
k). Therefore q(p

(1)
i)(2) has to coincide with

some p
(2)
j , with j = 1, 2, . . . , k − 1. So the disjoint path pair Bj = (q(p

(2)
j)(1)), p

(2)
j), must

have been generated (in procedure B) before Bk and its cost C(Bj) could not be lower than

C(Bk) because otherwise it would have been the stored value B instead of Bk (B = Bk).

Therefore no disjoint path pair Ai, with C(1)(p
(1)
i) + C(2)(q(pi)

(2)) < C(Ah), i > h, can

exist.

Therefore at the end of step 3, copt = C(A) = C(B) and A and B are (the) disjoint

pair(s) of minimal cost. 2

2.6.1 Improving the efficiency of the algorithm

The purpose of the cycle in step 3(c)i is to improve solution A. Consider that C(B) <

C(A). Every time a path pair Au is found which improves C(A), A is updated, even though

15

C(Au) > C(B), and the cycle in step 3(c)i must continue searching for a better A. If step

3(c)iC was rewritten as: “If C(Au) ≤ C(B) Then A← Au EndIf”, A would be updated

when Au became better than B, and would also be updated when it became as good as

B (or already was as good as B because C(A) = C(B)). Therefore by using this form for

step 3(c)iC fewer updates of A will be required in some cases, and the final outcome of

the cycle 3(c)iC is the same.

A similar argument could be made regarding step 3(c)iiC, which should be rewritten

as: “If C(Bv) ≤ C(A) Then B ← Bv EndIf”,

The proof of the correctness of this version of the algorithm is similar, but it can no

longer be said that A (B) contains at any time the best path in procedure A (B), but

only that when procedure A (B) is executed, at the end of step 3(c)i (3(c)ii) A (B) is

such that C(A) = mini C((p
(1)
i , q(2)(p

(1)
i)), i = 1, · · · , u (C(B) = mini C((q(p

(2)
i)(1), p

(2)
i)),

i = 1, · · · , v).

Experimental results will be presented for this version of the algorithm.

2.7 Pair of node-disjoint paths

If an optimal pair of node-disjoint path pair is desired, then, in procedure A, all arcs

incident and all arcs emergent from the nodes belonging to p
(1)
h (with the exception of s

and t) are removed from the graph and a node disjoint path, q(p
(1)
h)(2), is sought by using

the Dijkstra algorithm. Similarly for the pair p
(2)
k and q(p

(2)
k)(1), in procedure B.

The previous algorithm (with this simple adaptation) would also solve the problem of

obtaining the node-disjoint path pair of minimal cost.

2.8 Directed and undirected networks

The proposed algorithm works for both directed and undirected networks. In fact the

MPS algorithm can be used in undirected networks, if each edge is replaced by two arcs

in opposite directions, with equal costs.

The Dijkstra algorithm has to receive a pruned graph where all the arcs in a path p

(selected by a k-shortest path algorithm) have been temporarily removed. If the network

is directed, only the directed arcs in p are temporarily removed from the network graph.

If the network is undirected, for each arc (i, j) in p two directed arcs, (i, j) and (j, i), are

16

E Ē

Z ([0, 100], [0, 100]) ([0, 10], [0, 10000])

([0, 10000], [0, 10000]) ([0, 100], [0, 10000])

Z̄ ([1, 100], [1, 100]) ([1, 10], [1, 10000])

([1, 10000], [1, 10000]) ([1, 100], [1, 10000])

Table 1: Defining symbols to refer to cost range values

temporarily removed in the corresponding network directed graph, before executing the

Dijkstra algorithm.

3 Experimental results

Extensive and systematic tests were carried out with the algorithm in a significant

number of networks of different topologies and using various cost ranges.

Results are presented for directed networks. The number of arcs m is equal to 3n, 4n

and 6n, where n is the number of nodes in the network. For each number of nodes

(n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 800) ten different networks were

randomly generated1 with the same number of arcs. All networks have arc-connectivity

greater than one. For each of these networks the costs of the arcs were randomly generated

in different ranges.

The symbols introduced in Table 1 will be used to refer to ranges of cost values. The

first (second) range in each pair refers to the costs c(1)(c(2)). Identical (different) ranges

for the two arc costs will be designated by E (Ē). Ranges with lower bound equal to 0 (1)

will be designated by Z (Z̄). Finally ZE , ZĒ , Z̄E and Z̄Ē , will identify the four groups

(each group with two ranges) of ranges in the table.

It will be shown that algorithm DP2LC performs quite well and obtains the minimal

cost pair of disjoint paths for almost every node pair. If a sub-set of node-pairs was

randomly selected in each tested network (a procedure often adopted in this type of

experimental study) the results could be misleading if the sub-set did not include any of

the more “difficult” node pairs. Therefore it was decided that the DP2LC would be tested

1The used program for network generation was kindly borrowed from José Luis Santos.

17

Percentage of sub-optimal solutions Percentage of sub-optimal solutions

0,0000%

0,0002%

0,0004%

0,0006%

0,0008%

0,0010%

0,0012%

300 400 350 450 500 600 800

4 6

[1,100] - [1,10000]

0,000%

0,005%

0,010%

0,015%

0,020%

0,025%

25
0

30
0

40
0

45
0

50
0

60
0

80
0

10
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

4 6

[0,10] - [0,10000] [0,100] - [0,10000]

(a) (b)

Figure 1: Percentage of sub-optimal solutions (DP2LC), for networks with sub-optimal

solutions for m = 4n, 6n: (a) Z̄Ē and (b) ZĒ .

for all end-to-end node pairs (n(n− 1)) in every network. Note that the total number of

used networks was 2880.

In all tested cases the algorithm always obtained a solution. Sub-optimal solutions

are obtained when the optimal stopping condition cannot be verified, because memory is

exhausted in one of the procedures (namely the allowed number of paths2 that can be

generated by MPS, is attained).

DP2LC only failed to find all optimal solutions for the ranges Z̄, in the case of range

([1, 100], [1, 10000]) and m = 4n, 6n. Even so those were quite rare situations, correspond-

ing to a total number of sub-optimal solutions (total number of node pairs for which a

solution was obtained, the optimality of which could not be checked) equal to 15, in ap-

proximately 235 × 106 node pairs considered in these tests (for all networks with ranges

Z̄). The frequency of sub-optimal solutions for range ([1, 100], [1, 10000]) is shown in fig-

ure 1(a). Note that in Figure 1 only non-null values are shown and the average values

were calculated considering only networks where sub-optimal solutions were detected. For

example, for n = 300, 400 and m = 4 each value in in Figure 1(a) corresponds to a single

node pair (in a single network). In the case of ranges ZĒ , for m = 4n and m = 6n the

number of sub-optimal solutions is higher (a total of 1695 node pairs in approximately

235× 106) which represents a small percentage of the tested node pairs (for all networks

2The allowed maximum number of paths ensures that only RAM memory is used and that no swapping

takes place.

18

Average CPU time Average CPU time

0

0,5

1

1,5

2

2,5

3

200 500 800 200 500 800 200 500 800

3 4 6

m
s

[1,100] - [1,100] [1,10000] - [1,10000]

0
1
2
3
4
5
6
7
8
9

10

200 500 800 200 500 800 200 500 800

3 4 6

m
s

[1,10] - [1,10000] [1,100] - [1,10000]

(a) (b)

Figure 2: Average CPU time (DP2LC) per node pair (with optimal or sub-optimal solu-

tions) for n = 200, 500, 800 and m = 3n, 4n, 6n: (a) ranges Z̄E (b) ranges Z̄Ē .

with ranges Z). Figure 1(b) shows the percentage of sub-optimal solutions, for the net-

works where sub-optimal solutions were detected. The worst average value is 0.022% (the

highest value in all tested cases was 0.1555% for n = 350 and m = 6n). Sub-optimal

solutions occur more often for the costs in the range ([0, 10], [0, 10000]).

CPU times were obtained in a Pentium IV at 3.2 GHz with 2 GB of RAM. The average

CPU time was obtained per pair of disjoint paths for each node pair in the set of all s-t

pairs with t fixed (for every node t). This allows the MPS algorithm to re-use the tree of

shortest paths from all nodes to t and the ordered set of the network arcs.

In Figures 2(a) and (b) average CPU times per node pair (with optimal or sub-optimal

Average CPU time Average CPU time

0

0,5

1

1,5

2

2,5

3

200 500 800 200 500 800 200 500 800

3 4 6

m
s

[0,100] - [0,100] [0,10000] - [0,10000]

0
20
40
60
80

100
120
140

200 500 800 200 500 800 200 500 800

3 4 6

m
s

[0,10] - [0,10000] [0,100] - [0,10000]

(a) (b)

Figure 3: Average CPU time (DP2LC) per node pair (with optimal or sub-optimal solu-

tions) for n = 200, 500, 800 and m = 3n, 4n, 6n: (a) ranges ZE (b) ranges ZĒ .

19

Average CPU time (optimal sol.) Average CPU time (optimal sol.)

0
1
2
3
4
5
6
7
8
9

10

200 500 800 200 500 800 200 500 800

3 4 6

m
s

[1,10] - [1,10000] [1,100] - [1,10000]

0
10
20
30
40
50
60
70
80
90

100

200 500 800 200 500 800 200 500 800

3 4 6

m
s

[0,10] - [0,10000] [0,100] - [0,10000]

(a) (b)

Figure 4: Average CPU time (DP2LC) per node pair with an optimal solution for n =

200, 500, 800 and m = 3n, 4n, 6n: (a) ranges Z̄Ē and (b) ranges ZĒ .

solutions) are presented for n = 200, 500, 800 and m = 3n, 4n, 6n for costs ranges Z̄E and

Z̄Ē . Two separate Figures are presented because in 2(b) the maximum CPU time is less

than 3 ms and in 2(a) is less than 10 ms. Here it can be seen that the used CPU time is

relatively higher in the case of different cost ranges.

In Figures 3(a) and (b) the average CPU times per node pair (with optimal or sub-

optimal solutions) for n = 200, 500, 800 and m = 3n, 4n, 6n for costs ranges ZE and ZĒ ,

are presented.

Recalling that DP2LC, for networks with arc costs in ranges E , always obtained opti-

mal solutions for all node pairs Figures 2(a) and 3(a) present the average CPU time for

obtaining an optimal solution, per node pair.

From Figures 2(a) and 3(a) we conclude that the average CPU time for obtaining

an optimal solution is similar in ranges E and approximately independent of the lower

bound of the cost ranges. In Figure 2(b) a higher CPU time associated with different

ranges for the arc costs Z̄Ē , is shown. In the case of ZĒ this CPU time increase is

also visible in Figure 3(b). Results for ranges ([0, 100], [0, 10000]) (in Figure 3(b)) and

([1, 100], [1, 10000]) (in Figure 2(b)) are similar but a strong increase in used CPU time

was detected for networks with arc costs in ([0, 10], [0, 10000]) and m = 4n, 6n.

In Figures 4(a) and 4(b) the average used CPU time, per node pair, for obtaining an

optimal solution for all considered networks with arc costs in ranges Ē , is presented (for

networks with arc costs in ranges E all solutions were optimal). The results in Figures

20

2(b) and 4(a) are practically identical because of the negligible number of sub-optimal

solutions in the ranges Z̄. However Figures 3(b) and 4(b) show some differences. In Figure

4(b) a visible decrease in CPU time can be seen when compared to 3(b), for m = 6n and

range ([0, 10], [0, 10000]).

The number of sub-optimal solutions is rather small for ZĒ and negligible for ranges

Z̄Ē (as shown in Figure 1). In these rare cases DP2LC takes a very long time to ex-

haust the allowed memory usage (because no CPU time limit per node pair was im-

plemented). These times can range from tens of seconds in a 100 node network with

600 arcs to hundreds of seconds in a network with 800 nodes and 4800 arcs, for cost

range ([0, 10], [0, 10000]). These high CPU times combined with a relative higher fre-

quency (on average ≤ 0.0221% as compared to 0, 0025%, the maximal average frequency

of range ([0, 100], [0, 10000])) of occurrence of sub-optimal solutions in the case of range

([0, 10], [0, 10000]) have some impact in the average CPU time in Figure 3(b), for n = 6m.

A study was also made regarding the frequency of occurrence of the optimal pair

among the first pair identified by procedure A or by procedure B. The results showed

that this frequency was greater than 99.469% for ranges Ē , regardless of network density

or size. For ranges E this frequency was in the interval [0.93142,0.99266], increasing with

the ratio m/n, regardless of the network size. In Figure 5 results are shown for all values

of n and m but only for ranges ([1, 10], [1, 10000]) and ([0, 100], [0, 100]).

It was verified that, when optimal solutions were harder to find (usually for ranges Ē ,

and in particular for range ([0, 10], [0, 10000])) one of the procedures had quickly found a

very low cost path pair (procedure B) which required the other procedure (procedure A)

to generate a large number of path pairs, in search for a better path pair.

Also one should note that DP2LC does not enter cycle 3c if the first path identified

in both procedures is optimal. An analysis of the frequency of this event was also made,

and it was verified that it increased with the ratio m/n, and was practically insensitive

to the cost range of the arcs and also to the network dimension. The average values were

around 30%, 40% and close to 60% for m = 3n, m = 4n and m = 6n, respectively.

To summarise the following conclusions can be drawn from this extensive experimental

study:

• When arcs costs were in ranges E the algorithm managed to obtain optimal solutions

21

The optimal pair was the first path found in one of the procedures

94%

95%

96%

97%

98%

99%

100%
50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

3 4 6

[0,100] - [0,100] [1,10] - [1,10000]

Figure 5: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in procedures A or B, for ranges ([1, 10], [1, 10000]) and ([0, 100], [0, 100]).

for all tested node pairs.

• When arc costs were in ranges Z̄, the algorithm obtained optimal solutions for

almost every node pair, in all tested networks.

• In the case of networks with arc costs in ranges ZĒ the number of sub-optimal

solutions was a little higher than in Z̄Ē but nevertheless a very small percentage of

the tested node pairs.

• It was also verified that DP2LC used relatively higher CPU time per node pair for

ranges Ē than for ranges E . This effect was more pronounced when range costs

started with zero.

Concerning average CPU time per node pair, for obtaining optimal solutions:

– For networks with ranges E , the average CPU time per node pair was very

small (a few milliseconds).

22

– For networks with ranges Z̄Ē , CPU times were a little higher than for ranges

ZE , but still in the order of some milliseconds.

– For networks with ranges ZĒ , CPU times were some milliseconds for range

([0, 100], [0, 10000]) but several tens of milliseconds for ([0, 10], [0, 10000]) (es-

pecially for m = 6n).

The complete set of results can be found in appendix C.

4 Conclusion

An exact algorithm, DP2LC, was proposed for finding an arc disjoint path pair, with

minimal cost, in a network with dual arc costs. The algorithm is based on the resolution

of two k-shortest path problems in an articulate manner, so that an optimal stopping

condition is formulated. A proof of the correctness of the algorithm was also presented.

It was shown that the proposed algorithm (with minor changes) can be used in directed

and undirected networks, for obtaining either an arc-disjoint or a node-disjoint minimal

cost path pair. It was also shown that the proposed algorithmic procedure could be used

for solving the same problem but with the additional constraint that a maximum number

of arcs per path must not be exceeded.

Extensive experimentation with DP2LC was carried out in a significant number of

randomly generated directed networks of different topologies and using eight cost ranges.

A minimal cost disjoint path pair was sought for all node pairs of all the considered

networks. Experimental results showed that DP2LC solved the problem exactly in prac-

tically all the cases in directed networks, the rare cases of failure being due to memory

exhaustion alone. In the small percentage of cases in which an optimal solution was not

attained, the algorithm always returned a sub-optimal solution.

The average CPU time per node pair, for obtaining an optimal solution, was shown to

be a few milliseconds for all considered range costs, excepting for one cost range, where

it sometimes required tens of milliseconds (for the larger and more dense networks). The

algorithm is faster when the the dual arc costs have identical ranges. If execution time

is critical, as in real time applications, a CPU time limit can be implemented per node

pair, leading to a truncated version of the algorithm.

23

Finally, concerning applications of the algorithm, it must be noted that in the context

of survivable routing, many approaches require a minimal cost pair of disjoint paths with

dual arc costs. DP2LC, given its efficiency and exactitude, can be a very interesting

solution in this and in similar contexts.

Part II

Set of all the minimal cost pair of disjoint

paths with dual arc costs

5 Collecting all the alternative optimal solutions

If the addressed problem has more than one optimal solution, in a given network the

previous approach can be used, with little modifications and some additional processing

so that all optimal solutions can be obtained.

Let us define SA and SB as the stack of the current best candidate pairs found in

approaches A and B respectively. The usual operations on a stack will be considered:

push(SA,Ai) (insert a new pair Ai in stack SA), pop(SA) (remove the top element from

stack SA), top(SA) (return the top element from stack SA, without removing it). The

function “clear(SA)” will pop all the elements in stack SA until the stack becomes empty.

The symbols p(1) (q(p(1))(2)) will represent the first (second) path of the pair top(SA);

similarly q(p(2))(1) (p(2)) will represent the first (second) path of top(SB). Two functions

γ(j), which return the maximumal cost, with respect to η(j), of all the elements in a stack

S, will also be needed in the algorithm:

γ(j) : S → IN0 (j = 1, 2) (23)

γ(1)(S) = max
(f (1),g(2))∈S

C(1)(f (1)) (24)

γ(2)(S) = max
(f (1),g(2))∈S

C(2)(g(2)) (25)

A sequence U =< F1, F2, . . . , F|U | > of pairs of paths will also be required, where |U |

is the number of elements in the sequence. The function get(U) will return an element

24

(pair of disjoint paths) from U by removing it. The function view(U, i), will produce a

copy of element i in sequence U , without removing it.

5.1 Main steps of Set2LC

The proposed algorithm, designated Set2LC is more elaborate than DP2LC. Initially it

uses two stacks, SA and SB for storing the best solutions (all with equal cost) obtained

by procedures A and B, respectively. Every time a new path pair A (B) is obtained

with lower cost than top(SA) (top(SB)) the corresponding stack is cleared and the new

found path pair becomes its only element. When top(SA) and top(SB) satisfy the optimal

path pair condition, stacks SA and SB are possibly enlarged with additional path pairs

of optimal cost. Then stacks SA and SB are merged and a sequence of all the different

generated path pairs is obtained. Finally possibly missing path pairs are generated based

on the pairs in that sequence.

1. Find the first path pair A using procedure A.

2. Find the first path pair B using procedure B.

3. Create Empty stacks SA and SB. Execute: push(SA, A) and push(SB, B).

4. If top(SA) and top(SB) satisfy the optimal path pair condition Then Stop Else

(a) Repeat

i. While top(SA) has to be improved Do

search for a new pair A with cost lower than or equal to top(SB), using

procedure A, and update SA.

ii. While top(B) has to be improved Do

search for a new pair B with cost lower than or equal to top(SA), using

procedure B, and update SB.

Until top(SA) and top(SB) satisfy the optimal path pair condition.

5. Seek to increase the size of stacks SA and SB, obtaining additional path pairs:

25

(a) While using procedure A, paths pairs A can be obtained such that C(1)(p(1)) ≤

γ(1)(SB) Do

generate such path pairs and If C(A) = C(top(SA)) Then push(SA, A).

(b) While using procedure B, paths pairs B can be obtained such that C(2)(p(2)) ≤

γ(2)(SA) Do

generate such path pairs and If C(B) = C(top(SB)) Then push(SB, B).

6. Create the union of pairs in stacks SA and SB and store the result (in any order) in

sequence U (no two path pairs are identical in U). Create an empty stack SU .

7. While U is not empty Do

(a) Remove a path pair from U and push it into SU . Let (p(1)
g , q(2)

g)← top(SU).

(b) Generate possibly missing optimal path pairs, by interlacing p(1)
g and q(2)

g with

paths in the pairs existing in U , and push them into stack SU .

5.2 Detailed steps of Set2LC

The steps of the algorithm (Set2LC) are as follows:

1. Find the first pair of disjoint paths with MPS using costs c
(1)
ij and Dijkstra using

costs c
(2)
ij , in the pruned network:

(a) u← 0

(b) Do

i. u← u + 1;

ii. MPS (loopless) generates p(1)
u , and Dijkstra finds q(p(1)

u)(2).

While C(Au) =∞

2. Find the first pair of disjoint paths with MPS using costs c
(2)
ij and Dijkstra using

costs c
(1)
ij , in the pruned network:

(a) v ← 0

(b) Do

26

i. v ← v + 1;

ii. MPS (loopless) generates p(2)
v , and Dijkstra finds q(p(2)

v)(1).

While C(Bv) =∞

3. Store each first candidate pair in the corresponding stack:

(a) Creates empty stacks SA and SB.

(b) push(SA, Au)

(c) push(SB, Bv)

4. Identify (and generate) optimal pair(s) of disjoint paths according to the rule:

If
[
C(1)(p(1)

u) = C(1)(q(p(2)
v)(1))

]
∧

[
C(2)(p(2)

v) = C(2)(q(p(1)
u)(2))

]
Then one pair (p(1)

u = q(p(2)
v)(1) and p(2)

v = q(p(1)
u)(2)) or two different pairs of identical

cost were found and they are both optimal.

Else find an optimal pair (and its cost):

(a) Repeat

i. Procedure A:

While [C(top(SB)) < C(top(SA))]∨[
C(1)(p(1)) < C(1)(q(p(2))(1)) ∧ C(top(SA)) = C(top(SB))

]
Do

A. u← u + 1

B. MPS (loopless) generates p(1)
u , and Dijkstra generates q(p(1)

u)(2)

C. If C(Au) ≤ C(top(SB)) Then

If C(Au) < C(top(SA)) Then clear(SA) EndIf

push(SA, Au)

EndIf

EndWhileDo

ii. Procedure B:

While [C(top(SA)) < C(top(SB))]∨[
C(2)(p(2)) < C(2)(q(p(1))(2)) ∧ C(top(SA)) = C(top(SB))

]
Do

A. v ← v + 1

B. MPS (loopless) generates p(2)
v , and Dijkstra generates q(p(2)

v)(1)

27

C. If C(Bv) ≤ C(top(SA)) Then

If C(Bv) < C(top(SB)) Then clear(SB) EndIf

push(SB, Bv)

EndIf

EndWhileDo

Until
[
C(1)(p(1)) = C(1)(q(p(2))(1))

]
∧

[
C(2)(p(2)) = C(2)(q(p(1))(2))

]
EndIf

5. Seek the increase of the size of stack SA (and SB) with all paths p
(1)
i (p

(2)
j) such that

a disjoint path q(p
(1)
i)(2) (q(p

(2)
j)(1)) might exist, with cost equal to the optimal cost:

(a) Procedure A:

i. cA ← γ(1)(SB)

ii. Do

A. u← u + 1

B. MPS (loopless) generates p(1)
u , and Dijkstra generates q(p(1)

u)(2)

C. If C(Au) = C(top(SA)) Then push(SA, Au) EndIf

While C(1)(p(1)
u) ≤ cA

(a) Procedure B:

i. cB = γ(2)(SA)

ii. Do

A. v ← v + 1

B. MPS (loopless) generates p(2)
v , and Dijkstra generates q(p(2)

v)(1)

C. If C(Bv) = C(top(SB)) Then push(SB, Bv) EndIf

While C(2)(p(2)
v) ≤ cB

6. Create the union of pairs in stack SA and stack SB and store the result in sequence

U (in any order).

7. Generate missing optimal path pairs based on the elements in U , and store them in

stack SU .

28

(a) Creates empty stack SU .

(b) While U 6= ∅ Do

i. (p(1)
g , q(2)

g)← get(U)

ii. push(SU , (p(1)
g , q(2)

g))

iii. i = |U |

iv. While i > 0 Do

A. (p
(1)
i , q

(2)
i)← view(U, i)

B. If C(1)(p(1)
g) = C(1)(p

(1)
i) ∧ p(1)

g 6= p
(1)
i ∧ q(2)

g 6= q
(2)
i Then

• If (p(1)
g is disjoint with q

(2)
i) Then push(SU , (p(1)

g , q
(2)
i)) EndIf

• If (q(2)
g is disjoint with p

(1)
i) Then push(SU , (p

(1)
i , q(2)

g)) EndIf

EndIf

C. i← i− 1

EndWhileDo

EndWhileDo

At the end of step 4 the stacks SA and SB contain a path pair or a set of paths pairs

with optimal cost (the minimal cost). One of the stacks has a single element and the

other stack may have one or more elements, but they all have the same (optimal cost). In

step 5 procedure A (B) ensures that all paths p(1)
u (p(2)

v) such that a disjoint path q(p(1)
u)(2)

(q(p(2)
v)(1)) might exist with C(Au) (C(Bv)) equal to the optimal cost, are generated and

the corresponding optimal pair (if it exists) is stored in SA (SB).

The algorithm does not end at step 6 because some paths p(1) (p(2)) obtained in

procedure A (B) may have more than one disjoint path, and any missing pair will be

obtained in step 7.

5.3 Proof of the algorithm correctness

When only an optimal path pair was sought, the condition expressed by equation (5) and

present in step 3 (of algorithm DP2LC) was used to detect that a disjoint path pair of

optimal cost was found, so it was also the optimal stopping condition of the algorithm.

29

In the present case we wish to obtain the set of all the minimal cost pairs of disjoint

paths in the network. The condition expressed by equation (5) and used in step 4 of

algorithm Set2LC is now the detection condition of the minimal cost of disjoint paths in

the network.

Immediately after step 3, stacks SA and SB each has a pair of disjoint paths (we are

assuming a least one such a pair always exists). If the first path pairs obtained in step 1

and 2, verified the condition expressed by (5), then the optimal path cost has been found,

as proved in lemma A.1.

If the first path pairs verified the condition expressed by (5), then step 4 only confirms

that and proceeds to step 5. Otherwise the main cycle (step 4a) of step 4 is executed;

when the algorithms exits cycle 4a, stacks SA and SB will contain a single path pair or a

set of paths pairs (see appendix B) with optimal cost as stated in lemma A.3.

Lets assume that p(1) = p(1)
u was the u-shortest (loopless) path from s to t with respect

to η(1) obtained in procedure A and that p(2) = p(2)
v was the v-shortest (loopless) path

from s to t with respect to η(2) obtained in procedure B, just after step 4. Let the

optimal cost be copt = C(top(SA)) = C(top(SB)) and c
(1)
opt = C(1)(p(1)), c

(1)
opt = C(2)(p(2))

(copt = c
(1)
opt + c

(2)
opt), the cost of the first and second elements of the top pairs of stacks

SA and SB, respectively, just after step 4. Lemma A.3 proves that, at the end of step

4 of algorithm Set2LC, copt is indeed the minimal cost of any pair of disjoint paths with

dual arc costs in G. Lemma A.4 (A.5) proves that if a path p
(1)
i , i = 1, 2, . . . , u− 1 (p

(2)
j ,

j = 1, 2, . . . , v−1), where u is the order of the first element of top(SA) (where v is the order

of the first element of top(SB)) is such that at least a minimal cost disjoint path exists in

G, the first (second) element of which is p
(1)
i (p

(2)
j) then a path pair Ai = (p

(1)
i , q(p

(1)
i)(2))

(Bj = (q(p
(2)
j)(1)), p

(2)
j)), with C(Ai) = copt (C(Bj) = copt) will belong to SA (SB), at the

end of step 4 (just before step 5).

Although the minimal cost of a disjoint path in network G has certainly been found

at the end of step 4, there may still exist path pairs (p
(1)
i , q(p

(1)
i)(2)), i > u and path pairs

(q(p
(2)
j)(1), p

(2)
j), j > v with cost equal to the optimal cost copt.

An example of the situation pointed in the previous paragraph follows. Let cA =

γ(1)(SB) and cB = γ(1)(SA). If SA (SB) has a single element then cB = C(2)(q(p(1))(2))

(cA = C(1)(q(p(2))(1))). Lets assume that stack SA has more than one element; if at some

30

time a path pair Aa = (p(1)
a , q(p(1)

a)(2)) (a < u, C(Aa) = copt) was generated and placed

in stack SA, such that C(1)(p(1)
a) < C(1)(p(1)) and C(2)(q(p(1)

a)(2)) > C(2)(p(2)), then cB will

be larger than C(2)(p(2)). A similar reasoning can be used when SB has more than one

element (and SA has a single pair).

In short, procedures A and B must now be used to generate all the next k-shortest

paths with cost less or equal to cA and cB, respectively, obtain the corresponding disjoint

path, and if the pair exist and has cost equal to copt, store it in stacks SA and SB,

respectively. This is done in step 5.

So just after step 5 we have in stack SA path pairs Ai = (p
(1)
i , q(p

(1)
i)(2)), such that the

first element p
(1)
i has cost C(1)(p

(1)
i) ∈

[
c
(1)
opt, cA

]
(for all p

(1)
i such that a disjoint path Ai

exists C(Ai) = copt) and in stack SB the path pairs Bj = (q(p
(2)
j)(1), p

(2)
j), C(Bj) = copt,

such that the second element p(2) has cost C(2)(p
(2)
j) ∈

[
c
(2)
opt, cB

]
(for all p

(2)
j such that a

least a disjoint path Bj exist with C(Bj) = copt). Procedure A (B) in step 5 does not

need to generate any more path pairs, because by lemma A.6 it is not possible to obtain

a path pair with cost equal to copt, if its first (second) element, p
(1)
i (p

(2)
j), is such that

C(1)(p
(1)
i) > cA (C(2)(p

(2)
j) > cB).

Immediately after step 5 we know the algorithm has generated all paths p
(1)
i (p

(2)
j),

that may be the first (second) element of a disjoint path pair of optimal cost is stored in

SA (SB). However we still may not have the complete set of optimal disjoint paths. If

a path p
(1)
i (p

(2)
j) has more than one disjoint path in G (such that the path pair cost is

optimal), procedure A (B) only gets one of them: q(p
(1)
i)(2) (q(p

(2)
j)(1)). Also, some of the

elements in stack SA may also be in stack SB, therefore the union of the elements of both

stacks is performed, and is stored sequence U (which will not have any repeated pair), in

step 6.

We can now proceed to obtain the missing pairs of disjoint paths. Given two disjoint

path pairs of optimal cost, D = (d(1), e(2)) and F = (f (1), g(2)), a new disjoint path pair

may exist if C(1)(d(1)) = C(1)(f (1)) (or C(2)(e(2)) = C(2)(g(2))) and if d(1) 6= f (1) and

e(2) 6= g(2); if d(1) is disjoint with g(2), then a new pair can be obtained: (d(1), g(2)); if f (1)

is disjoint with e(2), then a new pair can be obtained:(f (1), e(2)).

Step 7 ensures all such missing pairs are obtained and added to the set of optimal

solutions by removing each element from the the sequence U , storing it in SU and then

31

comparing this pair with all the remaining pairs in U . Each comparison may generate

new path pairs if the conditions presented in the previous paragraph are true.

Finally the algorithm ends with an optimal and complete set of all minimal cost pairs

of disjoint paths with dual arc costs in stack SU .

A formal proof of the correctness of algorithm Set2LC will now be given.

Proposition 5.1 (Correctness of algorithm Set2LC) At the end of step 7 all the

disjoint path pairs in G, copt, with minimal cost have been found.

Proof: Immediately after step 3, stacks SA and SB each has a pair of disjoint paths (we

are assuming a least one such a pair always exists). If the first path pairs obtained in

step 1 and 2, verified the condition expressed by (5), then the optimal path cost has been

found, as proved in lemma A.1.

If the first path pairs verified the condition expressed by (5), then step 4 only confirms

that and proceeds to step 5. Otherwise the main cycle (step 4a) of step 4 is executed;

when the algorithms exits cycle 4a, stacks SA and SB will contain a single path pair or a

set of paths pairs (see appendix B) with optimal cost, copt, as stated in lemma A.3.

Lemma A.4 (A.5) proves that if a path p
(1)
i , i = 1, 2, . . . , u−1 (p

(2)
j , j = 1, 2, . . . , v−1),

where u is the order of the first element of top(SA) (where v is the order of the first

element of top(SB)) is such that at least a minimal cost disjoint path exists in G, the

first (second) element of which is p
(1)
i (p

(2)
j) then a path pair Ai = (p

(1)
i , q(p

(1)
i)(2)) (Bj =

(q(p
(2)
j)(1)), p

(2)
j)), with C(Ai) = copt (C(Bj) = copt) will belong to SA (SB), at the end of

step 4.

By lemma A.6 it is not possible to obtain a path pair with cost equal to copt, if its first

(second) element, p
(1)
i (p

(2)
j), is such that C(1)(p

(1)
i) > cA (C(2)(p

(2)
j) > cB). Immediatly

after step 5 we have in stack SA path pairs Ai = (p
(1)
i , q(p

(1)
i)(2)), such that the first

element p
(1)
i has cost C(1)(p

(1)
i) ∈

[
c
(1)
opt, cA

]
(for all p

(1)
i such that a disjoint path Ai exists

C(Ai) = copt) and in stack SB path pairs Bj = (q(p
(2)
j)(1), p

(2)
j), C(Bj) = copt, such that

the second element p(2) has cost C(2)(p
(2)
j) ∈

[
c
(2)
opt, cB

]
(for all p

(2)
j such that a least a

disjoint path Bj exist with C(Bj) = copt). Therefore by lemma A.6, procedure A (B) in

step 5 have obtained the remaining existing paths that can be the first (second) element

of pairs of disjoint paths with cost copt, and has stored them in SA (SB), whenever such

a disjoint path pair was obtained.

32

Because some of the elements in stack SA may also be in stack SB, the union of

the elements of both stacks is performed, and is stored sequence U (which will have no

repeated path pair), in step 6.

Immediately after step 5 we know the algorithm has generated all paths p
(1)
i (p

(2)
j),

that may be the first (second) element of a disjoint path pair of optimal cost is stored

in SA (SB), therefore the same statement is still valid for the elements in U , obtained in

step 6.

Finally in 7 the (possibly) still missing pairs of disjoint paths, resulting form the

interlacing of paths in U are obtained. Given two disjoint path pairs of optimal cost, D =

(d(1), e(2)) and F = (f (1), g(2)), a new disjoint path pair may exist if C(1)(d(1)) = C(1)(f (1))

(or C(2)(e(2)) = C(2)(g(2))) and if d(1) 6= f (1) and e(2) 6= g(2); if d(1) is disjoint with g(2),

then a new pair can be obtained: (d(1), g(2)); if f (1) is disjoint with e(2), then a new pair

can be obtained:(f (1), e(2)). Step 7 ensures all such missing pairs are obtained and added

to the set of optimal solutions by removing each element from the the sequence U , storing

it in SU and then comparing this pair with all the remaining pairs in U . Each comparison

may generate new path pairs if the conditions presented in the previous paragraph are

true.

Finally the algorithm ends with an optimal and complete set of all minimal cost pairs

of disjoint paths with dual arc costs in stack SU . 2

6 Experimental results

In section 3 experimental results showed that sometimes algorithm DP2LC had difficulty

finding the optimal condition, and that in those cases a long CPU was often required.

Therefore experimental results for Set2LC will presented, with a limit of CPU time per

node pair of 50ms (as soon as 50 ms are exceeded the algorithm terminates), for directed

networks. So three types of situations may occur:

1. The complete set of optimal solutions.

2. An incomplete set of optimal solutions.

3. A set of sub-optimal solutions: the returned set is a set of pairs, the optimality of

which could not be verified.

33

Percentage of sub-optimal solutions

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

0,30%

0,35%

0,40%

0,45%

0,50%

150 200 250 300 350 400 450 500 600 800 1000 150 200 250 300 350 400 450 500 600 800 1000

3 4

[1,100] - [1,100] [1,10000] - [1,10000] [0,100] - [0,100] [0,10000] - [0,10000]

Figure 6: Percentage of sub-optimal solutions (Set2LC), for networks with sub-optimal

solutions for m = 3n, 4n and ranges E .

Networks with number or arcs m = 3n, 4n were used for evaluating the algorithm’s

performance (recall that n is the number of nodes in the network).

Experiments showed that, in the case of Set2LC, the algorithm behaviour depends

more on the fact that ranges for the costs of the arcs are similar (ranges E) versus different

(ranges Ē), than on the fact that the lower bound of the ranges is zero or not.

In Figures 6 and 7 the percentage of suboptimal solutions for networks with sub-

optimal solutions is presented. For less dense networks the number of sub-optimal solu-

tions was lower. In Figure 6 the results were similar regardless of Z̄ or Z and always less

than 0.5%; in Figures 7 the number of sub-optimal solutions is approximately ten times

higher, and results are worse for the costs in range ([0, 10], [0, 10000]).

CPU time per node pair is presented in Figures 8 and 9, and it was consistently lower

for costs in ranges E . Note that although the algorithm’s runs were stopped only when

50 ms were exceed, the values in figures 8 and 9 are always less than 3.5 ms and 8 ms,

respectively.

34

Percentage of sub-optimal solutions

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

100 150 200 250 300 350 400 450 500 600 800 1000 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

[1,100] - [1,10000] [1,10] - [1,10000] [0,100] - [0,10000] [0,10] - [0,10000]

Figure 7: Percentage of sub-optimal solutions (Set2LC), for networks with sub-optimal

solutions for m = 3n, 4n and ranges Ē .

The percentage of incomplete sets with optimal disjoint pairs was very small: less than

0.03% for for all ranges except for ([0, 10], [0, 10000]), where it was always less than 0.7%.

The average number of optimal solutions per node pair was also analysed. The results

are quite similar for m = 3n and m= 4n for all ranges. There is however a slight increase

in this average for the two more dissimilar cost ranges in Ē , as can be seen in figure 12.

Values are shown only for ranges Ē , because the results for ranges E were very similar

to ([0, 100][0, 10000]) and ([1, 100], [1, 10000]), and the corresponding average values were

always in the interval [1, 1.05[.

The average for the maximum number solutions is again presented in Figure 13 for

m = 4n and ranges ([0, 10][0, 10000]) and ([1, 10], [1, 10000]), where an error bar was

added, centred in the average µ of the collected samples (one sample per network) which

goes from max(1, µ− σ) to µ + σ, where σ is the standard deviation of the sample. The

purpose of this bar was to show the low variability of the results.

Although the average number of optimal solutions per node pair was close to one,

the average number of maximum solutions (for some nome pair(s)) obtained for the ten

35

Average CPU time

0

0,5

1

1,5

2

2,5

3

3,5

50 100 150 200 250 300 350 400 450 500 600 800 1000 50 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

m
s

[1,100] - [1,100] [1,10000] - [1,10000] [0,100] - [0,100] [0,10000] - [0,10000]

Figure 8: Average CPU time (Set2LC) per node pair (with optimal or sub-optimal solu-

tions) for m = 3n, 4n and ranges E .

networks in each experimentwas higher as shown in figures 14 and 15. Ranges Ē presented

higher values than range E . Also note that ranges ([0, 10][0, 10000]) and ([1, 10], [1, 10000])

presented the higher average for the maximum number of sets, which is consistent with

the results in figure 12.

A Auxiliary lemmas to prove Set2LC correction

Lemma A.1 Immediately after step 3, SA has a single path pair, Au, and SB has also

a single path pair, Bv. If C(Au) = C(Bv) and C(1)(p(1)
u) = C(1)(q(p(2)

v)(1)) (and therefore

C(2)(p(2)
v) = C(2)(q(p(1)

u)(2))) then copt = C(Au) = C(Bv) and the algorithm has found two

optimal disjoint path pairs and the value of the minimal path cost of any pair of disjoint

paths in G is copt.

Proof: Immediately after step 1, p(1)
u is the first path of minimal cost with respect to

metric η(1) which has a disjoint path in G. Using Dijkstra algoritm the path, q(p(1)
u)(2),

36

Average CPU time

0

1

2

3

4

5

6

7

8

50 100 150 200 250 300 350 400 450 500 600 800 1000 50 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

m
s

[1,100] - [1,10000] [1,10] - [1,10000] [0,100] - [0,10000] [0,10] - [0,10000]

Figure 9: Average CPU time (Set2LC) per node pair (with optimal or sub-optimal solu-

tions) for m = 3n, 4n and ranges Ē .

of minimal cost with respect to metric η(2) was found in G(1). Immediately after step

2, p(2)
v is the first path of minimal cost with respect to metric η(2) which has a disjoint

path in G. Using Dijkstra algoritm the path, q(p(2)
v)(1), of minimal cost wit respect to

metric η(1) was found in G(2). If C(1)(p(1)
u) = C(1)(q(p(2)

v)(1)), then the first element of Bv

is a path of minimal cost with respect to metric η(1), that has a disjoint path in G, and

the second element of Bv, p(2)
v , is (by step 2) the path of minimal cost with respect to

metric η(2), that has a disjoint path in G. Therefore Bv is formed by two disjoint paths,

p(2)
v and q(p(2)

v)(1), each with minimal possible cost with respect to metric η(j), j = 2, 1,

respectively, and therefore C(Bv) is the minimal cost of any disjoint path pair with dual

arc cost, copt.

A similar argument can be made regarding path pair Au. 2.

So, the first part of step 4 is proved:

“ If
[
C(1)(p(1)

u) = C(1)(q(p(2)
v)(1))

]
∧

[
C(2)(p(2)

v) = C(2)(q(p(1)
u)(2))

]
Then one pair (p(1)

u = q(p(2)
v)(1) and p(2)

v = q(p(1)
u)(2)) or two different pairs of

37

Average CPU time (optimal sol.)

0

0,5

1

1,5

2

2,5

3

3,5

50 100 150 200 250 300 350 400 450 500 600 800 1000 50 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

m
s

[1,100] - [1,100] [1,10000] - [1,10000] [0,100] - [0,100] [0,10000] - [0,10000]

Figure 10: Average CPU time (Set2LC) per node pair with an optimal solution for m =

3n, 4n and ranges E .

identical cost were found and they are both optimal.”

The main cycle in step 4a is entered only when the optimal cost detection condition

was not true for the first pairs.

Lemma A.2 Whenever step 4 tests the condition:

[
C(1)(p(1)) = C(1)(q(p(2))(1))

]
∧

[
C(2)(p(2)) = C(2)(q(p(1))(2))

]
SA and SB contain the, and only the, current best pairs of disjoint paths, from steps 1

and 2, or found using procedures A (step 4(a)i) and B (step 4(a)ii), respectively.

Proof: When the main cycle of step 4a is executed for the first time, SA and SB contain

the first and therefore the best current pair of disjoint paths found using procedure A

(step 1) and B (step 2), respectively.

When the main cycle of step 4a is executed, procedure A (step 4(a)i), will only be

entered when the solution in SA needs to be improved because C(top(SB)) < C(top(SA))

38

Average CPU time (optimal sol.)

0

1

2

3

4

5

6

50 100 150 200 250 300 350 400 450 500 600 800 1000 50 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

m
s

[1,100] - [1,10000] [1,10] - [1,10000] [0,100] - [0,10000] [0,10] - [0,10000]

Figure 11: Average CPU time (Set2LC) per node pair with an optimal solution for m =

3n, 4n and ranges Ē .

or because C(top(SB)) = C(top(SA)) and C(1)(p(1)) < C(1)(q(p(2))(1)). In step 4(a)i stack

SA will be updated whenever C(Au) ≤ C(top(SB)), but before pushing Au into SA, the

algorithm ensures that at end of cycle (step 4(a)i) SA always has path pairs of identical

and current minimal cost, so if C(Au) < C(top(SA)) stack SA is cleared before pusing Au

into SA. The cycle in step 4(a)i terminates when pair Au, such that C(Au) < C(top(SB))

or when Au, such that C(Au) = C(top(SB)) with C(1)(p(1)
u) = C(1)(q(p(2))(1)), is pushed

into SA. Therefore if the cycle in step 4(a)i is entered, then when it terminates SA has

the current best pair (or pairs) found so far, using prodecure A, and all pairs in SA have

the same cost.

Similarly for procedure B (step 4(a)ii). 2

Lemma A.3 If condition (in equation (5)):

[
C(1)(p(1)) = C(1)(q(p(2))(1))

]
∧

[
C(2)(p(2)) = C(2)(q(p(1))(2))

]
is true at the end of step 4, then the minimal cost of the disjoint path pairs, copt =

39

Average number of optimal solutions

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

50 100 150 200 250 300 350 400 450 500 600 800 1000 50 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

[1,10] - [1,10000] [1,100] - [1,10000] [0,10] - [0,10000] [0,100] - [0,10000]

Figure 12: Average number of optimal solutions (Set2LC) for m = 3n, 4n and ranges Ē .

C(top(A)) = C(top(B)), in G was found, and all path pairs in SA and SB have cost copt.

Proof: If the first pairs found in 1 an 2 are optimal (see lemma A.1) then copt has been

found.

If the first pairs found in 1 an 2 do not satisfy equation (5) then the main cycle 4a of

step 4 will be executed until equation (5) becomes true. By lemma A.2 stacks SA and SB

have at the time of evaluation of equation (5) in the step 4a the best current path pairs,

therefore if equation (5) is true they must contain optimal path pairs, unless a better path

could yet be found.

Consider that a better path pair Ai = (p
(1)
i , q(p

(1)
i)(2)), with i > u, exists, where

u is the order of the last path generated in procedure A and Au = top(SA). Then

C(Ai) < C(top(SA)) if and only if C(1)(p
(1)
i) ≥ C(1)(p(1)

u) (by lemma A.2 and because

i > u)and C(2)(q(p
(1)
i)(2)) < C(2)(q(p(1)

u)(2)). But if C(2)(q(p
(1)
i)(2)) < C(2)(q(p(1)

u)(2)), then

q(p(1)
u)(2) must coincide with some p

(2)
k , k < v, and if its cost was lower than C(top(SB))

it would have been stored in SB and C(top(SB)) 6= C(top(SA)). So no such path Ai can

exist.

40

Average number of optimal solutions

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

50 100 150 200 250 300 350 400 450 500 600 800 1000

4

[0,10] - [0,10000] [1,10] - [1,10000]

Figure 13: Average number of optimal solutions (Set2LC) for m = 4n and ranges

([0, 10][0, 10000]) and ([1, 10], [1, 10000]).

Similarly, consider that a better path pair Bj = (q(p
(2)
j)(1), p

(2)
j) , with j > v where

v is the order of the last path generated in procedure B and Bv = top(SB). Then

C(Bj) < C(top(SB)) if and only if C(2)(p
(2)
j) ≥ C(2)(p(2)

v) (because j > v and of lemma

A.2) and C(1)(q(p
(2)
j)(1)) < C(2)(q(p(2)

v)(1)). But if C(1)(q(p
(2)
j)(1)) < C(2)(q(p(2)

v)(1)), then

q(p(2)
v)(1) must coincide with some p

(1)
k , k < u, and if its cost was lower than C(top(SA))

it would have been stored in SA and C(top(SB)) 6= C(top(SA)). So no such path Bj can

exist. And this concludes the proof. 2

Lemma A.3 (wich uses lemmas A.1 and A.2) will now be used to prove that for all

paths p
(1)
i , i = 1, 2, . . . , u (where u is the order of the first element of top(SA)), a disjoint

path pair Ai = (p
(1)
i , q(p

(1)
i)(2)) of minimal cost was stored in SA. And similarly for paths

p(2).

Lemma A.4 If a path p
(1)
i , i = 1, 2, . . . , u − 1 (where u is the order of the first element

of top(SA)) is such that at least a minimal cost disjoint path pair exists in G, the first

41

Average of the maximum number of optimal solutions

0

1

2

3

4

5

6

7

8

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4

[1,100] - [1,100] [1,10000] - [1,10000] [0,100] - [0,100] [0,10000] - [0,10000]

Figure 14: Average of the maximum number of optimal solutions (Set2LC) for m = 3n, 4n

and ranges E .

element of wchich is p
(1)
i , then a path pair Ai = ((p

(1)
i , q(p

(1)
i)(2))), with C(Ai) = copt will

belong to SA, at the end of step 4 (just before step 5) in algorithm Set2LC.

Proof: If at the begining of step 4 the condition expressed by equation (5) is true then,

by lemma A.1, stacks SA and SB each contains a single (optimal) pair. In this case this

lemma is true, because the first element of SA is the first shortest path, with repect to

metric η(1), for which a disjoint path exists.

If at the begining of step 4 the condition expressed by equation (5) is not true, then

the main cycle 4a is entered. This lemma would be false if and only if a path pair existed,

Ak = (p
(1)
k , q

(2)
k), such that C(Ak) = copt, with k ∈ [1, u − 1] and the path p

(1)
k did not

coincide with the first element of any path pair in SA.

By lemma A.3, copt is the minimal cost of any pair of disjoint paths with dual arc cost

in G, therefore, at most C(Ak) = copt.

Recall that all paths p
(1)
i , i = 1, 2, · · · , u, were sequentially generated by a k-shortest

path enumeration algorithm (in our case MPS), and that a disjoint path (the shortest

42

Average of the maximum number of optimal solutions

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500 600 800 1000 50 100 150 200 250 300 350 400 450 500 600 800 1000

3 4

[1,10] - [1,10000] [1,100] - [1,10000] [0,10] - [0,10000] [0,100] - [0,10000]

Figure 15: Average of the maximum number of optimal solutions (Set2LC) for m = 3n, 4n

and ranges Ē .

one in G(1)) for each p
(1)
i was obtained using Dijkstra algorithm, so the same procedure

must have been used for p
(1)
k , generating a candidate path pair Ak. If C(Ak) = copt then

C(Ak) ≤ C(top(SA)), for SA at the time of Ak generation. If C(Ak) = C(top(SA)), for SA

at the time of Ak generation, than Ak is simply pushed into SA. If C(Ak) < C(top(SA)),

for SA at the time of Ak generation, than SA is cleared and Ak is pushed into SA, becoming

its only element. Other path pairs, Ai, i = k+1, · · · , u, of cost copt may aftwards be pushed

into SA; Ak will only be removed from SA if SA is cleared, and for that to happen a path a

p
(1)
i , i = k+1, · · · , u would have to be obtained such that a path pair Ai = (p

(1)
i , q(p

(1)
i)(2))

existed with C(Ai) < copt. But then this would mean that copt was not the minimal cost

of any pair of disjoint paths with dual arc cost in G, and by lemma A.3 this can not be

so. Therefore path Ak does not exist, and the lemma must be true. 2

Lemma A.5 If a path p
(2)
j , j = 1, 2, . . . , v (where v is the order of the first element of

top(SB)) is such that at least a minimal cost disjoint path exists in G, the first element

of wchich is p
(1)
j , then a path pair Bj = (p(p

(2)
j)(2), p(2)), with C(Bi) = copt will belong to

43

SB, at the end of step 4.

Proof: The proof is similar to A.4 and therefore will not be repeated here. 2

Lemma A.6 Lets assume that p(1) = p(1)
u was the u-shortest (loopless) path from s to

t with respect to η(1) obtained in procedure A and that p(2) = p(2)
v was the v-shortest

(loopless) path from s to t with respect to η(2) obtained in procedure B, immediately after

step 4.

There may still exist path pairs (p
(1)
i , q(p

(1)
i)(2)), i > u and path pairs (q(p

(2)
j)(1), p

(2)
j),

j > v with cost equal to the optimal cost copt.

Let cA = γ(1)(SB) and cB = γ(1)(SA). There is no path p
(1)
i , C(1)(p

(1)
i) > cA such that

a disjoint path pair Ai = (p
(1)
i , q(p

(1)
i)(2)) with C(Ai) ≤ copt, might exist. There is no path

p
(2)
j , C(2)(p

(2)
j) > cB such that a disjoint path pair Bj = (q(p

(2)
j)(1), p

(2)
j) with C(Bj) ≤ copt,

might exist.

Proof: Let the optimal cost be copt = C(top(SA)) = C(top(SB)) and c
(1)
opt = C(1)(p(1)),

c
(1)
opt = C(2)(p(2)) (copt = c

(1)
opt + c

(2)
opt), the cost of the first and second elements of the top

pairs of stacks SA and SB, respectively, immediatly after step 4.

By lemma A.3 the minimal cost is copt therefore any pair of disjoint paths, that may

be generated after step 4 will have cost greater or equal to copt.

To prove that immediatly after step 4 there may still exist path pairs (p
(1)
i , q(p

(1)
i)(2)),

i > u and path pairs (q(p
(2)
j)(1), p

(2)
j), j > v with cost equal to the optimal cost copt, if

suffices to consider the following situations:

• there are paths p
(1)
i , i > u, C(1)(p

(1)
i) = c

(1)
opt, then it is possible that a path pair

Ai = (p
(1)
i , q(p

(1)
i)(2)), with C(2)(q(p

(1)
i)(2)) = c

(2)
opt exists, and therefore C(Ai) = copt.

• there are paths p
(2)
j , j > v, C(2)(p

(2)
j) = c

(2)
opt, then it is possible that a path pair

Bj = (q(p
(2)
j)(1), p

(2)
j), with C(1)(q(p

(2)
j)(1)) = c

(1)
opt exists, and therefore C(Bj) = copt.

To prove that there is no path p
(1)
i , C(1)(p

(1)
i) > cA such that a disjoint path pair

Ai = (p
(1)
i , q(p

(1)
i)(2)) with C(Ai) ≤ copt, might exist, we must first recall that by lemma A.3

C(Ai) ≥ ccopt. If C(Ai) > ccopt then Ai does not belong to the optimal set. If C(Ai) = ccopt

and C(1)(p
(1)
i) > cA ≥ c

(1)
opt, then C(2)(q(p

(1)
i)(2)) < copt − cA and C(2)(q(p

(1)
i)(2)) < c

(2)
opt. If

path pair Ai existed, then in SB there should exist a path pair Bj = (q(p
(2)
j)(1), p

(2)
j), with

44

j < v, such that p
(2)
j = q(p

(1)
i)(2), and C(1)(q(p

(2)
j)(1)) > cA, which by definition of cA is

impossible. So the path Ai can not exist.

Similarly, to prove that there is no path p
(2)
j , C(2)(p

(2)
j) > cB such that a disjoint

path pair Bj = (q(p
(2)
j)(1), p

(2)
j) with C(Bj) ≤ copt, might exist, we must first recall that

by lemma A.3 C(Bj) ≥ ccopt. If C(Bj) > ccopt then Bj does not belong to the optimal

set. If C(Bj) = ccopt and C(2)(p
(2)
j) > cB ≥ c

(2)
opt, then C(1)(q(p

(2)
j)(1)) < copt − cB and

C(1)(q(p
(2)
j)(1) < c

(1)
opt. If path pair Bj existed, then in SA there should exist a path pair

Ai = (p
(1)
i , q(p

(1)
i)(2)), with i < u, such that p

(1)
i = q(p

(2)
j)(1), and C(2)(q(p

(1)
j)(2)) > cB,

which by definition of cB is impossible. So the path Bj can not exist. 2

B Size of the stacks immediatly after step 4 of algo-

rithm Set2LC

At the beginning of execution of step 4, stack SA and SB each have a single element, and

two possibilities may occur:

1. If C(top(SA)) = C(top(SB)) then three possibilities (mutually exclusive) may arise:

(a) If C(top(SA)) = C(top(SB)) and C(1)(p(1)) = C(1)(q(p(2))(1)), then condition

expressed by (5 is true (and step 4 ends).

If SA and SB contain minimal cost pairs of disjoint paths (from steps 1 and 2)

it has already been shown that copt = C(top(SA)) = C(top(SB)).

If SA and SB have been found using procedure A (step 4(a)i) and B (step

4(a)ii), respectively, then as shown in lemma A.3 minimal cost pairs of disjoint

paths have been found.

In this case at the end of step 4 both stacks SA and stack SB will have a single

element each.

(b) If C(1)(p(1)) < C(1)(q(p(2))(1)) two possibilities may still occur:

i. If C(1)(p(1)) < C(1)(q(p(2))(1)) but C(top(SA)) (equal to C(top(SB))) is the

minimal path pair cost (although not yet confirmed), then procedure A

will not be able to improve C(SA).

45

ProcedureA will generate path pairs, and if their cost is equal to C(top(SA))

they will be pushed into SA until a path pair Au such that C(top(SA)) =

C(Au) and C(1)(p(1)
u) = C(1)(q(p(2))(1)) is obtained and pushed into stack

SA, resulting in C(1)(p(1)) = C(1)(q(p(2))(1)).

In this case at the end of step 4 stack SA will have one or more elements

(all with minimal cost), and stack SB will have a single element.

ii. If C(1)(p(1)) < C(1)(q(p(2))(1)) but C(top(SA)) (equal to C(top(SB))) is not

the minimal cost of the pairs of the sought set, then procedure A will be

able to improve C(top(SA)).

Paths will be generated until a path pair Au is found, with C(Au) <

C(top(SB)) When such a path is found stack SA is cleared and the recently

found pair becomes its only element.

At this point stack SA has one element, stack SB has one element and

C(top(SA)) < C(top(SB)).

From the point of view of the stack size evolution, the situation is similar

to step 4 starting point when stack SA and stack SB have each a single

element (the first pairs) and C(top(SA)) < C(top(SB)).

(c) If C(2)(p(2)) < C(2)(q(p(1))(2)), a similar argument as for case 1b can be made.

Again two cases may occur:

i. If C(2)(p(2)) < C(2)(q(p(1))(2)) but C(top(SB)) (equal to C(top(SA))) is the

minimal path pair cost (although not yet confirmed), then procedure B

will not be able to improve C(SB).

Procedure B will generate path pairs, and if their cost is equal to C(top(SB))

they will be pushed into SB until a path pair Bv such that C(top(SB)) =

C(Bv) and C(1)(p(1)
v) = C(1)(q(p(2))(1)) is obtained and pushed into stack

SB, resulting in C(1)(p(1)) = C(1)(q(p(2))(1)).

In this case at the end of step 4 stack SB will have one or more elements

(all with minimal cost), and stack SA will have a single element.

ii. If C(2)(p(2)) < C(2)(q(p(1))(2)) but C(top(SB)) (equal to C(top(SA))) is not

the minimal cost of the pairs of the sought set, then procedure B will be

able to improve C(top(SB)). Paths will be generated until a path pair Bv

46

is found, with C(Bv) < C(top(SA))

When such a path is found stack SB is cleared and the recently found pair

becomes its only element.

At this point stack SB has one element, stack SA has one element and

C(top(SB)) < C(top(SA)).

From the point of view of the stack size evolution, the situation is similar

to step 4 starting point when stack SA and stack SB have each a single

element (the first pairs) and C(top(SB)) < C(top(SA))

2. If C(top(SB)) 6= C(top(SA)), only two (symmetrical) possibilities exist:

(a) If C(top(SB)) < C(top(SA)) then 4(a)i will iterate until a path pair Au is

found such that C(Au) ≤ C(top(SB)); when that happens, SA is cleared and

Au becomes is only element.

At this point stacks SA and SB have each one element:

i. If C(top(SB)) > C(top(SA)), step 4(a)i ends and procedure B (in step

4(a)ii) will improve SB.

From the point of view of the stack size evolution, the situation is similar

to step 4 starting point when stack SA and stack SB have each a single

element (the first pairs) and C(top(SB)) > C(top(SA)).

ii. If C(top(SB)) = C(top(SA)), then the algorithm will remain in procedure

A if C(1)(p(1)) < C(1)(q(p(2))(1)), and everything will happen as explained

in 1b.

If C(top(SB)) = C(top(SA)), but C(2)(p(2)) < C(2)(q(p(1))(2)), step 4(a)i

ends and the algorithm will proceed to step 4(a)i, where procedure B will

try to improve C(top(SB)), and everything will happen as explained in 1c.

From the point of view of the stack size evolution, the situation is similar

to step 4 starting point when stack SA and stack SB have each a single

element (the first pairs) and C(top(SB)) = C(top(SA)).

(b) If C(top(SB)) > C(top(SA)) then 4(a)ii will iterate until a path pair Bv is

found such that C(Bv) ≤ C(top(SA)); when that happens, SB is cleared and

Bu becomes is only element.

47

The rest of the explanation is similar to 2a

We have shown that at the beginning of step 5 (after step 4) two possibilities exist:

1. The first path pairs found in steps 1 to 3 were optimal (see lemma A.1), and stacks

A and B have each a single element.

2. The first path pairs found in steps 1 to 3 might not have been optimal, and step 4

was executed until the condition expressed by (5) became true.

In this case one of the stacks will have a single element and the other will have one

or more elements and all pairs in both stacks will have cost copt, by lemma A.3.

C Additional set of results for directed networks and

DP2LC

In this appendix, the full set of results obtained using algorithm DP2LC, is presented.

Only a sub-set of these resutls was used in the first part of this report.

48

Percentage of sub-optimal solutions

0,0000%

0,0002%

0,0004%

0,0006%

0,0008%

0,0010%

0,0012%

300 400 1000 350 450 500 600 800 1000

4 6

[1,100] - [1,10000]

Figure 16: Percentage of sub-optimal solutions (DP2LC) for networks with sub-optimal

solutions for m = 4n, 6n, and ranges Z̄Ē .

Percentage of sub-optimal solutions

0,000%

0,005%

0,010%

0,015%

0,020%

0,025%

250 300 400 450 500 600 800 1000 100 200 250 300 350 400 450 500 600 800 1000

4 6

[0,10] - [0,10000] [0,100] - [0,10000]

Figure 17: Percentage of sub-optimal solutions (DP2LC), for networks with sub-optimal

solutions for m = 4n, 6n and ranges ZĒ .

49

Average CPU time

0

0,5

1

1,5

2

2,5

3

3,5

4
50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00

3 4 6

m
s

[1,100] - [1,100] [1,10000] - [1,10000]

Figure 18: Average CPU time (DP2LC) per node pair (all solutions were optimal solu-

tions) for m = 3n, 4n, 6n and ranges Z̄E .

Average CPU time

0

2

4

6

8

10

12

14

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

m
s

[1,10] - [1,10000] [1,100] - [1,10000]

Figure 19: Average CPU time (DP2LC) per node pair (with optimal or sub-optimal

solutions) for m = 3n, 4n, 6n and ranges Z̄Ē .

50

Average CPU time

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5
50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00

3 4 6

m
s

[0,100] - [0,100] [0,10000] - [0,10000]

Figure 20: Average CPU time (DP2LC) per node pair (with optimal or sub-optimal

solutions) for m = 3n, 4n, 6n and ranges ZE .

Average CPU time

0

50

100

150

200

250

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

m
s

[0,10] - [0,10000] [0,100] - [0,10000]

Figure 21: Average CPU time (DP2LC) per node pair (all solutions were optimal solu-

tions) for m = 3n, 4n, 6n and ranges ZĒ .

51

Average CPU time (optimal sol.)

0

2

4

6

8

10

12

14
50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00

3 4 6

m
s

[1,10] - [1,10000] [1,100] - [1,10000]

Figure 22: Average CPU time (DP2LC) per node pair with an optimal solution for

m = 3n, 4n, 6n and ranges Z̄Ē .

Average CPU time (optimal sol.)

0

20

40

60

80

100

120

140

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

m
s

[0,10] - [0,10000] [0,100] - [0,10000]

Figure 23: Average CPU time (DP2LC) per node pair with an optimal solution for

m = 3n, 4n, 6n and ranges ZĒ .

52

The optimal pair was the first path found in one of the procedures

94%

95%

96%

97%

98%

99%
50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00

3 4 6

[1,100] - [1,100] [1,10000] - [1,10000]

Figure 24: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in procedures A or B, for m = 3n, 4n, 6n and ranges Z̄E .
The optimal pair was the first path found in one of the procedures

99,80%

99,85%

99,90%

99,95%

100,00%

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

[1,10] - [1,10000] [1,100] - [1,10000]

Figure 25: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in procedures A or B, for for m = 3n, 4n, 6n and ranges Z̄Ē .

53

The optimal pair was the first path found in one of the procedures

94%

95%

96%

97%

98%

99%
50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00

3 4 6

[0,100] - [0,100] [0,10000] - [0,10000]

Figure 26: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in procedures A or B, for m = 3n, 4n, 6n and ranges ZE .
The optimal pair was the first path found in one of the procedures

99,80%

99,85%

99,90%

99,95%

100,00%

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
80

0
10

00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

[0,10] - [0,10000] [0,100] - [0,10000]

Figure 27: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in procedures A or B, for m = 3n, 4n, 6n and ranges ZĒ .

54

The optimal pair was the first path found in both procedures

0%

10%

20%

30%

40%

50%

60%

70%
50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

[1,100] - [1,100] [1,10000] - [1,10000] [1,10] - [1,10000] [1,100] - [1,10000]

Figure 28: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in both procedures A and B, for m = 3n, 4n, 6n and ranges Z̄.

The optimal pair was the first path found in both procedures

0%

10%

20%

30%

40%

50%

60%

70%

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
00

3 4 6

[0,100] - [0,100] [0,10000] - [0,10000] [0,10] - [0,10000] [0,100] - [0,10000]

Figure 29: Frequency of occurrence of the optimal pair (DP2LC) among the first identified

pair in both procedures A and B, for m = 3n, 4n, 6n and ranges Z.

55

References

[1] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.

Springer Monographs in Mathematics. Springer-Verlag, May 2002.

[2] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1992.

[3] T. Gomes, L. Martins, and J. Craveirinha. An algorithm for calculating the k shortest

paths with a maximum number of arcs. Investigação Operacional, 21(2):235–244,

2001.

[4] P.-H. Ho, J. Tapolcai, and H. T. Mouftah. On achieving optimal survivable routing

for shared protection in survivable next-generation internet. IEEE Transactions on

Reliability, 53(2):216–225, June 2004.

[5] M. Kodialam and T. V. Lakshman. Dynamic routing of restorable bandwidth-

guaranteed tunnels using aggregated network resource usage information.

IEEE/ACM Transactions on Networking, 11(3):399–410, June 2003.

[6] P. Laborczi, J. Tapolcai, P.-H. Ho, T. Cinkler, A. Recski, and H. T. Mouftah. Al-

gorithms for asymmetrically weighted pair of disjoint paths in survivable networks.

In T. Cinkler, editor, Proceedings of Design of Reliable Communication Networks

(DCRN 2001), pages 220–227, October 7-10 2001.

[7] C. L. Li, S. T. McCormick, and D. Simchi-Levi. The complexity of finding two disjoint

paths with min-max objective function. Discrete Applied Mathematics, 26(1):105–

115, 1990.

[8] C.-L. Li, S. T. McCormick, and D. Simchi-Levi. Finding disjoint paths with different

path costs: complexity and algorithms. Networks, 22:653–667, 1992.

[9] E. Martins and M. Pascoal. A new implementation of Yen’s ranking loopless paths

algorithm. 4OR – Quarterly Journal of the Belgian, French and Italian Operations

Research Societies, 1(2):121–134, 2003.

56

[10] E. Martins, M. Pascoal, and J. Santos. An algorithm for rank-

ing loopless paths. Technical Report 99/007, CISUC, 1999.

http://www.mat.uc.pt/˜marta/Publicacoes/mps2.ps.

[11] E. Martins, M. Pascoal, and J. Santos. Deviation algorithms for ranking shortest

paths. International Journal of Foundations of Computer Science, 10(3):247–263,

1999.

[12] H. T. Mouftah and P.-H. Ho. Optical networks – arquitecture and survivability.

Kluwer Academic Publishers, 2003.

[13] J. W. Suurballe. Disjoint paths in networks. Networks, 4:125–145, 1974.

[14] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of

disjoint paths. Networks, 14(2):325–336, 1984.

[15] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He. On finding disjoint paths in single

and dual link cost networks. In IEEE INFOCOM 2004. IEEE, 2004.

[16] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,

17(11):712–716, July 1971.

57

