An Algorithm for Calculating £ Shortest Paths
with a Maximum Number of Arcs

by
Teresa Gomes
Licia Martins

José Craveirinha

INESC — Coimbra

Research Report ET-N6
May 2000

Work partially supported by FCT, project PRAXIS/P/EEI/13219/1998, Um estudo
sobre encaminhamento dinamico multi-objectivo e dependente do estado em redes multi-

Servigo.

An Algorithm for Calculating k& Shortest Paths with
a Maximum Number of Arcs

Teresa Gomes, Licia Martins and José M. F. Craveirinha

Departamento de Engenharia Electrotécnica,
Pélo II da Universidade de Coimbra,
Pinhal de Marrocos, 3030 COIMBRA, Portugal.

INESC-Coimbra, Rua Antero de Quental 199,
3000-033 COIMBRA. Portugal.

e-mail: teresa@dee.uc.pt, lucia@dee.uc.pt, jcrav@dee.uc.pt

17th May 2000

Abstract

In multiexchange telecommunication networks the problem of calculating
shortest paths involves, in general, constraints on the maximum number of arcs
in any path. In highly connected networks the number of available paths bet-
ween pairs of nodes is very high and if no additional constraints are introduced,
shortest paths (for a given objective function) may occur having a significant
number of arcs.

In this paper we present an efficient algorithm for calculating the k£ shortest
loopless paths wiht a a maximum number of arcs per path, derived from the
MPS algorithm [5, 4] for calculating the k shortest loopless paths.

The proposed algorithm will be compared with the original MPS algorithm
when both procedures are used for enumerating the k shortest loopless paths
with a maximum number of arcs, in order to show the significant efficiency im-
provement obtained from the algorithm. The comparison will be made in terms
of the total number of generated paths in each algorithm.

Keywords: Routing, shortest paths enumeration.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 2

1 Introduction

The calculation of the K-shortest paths in a network has many applications in science
and engineering, namely as a solution to a sub-problem (see ex. [3, 2]). An interesting
application in telecommunications as sub-procedure in a multi-objective routing model
was recently proposed [1]. In a telecommunication multiexchange network routing
context, the determination of of optimal/sub-optimal loopless paths (according to pre-
defined criteria) is normally constrained by the maximum number of arcs which may
constitute any path. It must be noted that in highly connected networks the number
of available paths between pairs of nodes is very high and if no additional constraints
are introduced, shortest paths (for a given objective function) may occur having a
significant number of arcs.

A first (simplistic) approach to the K-shortest loopless path problem with a maxi-
mum (D) number of arcs would be to generate the sequence of the shortest paths,
using a very efficient algorithm , such as the one proposed by Martins et al. [4] and
then to select a subset of K paths by ignoring those which have more than D arcs. As
an alternative an algorithm is proposed in this paper for solving this K shortest path
constrained problem, which is based on the algorithm for loopless paths in [4] which is
a variant of the algorithm in [5]. It will be shown that the proposed algorithm is much
more efficient than the former (simplistic) approach since it prevents, by construction,
the enumeration of paths with more tan D arcs, therefore reducing the number of
generated paths which would be disregarded later on.

This paper is organised as follows. In section 2, beyond reviewing the definitions
and notation used in [5] some new definitions will be introduced. The foundations
of the algorithm will be presented in section 3. The application of the algorithm to
various network examples and its comparison with the simple method of rejecting the
paths with more than D arcs in the MPS algorithm, will be performed in section 4.
Finally some conclusion on this work and the envisaged application of the algorithm in

a bi-objective routing model for telecommunication networks, will be briefly mentioned.

2 Definitions and notation

This section begins by reviewing the basic definitions and notation used in [5]. Let
(N, A) denote the graph defining a network' topology, where N' = {vy,vo,...,v,}
(or N = {1,2,...,n} to simplify) is the finite set of nodes (or vertices) and A =

IThe term network will be reserved to designate a broader entity which includes the graph (N, .A)
as a fundamental descriptive structure — e.g. a telecommunication multiexchange network.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 3

{ai1,as,...,a,} is the finite set of arcs or edges, such that each arc is a pair of nodes.
If all the pairs are ordered (unordered) the graph is said to be ordered (unordered).
Hereafter and unless something explicit is said, the graph is supposed to be ordered. A

path p from s to t (s,t € N) is defined by an alternating sequence of nodes and arcs,

(s =wvi,al,v),...,a,_;,v. =t), where: aj, € Aforany k=1,...,r—1and v;, € N for
any k=1,...,r; aj, = (v}, v,,,) forany k =1,...,7 — 1. The value (or cost) ¢(p) of a

path p is obtained by associating a cost ¢;; € IR with each arc (4, j):

c(p) = Z Cij (1)
(i.5)€p

A path from s to ¢t in (N, A) is a loopless path iff all its nodes are different. A
cycle is a path from a node to itself such that all nodes are different except the first
which is identical to the last one. A cycle C is negative iff ¢(C) = ¥; jjec ¢ij < 0 and
absorbent iff ¢(C') < 0. Let p;; be a path from i to j; the concatenation of paths p;;
and pj; is the path, p;; ¢ pji, from 4 to [, which coincides with p;; from 7 to j and with
pji from j to [.

Let PX = {pi,...,px} be the set of the K shortest (unconstrained) loopless paths
between a given pair of nodes. An algorithm enabling to construct 7, a pseudo-tree
of the K -shortest paths (from s to t), algorithm T1, is given in [5] and will be used in
this paper (see the Appendix).

The node v, for any k£ € {1,..., K} given from algorithm T1 is designated as
deviation node of py; the arc of p; the tail of which is vy is designated as deviation arc
and the sub-path from v to ¢ in py, is the deviation path of py, p’;kt. Note that although
nodes are repeated in 7, they are all considered as being different in the pseudo-tree.
Let T; designate a tree where there is a unique path from any node i to ¢ (tree rooted at
t) and m;(7;) denote the cost of the path p;; in T;; the reduced cost ¢; ; of arc (i,j) € A
associated with T is ¢;; = m;(T;) — mi(Ty) + ¢y

Next additional notation and definitions used in the proposed algorithm will be
introduced. Let |p| denote the number of arcs in path p, from s to ¢, or path length.
The notation ”p will designate a path such that Pp = p if |[p| < D; otherwise Pp is
the sub-path with origin s and D arcs. If D = 0 then Pp is the empty set (). Let p be
a path which contains nodes v; and v;. The distance from v; to v; in p will be given
by the number of arcs in p, from v; to v;; if v;, v;, are extreme nodes of an arc then
the distance is 1; the distance of a node to itself is zero. Let p be a path from s to ¢,
which contains v;; the depth of v; in p is is given by the distance from s to v; in p and
will be designated by d,(v;). Let 7,* be the tree of the shortest paths from all nodes to
t. The height of node v; in 7,* is given by the distance from v; to ¢ and is designated

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 4

by hr:(vi); p,,, ¢ represents the shortest path from v; to ¢ in 7;". Let the set of
arcs A of (NV,.A) be written in terms of A(k), the set of arcs the tail node of which is
veN={1,2,...,n}, i.e. A=A(1)UA(2)U...UA(n) such that A(z) N A(j) =0
for any i # j (i,7 € N). Let a}, € A(§) and a] € A(#). Assuming that £ # 6 an order
relation "<’ is defined for the arcs such that aj, < qj iff £ < 6. Moreover if £ = § then
aj, < ay if €(a},) < ¢(a;). This means that the set A is sorted in such a way that for any
two arcs (k, j), (i,5) € A, (k,j) < (i,1) if k < i or (k=1 and ¢x; < ¢;). The resulting
set A ={a1,as,...,an} is said to be in the sorted forward star form.

3 The algorithm

Let one consider that only shortest paths with length less than or equal to D, be
acceptable. Then the K-shortest path constrained problem which we are seeking to
solve for two given nodes s, t is equivalent to determine a set PX = {p1,po,...,px} C
P = Py, where Py; is the set of the paths which can be defined from s to ¢ in (N, .A)
such that:

1. Ipe| <D, Vke({l,2,... K}
2. C(pk) < c(pk+1)7 Vk € {1a2a .. aK}

3. c(pr) < c(p) for any p: [p| < DAp€ P~ Pf

The proposed algorithm has the additional (desirable) property that pj is identified
just before py1 for any k € {1,2,..., K — 1}.

Let 7T, designate the pseudo-tree of the k-shortest loopless paths from s to ¢, with a
maximum of D arcs and X the set of the candidate paths to the following shortest path
in the context of the algorithm MPS in [5]. The justifications underlying the proposed

variant to the algorithm MPS in the version in [4] are now presented.

e Let p, be the shortest path in X (that is the u-th to be selected) and assume
that the length of p, is greater than D — therefore this path is of no interest as
a final result of the algorithm. Let v, be the deviation node of p, which is at a

distance d, from s.

Then, there are two scenarios:

— d, < D, in which case the paths eventually generated from this deviation
node v, or from the nodes v in p,, following v, are at a depth d,, (v) < D—1
and therefore should be generated and stored in X since the deviation nodes

of such paths are at a depth less than D.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 5

— d, > D implies that p, should never have been placed in the candidates path
set since it of no interest as a final result and also all the paths obtained
from p, would have length greater than D. In fact if at a given step of
the algorithm the deviation node of a path ¢ to be constructed (such that
¢sy = D%, where p¥ is the sub-path of p, from s to v) is at a depth D or
greater than D, this new path does not need to be constructed for inclusion
in X. This is because on the one hand it would not contribute to the
identification of paths of interest and on the other hand its exclusion from
X does not raise any limitation concerning the generation of the other paths
that need to use some of its nodes as deviation nodes. As a matter of fact
all nodes of g relevant for this purpose (at most the first D — 1 nodes)
are common to the path p, and should already have been stored in 7,.
Therefore the paths p with deviation node v such that d,(v) > D will never
be generated and included in X.

e Let p, be a path of length D.

By definition the deviation node of p, could never be node ¢. If the deviation
node of p, is at depth D — 1, then from the MPS algorithm, v, could give origin
to new paths of length always greater than D, hence it is not worth to generate
them. In fact such paths would have a deviation node at a depth greater than
or equal to D — 1; hence would always have length greater than D, as well as all

the paths obtained from them.

If the deviation node v, has a depth d, < D—1 then the path eventually obtained
from v, and the paths eventually obtained from the nodes following v, with depth
less than D — 1, should be generated since their deviation nodes are at a depth
less than D — 1.

e Let p, be a path from s to ¢ of length d, less than D. Then all the paths that
may be obtained from p, should be generated and stored in X. This results from
the fact that the deviation nodes of such paths could always be at a depth less
than D and potentially could give origin to paths with length less than or equal
to D.

The inverse Dijkstra algorithm used as a starting point of the algorithm will be
adapted to associate each node with its height in the shortest paths tree from all nodes
to t. This is easily obtained by giving to ¢ the height 0 and establishing that whenever

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 6

the successor of a node v; is changed, being for example v;, then the height associated

with v; is also changed and becomes the height of v; plus 1.

A final note on the used notation. Given a path p (from s to ¢) and a node v in p,

Psy Tepresents the sub-path of p from s to v and p,; represents the sub-path of p from

v to t.

Next the algorithm for generating the K-shortest paths of length less or equal to

D, is formalised.

Algorithm KD

1.

2.

A B

Input: the representation of the graph (N, .4) and arc costs ¢;;.

By using Dijkstra inverse algorithm (including the node heights calculations),
obtain the shortest paths from every node to t, hence constructing the shortest
tree rooted at t, T;*.

Calculate the reduced cost ¢;; for every (i, 7) € A.

Rearrange the arcs of (N, A) in the sorted forward star form (for the computed
Cij, leading to A = {a,as,...,an,} such that for any A € {1,2,...,m — 1},
Cap < Capy,y if v = tail(ap) = tail(aq,,,))”

p < shortest path from s to ¢ (p € T,*).
k<« 0
X < {p} (X is the set of paths that are candidates to shortest path).

While (k< KA X #0) do
(a) p < shortest path in X
(b) X « X — {p}
(c) Calculate |p|
(d) If |p| < D and p has no loops then

i k—k+1
ii. px < p (the k-th path which has at most D arcs, was found)
EndIf
(e) Let v be the deviation node of p
(f) psy < sub-path of p from s to v

?In case Ca, = Cay,,, and ay is the the first element of A(v # t), then ay is also the arc which
belongs to 7;*. In other words, the first element of each non empty A(v), v # ¢t Av € N’ must belong

to T;*.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 7

() I£ (jp| = D and Ip,,| < D—1)
then [+ D — 2 (Try to generate new paths®)
else If (|p| # D and |ps| < D)
then [+ min(|p| — 1, D — 1) (Try to generate new paths*)
else [+ —1° (No path will be generated from p)
EndIf EndIf
(h) If [# —1 then
iy v
ii. Concluded <« False (Possibly a path will be placed in X)
iii. Repeat
A. ap < the arc of p the tail of which is v;
B. psy; < sub-path of p from s to v;

C. While (v; is the tail of as41) and (a1 forms a loop with py,,) do
h+h+1
EndWhile

D. If v; is the tail of a,,; then
e v; + head of anq1
® Py, < shortest path from v; to ¢ in 7;*
e X <+ XU {psvi < <Ui’ Ah+15 Uj) Op:;jt}
EndIf

E. 1f dp(UZ') = 16
then Concluded < True

else v + following node in p (truncated path p after | arcs)
EndIf

Until (ps,, has a loop) or (Concluded)’
EndIf(l # —1)

EndWhile

4 Analysis of Results

Having in mind to compare the algorithm KD proposed in section 3 , (which will be
designated hereafter by “KD”) with results from the algorithm MPS [4] (hereafter
designated by “MPS”) for the purpose of generating the K-shortest loopless paths

3Such paths will diverge from p from the deviation node of p onwards and/or from the nodes of p
placed after v up to a distance D — 2 from s.

4Such paths will diverge from p from the deviation node of p onwards and/or from the nodes of p
placed after v up to a distance D — 1 (if |p| < D) or |p| — 1 (if |p| > D) from s.

5Since from path p it is not possible to obtain any path with less than D + 1 arcs.

6This means that v; is the last node of ‘p.

"Since !p does not contain ¢t anymore the loop only terminates when all the nodes of !p have been
used, which is signalled by making the boolean variable Concluded equal to True, or when the sub-path
Dsv; Presents a loop.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 8

Fully meshed networks - costs: moderate variation Fully meshed networks - costs: great variation
T T T T T le+07 T T T ; ;
1e+06
10000 i
100000
A::L'»':A" -
£ £ e .
o 1000 i e 4 B
3 ot B 10000 —
< ©
& e %
3 . 2
S k] &
g z 1000 |)/ # /° I
= 100 i 2 .
> >
z 4
4 MPS(n=20) —=— 100 1
“v‘ n:
"V‘ MPg(n:SO% — MPS(anO) —a—
10 MPS(n=200) —=— MPS(n=50) —s—
MPS(n=1000) —=— ; MPS(n=200) —=—
KD(n=20) ---=-- 10 B MPS(n=1000) —=— |
KD(n=50) ~-e-— : KD(n=20) &
KD(n=200) -4 KD(n=50) -+
KD(n=1000) ----4--- KD(n=200) -
KD(n=1000) =
1 L L L I L 1)))) ‘
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of loopless paths with at most 3 arcs Number of loopless paths with at most 3 arcs

(a) (b)
Figure 1: Comparison of the algorithms for D = 3; (a) n = 20, 50, ¢;; € [1,10]; n = 200,

¢ij € [1,20] and n = 1000, ¢;; € [1,40] (b) n = 20, ¢;; € [1,50] and n = 50,200, 1000,
¢ij € [1,150]

with a maximum of D arcs, numerous computational experiments were carried out.
Strongly meshed networks and fully meshed networks (corresponding to strongly or
fully connected graphs) where considered®, with 20, 50, 200 and 1000 nodes. The
comparison measure was the total number of paths generated by each algorithm until
the K-shortest path with at most D arcs was obtained. To facilitate the comparison,
values were obtained by averaging the number of generated paths corresponding to
solve the problem for pairs of origin-destination nodes in a given network and at least
in two networks obtained from different random number sequences, which determine
the values of the arc cost (in a given interval) and also the network arcs in the case of
strongly meshed networks.

A major factor which influences the relative performance of MPS is the range of
variation of arcs costs. For this reason results were presented for two ranges of variation:
a moderate variation, from 1 to 10 in 20 node networks up to 1 to 40 in 1000 node

8The used program for network generation was kindly borrowed by José Luis Santos.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 9

Fully meshed networks with 200 nodes - costs: moderate variation Fully meshed networks with 200 nodes - costs: great variation
le+07 T T T T 1let+07 T T
MPS(D=2) —e—
MPS(D=3) —=—
MPS(D=4) ——
1e+06 |
100000 b 100000
£ 2
s s
Qo o
kol kS| 10000
B ®
o] o}
@ @
o (=2}
k] k]
B 3 1000 |
[S S
> >
z z
100 E£/
10
1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of loopless paths with at most D arcs Number of loopless paths with at most D arcs

(a) (b)

Figure 2: Comparison of the algorithms for fully meshed networks with 200 nodes and
and D = 2,3,4; (a) arc costs € [1,20] (b) arc costs € [1,150]

networks and a second range of larger relative variations of 1 to 50 in 20 node networks
and 1 to 150 for the remaining networks. In MPS the higher is the cost variation,
the higher is the average number of arcs of the shortest paths, hence the poorer is the
relative performance of MPS, as illustrated in figures 1, 2 and 3.

Some of the most significant results are condensed in figures 1, 2 and 3. The presen-
ted curves represent averages over the total number of paths generated for obtaining
up to 120 shortest paths (whenever they exist) between two pairs of nodes with a maxi-
mum of D = 2,3 or 4 arcs. Note that these are the values of D (specially D = 2, 3)
which are of interest to applications in route generation algorithms in multiexchange
networks. The considered number of generated paths is the number of paths inserted in
the set X of candidate paths in the course of algorithm execution. To prevent excessive
running times in some cases (due to swapping) any of the algorithms is stopped when
the 107-th path is generated even if the last shortest path with up to D arcs hasn’t
been obtained. This limiting situation occurred some times with the MPS algorithm,
but never with the KD algorithm.

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 10

Networks with 1000 nodes and 600000 arcs - costs: moderate variation Networks with 1000 nodes and 600000 arcs - costs: great variation
le+07 T T T T 1let+07
MPS(D=2) —e—
MPS(D=3) —=—
MPS(D=4) ——
1e+06 (D=3) 1 1e+06
100000 b 100000
2 " 2
g B
kol 10000 kS| 10000 |-
B ®
o] o}
5 g
5 5
B 3 1000 [| 4
= S L
> >
z z
100 Ff [
10
1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of loopless paths with at most D arcs Number of loopless paths with at most D arcs

(a) (b)

Figure 3: Comparison of the algorithms for non-fully meshed networks with 1000 nodes
and 600000 arcs, D = 2,3,4; (a) arc costs € [1,20] (b) arc costs € [1,150]

It is apparent from the results the quite significant advantage of KD with respect
to MPS in most cases. This highly improved efficiency of KD is expectable having in
mind that KD does not generate unnecessary paths (that is with more than D arcs —
when such paths are of no potential interest) while it makes the most of the inherent
efficiency of MPS. Other advantage of KD stems from the fact that it manages to
identify the phase in which there are no more paths with the desired number of arcs.
This is particularly important in non fully meshed networks where one seeks to obtain
paths with 2 our 3 arcs, a common situation in telecommunication networks.

In general the total number of paths generated by MPS is closer to the equivalent
number for KD, when the maximum number of arcs is higher and the relative variation
of the arc costs is smaller. This stems from the fact that, in these cases, almost all the
first shortest paths generated by MPS have a number of arcs less than or equal to D.

It was also verified that the relative performance of the algorithms did not depend so
much on the network dimensions than on the cost variations. This may be appreciated

from figures 1(a) and 1(b) where results are presented for several fully meshed networks

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 11

and for two ranges of cost variations, with D = 3.

5 Applications and conclusions

In some applications of the K shortest path problem an important constraint is the
maximum number of arcs in any chosen path. In particular, for multiexchange telecom-
munication networks, the determination of optimal or suboptimal (according to some
criteria) paths which may be used for routing calls between pairs of nodes (associated
with exchanges in terms of network representation) imposes, for technical reasons, that
only paths with up to a certain number of arcs, may be considered. This has to do
with the necessity of simplifying control and signalling functions and prevent undesi-
rable situations from the point of view of the traffic flow distributions. Note also that
multiexchange telecommunication networks are usually either fully meshed or strongly
meshed and technology enables the utilisation of sophisticated routing mechanisms.
Such mechanisms usually require frequent recalculation (for different network condi-
tions e.g. related to traffic loads or channel occupations) of shortest paths for each pair
of origin-destination nodes. An example of this type of application environment for this
constrained K-shortest path problem is a multi-objective routing model proposed in
[1]. The basis of this model is to consider two objective functions (to be minimised) in
the routing model such as cost and blocking probability or cost and delay. This model
involves the selection of non-dominated solutions (paths) of a bi-objective problem ta-
king into account some preference criteria defined on the objective function space. The
algorithm used for tacking this problem uses repeatedly the K-shortest path algorithm
[4] and the authors are developing a new variant of the model enabling the choice of
alternative paths when for example the first selected path is blocked (ie. at least one
arc is unavailable), a technique that is known as alternative routing, also considering
as explicit constraint the maximum number D of arcs per path (D = 2, 3, 4).

An algorithm was therefore proposed in this paper for solving the K-shortest path
problem with a constraint on the number of arcs per path, which is based on the MPS
algorithm for loopless paths in [4] (which is a variant of the algorithm in [5]). It was
shown that the proposed algorithm (algorithm KD) is much more efficient in most cases
than the simplistic approach of ignoring the paths selected by MPS with more than
D arcs. This was confirmed by extensive computational results some of which were
discussed in the paper. This highly improved efficiency of KD is expectable having
in mind that KD does not generate unnecessary (that is with more than D arcs —

when such paths are of no potential interest) while it makes the most of the inherent

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 12

efficiency of MPS. Other advantage of KD stems from the fact that it manages to
identify the phase in which there are no more paths with the desired number of arcs.
This is particularly important in non fully meshed networks where one seeks to obtain
paths with 2 our 3 arcs, a common situation in telecommunication networks.

The experimental results also suggest that in general the total number of of paths
generated by the two algorithms is closer when the maximum number of arcs is higher
and the relative variation of the arc costs is smaller. This stems from the fact that,
in these cases, almost all the first shortest paths generated by MPS have a number of

arcs less than or equal to D.

Acknowledgements: The authors are very grateful to Professor Ernesto Martins,
Marta Pascoal and José Luis Santos for their explanations concerning the MPS algo-

rithm and its implementation.

A Algorithm T1

Algorithm T1: Constructing the pseudo-tree of the K-shortest paths[5]
T<+0
k+1
While k < K
do begin
arc + first arc pg
head < head node of arc
p < sub-path of p; from s to head
Whilepe T
do begin
arc < following arc in py
head < head node of arc
p < sub-path of p; from s to head
end
v, < tail node of arc
pﬁkt < sub-path of p; from vy to ¢
pka <+ sub-path of p; from s to vg
T «+ TUpﬁkt /* In such a way that pka opﬁkt is a path of T */
k<—k+1

end

T. Gomes, L. Martins e J. Craveirinha, Algorithm for calculating k shortest. . . 13

References

[1] C. Hengeller Antunes, J. Craveirinha, J. Climaco, and C Barrico. A multiple
objective routing algorithm for integrated communication networks. In Teletraffic
Engineering in a Competitive World — ITC 16, pages 1291-1300. Elsevier, 1999.

[2] J. C. N. Climaco and E. Q. V. Martins. A bicriterion shortest path algorithm.
European Journal of Operational Research, (11):399-404, 1982.

[3] D. Eppstein. Finding the & shortest paths. SITAM Journal on Computing, 28:652—
673, 1998.

[4] E. Martins, M. Pascoal, and J. Santos. An algorithm for ran-
king loopless paths. Technical Report 99/007, CISUC, 1999.
http://www.mat.uc.pt/ marta/Publicacoes/mps2.ps.gz.

[6] E. Martins, M. Pascoal, and J. Santos. Deviation algorithms for ranking shortest
paths. International Journal of Foundations of Computer Science, 10(3):247-263,
1999.

