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Abstract

Telecommunications networks are expected to achieve specified levels of survivability
under various failure modes and conditions. Due to the extended use of optical fibers, every
link in a transmission network carries a significant amount of traffic.

A main concern is the network ability to allow communication between all its opera-
tional nodes in the presence of failures. Network reliability and survivability are improved if
node/link disjoint paths are used between source and terminal nodes in the network. Also
in telecommunications networks the problem of calculating paths between pairs of nodes
involves, in general, constraints on the maximum number of arcs in any path.

Two very efficient algorithms will be presented that allows the enumeration of the most
reliable s-t disjoint paths with a maximum number of arcs, in a network where links and/or
nodes fail independently, with known probability.

The number of obtained paths can result from of a pre-specified end-to-end reliability,
whenever this may be achieved, or by a set of k most reliable disjoint paths.

Keywords: Network reliability, network survivability, disjoint shortest paths enumeration.

Topics: Reliability in communications networks.

1 Introduction

Telecommunications networks are expected to achieve specified levels of survivability under var-
ious failure modes and conditions [KDP95]. Due to the extended use of optical fibers, every

link in a transmission network carries a significant amount of traffic. For this reason several



automatic procedures for network recovery are already part of SDH (Synchronous Digital Hi-
erarchy) /SONET (Synchronous Optical NETworks) networks. Also the use of SDH/SONETS
Digital Cross-connects Systems (DCS’s) allows re-routing of calls in case of link or node failures
[DML94, KDP95, San96].

A main concern is the network ability to allow communication between all its operational
nodes in the presence of failures. Network reliability and survivability are improved if node/link
disjoint paths are used between source and terminal nodes in the network.

It is assumed that the links and nodes of a network under study have known reliability and
that the cost of a path between any node pair, s-t, is its probability of being operational. Disjoint
paths will then be selected by decreasing order of their reliability which will ensure we are using
an adequate set of disjoint paths from a reliability point of view. In a network where both links
and nodes can fail independently, the selected paths should be node disjoint. In networks where
only links fail independently, it is sufficient if the selected paths are link disjoint.

Algorithm for both cases (networks where only links can fail and networks where links and
nodes fail) will be presented which are based on an extremely efficient algorithm enabling to
enumerate the K shortest paths with a maximum number of arcs in [GMCO1] derived from the
loopless version of the algorithm proposed in [MPS99a).

The report is organised as follows. Firstly the motivation for calculating the set of K-most
reliable disjoint paths with a maximum number of arcs in a reliability analysis context, will be
presented. Next the foundations of the algorithms are presented namely by showing the way in
which the formulated problem can be transformed into a K-shortest disjoint paths constrained
problem. After reviewing the mathematical concepts underlying basic steps of the algorithm,
this is be formalised. In section 5 computational examples of application of the algorithm to

networks of large dimension are presented in order to illustrate its efficiency and applicability.

2 Motivation

There are several advantages in seeking two or more disjoint paths between a source and terminal

nodes, as Torrieri in [Tor92] points out:

e if one or more paths fail, other paths are available, therefore increasing network reliability

and survivability;

e re-routing is simplified in the case of node or link failure, because alternate paths will be
operational with great probability — they don’t share resources with the unavailable path;

e when network-wide time delay is to be minimised multiple-path routing usually provides

optimal solution; these paths are often disjoint;

e when a path fails and a new one is selected, there is no problem of possible occurrence of

loops.



Also in telecommunications networks the problem of calculating paths between pairs of nodes
involves, in general, constraints on the maximum number of arcs in any path. This limita-
tion usually results from maximum a allowed propagation delay (at transmission level) or from
routing constraints in teletraffic networks (maximum number of hops).

In this paper algorithms will be proposed for selecting disjoint paths by decreasing order of
probability. The number of selected paths will usually result from of a pre-specified end-to-end
reliability, whenever they may be achieved.

Suurballe in [Suu74] proposed efficient algorithms for obtaining the K-shortest (node or links)
disjoint paths. Suurballe basically transforms the problem into a minimum cost flow problem
[AMO93], which can be solved, for example determining the K successive shortest incremental
chains. Torrieri [Tor92] proposed an algorithm for obtaining an optimal set of short disjoint
paths, with a maximum number of arcs, in a communications network assuming that link costs
are uniform. The set of paths in [Tor92] is optimal in the sense that it contains the shortest
disjoint paths which minimise the number of subsequent exclusions of shortest paths in posterior
selections.

Suurballe’s algorithm [Suu74] can not be adapted to the problem under analysis because it
does not allow to limit the number of arcs used in each path.

Also our approach is different from Torrieri [Tor92] since we assume that the links and nodes
of the network have known reliability and the cost of the path is not given by the number of
links but by its probability of being operational.

The fact that disjoint paths are selected by decreasing order of their reliability will ensure
we are using an adequate set of disjoint paths from a reliability point of view. The proposed
algorithm is very efficient because it is based on an extremely fast algorithm [MPS99b], for
obtaining the K-shortest paths between any given pair of nodes. Also an extremely efficient
algorithm enabling to enumerate the K shortest paths with a maximum number of arcs, based

on the loopless version of the former algorithm, [MPS99a], was presented in [GMCO01].

2.1 Context of application

The motivation for selecting disjoint paths was already given at the beginning of this section 2.
We now will give some examples of applicability of this approach.

In the context of network reliability analysis, given the failure probabilities of nodes and links
in a telecommunications network, the proposed algorithms identifies a set of (alternative) most
reliable paths which assures a given end-to-end reliability (if possible). This set can be used
to decide where extra transmission equipment should be installed for assuring uninterrupted
communication between nodes of present day transmission networks, where very hight rates
are used between node pairs and any disruption can have very heavy penalties for the service
provider.

As Ball in [Bal79] points out, certain measures of network reliability arise as part of the

problem of network design. Given the failure probabilities of nodes and link, the problem



of obtaining a minimum cost network is a very difficult problem. In this type of problem,
reliability measures are often repeatedly calculated until an adequate network is obtained; a
possible measure of network adequacy from a reliability point of view could be a minimum
number of disjoint paths and/or a given minimum end-to-end reliability obtained using only
disjoint paths.

As Ball [Bal79] points out, certain measures of network reliability arise as part of the problem
of network design. Given the failure probabilities of nodes and links, the problem of obtaining
a minimum cost network is a very difficult problem. In this type of problem, path reliability
related measures are often repeatedly calculated until an adequate network is obtained. A
possible measure of network adequacy from a reliability point of view could be a minimum
number of disjoint paths or, more elaborate, a given minimum end-to-end reliability obtained
using only disjoint paths, as it’s proposed here.

In teletraffic networks, and in the context of dynamic routing, one of the criteria for selecting
a path between a given pair of nodes could be its probability of being operational, its blocking
probability and the fact of being disjoint with previously used ones. The fact that the new
selected path is disjoint with previously selected paths, will increase the probability that this

new path will not be suffering from the same problems which affected previously used paths.

3 Foundations of the algorithms

Let G = (N, L) be a directed graph where N = {’1)1,’02, . ,’U|N|} is the node set and L the arc
(or link) set, composed of ordered pairs of elements in N, where |N| represents the cardinality
of set N. If [ = (4,7), 7 is the head of [ and 7 its tail. A path from s to ¢ (s, € N) in this graph
will be specified by the sequence p = (s, (s,v1),v1, ..., (vy,t),t), where all [ = (v,u) € p belong
to L. If all nodes in p are different it is called a loopless path. Although up till now only the
term path was used, the adjective loopless was implicitly considered. The word “loopless” will
continue to be omitted until explicit reference is need.

Each node v € V (link [ € L) has an operational probability py(v) (pr(l)). In a network
where nodes and links fail (independently), and (node) disjoint paths from s to ¢ are seeked, a
cost matrix [c;;] of dimension |[N| x |N| is defined such that the cost of an arc is the additional

cost of introducing that arc and its head in a path:

:{ —In(py()pr(1) if 1= (ij) €L o
Y 400 if 1= (i,7) ¢ L

The cost of a path p = (s, (s,v1),v1,- .., (Vw,t),1) is:
Clpls) = Z Co;v; (2)
(’Ui,’Uj)Ep

and its reliability is:
Pr(p) = pv(s)e ¢ (3)



In equation (2) we write C(p|s) instead of simply C(p) because the cost of the paths selected by
the k-shortest path algorithm are obtained considering that s doesn’t fail; the failure probability
of s is taken into consideration when Pr(p) is calculated, as shown in equation (3). Note that
if C(p1|s) < C(p2|s) then Pr(p;) > Pr(p2), so the order of the paths is not changed due to the
constant factor py(s) > 0. The idea of associating to an arc the operational probability of its
head is already present in [Tor94].

Note that if network nodes don’t fail, py (v) =1 (v =1,...,|N]|), the definition of cost matrix
[cij] and equation (3) are still valid — although unecessarily elaborate.

Equation (3) establishes a relation between the cost of a path and its reliability. Using the
cost matrix [c;;], the enumeration of the k shortest paths with a maximum of D arcs is equivalent
to enumerating, by decreasing order of their probability, the & most reliable paths in a network
with at most D arcs.

In the algorithms, presented in the next section, (link or node) disjoint paths can be enu-
merated until there are no more paths or a given reliability, Ry, for node-pair (s-t) is attained.
Let Sk = {p1,p2,.-.,pK} be the set of K paths used to connect s and ¢, and let 75;(Sk) be the
s-t reliability that can be attained if the set Sk is used to connect s-t (that is the probability of
s-t being connected by any of the operational paths in Sk). Then r5(Sk), k =1,..., K can be
efficiently obtained, using any of the algorithms in the litterature for calculating the probability

of a union of events.

4 Proposed Algorithms

KD [GMCO01] is used as basis for the proposed algorithm. Note that MPS and KD are both
deviation algorithms. Each time a path p is chosen from a set of candidate paths, X, new paths
may be added to X. In the context of the MPS algorithm the node vy of path p, from which a
new candidate path is generated is the deviation node of that new path; in a path the link the
tail of which is the deviation node, is called the deviation arc of that path. By definition s is
the deviation node of p; (the shortest path from s to t).

For enumerating node disjoint paths, in a network where arcs and nodes may fail, every time
a path is selected all its nodes are marked as used ; so when a path is chosen from X, a new
constraint has to be satisfied: a path p will only be included in the set of disjoint paths if none
of its nodes (except its end nodes s and t) is marked used.

Similarly, in a network where only links fail, every time a path is selected all its arcs are
marked used ; so when a path is chosen from X, a new constraint has to be satisfied: a path p

will only be included in the set of link disjoint paths if none of its arcs is marked used.

4.1 Notation

The concatenation of paths p, from i to j, and ¢, from j to [, is the path pogq, from ¢ to [, which
coincides with p from ¢ to j and with ¢ from j to [.



Let T; designate a tree where there is a unique path from any node 7 to ¢ (tree rooted at t)
and 7;(7;) denote the cost of the path p, from 4 to ¢, in 7y; the reduced cost ¢;; of arc (i,5) € L
associated with T; is ¢;; = m;(T¢) — mi(T;) + ¢ij- So all arcs in T; have a null reduced cost. The
advantage of using reduced costs was first noted by Eppstein [Epp98] and is shown, by theorems
8 and 9 in [MPS99b] and by theorem 2.1 in [MPS99a], in the context of the MPS algorithm, to
lead to less arithmetic operations and to sub-path generation simplification.

Let 7;* be the tree of the shortest paths from all nodes to t; p:jt represents the shortest path
from v; to ¢ in 7;*. The sub-path from vy, to ¢ in p is represented by p,,;, and the sub-path from
5 to vg by psy,-

Next additional notation and definitions used in the proposed algorithm and also in KD
[GMCO01], will be introduced. Let |p| denote the number of arcs in path p, from s to t, or path
length. The notation Pp will designate a path such that Pp = p if [p| < D; otherwise Pp is the
sub-path of p with origin s and D arcs. If D = 0 then ”p is the empty set §. Let p be a path
which contains nodes v; and v;. The distance from v; to v; in p will be given by the number of
arcs in p, from v; to v;; if v;, v, are extreme nodes of an arc then the distance is 1; the distance
of a node to itself is zero. Let p be a path from s to ¢, which contains v;; the depth of v; in p is
is given by the distance from s to v; in p and will be designated by d,(v;).

Let the set of arcs L of (V, L) be written in terms of A(v), the set of arcs the tail node of which
isveV=A{1,...,n},ie L=A(1)UA(2)U...UA(n) such that A(i) N A(j) = 0 for any i # j
(4,7 € N). Let a}, € A(€) and a] € A(F). Assuming that £ # 0 an order relation ’<’ is defined for
the arcs such that aj, < a; iff £ < §. Moreover if { = 6 then a), < qaj if &(a},) < &(a;). This means
that the set L is sorted in such a way that for any two arcs (k, 7), (¢,7) € A, (k,j) < (i,1) ifk <1
or (k =1 and ¢;; < ¢;). The resulting set L = {a1,...,a,} is said to be in the sorted forward

star form, which leads to the path generation simplification — for more details see [DGKKT79].

4.2 Link disjoint paths algorithm

Let disjr.(p) be a function which returns the value true if no arc in p is marked used. Let dr,(p)
be a function which returns the depth of the tail of the first used arc in p. If no arc in p, is used,

it returns |p|.
Algorithm KD-1d
1. Input: (V,L), pr(a) with a € L (= ¢;;), D, P; (target reliability), K, s and t.
2. Output: S, = {p1,p2, -, 0z }; Pe = r5t(S%).
3. By using Dijkstra inverse algorithm, obtain the shortest paths from every node to ¢, 7.
4. Calculate the reduced cost ¢;; for every (i,7) € L.

5. Rearrange the arcs of (V,L) in the sorted forward star form (for the computed ¢;;,

leading to L = {a1,...,an} such that for any h € {1,...,m — 1}, &, < &,,, if



v = tail(ap) = tail(aq,,,))
6. p < shortest path from s to ¢ (p € T;%).
7. k< 0; P. < 0; So = 0.
8. X «+ {p} (X is the set of paths that are candidates to shortest path).
9. While (k < K) and (P, < P;) and (X # () do

(a) p < shortest path in X
(b) X < X — {p}
(c) If (|p| < D) and (p has no loops) and disjr(p) then
ik k+1
ii. pr = p; S < Sk—1U{px}
iii. mark all arcs of p as used
iv. Update P, (P, < 7s(Sk))

EndIf
(d) Let v be the deviation node of p
(e) If (|p] = D) and (|psy| < D —1)
then [ < D — 2 (try to generate new paths)
else If (|p| # D and |psy| < D)
then [ < min(|p| — 1, D — 1) (try to generate new paths)
else [ < —1 (no path will be generated from p)
EndIf EndIf
(f) 1 < min(dg(p),1)
(g) If [ # —1 then (possibly a path will be placed in X)
il v, <
ii. Repeat
A. ap < the arc of p the tail of which is v;
B. While (v; is the tail of 1) and (ap41 forms a loop with ps,,) and
(ap+1 is marked used) do

h+<h+1
EndWhile

C. If v; is the tail of apy; then
e v; < head of ap4
o X X U{psv, o (vi,an+1,05) 0 py e}
EndIf
D. If dp(’UZ’) =1
then [ + —1 (no more paths will be obtained from p)

else v; « following node in ‘p
EndTf

Until (psy, has a loop) or (I = —1)
EndIf(l # —1)

EndWhile



Now some comments on conditions that affect the flow of instructions of KD-nd, relative to
algorithm KD, will be made.

Obviously step 9¢ has only the additional constraint, disjz, (p), that no arc of p is used. Step
9(g)iiB of the algorithm assures that only potentially selectable disjoint paths (or paths that
can possibly originate potentially selectable disjoint paths) with at most D arcs paths are added
to X. The condition, “(apy;1 is marked used)”, not present in algorithm KD, establishes that
new paths will only be added to the set of candidate paths if all arcs up to (and including) its
deviation arc are not used. This guarantees that a path added to X is disjoint with previously
selected paths or/and can possibly originate new paths which are disjoint with the ones already
identified. Finally, variable [ in KD [GMCO01] gives the maximum depth of the nodes that can
be deviation node of new paths — for the purpose of generating paths with at most D arcs; step
9f in KD-nd redefines this depth taking into consideration that the head of an arc marked used

cannot be a deviation node.

4.3 Node disjoint paths algorithm

Let disjy (p) be a function which returns the value true if no node in p (except s and t) is marked
used. Let dy,(p) be a function which returns the depth of the first used node in p, after s. If no

node in p, after s, is used, it returns |p| — 1.

Algorithm KD-nd
1. Input: (V,L), pr(a) with a € L, py(v) with v € V, D, P; (target reliability), K, s and ¢.
2. Output: S, = {p1,p2, -, 0z }; Pe = r5t(S%).
3. Calculate c;;.
4. By using Dijkstra inverse algorithm, obtain the shortest paths from every node to ¢, 7;*.
5. Calculate the reduced cost ¢;; for every (4, ) € L.

6. Rearrange the arcs of (V, L) in the sorted forward star form (for the computed ¢;; leading to
L = {a1,...,an}, such that for any h € {1,...,m — 1}, &, < Cq,,) if tail(ap)=tail(ap1)

7. k< 0; P. + 0; Sg = 0; mark nodes s and t as used ;
8. X «+ {p¥} (X is the set of paths that are candidates to shortest path).
9. While (k < K) and (P, < P;) and (X # 0) do

(a) p < shortest path in X

(b) X « X —{p}

(c) If (Jp| < D) and (p has no loops) and disjy (p) then

. k< k+1

ii. pg < p; Sk < Sk—1 U {px}
iii. mark all nodes of p as used



iv. Update P, (P, < r4(Sk))
EndIf
(d) Let v be the deviation node of p

(e) If dy(p) > dy(v)
then
i. £ (p| = D) and (jpss| < D—1)
then [ < D — 2 (try to generate new paths)
else Tf (jp| £ D and |py| < D)

then | < min(|p| — 1,D — 1) (try to generate new paths)

else | < —1 (no path will be generated from p)
EndIf

EndIf
ii. I < min(d,(p) — 1,1) (maximum depth of potential deviation nodes)
else [+ —1
EndIf
(f) If [ # —1 then (possibly path(s) will be placed in X)
1. v; < v
ii. Repeat
A. ap, < the arc of p the tail of which is v;

B. While (v; is the tail of aj 1) and (ap41 forms a loop with psy,)
and (head of apy1 is marked used) do
h+h+1
EndWhile
C. If v; is the tail of a1 then
e v; < head of aj11
o X « X U{psy, © (vi,ani1,v5) oy}
EndIf
D. If dp(v;) =1
then [ + —1 (no more paths will be obtained from p)

else v; + following node in ‘p
EndIf

Until (psy; has a loop) or (I = —1)
EndIf(l # —1)

EndWhile

Now some comments on conditions that affect the flow of instructions of KD-nd, relative to
algorithm KD, will be made.

Obviously step 9c has only the additional constraint, disjy (p), that no node of p is used.
Step 9(f)iiB of the algorithm assures that only potentially selectable disjoint paths (or paths
that can possibly originate potentially selectable disjoint paths) with at most D arcs paths are
added to X. The condition, “(head of a4 is marked used)”, not present in algorithm KD,
establishes that new paths will only be added to the set of candidate paths if all nodes up to (and



including) the head of its deviation arc are not used — with the exception of the originating node
of the path; this guarantees that a path added to X is disjoint with previously selected paths
or/and can possibly originate new paths which are disjoint with the ones already identified.
Finally, variable [ in KD [GMCO01] gives the maximum depth of the nodes that can be deviation
node of new paths — for the purpose of generating paths with at most D arcs; step 9e in KD-nd

redefines this depth taking into consideration that a used node cannot be a deviation node.

5 Computational results

Two types of networks!, were considered: low density networks (number of possible arcs is only
25% of the maximum number of arcs) and fully meshed networks for testing KD-nd. The former
type arises in the context of transmission networks and the latter in the context of teletraffic
networks. The normal stopping conditions were: P, (attained end-to-end reliability) > 0.995; or
K =105 or if rg4(Sk) —7st(Sk—1) < 1E—6 and at least three paths had already been selected then
pr was the last path to be considered. However, if the first selected path has a reliability greater
than Py, (desired end-to-end reliability) a second path is also selected in order to increase network
survivability. Links reliability, pr,(l), were randomly generated in two intervals [0.9,0.999] and
[0.99,0.9999], marked as (a) and (b) in figure 3 and 1. Nodes reliability, py (v) was randomly
generated in the interval [0.99,0.99999].

For testing KD-1d three types of undirected networks were considered: fully meshed networks,
high density networks (number of possible arcs is 75% of the maximum number of arcs) and
medium density (number of possible arcs is 50% of the maximum number of arcs). These type of
networks arise frequently in the context of teletraffic networks, and the symbol d = 1,0.75,0.5
will be used in the figures to identify the different density networks. The normal stopping
conditions were: P, (attained end-to-end reliability) > Pd; or K = 20; or 74(Sk) — 7s¢(Sk—1) <
1FE — 7 and at least three paths have already been selected. However, if P. > Pd just after
selecting the first path, a second path is also selected in order to increase network survivability.
Link reliability, pr,(l), was randomly generated in two intervals [0.9,0.99] and [0.9,0.999]. The
number of selected paths needed to satisfy the considered stopping conditions, oscillated between
2 and 4 (where the most effective stopping condition was P, > 0.99999 for p(I) € [0.9,0.99]
the number of paths varied mostly between 3 and 4 and for pr(I) € [0.9,0.999] it varied mostly
between 2 and 3).

5.1 Algorithm KD-1d

The proposed algorithm (as KD and MPS) spends most of its CPU effort in steps 4 and 6
because the number of selected states is very small (2 to 4) for the previously mentioned stopping
conditions; therefore the CPU time presented in figures 1(a) and (b) is almost entirely due to

those two steps.

!The used program for network generation was kindly borrowed by José Luis Santos.
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Different types of network Different types of network

3500 —— 3500 ——— —
Fully meshed —=— Fully meshed —=—

3000 d=0.75 —— A 3000 d=0.75 ——
g 2500 | 4=05 Z 20 =05 —77 ]
o 2000 r o 2000 r
E E
> 1500 > 1500
O 1000 O 1000

500 500

0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000
Number of nodes Number of nodes

(a) (b)

Figure 1: Algorithm KD-1d performance for normal stoping conditions (d is the network density):
(a) for D = 3 and pr.(I) € [0.9,0.999]; (b) for D = 5 and Py (1) € [0.9,0.99]

Experiences were made with D = 3,4,5, but they presented very similar CPU times (the
curves would overlap in almost every point) regardless of which s-¢ pair was selected, under
normal stopping conditions. Little influence was also detected due to the two considered intervals
for pr,(1). Therefore in figure 1(a) results are presented only for D = 3 and py(I) € [0.9,0.999]
and in figure 1(b) for D =5 and pr,(l) € [0.9,0.99].

The only features which clearly influence the performance of the algorithm are the graph
density, d, and the number of nodes: more arcs leads to more computational effort in obtaining
T and the sorted forward star form. KD-1d apparent indifference to D and pr () (in figures 1
(a) and (b)) resulted from the low number of selected paths. Note that the number of selected
paths depends on the s-t selected pair.

In teletraffic networks it is sometimes desirable to have a set of selected disjoint paths larger
than the ones obtained using the previously described stopping conditions. For the purpose of
evaluating the performance of the algorithm in those situations, 20 disjoint paths (whenever
they existed) were selected between node pairs. In figure 2 the corresponding CPU times are
presented for D = 3, D =5, d = 1,0.5,0.8, pr(I) € [0.9,0.99]; in 2(a) CPU times are average
values for various s-t pairs, and in 2(b) are the average CPU times for obtaining 20 disjoint
paths for each node pair in the set of all s-¢ pairs, with ¢ fixed (for several different end nodes
t).

Some influence due to D can now be perceived in 2(a) and in 2(b); in the later case the CPU
time presents some variability which is related do the simultaneous combination of allowing
relatively long paths (5 arcs) in undirected networks with medium density. Figure 2(b) confirms
that the proposed algorithm does indeed spend most of its CPU effort in steps 4 and 6. When
the destination node was fixed and 20 paths were obtained for all s-t node pairs (with fixed ),
the CPU times were greatly improved — the overhead is equally divided among all the considered

node pairs, with the same destination node, ¢. These results confirm the efficiency of the proposed

11



Dense networks - 20 Disjoint paths Dense networks - 20 Disjoint paths (fixed t)
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Figure 2: Obtaining the 20 most reliable disjoint paths for pz(I) € [0.9,0.99]: (a) average for
different s-t pairs; (b) average for all s-t pairs, with ¢ fixed (for different ¢ nodes).

approach.
The presented CPU times for KD-1d where obtained on a Bi-Pentium III at 866 MHz, with

512 MB of memory, under Linux.

5.2 Algorithm KD-nd

KD-nd also spends most of its CPU effort in steps 4 and 6, because the number of selected states
is very small (2 to 6) for the previously mentioned stopping conditions; therefore the CPU time
presented in figure 3(a) is almost entirely due to those two steps.

Experiences were made with D = 3,4,5, but they presented very similar CPU times (the
curves would overlap in almost every point) regardless of which s-t pair was selected — so in
figure 3(a) results are presented only for D = 5. Little influence was also detected due to the
two considered intervals for pr,(v), as can be confirmed in figure 3(a) and (b). The only features
which clearly influence the performance of the algorithm are the graph density and the number
of nodes: more arcs leads to more computational effort in obtaining 7;* and the sorted forward
star form. KD-nd apparent indifference to D and py (I) resulted from the low number of selected
paths.

The number of selected paths depends strongly on the s-t select pair and also on the interval
for py (1). A lower number of paths was usually required (for the tested s-t pairs) for networks
with py(l) in (2).

In figure 3(b) CPU times are presented when 50 paths (whenever they exist) are obtained
for D = 3 and D = 5, to confirm the efficiency of the proposed approach, if a larger number of
paths was desired.

The presented CPU times where obtained on a Pentium IIT at 500 MHz, with 256 MB of

memory, under Linux.

12



Fully meshed networks & low density networks Fully meshed networks & low density networks

6000 T T T T T T T T T 6000 T T T T T T T T T
Fully meshed (1) —<— Fully meshed (1), D=3 —*—
5000 |- Fully meshed (2) -->¢-- R 5000 - Fully meshed (2), D=3 —+— -
Low density (1) —<— Fully meshed (1), D=5 —<—
g Low density (2) --< - . Fully meshed (2), D=5 —+—
g 4000 - h g 4000 [~ Low density (1), D=3 -->-- b
: ol YRGS
9] L i o | Low dens ,D=5 --o-- i
£ 3000 £ 3000 [ow densit¥ 2),D=5 --+-
2 2000 [ 1 & 2000 o
O O - X
1000 q 1000 % I S
o---§ S xR
0 | | | | | 0 W s STt il | I I I
0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000
Number of nodes Number of nodes

(a) (b)

Figure 3: Results for KD-nd with (1) py(I) € [0.9,0.999]; (2) Py (1) € [0.99,0.9999] (a) D = 5,
2 < K <10, Py =0.995, 75(Sg) — r5¢(Sk—1) < 1E — 6 (b) K =50 and D = 3,5

6 Conclusion

Very efficient algorithms which allows paths with a maximum number of arcs, to be obtained
by decreasing probability of being operational until a given end-to-end reliability is achieved
(whenever possible) has been presented.

This approach is different from others in the literature. Suurballes’s algorithm, does not
guarantee a maximum number of arcs in each selected path. On the other hand Torrieri’s
approach seeks to obtain optimal (in a certain sense) short disjoint paths, regardless of their
reliability.

In algorithm KD-nd, with the stopping conditions described in section 5, it was experimen-
tally verified that the number of obtained paths oscillated between 2 and 6; in algorithm KD-1d,
also with the stopping conditions described in section 5, it was experimentally verified that the
number of obtained paths oscillated between 2 and 4. This is not irrelevant from the point of
view of a network operator wishing to guarantee a certain grade of service, at the lowest cost.
Network reliability and survivability is improved if adequate sets of node disjoint paths are used
between source and terminal nodes in the network. Selecting disjoint paths by decreasing order
of their reliability will guarantee that we are using an adequate set of disjoint paths from a
reliability point of view.

The initial cost of steps 4 and 6 of KD-1d and KD-nd, is a sort of overhead of the algorithms,
but it can be minimised if the built in structures are re-utilised to obtain the disjoint paths from
all nodes to ¢, with very little additional computational effort.

In the context of teletraffic networks it may be more interesting to obtain link disjoint paths
because node failure probability is usually rather low, in these networks. An algorithm for this

purpose, KD-1d was proposed.
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