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Abstract: This study proposes a novel approach for predicting the output behaviors of the
Pepperl+Fuchs 3RG6232-3JS00-PF ultrasonic sensor. The sensor, integrated into the Festo
MPS-PA Didactic System, serves to monitor the water level in a tank, facilitating water
extraction to bottles delivered via a conveyor belt. This modeling approach represents the
initial phase in the creation of a digital twin of the physical sensor, providing the capability
for users to observe the sensor’s response and forecast its life cycle for maintenance objec-
tives. This study utilizes the Festo MPS-PA Compact Didactic System and support vector
regression (SVR) for data acquisition (DAQ), preprocessing, and model training with hy-
perparameter optimization. The objective of this modeling approach is to establish a digital
framework for transition towards Industry 4.0. It holds the potential for creating a digital
counterpart of the entire MPS-PA System when combining the proposed sensor modeling
technique with computer-assisted design (CAD) software such as Siemens NX in the future.
This would enable users to oversee the entire process in a three-dimensional visualization
engine, such as Tecnomatix Plant Simulation. This research significantly contributes to the
comprehension and application of digital twins in the realm of mechatronics and sensor
systems technology. It also underscores the importance of digital twins in enhancing the
efficiency and predictability of sensor systems. The method used in this paper involves
predicting the rate of change (RoC) of the water level and then integrating this rate to
estimate the actual water level, providing a robust approach for sensor data modeling and
digital twin creation. The result shows a promising 6.99% error percentage.

Keywords: support vector regression; digital twin; virtual sensor; kernel selection;
hyperparameter optimization

1. Introduction
Industrial automation thrives on precise and reliable measurements. Ultrasonic sen-

sors have emerged as a cornerstone technology for diverse tasks, from meticulously gauging
liquid levels in tanks to measuring material thickness and determining object proximity
with high accuracy. Their operation revolves around emitting high-frequency sound waves
and measuring the time it takes for echoes to return. This allows for precise distance calcu-
lations and characterization of material properties. Some notable achievements include the
development of advanced ultrasonic imaging techniques and the integration of ultrasonic
sensors with automated control systems to enhance process efficiency.
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Beyond these sensor advancements, machine learning is playing a crucial role in en-
hancing the performance of industrial measurements using ultrasonic sensors. By analyzing
the complex data generated by these sensors, machine learning can identify subtle patterns
and trends that would be difficult to discern with traditional methods [1]. Techniques such
as neural networks, support vector machine (SVM), and decision trees have been employed
to optimize measurement accuracy and detect anomalies. Furthermore, machine learning
models can be trained to predict equipment wear and tear based on sensor data, allowing
for scheduled maintenance and preventing unplanned downtime.

This research delves into the exciting realm of data-driven approaches, specifically
by leveraging machine learning within a digital twin framework. Digital twins are virtual
representations of physical assets and systems that integrate real-time data from sensors
and other sources. Traditionally, these systems relied on physical-based models to describe
the behaviors of sensors and actuators. These models rely on engineering principles and
require significant upfront knowledge of the system dynamics. However, a recent shift is
happening in the state-of-the-art of digital twins. There is growing interest in data-driven
approaches that leverage real-world data to describe sensor and actuator behavior [2]. This
study proposes exploring data-driven approaches within a digital twin framework, aiming
to investigate on improving the overall performance and reliability of digital twins across
various industrial applications.

The digital twin was constructed within the TIA Portal (V17, Siemens AG) software [3]
using the Festo MPS PA Didactic System. TIA Portal’s WinCC Runtime Advanced serves as
the development environment for the PLC program controlling the station, including DAQ
from the dosing tank’s ultrasonic sensor. This research aims to develop an SVR model for
predicting future liquid levels using this sensor data. Data will be collected through the TIA
Portal and undergo pre-processing to ensure quality for model training. The SVR model
will be trained and evaluated using metrics like Mean-squared error (MSE) and R-squared,
with hyperparameter tuning employed to optimize prediction accuracy. Importantly, this
research explores the potential for real-time control by integrating the trained SVR model
within the digital twin. This could allow for using predicted water levels to adjust process
parameters in real-time, such as regulating pump operation or valve positions, ultimately
optimizing dosing tank liquid levels.

Previous research has explored the application of machine learning techniques in
various industrial settings, including predictive maintenance, quality control, and process
optimization. For example, developing digital twins to present the framework and work-
flow of the data-driven models for wind turbines [4] and using digital twin technology
for production optimization in the petrochemical industry [5]. However, the integration
of machine learning with digital twins to enhance sensor-based predictions and process
control within industrial automation training systems remains a relatively unexplored area.
This study aims to contribute to this emerging field by demonstrating the potential of SVR
models in predicting liquid levels and exploring the creation of a digital twin framework
for the Festo MPS PA bottling station.

The study achieved promising initial results. The SVR model integrated within the
Festo MPS PA Didactic System and TIA Portal showed potential for effectively predicting
liquid level. Additionally, exploring a data-driven, sensor-agnostic prediction approach and
a virtual entity framework within the TIA Portal suggests promising future developments
in digital twin technology for industrial automation training systems.

2. Related Work
Digital twins have emerged as a critical technology for enhancing industrial processes

through cyber–physical integration. A comprehensive review by Tao et al. [6] provides a
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comparative analysis of cyber–physical systems (CPS) and digital twins, highlighting the
subtle yet important differences between these two concepts. While both technologies aim
to achieve seamless interaction between the physical and digital worlds, the study empha-
sizes the distinct capabilities and applications of digital twins in smart manufacturing. The
current research aligns with this analysis by utilizing a digital twin framework, specifically
tailored for predictive modeling in process automation, thus extending the scope of digital
twin applications beyond traditional CPS.

Kammerer et al. [7] applied digital twins for anomaly detection in manufacturing
systems, focusing on real-time data analysis to enhance predictive maintenance strategies.
Although this approach effectively identified performance deviations, it did not incorporate
machine learning models for continuous variable prediction, such as water levels. By
integrating SVR to predict the RoC of water levels, the current study addresses this gap,
particularly in mitigating error accumulation over time.

Chryssolouris et al. [8] explored digital twin technology for estimating the remaining
useful life (RUL) of manufacturing equipment, leveraging physics-based simulation mod-
els. This method provided accurate predictions without disrupting operations, showcasing
the potential of digital twins in predictive maintenance. However, the approach remained
reliant on traditional simulations, whereas the current study adopts a data-driven method-
ology using radial basis function (RBF) SVR, which enhances prediction accuracy through
parameter optimization.

Similarly, Putawa et al. [9] investigated the use of digital twins for visualizing and
controlling energy efficiency in manufacturing environments. While effective in system
control, the study focused primarily on visualization rather than predictive analytics. The
current research shifts towards predictive capabilities, employing SVR within a digital
twin framework to forecast water levels accurately, thereby enhancing process control
and monitoring.

In summary, this research advances the application of digital twins by integrating RBF
SVR for RoC prediction and optimizing SVR parameters to minimize error accumulation,
thereby addressing specific challenges in process automation and control. This approach
not only builds upon existing studies, but also contributes to the broader field of digital
twin technology in industrial settings.

3. Methodology
This research employs the Festo MPS-PA Didactic Complete System’s bottling station

(Esslingen, Germany) and SVR to establish a machine learning framework. The primary
objective of this framework is to predict the water level in the tank, a measurement typically
acquired via an installed ultrasonic sensor. An overview of the system setup is illustrated
in Figure 1, providing a detailed visual representation of the configuration.

Support Vector Regression
SVR Model
Evaluation

 Tia Portal (PLC
Siemens S7-300)

     Model
Deployment

Festo MPS PA
Bottling Station

 Data Logging (CSV)
via WinCC Advanced
               RT

Figure 1. Overview of the proposed modeling method.
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3.1. Festo MPS PA Bottling Station

The Festo MPS PA system comprises four stations: Filtration, Mixing, Reactor, and
Bottling. These stations simulate the water filtration process, providing students with prac-
tical knowledge in Process automation and Control theory. This is achieved by controlling
multiple variables, including pressure, flow rate, temperature, and water level. This study
focuses on the bottling station, which houses the ultrasonic sensor. The aim is to develop a
digital twin of this sensor. Further details of the experimental setup will be discussed in
Section 4.

3.2. Human–Machine Interface

The human–machine interface (HMI), designed using Siemens’ WinCC Runtime
Advanced, enables operators to control processes and monitor real-time data. It also
collects operational data, including timestamps, sensor readings, and actuator values.
While a DAQ device can directly obtain these values, the standard in process automation is
to use the HMI. This study adheres to these industrial standards, ensuring its applicability
in real-world scenarios.

3.3. Support Vector Regression

In this study, SVR is implemented as the machine learning technique to forecast the
output of an ultrasonic sensor. The accurate prediction serves as an early warning system
for potential failures, which are indicated by discrepancies between actual and predicted
values [10]. SVR, a robust supervised machine learning algorithm, is specifically designed
for regression tasks [11]. It generates predictions based on a set of input data points.
Unlike conventional regression methods that strive to minimize the total error between
predicted and actual values, SVR constructs a hyperplane in a high-dimensional space that
maximizes the error margin around the most influential data points, referred to as support
vectors [11]. This focus on margin minimization reduces the influence of outliers, rendering
SVR particularly suitable for applications involving noisy sensor data, such as ultrasonic
sensor measurements in industrial settings.

For this study, an RBF kernel was chosen for the SVR model due to its effectiveness in
handling non-linear relationships that might exist between sensor readings and water level.
The model development utilized the Scikit-learn library [12]. The pre-processed sensor data
obtained from the HMI were divided into training and testing sets. The training set was
used to train the model, while the testing set evaluated the model’s ability to generalize to
unseen data. Hyperparameter tuning, employing a grid search technique, was conducted to
identify the optimal combination of parameters that minimize the MSE on the validation set
by using 3 nested for loops to run through all the possible combinations of hyper-parameter
for the best result. The performance of the trained model was subsequently evaluated
using metrics like MSE and R-squared on the testing set [13].

Explanation of Hyperparameters

• Cost (C): Controls the trade-off between maximizing the margin and minimizing
the training error. A higher C value allows less margin violation, leading to a more
complex model.

• Gamma (γ): Influences the width of the RBF kernel function. A smaller gamma results
in a wider kernel, leading to smoother decision boundaries.

• Epsilon (ε): Defines the width of the insensitive zone within the epsilon-SVR formula-
tion. Points within this zone are not penalized in the loss function.

By carefully tuning these hyperparameters, the optimal SVR model for predicting
water level was determined.
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4. Experiment Setup and Implementation
4.1. Festo MPS PA Bottling Station

The Festo MPS PA bottling station serves as a valuable training tool in educational
settings, specifically designed to introduce students to the intricacies of industrial bottling
processes. While not a full-fledged industrial system itself, it effectively simulates the steps
involved in filling bottles with liquid. It features the following essential components that
mimic a real bottling line (Figure 2):

M

Bottle

4M1
(Pump)

B401
(Reservoir

Tank)

4M2
(Solenoid

Valve)

B402
(Dosing Tank)

4B1 (Ultrasonic Sensor)

Button 1 
(Pump)

Button 2
(Solenoid Valve)

Figure 2. Festo MPS PA bottling station.

1. Reservoir tank (Area 19 cm × 19 cm, Height 34 cm): This tank functions as the primary
storage container for the liquid to be bottled. It has a larger capacity compared to the
dosing tank and is refilled periodically to maintain a stable liquid supply.

2. Dosing tank (Top diameter: 18 cm, Mid-diameter: 13 cm, Bottom diameter: 4 cm,
Height 33 cm): This tank acts as a container between the reservoir tank and the
bottling line. It has a smaller capacity than the reservoir tank and integrates with an
ultrasonic sensor to precisely measure the liquid level in the tank.

3. Pepperl+Fuchs Ultrasonic Sensor 3RG6232-3JS00-PF (Mannheim, Germany): This sen-
sor leverages ultrasonic technology to achieve continuous, non-contact measurement
of the liquid level within the dosing tank. The acquired data play a critical role in the
bottling process by enabling real-time monitoring and control, directly contributing to
consistent product volume in the filled bottles by preventing overflows or underfills.

4. Johnson CM30P7-1 Pump (SPX Flow, Charlotte, NC, USA): The Festo MPS PA bottling
station employs the Johnson CM30P7-1, a compact and efficient centrifugal pump, to
ensure a smooth flow of liquids within the system. This pump leverages a rotating impeller
to generate centrifugal force, effectively propelling the liquid through the pump housing.

5. Gemü 524D114124DCU solenoid valve (Ingelfingen, Germany): This solenoid valve is
utilized for controlled liquid dispensing during the bottling process, and facilitates
precise filling through a potential adjustable flow rate mechanism and material com-
patibility with the processed liquid. An anti-drip design is incorporated to minimize
drips or spills after dispensing, promoting cleanliness and reducing product waste.

6. Siemens S7-300 CPU 314C-2PN/DP (Munich, Germany): The Siemens S7-300 pro-
grammable logic controller (PLC) plays a central role in automating the Festo MPS
PA bottling station. It receives signals (buttons) and controls actuators (pump, valve)
based on its program. The PLC makes the bottling process automated and flexible.
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4.2. Test Cases and Experiment Settings

This section details the design and evaluation procedures employed to assess the SVR
model’s performance for water prediction in the Festo MPS PA bottling station simulation
(Figure 3).

Start

Initial State

Data Logging
      Button

          B1
(Pump Button)

         B2
(Valve Button)

         S1
(Pump Button
    Pressed)

         B2
(Valve Button)

         S2
(Valve Button
    Pressed)

Delay 60s

Open Valve for 2s

      M1 ON
 (Water from
reservoir tank
is pumped into
  dosing tank)

      M2 ON
(Valve is open)

End

No

Yes

Yes Yes

Yes

No

Figure 3. Experiment flowchart.

4.2.1. Scenarios

The test cases mimicked real-world bottling conditions by simulating various water
level fluctuations that might occur during the filling process. These scenarios involved
manipulating the two buttons (pump and solenoid valve) and the DAQ button to represent
diverse operational conditions.

• Filling cycle variations: Test cases included different button press combinations and
duration for the pump and valve buttons. This simulated variations in water transfer
volumes between tanks and diverse filling operations.

• DAQ: Users could define the time interval between data points logged in the CSV
file via the DAQ button. This allowed for customization based on the desired data
granularity for model training.

4.2.2. Settings

The experiment setup involved a two-pronged approach:

• TIA Portal Program: The operation logic and communication between components
were programmed within the TIA Portal. This program included functions for:

– Button control: Responding to user interaction with the pump and valve buttons,
triggering virtual button presses within the WinCC environment.

– Sensor communication: Establishing communication with the ultrasonic sensor
to retrieve real-time water level readings.
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– Data transfer: Potentially transferring the collected water level data to WinCC for
further processing or visualization.

• WinCC Advanced Runtime Environment: WinCC Advanced RT provided the platform
for controlling the experiment, acquiring data, and triggering data logging scripts.
The functionalities within WinCC were achieved through the Visual basic (VB) scripts.

4.2.3. SCADA Design and Data Logging Using VB Script

The experiment leveraged a supervisory control and data acquisition (SCADA) design
approach within WinCC Advanced Runtime to control the simulation and acquire data
for model development. VB scripts played a vital role in this SCADA design, acting as the
interface between the HMI and the physical components.

• SCADA design elements:

– HMI control: The VB scripts provided functionalities displayed on the HMI, such
as buttons for pump and valve activation, and a DAQ button.

– DAQ: The scripts interacted with the ultrasonic sensor through WinCC tags,
retrieving water level readings at a defined interval.

– Data logging: Upon pressing the DAQ button, the script triggered data logging
into a CSV file.

• VB script functionalities:

– Simulation and Control: The scripts facilitated precise control over the simulated
filling cycles by automatically triggering virtual button presses based on the
defined scenarios.

– DAQ: The scripts interacted with the ultrasonic sensor through WinCC tags to
retrieve real-time water levels at specified intervals throughout the simulated
filling cycles.

– Data logging: When pressed, the DAQ button will activate the scripts to retrieve
the collected data and write them along with timestamps to a user-defined loca-
tion in a CSV format. This enabled easy import into data analysis tools for model
training and evaluation.

4.3. Format of Data

The VB scripts generated a CSV file for model training and evaluation. This file offers
a well-defined format for efficient processing by the SVR model. Each column of data is
separated by a semicolon (;) delimiter. The data format includes:

• Timestamps: Captures the time of each data point (e.g., YYYY-MM-DD HH:MM:SS)
for time-based analysis.

• Water Level Reading: Represents the real-time water level measurement (milliliters)—the
target variable for prediction.

• Input Features of the VB screen in WinCC:

– Pump: Toggle the ON and OFF state of the 4M1 Pump;
– Valve: Toggle the ON and OFF state of the 4M2 Valve;
– Start data logging: Start the VB script that logs the data on the WinCC server side;
– Other input data are controlled by directly modifying the values in TIA Portal’s

HMI tag table.

By adhering to this structured format with semicolon delimiters, the CSV file provides
a well-organized dataset suitable for machine learning model training and evaluation.
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5. Model Development
5.1. Lagrange Duality

Lagrange duality is a fundamental concept in convex optimization and plays an
important role in an SVR algorithm [14]. An optimization often has a standard form
as follows:

minimize f0(x)

subject to

 fi(x) ≤ 0, i = 0, . . . m

hi(x) = 0, i = 0, . . . p

(1)

A Lagrangian approach is to optimize Equation (2) instead:

inf
x
P(x) = inf

x
sup
λ≥0

L(x, λ) = inf
x

sup
λ≥0

(
f (x) + ∑

k
λk fi(x)

)
(2)

where L(x, λ) = f (x) + ∑k λk fi(x), P(x) = supλ≥0 L(x, λ).
Equation (2) is referred to as the Primal Lagrangian equation. The second alternative

to the Primal function is the Dual Form equation:

sup
λ≥0

D(λ) = sup
λ≥0

inf
x
L(x, λ) ≤ inf

x
sup
λ≥0

L(x, λ) = inf
x
P(x) (3)

where D(λ) = infx L(x, λ).

5.2. Support Vector Machine with Linear Kernel

Given a linear kernel, a regression line will have a general linear function in the form
of Equation (4).

⟨w, Xi⟩+ b − yi = 0 (4)

The objective of SVR is to determine the vector w such that the resulting linear function
ensures most of the data points (Xi, y) remain within a specified ε tolerance. Figure 4 shows
the general presentation of the kernel in the case that w and Xi only have one dimension,
but in application, both of these vectors can have much higher dimensions that cannot be
represented in a Cartesian coordinate.

⟨w⃗, X⃗i⟩ + b − yi = 0
⟨w⃗, X⃗i⟩ + b − yi = ε

⟨w⃗, X⃗i⟩ + b − yi = −ε

Xi

y

Figure 4. Regression using a linear kernel: The data points marked with ‘x’ fall outside the acceptable
tolerance, while the data points marked with ‘o’ lie within the acceptable error range.
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The aim of SVR now becomes Equation (5)

minimize
1
2
∥w∥2

subject to

yi − ⟨w, Xi⟩ − b ≤ ε

⟨w, Xi⟩+ b − yi ≤ ε

(5)

Equation (5) assumes that the convex optimization for a linear kernel function
f (X) = ⟨w, X⟩+ b with an error of ε is feasible. Sometimes, this may not be the case
and some amount of errors needs to be taken into account. Hence, the slack variables ξi

and ξ∗i need to be used [11].

minimize
1
2
∥w∥2 + C

l

∑
i=1

(ξi + ξ∗i )

subject to


yi − ⟨w, Xi⟩ − b ≤ ε + ξi

⟨w, Xi⟩+ b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(6)

The parameter C determines the trade-off between the flatness of f and determines
how much amount of deviation from the target error ε is tolerated [11].

5.3. Gaussian Kernel

RBF kernel regression, or sometimes called Gaussian kernel regression, is a popular
algorithm that is widely used in SVM tasks or, in this case, SVR [15].

The kernel function for two sets of parameters is defined in Equation (7)

K(X, Xi) = exp
(
−γ∥X − Xi∥2

)
(7)

where γ = 1
2σ2 , and σ is the standard deviation parameter of the Gaussian curve, which

also determines the width of the Gaussian kernel [15].
The weight wi used in support vector regression is determined based on the similarity

between the kernel K of data i and the rest of the data points.

wi =
K(X, Xi)

∑N
j=1 K(X, Xj)

. (8)

Implementing the kernel into an SVM system, Equation (9) is obtained

minimize
1
2
∥w∥2 + C

l

∑
i=1

(ξi + ξ∗i ),

subject to


yi − ∑N

j=1 αjK(Xi, Xj) ≤ ε + ξi,

∑N
j=1 αjK(Xi, Xj)− yi ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0.

(9)

5.4. Hyperparameters Explanation

The C parameter is a scalar that controls the penalty for the values that deviate from
the predicted regression curve. The higher the value C is, the more noticeable the error
is [12]. In contrast, a smaller value of C allows for a larger margin and more tolerance for
errors, which can lead to a simpler model with potentially higher bias but lower variance.

The γ value controls the width of the Gaussian kernel function used for the regression
process. This parameter defines the extent to which a single training example influences
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the model’s decision boundary [12]. A lower γ results in a wider influence, making each
training example affect a larger area of feature spaces.

ε is the margin of tolerance around the predicted curve. If a data point is positioned
within this margin, the point will have 0 error penalty [12]. This margin will act as an
error threshold. Similar to the C parameter, a larger ε will result in a higher bias and lower
variance predicted curve.

5.5. Model Explanation

Based on the experimental setup illustrated in Figure 3, the network’s input layer
comprises six variables, as detailed in Table 1.

Table 1. Input variables of the model.

Variable Data Type Range

Time Integer, in seconds 0 to +∞

Button 1 Boolean ON and OFF

Button 2 Boolean ON and OFF

Valve State Boolean ON and OFF

Pump State Boolean ON and OFF

Pump Analog Integer 0 to 27,648

Upon initial observation using Microsoft Excel 365 (Version 2312, Microsoft) [16]
graphing tool, utilizing the RoC of the water level as training data rather than the water
level itself appears to be more effective for the labeling process. This is due to the direct
correlation observed between the valve state (0 and 1), Button and Pump values, and the
RoC of the water level.

The discrete RoC of the parameter is calculated as follows:

∆y
∆t

=
yi − yi−1

1 s
= yi − yi−1. (10)

The Time variable is relabeled manually with respect to Button1 (Figure 5) to make
the learning process more effective. This is due to Button1 having the most influence over
the predicted data. Each time Button1 goes from 0 to 1 and to 0 again, the Time variable
is reset to 0, creating an ON and OFF cycle, which is equal to splitting one dataset into
many smaller datasets for better pattern recognition.

0 5 10 15 20 25 30 35 40 45 50 55
Time

0

1

Bu
tto

n1

Figure 5. Value of Button1 with respect to Time in seconds.

6. Model Evaluation and Chosen Hyperparameters
In this experiment, the true water level measured using the ultrasonic sensor will be

assigned to Y , and the water level predicted by the algorithm will be stored to pred_Y .
Similarly, the RoC of the water level derived from Y is stored in dY , and the predicted
RoC of the water level (which will be used to calculate pred_Y ) is assigned to pred_dY .
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The experiment was performed five times and produced no significant difference (less than
0.01%) for each set of hyperparameter C, ε, and γ.

When the predicted curve undergoes the integration process later on in the network,
any slight deviation between dY and pred_dY will stack up overtime. Evidently, even
though the error is not observed to be a problem in Figure 6, the difference between Y and
pred_dY keeps increasing continuously in Figure 7.

This makes it more effective to use a higher C and lower ε value for the training process.
Lowering ε will decrease the tolerance margin for the error value, and increasing the C will
increase the penalty of each predicted value that deviates further from the ε-margin. This
will force pred_dY to be much closer to the value of dY . In turn, this will also increase
the variance of pred_dY , as discussed in Section 5.4. This should not be a problem in this
particular use case because the integration process will smooth out most of the variance as
long as dY does not change rapidly from positive to negative values.

0 5 10 15 20 25 30 35 40 45 50
Time

−5000

−4000

−3000

−2000

−1000

0

1000

2000

dy
pred_dy

(a)

0 10 20 30 40 50
Time

0

20

40

60

80

|e
rro

r|

(b)
Figure 6. (a) Plot of dY and the predicted curve pred_dY using conventional hyperparameters, and

(b) the error in percentage with respect to Time in seconds.
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0 5 10 15 20 25 30 35 40 45 50
Time

0

2500

5000

7500

10000

12500

15000

17500 y
pred_y

(a)

0 10 20 30 40 50
Time

0

25

50

75

100

125

150

175

200

|e
rro

r|

(b)
Figure 7. (a) Plot of Y and the predicted curve pred_Y using conventional hyperparameters, and

(b) the error in percentage with respect to Time in seconds.

The chosen hyperparameters for the problem are: C = 320, γ = 0.72, ε = 1.3.
Upon comparison between Figures 6 and 8, it becomes clear that the adjusted C, γ,

and ε values have greatly decreased the bias between the dataset and the predicted curve.
Particularly, values from t = 2 → 5, 12 → 25, 27 → 31 s have a larger influence over
pred_dY . This helps largely reduce the deviation in the integration process, as shown

in Figure 9.
pred_dY may have high variation, but a large or small positive value still results in

an increase in dY . Similarly, a large or small value of negative pred_dY will result in a
decrease in dY . This characteristic can be demonstrated by taking the average error of
Figures 8b and 9b. Even though the SVR model showed an average 18.38% error rate for
predicting RoC of the water level, it only showed an average 6.99% error rate for predicting
the actual water level after integration.
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Figure 8. (a) Plot of dY and the predicted curve pred_dY using adjusted hyperparameters, and

(b) the error in percentage with respect to Time in seconds.
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Figure 9. (a) Plot of Y and the predicted curve pred_Y using adjusted hyperparameters and (b) the

Error in percentage with respect to Time in seconds.

7. Conclusions
In conclusion, the evaluation of the sensor output prediction model, the optimization

of hyperparameters, and the utilization of derivation and integration have provided an
increase in accuracy for the sensor behavior predictions.

Subsequent to this experiment, it is advised to integrate more parameters into the
system. Specifically, the application of simulation coupling could optimize computational
resources and reduce inference time [17]. This addition would introduce another layer to
the network and alleviate the drifting error that occasionally cannot be eradicated solely by
predicting the derivative [18]. Furthermore, the incorporation of sensor fusion algorithms,
such as the Kalman filter, could significantly enhance the model’s precision by consolidating
data from diverse sources [19]. This strategy offers a more resilient and precise prediction
model for future applications.

Lastly, to visualize and analyze the system holistically, a digital twin representation
can be constructed using CAD software like Siemens’ NX for the ultrasonic sensor and
a three-dimensional visualization engine like Tecnomatix Plant Simulation for the entire
Festo MPS PA system. This approach could serve as a foundation for digitizing various
manufacturing processes [20].
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