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Abstract: The paper proposes a methodology to online self-evolve direct fuzzy logic controllers
(FLCs), to deal with unknown and time-varying dynamics. The proposed methodology self-designs
the controller, where fuzzy control rules can be added or removed considering a predefined criterion.
The proposed methodology aims to reach a control structure easily interpretable by human operators.
The FLC is defined by univariate fuzzy control rules, where each input variable is represented by a set
of fuzzy control rules, improving the interpretability ability of the learned controller. The proposed
self-evolving methodology, when the process is under control (online stage), adds fuzzy control
rules on the current FLC using a criterion based on the incremental estimated control error obtained
using the system’s inverse function and deletes fuzzy control rules using a criterion that defines “less
active” and “less informative” control rules. From the results on a nonlinear continuously stirred
tank reactor (CSTR) plant, the proposed methodology shows the capability to online self-design the
FLC by adding and removing fuzzy control rules in order to successfully control the CSTR plant.

Keywords: evolving design; fuzzy controller; univariate fuzzy rules; CSTR plant

1. Introduction

The globalization of markets, environmental legislation restrictions, the necessity of having an
efficient management of energy and sustainable resources, zero defect trends, customer pressure
to reduce costs, personalized products, low product lifetime, and several other facts have resulted
in a significant increase in industrial process complexity. Industrial processes have increasingly
exhibited nonlinear behaviors and other complex characteristics, such as unknown and time-varying
dynamics, constraints, and disturbances. Considering the above facts and trends of the “Industry 4.0”
strategy, more advanced industrial control solutions with high levels of efficiency, flexibility, reliability,
and performance are currently required.

Motivated by these problems, as an advanced industrial control solution, fuzzy logic controllers
(FLCs), which are rule-based systems that allow control of complex ill-defined processes using the
experience of expert operators, have been applied in a wide variety of industrial processes [1].
However, there still exist many difficulties in designing FLCs for complex nonlinear industrial
processes, using only human knowledge to control complex processes, and there is not a standard
approach to translate this knowledge into fuzzy control rules [2].

The design of fuzzy logic systems has attracted many researchers, many of them working on
identification, classification, control, and decision making problems. Regarding the fuzzy control
systems, the design methods can be generally distinguished as indirect or direct methods, where in
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direct methods, the FLC is designed through operator control knowledge, and in indirect methods,
the FLC is designed through operator knowledge about the process [3,4]. However, the number
of proposed direct fuzzy control design methodologies are significantly less when comparing to
identification, classification, and indirect control applications. Evolutionary algorithms have been
used to design fuzzy controllers [5–11]. However, such methods (e.g., GA, PSO, and ABC) are
computationally heavy, mainly offline, and do not consider changes in the dynamics of the process,
when the process is under control.

In order to deal with systems characterized by changing the characteristics, evolving systems
have recently emerged as promising methods that adapt their structure (and parameters, as happens
with adaptive systems) to new operating conditions, changing system dynamics, drifting situations,
and non-stationary environments [12]. It is important to note that evolving systems self-change or
organize their structure (and parameters) according to novelties such as, for example, new regions of
operation, anomalies, unknown environment, drifts, and shifts, which differs from adaptive systems,
which only adapt their parameters, having the model/control structure fixed. Several relevant evolving
methodologies have been proposed to design fuzzy systems. In [13], a review of evolving fuzzy and
neuro-fuzzy methodologies for clustering, regression, identification, and classification applications
was presented, in which the addition, merging, splitting, and removing evolving mechanisms were
presented and discussed. Additionally, in [12], an overview of the following evolving systems was
performed: fuzzy rule-based, neuro-fuzzy, Cauchy possibilistic clustering, granular neural network,
and fuzzy linear regression tree. However, in these reviews [12,13], control applications were not
considered. Focusing on control applications, the work in [14] presented an approach for on-line
designing indirect T-S (Takagi-Sugeno)fuzzy controllers with evolving learning in a recursive way.
A fuzzy model reference adaptive control was proposed in [15], in which the evolving fuzzy model
(eFuMo) method was used to learn the controller’s fuzzy model. In addition to [15], an adaptive law
was proposed in [16] in order to guarantee global stability. In [17], an evolving neuro-fuzzy controller
based on the Taylor series neuro-fuzzy (TaSe-NF) model was proposed, in which the proposed method
analyzes the error surface to obtain the fuzzy rule with the worst performance to be split, based on the
presented criteria. A model-based evolving granular fuzzy control approach was proposed in [18],
where the model’s structure and parameters were adapted based on information extracted from
uncertain data streams. In [19], an evolving probabilistic fuzzy neural controller using an asymmetric
membership function was presented. In [20], an evolving fuzzy model-based controller for a generic
hypersonic vehicle (HV) was proposed, where the control law was designed based on the fuzzy model,
and the stability analysis was performed using the Lyapunov method. Self-evolving Type-2 control
was also studied [21–23]. However, the above control applications focused on indirect control, in which
the evolving strategy was proposed for the model. In the evolving fuzzy systems, when compared
with identification and classification problems (and even with indirect control applications), just a few
works have been proposed for direct control learning and evolving (and not for identification of a
system or data model, even to be possibly used in indirect control learning). In order to design the
entire fuzzy control structure in an online way, methodologies to design direct FLCs in an evolving
way have been proposed. In [2,24], an evolving FLC design methodology was proposed, where the
proposed method was initialized with no fuzzy control rules (the online process starts with an empty
control structure). However, the proposed solution can lead to a complex controller with a huge
number of control rules. Later, based on data clouds, the robust evolving cloud-based controller
(RECCo) was proposed [25]. In RECCo, the antecedent part of the fuzzy control rules to be designed is
defined by data clouds (instead of the typical membership functions). RECCo was used also in [26–28]
and improved in [27,28]. In [29], an evolving data cloud-based PID-like controller was proposed for
uncertain nonlinear systems, in which, a stable recursive method (based on the Lyapunov function)
was proposed to adapt the parameters aiming at fast convergence performance. However, the control
rules’ interpretability ability by a human operator was lost since the antecedent part of the control
rules was defined by data clouds, which make the control rules very hard to be understood by human
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operators [26]. In [30], the problem of translating the control knowledge of a human expert operator
into fuzzy control rules was addressed, where an approach was proposed to automatically design
a Mamdani FLC iteratively. In [31], a methodology was proposed to online evolve a fuzzy control
structure defined by univariate fuzzy control rules, which was based on the inverse function of the
system under control. However, the works in [30,31] only considered adding control rules during the
evolving learning process.

In order to reach an online self-organizing fuzzy control design, which can be easily interpretable
by human operators, a new methodology is proposed in this paper, to online self-evolve direct FLCs.
The fuzzy control rules’ structure is defined by univariate rules. In this way, the interpretability ability
of the controller is improved, as well as the complexity (the number of membership functions and
fuzzy control rules) of the learned FLC controller is reduced. In an offline stage, the initial fuzzy control
structure is designed using only the variables range (minimum and maximum admissible values).
Then, the online stage, which occurs when the process is under control, corresponds to the evolving
stage where fuzzy control rules can be added or removed from the current knowledge base (fuzzy
control rules). To add fuzzy control rules on the current FLC, the proposed self-evolving design method
uses two criteria: Criterion 1 is based on the incremental estimated control error obtained using the
system’s inverse function, and Criterion 2 is based on the minimal distance allowed between the center
of two consecutive membership functions. To delete fuzzy control rules, two criteria to delete “less
active” or “less informative” fuzzy control rules are used. To evaluate the proposed self-evolving FLC,
a simulated nonlinear continuously stirred tank reactor (CSTR) plant is used. The main contributions
of the proposed self-evolving design methodology for direct FLCs are: the evolving of a control
structure composed of univariate control rules, which together with the defined evolving mechanisms,
makes the controller better interpretable by human operators, and having a light control structure
(small number of membership functions and control rules); the criteria to add control rules are defined
in order to reduce the sensitivity to noise/outliers; to delete fuzzy control rules, two criteria to delete
“less active” or “less informative” rules are presented; and the threshold for the criteria to add or
remove control rules are intuitively defined (by the percentage of the variables range and ε ∈ [0, 1]).

The paper is organized as follows. Section 2 presents the FLC controller to be online designed
by the proposed methodology. Section 3 presents the proposed self-evolving FLC design method.
Section 4 analyzes the performance of the proposed approach on a nonlinear continuously stirred tank
reactor system. The final conclusions are presented in Section 5.

2. Fuzzy Logic Controller

This section briefly presents the main concepts of fuzzy logic control and the control structure
to be evolved by the proposed method in Section 3. Fuzzy logic controllers (FLCs) have become
an important research area in fuzzy systems [3], being widely applied in the control of complex
industrial processes where the control knowledge of human expert operators is available through a set
of IF-THEN control rules. A fuzzy control rule describing a simplistic control action to control NOx

emissions in the cement industry is presented in the following example:

IF the NOx is high, THEN inject more ammonia, (1)

where NOx and ammonia (variation) are the input and output linguistic variables being, respectively,
defined by the linguistic terms associated with the fuzzy sets high and more.

The FLC, which will be evolved by the proposed method in this paper, is composed of a
set of univariate fuzzy control rules, allowing improving the controller interpretability ability,
since the influence of each input variable on the overall behavior of the controller will be more
easily interpretable. In this way, the fuzzy control rules for each input variable are given by [31]:



Appl. Sci. 2020, 10, 5836 4 of 20

R1
j : IF xj(k) is A1

j THEN u1
j (k) = θ1

j ,

... (2)

R
Nj
j : IF xj(k) is A

Nj
j THEN u

Nj
j (k) = θ

Nj
j ,

j = 1, . . . , n,

ij = 1, . . . , Nj,

where xj is the input variable j (j = 1, . . . , n), R
ij
j is the ij-th fuzzy control rule of xj, Nj is the

number of rules for xj, θ
ij
j is the consequent parameter, and A

ij
j are linguistic terms characterized

by a complementary fuzzy membership function [32]. Using the following fuzzy system configuration:
the singleton as the fuzzifier, the center-average as the defuzzifier, and the product inference engine,
the FLC is given by [31]:

u(x(k)) =
∑N1

i1=1 µ
A

i1
1
(x1(k))θ

i1
1 + . . . + ∑Nn

in=1 µAin
n
(xn(k))θin

n

∑N1
i1=1 µ

A
i1
1
(x1(k)) + . . . + ∑Nn

in=1 µAin
n
(xn(k))

,

where, defining A1, . . . , Ai, . . . , AN = A1
1, . . . , AN1

1 , . . . , A1
j , . . . , A

Nj
j , . . . , A1

n, . . . , ANn
n ,

N

∑
i=1

µAi (x(k)) =
N1

∑
i1=1

µ
A

i1
1
(x1(k)) + . . . +

Nn

∑
in=1

µAin
n
(xn(k)),

ω
ij
j [x(k)] =

µ
A

ij
j

(xj(k))

∑N
i=1 µAi (x(k))

, (3)

ψj(x(k)) =
[
ω1

j [x(k)], . . . , ω
Nj
j [x(k)]

]
, (4)

Θj =
[
θ1

j , . . . , θ
Nj
j

]T
, (5)

x(k) = [x1(k), . . . , xn(k)] , (6)

then the FLC (3) is given by:

u(x) = u1(x(k)) + . . . + un(x(k)), (7)

uj(x(k)) = ψT
j (x(k))Θj.

ψT
j (x(k)) (4) in (7) can be seen as a weight of fuzzy control rules of input variable j on the overall

controller. By Equation (7), the influence of each input variable on the overall FLC’s behavior can be
analyzed, taking into account the fuzzy control rules; structure, making the FLC more interpretable.

In order to allow more interpretability for the FLC, the membership functions are characterized
by complementary triangular membership functions, as defined in Figure 1.
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Figure 1. Definition of membership functions for xj.

aj,ij , bj,ij , and cj,ij are respectively the lower, center, and upper values of the membership function

A
ij
j , and x−j and x+j are the lower and upper limits of xj.

The next section proposes a new methodology to online design, in an evolving way, the FLC
represented by (7).

3. Proposed Self-Evolving FLC Design Method

This section describes the proposed methodology to self-evolve the fuzzy logic controller (FLC)
presented in Section 2. This section starts by presenting the main formulation for the online evolving
learning process based on the plant’s inverse function in Section 3.1; the initialization (offline stage) of
the proposed method is described in Section 3.2; and the online stage (self-evolving learning process)
is described in Section 3.3.

3.1. Formulation

In this paper, the process to be controlled by the proposed self-evolving methodology is defined
by following nonlinear autoregressive exogenous (NARX) model:

y(k + 1) = f (x(k), u(k)), (8)

where x(k) = [y(k), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)], u(k) and y(k) are the process input and
output, respectively, ny and nu are, respectively, the output and input orders, and f is an unknown
continuous and differentiable single-input single-output (SISO) function.

Assumption 1. ∂ f (x,u)
∂u 6= 0 for x ∈ Ωx, where x ∈ Ωx is the controllability region [2,33].

Assumption 1 is a controllability condition of System (8), which imposes that there is no state at
which the system’s output does not depend on the control signal u.

In a general way, the controller can be represented by the function g to control the system (8) [2,31]:

u(k) = g(x̃(k), Θ), (9)

where x̃(k) = [r(k), y(k), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)], which in addition to x(k) includes
the reference signal r(k), and Θ are the control parameters. Fuzzy systems are universal
approximators [34,35]. Therefore, to approximate (9), the FLC (3) will be designed by the proposed
self-evolving learning method.

Sliding Window

A temporal sliding window is created in order to allocate the variables needed to obtain the
inverse function of the plant, to be used in the evolving process phase. The sliding window will
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be used to estimate the control estimation error in order to select the input variable that contributes
to the largest estimated control error, and such a variable is selected to receive a new fuzzy control
rule (if the defined criteria are met). The concept is, if a command signal u(k) generates y(k + 1) at
system state x(k), then if the system returns again to the same state x(k) and the reference is the same
as the generated output, i.e., r(k) = y(k + 1), then u(k) can be considered as the optimum control
signal [2,31].

The temporal sliding window, with TM elements, is defined by:

M = [z(k− TM)T , . . . , z(k− 1)T ], (10)

where z(m) = [x̃(m), u(m)] (m = 1, . . . , TM) and x̃(m) = [y(m + 1), y(m), . . . , y(m − ny), u(m − 1),
. . . , u(m− nu)].

3.2. Offline Stage

Since in this paper, the assumption is made that there is no knowledge about the dynamics of
the process under control, in the offline design, the FLC is designed using the range values of the
process variables.

Taking into account that the input variables are described by complementary triangular
membership functions (MFs), as presented in Figure 1, then each input variable xj is initially
represented by two MFs, Nj = 2 for j = 1, . . . , n; covered in this way by all the universe of discourse of
the respective variable. The consequent parameters of all fuzzy control rules are initially set to the
minimum admissible control value, u−.

In general terms, two initial fuzzy control rules R
ij
j (j = 1, . . . , n and ij = 1, 2) for each input

variable xj (x = [x1, . . . , xn]) are, at the beginning offline stage, defined as follows:

R1
j : IF xj(k) is A1

j THEN u1
j (k) = θ1

j = u−, (11)

R2
j : IF xj(k) is A2

j THEN u2
j (k) = θ2

j = u−,

where the initial membership functions are defined as presented in Figure 2.
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3.3. Online Stage

This section presents the main steps of the proposed self-evolving methodology for online
designing of the FLC presented in Section 2. The main steps are (1) adaptation of the rules’ consequents
(Section 3.3.1), (2) variable selection (Section 3.3.2), (3) definition of the fuzzy control rule candidate to
be added (Section 3.3.3), (4) criteria to add the candidate control rule (Section 3.3.4), and (5) criteria to
delete a fuzzy control rule (Section 3.3.5).
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3.3.1. Consequent Adaptation

In order to reach a better control performance, the consequent parameters θ
ij
j (k) are updated

based on the tracking error e(k) = r(k)− y(k) at all instants of time by:

θ
ij
j (k) = θ

ij
j (k− 1) + γω

ij
j [xj(k)]e(k), (12)

where γ is a positive adaptation gain.

3.3.2. Variable Selection

The first step of the proposed self-evolving controller design is the selection of the candidate input
variable xj∗ where a new fuzzy control rule should be added.

The criterion to select the candidate input variable xj∗ is based on the estimated controller error
obtained by the function approximation of the plant’s inverse function (Section 3.1). The estimation
control error ec(k) is obtained by:

ec(k) =
TM

∑
m=1

(u(m)− û(m))2, (13)

where u(m) represents the applied control signal (real controller), which is stored in the sliding window
M (10) at the window’s sample time m, and û(m) is the control signal for sample time m given by the
current FLC designed at time instant k, (u(x̃(m))), using the vector x̃(m) instead of x(m). In this way,
the estimation control error of xj at instant k is obtained by:

ecj(k) =
TM

∑
m=1

(ψj(x(m))uT
j (m)−ψj(x̃(m))Θj)

2, (14)

where ψj(x(m)) is defined in (4), and each element of uj(m) = u(m)[1, . . . , 1]1×Nj is the real controller
signal u(m) stored in the sliding window M at sample m of the window.

The candidate input variable xj∗ to which can be added a fuzzy control rule is given by the one
that has the largest estimation control error:

j∗ = arg max
j∈J

(ecj(k)), (15)

where J = {1, . . . , n} is the set of indices of the input variables.

3.3.3. New Fuzzy Control Rule

When the criteria, defined later in Section 3.3.4, to add fuzzy control rules are met, a fuzzy control
rule will be added to the current knowledge base (i.e., fuzzy control rules defined by (2)). In this
way, for the candidate input variable xj∗ will be added a new fuzzy control rule Rnew

j∗ , defined by the
membership function Anew

j∗ and the consequent θnew
j∗ .

To design the new fuzzy control rule Rnew
j∗ , the first step is to create the new membership function

Anew
j∗ . The membership functions being characterized by complementary triangular MFs (Figure 1), it is

necessary to define the center of Anew
j∗ . In order to reduce the sensitivity to noise/outliers, the center

of the new membership function will be obtained based on (as a function of) the distribution of the
control estimation error ec. For that purpose, first, a variable mc representative of such distribution is
defined as follows:

mc =
∑TM

m=1 m(u(m)− û(m))2

∑TM
m=1(u(m)− û(m))2

, (16)
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where, similarly to (13), u(m) represents the real controller, which is stored in the sliding window
M (10) at the window’s sample time m, and û(m) is the control signal (13) given by the current FLC
designed at time instant k (u(x̃(m))) using the vector x̃(m). The center of the new membership function
Anew

j∗ is given by x̃j∗(dmcc), where x̃j∗ is the j∗-th variable (15) (component) of x̃, dmcc is the integer
nearest to mc (16), and x̃(dmcc) is the value of x̃ on the dmcc-th sample time of the sliding window
M (10).

The new membership function Anew
j∗ and the nearest left (Ale f t

j∗ ) and right (Aright
j∗ ) membership

functions (which should be updated due to the introduction of a new MF on the respective variable)
are given by:

• Ale f t
j∗ : cj∗,le f t = bj∗,new;

• Anew
j∗ : aj∗,new = bj∗,le f t; bj∗,new = x̃j∗(dmcc); and cj∗,new = bj∗,right;

• Aright
j∗ : aj∗,right = bj∗,new.

Since the antecedent membership functions are defined as complementary triangular membership
functions (Figure 1), then in Ale f t

j∗ and Aright
j∗ , only one of their parameters is updated due to the

introduction of the membership function Anew
j∗ .

The consequent parameter of Rnew
j∗ is obtained as follows:

θnew
j∗ (k) =

∑
right
ij=le f t µ

A
ij
j∗
(xj∗(k)) θ

ij
j

∑
right
ij=le f t µ

A
ij
j∗
(xj∗(k))

, (17)

where le f t = i∗j − 1 and right = i∗j + 1 are respectively the nearest left Ale f t
j∗ and right Aright

j∗ membership
functions (MFs). With (17), the impact of the introduction of a new control rule, while the process is
under control, is reduced.

3.3.4. Criteria to Add Control Rules

Two criteria are used to create a new fuzzy control rule.

Criterion 1. ‖∆ec(k)‖ > δ, with ∆ec(k) = ec(k)− ec(k− 1), where δ is a threshold defined by the user.

Criterion 1 is based on the variation of the estimated control error, which if it is larger than a
threshold (δ), gives an indication to add a control rule. In this paper, the threshold (δ) is defined as a
percentage of the range of the universe of discourse of the control variable ∆u = u+ − u−, for example
δ = 5%× ∆u. If Criterion 1 is met, the candidate input variable xj∗ is selected by (15) (Section 3.3.2) to
which a new fuzzy control rule can be added. Then, a candidate fuzzy control rule Rnew

j∗ is defined,
using the candidate membership function Anew

j∗ as explained in Section 3.3.3. Then, Criterion 2 is used
to decide if the candidate fuzzy control rule Rnew

j∗ should be added to the candidate input variable xj∗ ,
ensuring a minimal distance between membership functions.

Criterion 2.
∣∣∣∣bj,i∗j

(k)− bj,i±j
(k)
∣∣∣∣ > ηj, where bj,i∗j

and bj,i±j
are the centers of Anew

j∗ and of its nearest

membership function (Aj± ) respectively, and ηj is a threshold defined by the user to define the minimal distance
between two closest membership functions for input variable xj.

Criterion 2 is defined in order to avoid the learning of a complex controller structure,
namely limiting an excessively fine partitioning of the input variables spaces (also avoiding overfitting
cases and the creation of a large number of fuzzy control rules) and improving the controller
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interpretability. In this paper, the threshold (ηj) is defined based on the range of the universe of

discourses of the input variables, for example, for input variable xj, ηj =
∣∣∣x+j − x−j

∣∣∣ /Kj, where Kj can
be represented by the maximal number of membership functions for xj.

3.3.5. Delete Fuzzy Control Rule

Taking into account the complex characteristics of industrial processes, such as unknown
and time-varying dynamics, and disturbances, some control rules created earlier may become
obsolete, and the presence of outliers (besides the criteria to avoid that) can create the wrong rules.
However, in order to not remove a fuzzy control rule with significant information, the deletion of a
control rule must be done carefully. In this way, two criteria to delete “less active” or “less informative”
fuzzy control rules are used [36].

Criterion 3.
Ntotal

ij
(k)

k−kini
ij

< ε, for ij = 1, . . . , Nj and j = 1, . . . , n, where Ntotal
ij

(k) = Ntotal
ij

(k− 1)+ω
ij
j [x(k)] is

the indicator of the total activation degrees (antecedent values) associated with the ij-th fuzzy rule, being Ntotal
ij(0)

=

0 [37,38]. k is the current instant of time, and kini
ij

is the instant of time at which the fuzzy control rule R
ij
j was

created. ε ∈ [0, 1] is a positive constant.

A usual choice has been ε = 0.1 [36,39].

Criterion 4. 1−
Nmin

ij
(k)

k−kini
ij

< ε/2, for ij = 1, . . . , Nj and j = 1, . . . , n, where Nmin
ij

(k) is given by (18), which is

the total number of times (during the interval of time [kini
ij

, k]) in which the antecedent value of the ij-th fuzzy

rule, ω
ij
j [x(k)](3), is the minimum among all the antecedent values of all fuzzy rules, and kini

ij
is the instant of

time at which fuzzy control rule R
ij
j was created. ε ∈ [0, 1] is the same positive constant as in Criterion (3).

Nmin
ij

(k) =
k

∑
kini

ij

u

w
vω

ij
j [x(k)] = min

ij=1,...,Nj
j=1,...,n

(ω
ij
j [x(k)])

}

�
~ , (18)

where J. . .K are the Iverson brackets and JPK is defined to be one if P is true, and otherwise zero.

Criterion 3 gives an indication of the use of a given fuzzy rule, by its antecedent value, ω
ij
j [x(k)](3),

during an interval of time ([kini
ij

, k]). In this way, Criterion 3 is defined in order to remove control rules
that are less active. On the other hand, Criterion (4) gives an indication of how long a given rule had

the lowest antecedent value ω
ij
j [x(k)] (3), during an interval of time ([kini

ij
, k]). In this way, Criterion (4)

is defined in order to remove control rules that are non-informative.
For all instants of time k, Criteria 3 and 4 are verified for all control rules, and when simultaneously

they are met, then fuzzy control rule Rdel
j− will be deleted from the current knowledge base, as well as

the associated membership function Adel
j− . After removing membership function Adel

j− , the nearest left

(Ale f t
j− ) and right (Aright

j− ) membership functions (which are updated due the elimination of Adel
j− ) are

given by:

• For Ale f t
j− : 1) cj−,le f t = bj−,right;

• For Aright
j− : 1) aj−,right = bj−,le f t.

Since complementary triangular membership functions are used (Figure 1), only one of the
parameters is updated for each of Ale f t

j− and Aright
j− .
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3.3.6. Algorithm

Algorithm 1 presents the steps of the proposed self-evolving method to design the FLC controller,
and Figure 3 presents the respective flowchart.

Figure 3. Flowchart of the proposed self-evolving FLC design method.
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Algorithm 1 Proposed self-evolving FLC design method.

Input:
1: Range, minimum, and maximum values, of the variables x−j and x+j (j = 1, . . . , n) and u− and u+;

2: Thresholds: δ (Criterion 1), ηj for j = 1, . . . , n (Criterion 2); ε (Criteria 3 and 4), sliding window’s

size TM, and γ;

Offline Stage: Design the initial fuzzy controller (Section 3.2);

3: Antecedent part: design the membership functions A
ij
j (ij = 1, 2):

4: for all all input variables j = 1, . . . , n do
5: parameters of A1

j : aj,1 = bj,1 = x−j and cj,1 = x+j ;

6: parameters of A2
j : aj,2 = x−j and bj,2 = cj,2 = x+j ;

7: end for
8: Consequent part: define all consequent parameters as the minimum control value θ

ij
j = u−

(ij = 1, 2);

Online Stage:
9: while the controller is turned on, k = 1, 2, . . . do

10: Update the consequent parameters by (12) (Section 3.3.1);

11: if sliding window M is filled then
12: Obtain the estimated control error ec(k) using (13);

13: if Criterion 1 is met then
14: Select, using (15), the candidate input variable xj∗ in which a new control rule can be

added (Section 3.3.2);

15: Obtain the center of the candidate MF (Anew
j∗ ) by (16);

16: if Criterion 2 is met then
17: Add Anew

j∗ (new MF) to the selected input variable xj∗ (Section 3.3.3);

18: Update the nearest left (Ale f t
j∗ ) and right (Aright

j∗ ) membership functions (Section 3.3.3);

19: Define the consequent parameter θnew
j∗ of the new fuzzy control rule using (17);

20: end if
21: end if
22: if Criteria 3 and 4 are met then
23: Delete the fuzzy control rule Rdel

j− (Section 3.3.5);

24: Delete membership function Adel
j− (Section 3.3.5);

25: Update the nearest left (Ale f t
j− ) and right (Aright

j− ) membership functions (Section 3.3.5);

26: end if
27: end if
28: Apply the command signal of the current designed fuzzy logic controller, and read the output

variable y(k).
29: Update M (sliding window);

30: end while

4. Results

This section presents the results’ analysis of the proposed evolving methodology, named as
uSelf-FLC (Available at https://home.isr.uc.pt/~jermendes/uSelf-FLC.html). For that purpose, a
nonlinear continuously stirred tank reactor is used.

https://home.isr.uc.pt/~jermendes/uSelf-FLC.html
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4.1. Description of the CSTR Plant

The nonlinear CSTR plant is given by [31,40]:

∂CA(t + dc)

∂t
=

q(t)
V

(CA0(t)− CA(t + dc))− k0CA(t + dc) exp
(
− E

RT(t)

)
, (19)

∂T
∂t

=
q(t)
V

(T0(t)− T(t))− (−∆H)k0CA(t + dc)

ρc1Cp
exp

(
− E

RT(t)

)
+

ρc2Cpc

ρc1CpV
qc(t)

[
1− exp

( −hA
qc(t)ρc2Cpc

)]
(Tc0(t)− T(t)) ,

y(t) = CA(t), u(t) = qc(t), (20)

where Table 1 presents the description of the variables and the respective nominal values. In this plant,
the goal is to control the CA(t) by manipulating qc(t).

Table 1. CSTR variables [40,41].

Variable-Description [31] Value

CA-Product concentration 0.1 (mol/L)
T-Reactor temperature 438.54 (K)
qc-Coolant flow rate 103.41 (L/min)
q-Process flow rate 100 (L/min)
CA0-Feed concentration 1 (mol/L)
To-Feed temperature 350 (K)
Tc0-Inlet coolant temperature 350 (K)
V-CSTR volume 100 (l)
hA-Heat transfer term 7× 105 (cal/min/K)
k0-Reaction rate constant 7.2× 1010 (min−1)
E/R-Activation energy term 1× 104 (K)
−∆H-Heat of reaction −2× 105 (cal/mol)
ρc1, ρc2-Liquid densities 1× 103 (g/L)
Cp, Cpc-Specific heats 1 (cal/g/K)
T-Sampling period 0.1 (min)
dc-Time delay 5T = 0.5 (min)

4.2. Initialization and Offline Stage

For the results’ analysis presented here, the following input variables for the FLC were defined:
x(k) = [r(k), y(k)], where r(k) is the reference signal. The parameters of the proposed evolving
methodology, which were defined manually, are: variables’ range x−1 = x−2 = 0.05, x+1 = x+2 = 0.12;

u− = 90 and u+ = 110 (∆u = 15); thresholds ηj =
∣∣∣x+j − x−j

∣∣∣ /15 (for j = 1, 2), δ = 0.05 × ∆u,
and ε = 0.1; M = 1000; and γ = 0.35. The FLC was initially offline designed with the assumption
that there was no control knowledge about the process under control; see Section 3.2. The parameters
of the SEDFLC (Available at https://home.isr.uc.pt/~jermendes/SEDFLC.html) evolving method
proposed in [31] were defined the same as the proposed method, in order to compare both evolving
design methods in the same conditions.

4.3. Regions of Operation

In order to test the evolving capability of the proposed design methodology, the reference r(t) was
designed so as to expose the controller to unknown regions of operation; some regions of operation
were close to the ones previously learned; and other regions of operation that the controller had
previously learned, but never reached again, in order to make some control rules obsolete.

https://home.isr.uc.pt/~jermendes/SEDFLC.html
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4.4. Results’ Analysis

The results, along time, are presented in Figures 4–6, where:

• Figure 4 presents the global results of the direct FLC controller online designed by the proposed
self-evolving methodology, in which Figure 4a presents the evolution of the tracking performance
for the unknown regions of operation, Figure 4b presents the evolution of control signal,
u(k), Figure 4c shows the evolution of the number of fuzzy control rules for each input variable,
x1 and x2, and Figure 4d shows the evolution of ∆ec(k), which is associated with Criterion 1
to add new fuzzy control rules. Figure 4a–b presents also the results of the SEDFLC evolving
method proposed in [31].

• Figures 5 and 6 present the evolution of the antecedent and consequent parameters, i.e.,
the structural changes along time and the consequent adaptation, and the final membership
functions for x1(k) = r(k) and x2(k) = y(k), respectively.
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Figure 4. Cont.
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Figure 4. Results of the proposed self-evolving FLC design methodology on the CSTR plant. (a) Results
of the proposed methodology, and of the SEDFLC method [31]. (b) Command signal of the proposed
method and of the SEDFLC method [31]. (c) Evolution of the number of fuzzy control rules.
(d) Evolution of ∆ec(k).
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Figure 5. Evolution of the antecedent and consequent parameters of x1 = r(t). (a) Evolution of the
antecedent parameters of x1 = r(t). (b) Evolution of the consequent parameters of x1 = r(t). (c) Final
membership functions of x1 = r(t).
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Figure 6. Evolution of the antecedent and consequent parameters of x2 = y(t). (a) Evolution of the
antecedent parameters of x2 = y(t). (b) Evolution of the consequent parameters of x2 = y(t). (c) Final
membership functions of x2 = y(t).

From the results, analyzing the performance of the direct FLC, online designed by the proposed
self-evolving methodology, it can be seen that:

• Since, initially, the controller is offline designed using only the variables range values, using two
fuzzy control rules per input variable, where the membership functions were defined as presented
in Figure 2, thus, the controller is initialized without any control knowledge or previous data
of the process under control, i.e., without knowledge of any region of operation. It can be seen
from the results that the tracking performance increases during the time of operation and that the
proposed evolving methodology adds new fuzzy control rules (see Figure 4c) when unknown
regions of operation are reached.

• When the reference has the value r(k) = 0.065 (1500 ≤ k < 1800), that r(k) region of operation has
not been learned (reached) previously, and new control rules were added in both input variables.
Afterwards, as that region of operation was never reached again, the control rules that were
previously added for that region were deleted, due to the fact that Criteria 3 and 4 considered
these rules obsolete (“less active” and “less informative”).

• Additionally, it can be seen that for k < 1800, there are large changes in the control structures,
namely in the antecedent (Figures 5a and 6a) and consequent parts (Figures 5b and 6b) because,
until then (k < 1800), most of the regions of operation were unknown to the controller, and the
proposed design methodology online evolved the control structure (i.e., the fuzzy control rules);
afterwards, for k > 1800, with the exception of the process of deleting the control rules, only small
changes were made in the antecedent and the consequent parts of the rules, since in that time
interval, the regions of operation were similar to the ones already learned before.
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• Figure 4a–b shows that the proposed method has outperformed the SEDFLC evolving method [31],
where both methods have used the same initial parameters, and that the SEDFLC method did
not react as well as the self-evolving FLC to the new r(k) = 0.065 (1500 ≤ k < 1800) region of
operation, which is distant from the previous operating region.

• It can be seen that the proposed self-evolving direct FLC controller design methodology
successfully online designed the FLC controller, reaching a simple control structure, where each
of the input variables (r(k) and y(k)) was described by six fuzzy control rules, whose membership
functions are described in Figures 5c and 6c, and the final fuzzy control rules for x1(k) = r(k) are
described by:

Rule 1 : IF r(k) is A1
1 THEN qc(k) is 90,

Rule 2 : IF r(k) is A2
1 THEN qc(k) is 90,

Rule 3 : IF r(k) is A3
1 THEN qc(k) is 101.1,

Rule 4 : IF r(k) is A4
1 THEN qc(k) is 104.9,

Rule 5 : IF r(k) is A5
1 THEN qc(k) is 108.7,

Rule 6 : IF r(k) is A6
1 THEN qc(k) is 110,

and the final fuzzy control rules for x2(k) = CA(k) are described by:

Rule 1 : IF CA(k) is A1
2 THEN qc(k) is 97.6,

Rule 2 : IF CA(k) is A2
2 THEN qc(k) is 95.6,

Rule 3 : IF CA(k) is A3
2 THEN qc(k) is 96.8,

Rule 4 : IF CA(k) is A4
2 THEN qc(k) is 99, (21)

Rule 5 : IF CA(k) is A5
2 THEN qc(k) is 100.1,

Rule 6 : IF CA(k) is A6
2 THEN qc(k) is 103.5.

Regarding the application of the proposed self-evolving method to other SISO processes,
defined by (8), it is expected that the initialization and offline stage will be intuitively defined,
similarly to the CSTR plant. The offline design is performed using only the range limits of the
process’s variables (input and output), which is mandatory information to control any process; and the
thresholds used on the criteria to add or remove control rules are also intuitively defined, being given by
a percentage of the variables range, while ε ∈ [0, 1] has also an intuitive meaning. The sliding window’s
size TM and the consequent adaptation gain γ are parameters that must have some know-how about
the process to be controlled; TM must be defined in order to allocate relevant information to obtain the
estimated control error ec(k) and γ defined in order to have an acceptable performance in the beginning
(until several control rules are created in order to cover several regions of operation). In terms of
performance on other SISO processes, it is expected that the proposed method will have a better
performance in industrial process with slow variations, which has happened in several industrial
processes with, for example, sample times of 0.5, 1, 2, and 5 s. In terms of the interpretation of the
designed controller in other SISO processes, which is an important goal, due to the defined univariate
control structure (2) and the defined criteria adding/removing control rules (mainly Criterion 2 that
limits excessive partitioning of the input variables spaces), it is expected that the designed FLC will
have a simple (interpretable) structure.

5. Conclusions

This paper proposed an online evolving methodology for the design, in an evolving way, of a
direct fuzzy logic controller (FLC). The proposed methodology, in an initial offline stage, initializes the
control rules using only the range information of the process’ variables; then, in an online stage
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(when the process is under control), the proposed evolving methodology, in an evolving way, can add
new fuzzy control rules or remove them, based on the respective defined criterion. The controller
structure is formed by univariate fuzzy control rules, in order to improve the understandability by
human operators.

Experimental tests were performed on a simulated CSTR plant showing that the proposed
methodology successfully online designed the FLC, adding new control rules when new (for the
controller) regions of operations were reached and deleting control rules when some previously added
control rules became obsolete.
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