
Institute of Systems and Robotics
University of Coimbra

Department of Electrical and Computer Engineering

Contactless Registration

Estimation of Normals using Affine Correspondences

Diogo Emanuel Ribas Vaz

December 19, 2018



Contents

1 Introduction 2

2 Sparse Model Computation - Feature Matching Approach (FMA) 2
2.1 Version 1 (FMA-V1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Version 2 (FMA-V2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Version 3 (FMA-V3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Version 4 (FMA-V4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Sparse Model Computation - Tracking Approach (TA) 5

4 Formulation of Trackers 5
4.1 Adaptation for Radial Distorted Images . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Affine KLT Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Affine Motion-Constrained KLT Tracker (Forward Additive) . . . . . . . . . . . . . 6
4.4 Affine Motion-Constrained KLT Tracker (Inverse Compositional) . . . . . . . . . . 8
4.5 Homography-based KLT Tracker (Inverse Compositional) . . . . . . . . . . . . . . 8

4.5.1 Refinement of Normal Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5.2 Refinement of Distance to the Origin and Normal Vector . . . . . . . . . . 10

1



1 Introduction

The main goal of this report is to summarize the work done by Diogo Vaz in order to develop
a contactless registration algorithm to be used in arthroscopic orthopedic surgery context. The
algorithm should perform an automatic alignment of a 3 dimensional bone model, obtained before
the surgery by Computed Tomography or Magnetic Resonance Imaging, and the respective real
bone of a patient during the surgery.
Diogo’s work focused on creating a method to estimate a sparse 3D model of the patient anatomy
during the medical procedure. This method should compute points and surface normals by exploit-
ing the geometric information encoded in affine correspondences.
The registration itself is done with Carolina’s registration algorithm which receives as input the
pre-operative model (obtained with CT or MRI) and the intra-operative model (obtained with
Diogo’s method). The output is a rigid transformation that aligns the two models.
The proposed reconstruction method was implemented in two different approaches: feature match-
ing and tracking, explained respectively in sections 2 and 3.

2 Sparse Model Computation - Feature Matching Approach (FMA)

The registration based on feature matching requires feature detection in each image and estab-
lishment of feature correspondences between different images. Thereby, the generic steps of the
method are:

1. Feature detection on images;
2. Feature matching between pairs of images;
3. Filtering out matches outside the boundary, over markers or not verifying the epipolar

constraint;
4. Refinement of affine correspondences;
5. Estimation of points and normals;
6. Refinement of normals.

Since these steps could be implemented in several different ways, four implementation were created
and are explained in the next subsections.

2.1 Version 1 (FMA-V1)

In the context of arthroscopy, the acquired images have a significant radial distortion. On the other
hand, the majority of feature detectors and features descriptors are suitable for images without
radial distortion and their use with radial distorted images leads to a poor description of features
and hence a reduction of matches.
In this regard, in the first version of pipeline, the radial distortion is corrected and the pipeline is
designed to be applied in undistorted images. This version has the following steps:

1. Feature detection is done on undistorted images, using a covariant feature detector from
VLFeat library or the standard sift algorithm. Both detectors return features composed by a
point and a 2x2 matrix. However, while the first returns an affine matrix, the second returns
a similarity matrix;

2. The matches are computed, using a standard matcher based on the squared distance of SIFT
feature descriptors;
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3. All matches outside the boundary, over markers or disrespecting the epipolar constraint are
discarded;

4. The remaining matches are refined, using an affine tracker. Note that when using standard
sift algorithm, this step is more than a simple refinement because the initialization is a
similarity matrix (a small subset of the generic affine matrices) instead of an affine matrix.
Some degrees of freedom of the affine transformation are computed for the first time in this
step;

5. Knowing the motion and intrinsic parameters of the camera and an affine correspondence, it
is possible to compute a 3D point and the surface normal in this point;

6. Refinement of normals with a homography-based tracker.

All these steps are represented in figure 1.
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Figure 1: Schematic representation of the first version of pipeline.

2.2 Version 2 (FMA-V2)

The second version of the pipeline results from a small modification of version 1. The affine tracker
formulation for undistorted images was replaced by a new affine tracker to be directly applied on
distorted images and all the other algorithm steps were maintained. Figure 2 shows the second
version structure.
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Figure 2: Schematic representation of the first version of pipeline.
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2.3 Version 3 (FMA-V3)

As mentioned in subsection 2.1, commonly, feature detectors and descriptors are only applicable
on undistorted images and, in this application, images have distortion. However there are some
algorithms to perform these tasks directly on distorted images, avoiding distortion correction. One
of them is the sRD-SIFT, a modified sift algorithm to deal with radial distortion during detection
and description stages of SIFT algorithm.
The third version of the method is similar to second, but introduces sRD-SIFT to detect and
describe features on distorted images. This version is represented in figure 3.
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Figure 3: Schematic representation of the first version of pipeline.

2.4 Version 4 (FMA-V4)

At last, in version 4 the homography-based tracker used to refine normals passes to operate over
distorted images. Thereby, in this version, the distorted images are no longer necessary, because
the whole pipeline can be used directly on undistorted images. The schematic representation in
figure 4 depicts the final structure of the algorithm.
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Figure 4: Schematic representation of the first version of pipeline.
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3 Sparse Model Computation - Tracking Approach (TA)

In arthroscopy context, the matching process can be a hard task since bone has a low-textured
surface and there are suspended particles in the liquid inside the knee during the surgery. In order
to avoid the matching process, it was developed a tracker-based approach. In this case, given a
set of features on an image, an affine tracker is used to compute the correspondent features on a
second image, estimating one affine transformation per feature and hence an affine correspondence.
The steps of this approach are:

1. Feature detection on undistorted images with sRD-SIFT, whenever the number of tracked
features are lower than a certain threshold;

2. Feature tracking using an affine tracker in order to compute affine correspondences;
3. Filtering out tracklets out of the boundary, over the marker or disrespecting the epipolar

constraint;
4. Estimation of 3D points and normals, using information encoded in the affine tracklets;
5. Refinement of normals using an homography-based tracker.

4 Formulation of Trackers

A tracker to perform image alignment is an algorithm that apply image transformations on a
template to minimize the difference between that template and an image. In practice, a tracker
has the goal of finding an image warp W (p,x) that minimizes the cost function∑

x
[I(W (x,p))− T (x)]2 . (1)

During this section, all formulations of trackers used in the sparse model computation are detailed,
as well as the adaption for radial distorted images.

4.1 Adaptation for Radial Distorted Images

4.2 Affine KLT Tracker

The affine KLT tracker was implemented with an inverse composition formulation to take advantage
of its computational efficiency as reported in ?. In ?, it is demonstrated how to formulate a tracker
based on affine transformations.
Assuming an affine warp with the following parameterization:

W(x,p) =
[
p1 + 1 p3 p5
p2 p4 + 1 p6

]x1
x2
1

 (2)

being p = [ p1 p2 p3 p4 p5 p6] T a vector of warp parameters and x = [ x1 x2] T a pixel to
be warped, the least-squares minimization can be done by an iterative update of warp parameters
(p) with

∆p = H−1∑
x

[
∇T ∂W

∂p

]T
[I(W(x,p))− T (x)] (3)

where H is the Hessian matrix

H =
∑

x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
(4)
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and ∂W
∂p is the jacobian of the warp evaluated at p = 0.

∂W
∂p =

[
x 0 y 0 1 0
0 x 0 y 0 1

]
= ∂W

∂p

∣∣∣∣
p=0

(5)

A significant part of expression 3 can be computed before the iterative part of the algorithm,
because the terms ∂W

∂p (evaluated at p = 0), ∇T and hence H−1 are constant. This is the reason
for the efficiency of inverse compositional formulations.
After computing the update, the warp estimate should be updated with the equation below.

W(x,p)←W(x,p) ◦W(∆x,p)⇔W(x,p) = W(W(∆x,p),p) (6)

To summarize, the algorithm steps are the following:

• Pre-computation part:

1. Compute template gradients (∇T (x));
2. Evaluate the warping jacobian (∂W

∂p ) at (x,0);
3. Compute steepest descent images (∇T ∂W

∂p );
4. Compute the inverse of Hessian matrix (H−1).

• Iterative part:

1. Warp I with W(x,p) to compute I(W(x,p));
2. Compute update ∆p using equation 3;
3. Update the warp as described in equation 6.

4.3 Affine Motion-Constrained KLT Tracker (Forward Additive)

The tracker explained in subsection 4.2 assumes that the affine transformation between the template
and the image can be anyone. However this affine transformation is constrained by the camera
motion and only a small part of the affine transformations verify the motion constraints. The
affine motion-constrained KLT tracker uses the known motion to ensure the estimated affine
transformation is coherent with the motion constraints.
Given an affine correspondence (A,x,y)

A =
[
a1 a3
a2 a4

]
, x =

[
x1
x2

]
and y =

[
y1
y2

]
(7)

and the essential matrix E

E =

e1 e4 e7
e2 e5 e8
e3 e6 e9

 (8)

the following matrix equation is verified:y1 + a1x1 y2 + a2x1 1 a1x2 a2x2 0 a1 a2 0
a3x1 a4x1 0 y1 + a3x2 y2 + a4x2 1 a3 a4 0
x1y1 x1y2 x1 x2y1 x2y2 x2 y1 y2 1

 e = 0 (9)
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being e = [e1 e2 e3 e4 e5 e6 e7 e8 e9]T .
Assuming that the essential matrix and x are known, it is possible to manipulate equation 9 in
order to put the parameters of A and y in evidence, as shown below.

x1e1 + x2e4 + e7 x1e2 + x2e5 + e8 0 0 e1 e2 e3
0 0 x1e1 + x2e4 + e7 x1e2 + x2e5 + e8 e4 e5 e6
0 0 0 0 x1e1 + x2e4 + e7 x1e2 + x2e5 + e8 x1e3 + x2e6 + e9


︸ ︷︷ ︸

C

c = 0

(10)
where c = [a1 a2 a3 a4 y1 y2 1]T . Since y = Ax + b, equation 10 can be written as

 2x1e1 + x2e4 + e7 2x1e2 + x2e5 + e8 x2e1 x2e2 e1 e2 e3
x1e4 x1e5 x1e1 + 2x2e4 + e7 x1e2 + 2x2e5 + e8 e4 e5 e6

x2
1e1 + x1x2e4 + x1e7 x2

1e2 + x1x2e5 + x1e8 x1x2e1 + x2
2e4 + x2e7 x1x2e2 + x2

2e5 + x2e8 x1e1 + x2e4 + e7 x1e2 + x2e5 + e8 x1e3 + x2e6 + e9


︸ ︷︷ ︸

D

d = 0

(11)
with d = [a1 a2 a3 a4 b1 b2 1]T .
The equations of system 11 are constraints introduced by the camera motion to the general affine
transformations. The null-space of D (N = Null(D)) constitutes a basis of the space of affine
motion-constrained transformations, allowing to obtain a new parameterization of them. Thereby,
this subset of transformations can be written as linear combination of the columns of N ,

d =



n1 n4 n7 n10
n2 n5 n8 n11
n3 n6 n9 n12
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

N

r (12)

and r = [p1 p2 p3 p4]T . From last equation of system 12, p4 = 1, so the final parameterization
is

a =



n1 n4 n7 n10
n2 n5 n8 n11
n3 n6 n9 n12
1 0 0 0
0 1 0 0
0 0 1 0


[
p
1

]
(13)

where a = [a1 a2 a3 a4 b1 b2]T and p = [p1 p2 p3]T .
Since this subset of affine transformations is not a group, the affine motion-constrained tracker can-
not be implemented with an inverse compositional formulation. For this reason, it was implemented
with a forward additive formulation. Given the affine motion-constrained warp function

W(x,p) =
[
n1p1 + n4p2 + n7p3 + n10 n3p1 + n6p2 + n9p3 + n12 p2
n2p1 + n5p2 + n8p3 + n11 p1 p3

] [
x1
x2

]
(14)

the minimization of cost function 1 can be done by an iterative update of warp parameters (p)
with

∆p = H−1∑
x

[
∇I ∂W

∂p

]T
[I(W(x,p))− T (x)] (15)
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where H is the Hessian matrix

H =
∑

x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
(16)

and ∂W
∂p is the jacobian of the warp. In contrast to inverse compositional formulation, the terms

of equation 15 are not constant during the iterative part. The warp parameters are updated using
equation 17.

p← p + ∆p (17)

The algorithm steps are presented below.

• Iterative part:

1. Warp I with W(x,p) to compute I(W(x,p));
2. Warp gradients of ∇I with W(x,p)
3. Evaluate the Jacobian ∂W

∂p at (x,p)
4. Compute update ∆p using equation 15;
5. Update the warp as described in equation 17.

Since this tracker is specialized for affine motion-constrained transformations, the initial affine
transformation provided as input of the tracker should be projected to the affine motion-constrained
space before the tracking process.

4.4 Affine Motion-Constrained KLT Tracker (Inverse Compositional)

In order to create an inverse compositional formulation of the affine motion-constrained tracker,
the model must be modified. Considering that a transformation can be written as

An = An−1A
−1
i ⇔ Ai = A−1

n An−1 (18)

where An, An−1 and Ai are respectively a final transformation, an initial transformation and an
adjustment, an inverse compositional formulation turns out to be reasonable to find matrix Ai.
Based on the new parameterization, introduced in equation 13, pn−1 is the vector of parameters
of An−1 (also represented as An−1(pn−1)), pn is the vector of parameters of An (or An(pn)) and
pn = pn−1 + pi, where pi is the ajustment vector. The tracker optimizes vector pi.
Assuming this model, the warping function is shown in equation 19.

W(x,pi) = A−1
n (pn)An−1(pn−1)x = A−1

n (pn−1 + pi)An−1(pn−1)x (19)

The updates of pi are computed using equation 3 and applied with equation 6. Although this
tracker has been formulated as an inverse compositional tracker, the jacobian must be modified in
each iteration because it is dependent of pn−1 and this vector changes in each iteration. For this
reason, this formulation is not so efficient as a common inverse compositional formulation.

4.5 Homography-based KLT Tracker (Inverse Compositional)

The tracker proposed in this subsection is based on homographic transformations in order to refine
surface normals. This idea consists of assuming that a surface is locally planar in the neighborhood
of a point (figure 5). Given a 3D point xp, over a locally planar surface, that is viewed by cameras C0
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Figure 5: Schematic representation of geometric parameters to describe two cameras and a locally
planar surface.

and C1 and projected respectively at pixels with coordinates u0 and u1 (u0h and u1h in projective
coordinates), equation 20 is verified.

u1h = K1(RxTp n + tnT )K−1
0︸ ︷︷ ︸

H

u0h (20)

K1 and K0 are respectively the intrinsic matrices of cameras C1 and C0, R and t are the rotation
matrix and the translation vector between cameras C0 and C1 and n is the surface normal vector.
With the purpose of formulating an inverse compositional tracker, a homography can be written as

Hn = Hn−1H
−1
i ⇔ Hi = H−1

n Hn−1 (21)

where Hn, Hn−1 and Hi are respectively a final homography, an initial homography and an
adjustment. The tracker is used to estimate the adjustment Hi to modify Hn−1, in each iteration.
The optimization of normals can be done through two possible approaches: refining only the
normal vector and refining the distance to the origin (h = |xTp n|) and the normal vector.

4.5.1 Refinement of Normal Vector

This refinement consists of optimizing the normal vector direction. For this, it is modified using

nn = nn−1 + αx̄α + βx̄β︸ ︷︷ ︸
ni

(22)

where x̄α and x̄β are two unit vectors, which are perpendicular to xp and to each other.
Assuming that camera calibration and motion are known, the homography can be parameterized
with the normal vector, being nn the vector of parameters of Hn (represented by Hn(nn)) and nn−1
the vector of parameters of Hn−1 (or Hn−1(nn−1)). Based on this parameterization the warping
function can be written as

W(x,pi) = Hn(nn)−1Hn−1(nn−1) = Hn(nn−1 + ni)−1Hn−1(nn−1) (23)

being pi = [α β]T , the vector of parameters optimized by the tracker. Similarly to the inverse
compositional formulation of the affine motion-constrained tracker the update is computed with
equation 3 and applied using equation 6, recomputing the jacobian in each iteration.
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4.5.2 Refinement of Distance to the Origin and Normal Vector

This refinement consists of optimizing the locally planar surface parameters: distance to the origin
(moving xp) and normal direction. In order to obtain homography parameterization for that goal,
equation 20 is manipulated as shown in equation 24.

u1h = K1(R+ tn′T )K−1
0︸ ︷︷ ︸

H

u0h with n′ = n
xTp n (24)

Assuming that camera calibration and motion are known, homographies can be defined by the
scaled normal vector (n′). The update of scaled normals is done using expression below

n′n = n′n−1 + n′i (25)

where n′i is the adjustment of parameters. So, defining n′n as the vector of parameters of Hn

(represented by Hn(n′n)) and n′n−1 as the vector of parameter of Hn−1 (or Hn−1(n′n−1)), the
warping function is

W(x,pi) = Hn(n′n)−1
Hn−1(n′n−1) = Hn(n′n−1 + pi)

−1
Hn−1(n′n−1) (26)

with pi = n′i. The tracker performs the optimization of pi using equations 3 and 6.
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