
Monocular vSLAM and Fast Piecewise Planar Reconstruction using
πMatch

Diogo Vaz, Carolina Raposo and João P. Barreto

Abstract—πMatch is a recent monocular vSLAM pipeline
with the particularity of being a feature-based method that,
unlike other non-direct approaches, provides dense reconstruc-
tions. It uses Affine Correspondences (ACs) to recover both the
camera motion and the 3D planes of the scene, and efficiently
tackles problems faced by other direct and non-direct methods.
Despite its important advantages, it has two main bottlenecks
that hamper real-time performance. This paper advances the
πMatch pipeline by modifying two of its modules, leading to
a higher accuracy in the camera motion estimation, as well
as a dramatic improvement in the computational efficiency,
with a speedup of over 40×. The main source of improvement
comes from a new Markov Random Field (MRF) formulation
that allows a very fast and accurate dense segmentation of
the images and subsequent Piecewise Planar Reconstruction
(PPR). Reconstruction results on a challenging loop-closing
sequence demonstrate the clear superiority of the proposed
MRF approach, when compared to a sophisticated point-based
method, both in terms of computational efficiency and quality
of the 3D model.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
important topic in robotics due to its numerous applications
such as autonomous navigation [1], [2] and 3D reconstruction
of indoor environments [3]. SLAM is a generic process to
estimate the position of a device, and, at the same time,
build a 3D map of its surrounding environment from the
data acquired by one or more sensors attached to it. When
these sensors are cameras, the problem is referred to as
Visual SLAM (vSLAM) and there are typically two families
of methods to accomplish it: direct and feature-based/non-
direct methods. The latter are based in point correspondences
across frames, having the advantages of being fast, relatively
robust to outliers and changes in illumination, and able
to cope with wide-baselines [4], [5]. The former use the
information of the entire image, having the advantages of
providing dense reconstructions as opposed to a sparse point
cloud [6], [7]. Both approaches have difficulties in handling
situations of dynamic foreground, pure rotation and/or pres-
ence of multiple rigid motions.

Our previous work in monocular vSLAM presented in [8]
introduced, for the first time, an approach that is different
from the existing ones in the sense that it is feature-based
but relies in plane primitives, which are obtained by using
affine correspondences (ACs), as opposed to point corre-
spondences. This plane-based approach, dubbed πMatch,

The authors acknowledge FCT and COMPETE2020 program for gen-
erous funding through project VisArthro with reference PTDC/EEI-
AUT/3024/2014.

The authors are with the Institute of Systems and Robotics, Dept. of
Electrical and Computer Engineering, University of Coimbra, Portugal.

Direct Features πMatch [11]
Robust to outliers 8 4 4

Wide baselines 8 4 4
Moving objects/Pure rotation 8 8 4

No prior information 8 8 4
Dense 3D models 4 8 4

TABLE I: Comparison between direct, non-direct and
πMatch monocular VSLAM methods.

is able to conciliate the benefits of direct and non-direct
methods, being computationally efficient, handling wide-
baselines, and providing dense 3D models by performing
dense pixel labelling using a standard Markov Random Field
(MRF) formulation [9], [10]. In addition, the method is
able to handle situations not only of outliers and changes
in illumination, but also dynamic foreground, pure rotation
and multiple motions. These advantages are summarized in
Table I.

The motivation for this work arose from the fact that
a MATLAB implementation of the πMatch algorithm is
unable to run in near-real time, limiting its usability. Thus,
we implemented the algorithm in C/C++ and achieved an
average speed up of approximately 1.7×, which was still
unsatisfactory for a near-real time application. A more care-
ful analysis of the computational performance allowed us to
identify two main bottlenecks to be removed.

This paper develops further this promising new paradigm
for vSLAM, improving its computational efficiency and
resilience to scale drifts in long sequences. In particular, we
propose modifications to 2 of the original modules of the
pipeline, leading to a speed up of over 40× with respect
to a straightforward C++ implementation while improving
overall accuracy and robustness.

The modified modules are:
i) AC extraction: the new module is 2.6× faster than the

original one and ensures a uniform spreading of the
features in the images, benefiting the subsequent steps
of the pipeline and thus improving the overall estimation
accuracy.

ii) MRF for planar segmentation of images: the new
MRF formulation makes use of superpixels [12] to
significantly speed up the segmentation of images into
planes (40×), while maintaining accuracy.

It is important to note that the proposed changes may have
applications in other pipelines. As as example, any pipeline
that employs MRF for piecewise planar segmentation of
images [9], [13] can use the formulation proposed in this
paper for that task.



The source code is available online from http:
//arthronav.isr.uc.pt/~diogovaz/piMatch/
PiMatchCpp.zip.

II. OVERVIEW OF πMATCH

πMatch [8] is a monocular vSLAM method that relies on
plane features to estimate the camera motion and a PPR of
the scene. It can be divided into several sequential modules,
as follows. For each pair of frames, the method starts by
extracting affine features in each image, which are then
matched. The output of this first module, denoted by ACs,
is a set of ACs. In the next module (Π Det), these ACs are
clustered into coplanar regions by using a metric proposed
in [11]. Each plane cluster yields an homography, estimated
in a robust manner (using RANSAC), which is decomposed
into two rigid transformations that constitute hypotheses for
the camera motion. This step is denoted M Hyp. Module
Cam M receives these motion hypotheses as input and
merges them in a PEaRL formulation [14], being also able
to identify and handle situations of dynamic foreground,
multiple motions and pure rotation. Another PEaRL step
is performed for merging and refining the plane hypotheses
(Π Merge). πMatch has a final step (MRF) for dense pixel
labelling, and subsequent PPR, which is optional due to its
very high computational cost.

A. Translation from Matlab to C++

The original implementation of πMatch presented in [8]
was done in MATLAB, being unable to run sufficiently fast
for online applications. Thus, we started by implementing the
pipeline in C++ and, despite the average speedup of 1.7×,
the overall computational performance is still unreasonable
for a vSLAM pipeline.

In order to find possible bottlenecks and assess the time
complexity of each module of the pipeline, we did a profiling
using a set of 6 image pairs (shown in Fig. 2) that contains
different situations of lighting, texture, and type of scene
(indoor/outdoor). This set of images, with resolution of 720p,
is used throughout the paper as study cases. They were
acquired with the left and right cameras of a Bumblebee
stereo pair, so that the ground-truth of the camera motion

Fig. 1: Distribution of computational times per module, in
seconds, of the Matlab (red) and C++ (blue) versions.

Fig. 2: ACs extracted on the 6 test pairs (first image
shown) using VLFeat and the proposed VLFeat Accelerated
approach, and their average times. Distribution of rotation
and translation errors obtained with each method, for 50
different runs of the algorithm.

(RGT , tGT ) is known. All tests were performed on an Intel
Core i7-3610QM CPU @ 2.30GHz processor.

Fig. 1 shows the distribution of times, per module, ob-
tained with the Matlab and C++ implementations. It becomes
clear that the MRF stage is the main bottleneck of the
pipeline, being more than 20 times slower than the other
modules. Besides MRF, only the first step of AC extraction
takes over 1 s to complete1, and thus it is identified as another
bottleneck. This paper proposes solutions for these two main
issues, which are described next.

III. FAST ESTABLISHMENT OF ACS

Empirical observation showed that the good functioning of
πMatch depends on the quality and spatial spreading of ACs
and not only on the number of these correspondences, i.e., it
is relatively indifferent to have 100 or 1000 ACs on the same
plane. Also, the computational performance of the method
highly depends on the number of ACs. Thus, improvements

1Please note that the incongruence with the execution times reported
in [8] is due to the fact that different processors and image resolutions
were used. Also, in [8], the algorithm was executed in a batch manner, i.e.,
AC extraction was performed for several images simultaneously.



in performance pass by limiting the number of ACs, while
assuring that they properly sample the images and represent
and different planes.

In the original pipeline presented in [8], AC establishment
is performed using the standard implementation provided by
the VLFeat library [15]. This step includes feature detection,
affine shape estimation and matching. Detection is performed
in scale space with saliencies being chosen as points whose
derivative along scale is above a certain threshold δ. Also, the
matching process requires the computation of the distance
between all the features in the two images of the pair,
becoming prohibitive for a large number of points. The
strategy employed in [8] to limit the number of saliencies is
by increasing δ, but, depending on the texture of the image,
this may cause problems of high concentration of features in
some regions and lack of features in others.

In order to solve this problem, the proposed AC extraction
method, named VLFeat Accelerated, divides the image into
blocks, which enables to speed up detection by parallelizing
the process, as well as to limit the number of ACs per
block while assuring spreading. The limitation of the number
of ACs, in each block, is not performed by increasing the
threshold δ, since this would lead to no detection in poorly
textured blocks. In this method, δ is kept low and only a part
of the detected features is considered. A straightforward way
of limiting the number of features is to randomly select them.
However, it was experimentally observed that many features
did not provide a match, being discarded. This problem arose
because of the poor quality of the selected features. VLFeat
accelerated solves this problem by selecting the best features
as the ones that provide a higher value of the derivative along
scale. This selection method provides a significantly higher
number of matches than random selection, benefiting the
subsequent steps of the pipeline. As a last step, the matching
process is accelerated by parallelization.

A. Performance of VLFeat Accelerated

The performance of the new AC extraction module, both
in terms of computational efficiency and accuracy, is as-
sessed using the set of 6 study case images. Due to the
random nature of the motion hypotheses generation module,
different results may be obtained in different runs of the
algorithm. Thus, we performed 50 runs of the pipeline using
as AC extractor both VLFeat and VLFeat Accelerated, and
computed the rotation error as the angular magnitude of
the residual rotation between the estimated one and RGT
and the translation error as the angle between the estimated
translation and tGT . The distributions of these errors, as well
as the ACs extracted by each method, are shown in Fig. 2.

Results show that using VLFeat Accelerated instead of
VLFeat typically leads to higher accuracies. This can be
explained by the much more uniform spatial spreading of
the features that is achieved. In addition, the execution times
are presented on the bottom right corner of each image,
showing an average speed up of VLFeat Accelerated over
VLFeat of 2.6×. Besides being significantly faster, VLFeat
Accelerated also provides much more stable computational

Fig. 3: Schematic representation of the data term computa-
tion for one plane.

times, evinced by the difference in their standard deviations,
which are 0.011s as opposed to 1.328s for VLFeat.

IV. FAST SEGMENTATION OF IMAGES INTO PLANES

The purpose of the final step of the πMatch pipeline is
to perform a pixel-wise labelling of the images into planar
regions, having as input the camera motion and the planes of
the scene. After this labelling, the 3D points are reconstructed
according to the plane they are assigned to, providing a
PPR of the scene. This dense segmentation is formulated
as a discrete optimization problem using a standard MRF
approach [9], where the nodes of the graph are the image
pixels (p ∈ P , where P is the set of pixels) and the
labels l are the plane hypotheses (plus the discard label l∅
used to identify non-planar objects). The cost function to be
minimized contains data and smoothness terms, as follows.

E(l) =
∑
p∈P

Dp(lp)︸ ︷︷ ︸
Data Term

+λS
∑

(p,q)∈N

V(p, q)

︸ ︷︷ ︸
Smoothness Term

, (1)

where the data term function Dp(lp) is defined by the
normalized cross-correlation (NCC) between two images,
V(p, q) is the spacial smoothness term, λS is a weighting
constant, N is the 4 × 4 neighbourhood of p and l is the
labelling. Even for small resolution images, this is a complex
optimization problem due to the high number of nodes, being
inadequate for use in vSLAM approaches.

A. Superpixel-based MRF

The solution to the complexity issue passes by reducing
the number of nodes in the graph such that a near real-
time dense planar segmentation of the images is achieved.
To accomplish this, we propose to use superpixels as nodes
because they divide the image into similar regions in terms
of texture, and it is reasonable to assume that neighbouring
pixels with identical values belong to the same plane.

The first image of the pair is fragmented into a grid
of Preemptive SLIC superpixels [12]. The second image
is warped by the homographies associated to the candidate



Fig. 4: Planar segmentation results obtained with the original and the proposed MRF formulations. The Jaccard indices are
shown on the bottom right corner of each image and the computational times appear on the top left corner. The manual
labelling of the images, considered as Ground Truth (GT) is shown on the top row.

planes, generating a number of transformed images equal
to the number of planes. In the original MRF formulation,
the NCC is computed for each pixel between the first and
the transformed images, being a slow process. We propose
a Superpixelwise Normalized Cross Correlation (SNCC) to
quickly and directly determine, for each superpixel, the
photo-consistency between the two images. The photo-
consistency measure is the NCC calculated with superpixels
as windows, which is then converted to the NCC Energy
(NCCE) by NCCE(p, l) = −0.5(NCC(p, l)− 1) because we
are minimizing a cost function. Since SNCC is computed
without overlay of windows, the resulting NCCE transitions
between neighbour superpixels are abrupt and need to be
smoothed with a weighted averaging function:

NCCEavg(S, l) = α0NCCE(S, l)+

M∑
i=1

αiNCCE(Ni, l) (2)

where α0 and αi (i = 1 . . .M ) are a set of weights whose
sum is 1, M is the number of neighbour superpixels and Ni
is neighbour superpixel i of S. These steps are illustrated in
Fig. 3.

In this MRF formulation, the data term is defined as

Dp(l) =

{
min(NCCEavg(p, l),Dmax) if l 6= l∅

D∅ if l = l∅
, (3)

where Dmax and D∅ are constants, and the smoothness term
becomes

V(p, q) =


0 if lp = lq

G · T if lp = l∅ ∨ lq = l∅

G ·min(d(p, q),T) + t otherwise
,

(4)
where G = 1

λgrad∇I2+1 and λgrad, T and t are tuning param-
eters. Regarding functions d(p, q) and ∇I2, novel definitions

are proposed. Two superpixels p and q are considered neigh-
bours if they are adjacent. For neighbouring superpixels, the
line segment that links their centroids is intersected with their
inner borders, yielding two distinct pixels. These pixels are
reconstructed into 3D points according to the labels lp and lq
of their corresponding superpixels and the distance between
the two 3D points defines d(p, q). These pixels are also used
in the definition of function ∇I , as it is the distance between
their RGB colours.

Experiments showed that besides being dramatically faster
than the standard MRF formulation, this approach is able to
provide proper planar segmentations of the images. However,
since superpixels are a coarse approximation to pixels, there
are cases in which the labelling near the transitions of planes
has faults, and thus a more sophisticated formulation is
required.

B. Improvement by Adding Lines

Given the information about the planes in the scene
provided by the pipeline, we propose to use the lines of
intersection between the estimated planes to ensure correct
transitions in the labelling. The 3D lines are projected on the
image and the superpixels that they intersect are subdivided.
In order to force label transition in the subdivided superpix-
els, the smoothness term is reformulated by multiplying a
new function f(p, q) by the third expression of the branch
function in Equation 4. f(p, q) is equal to a constant, lower
than one, if the centroids of the superpixels p and q are
separated by one of the lines projected on the image. This
constant forces the transition between planes, because if the
labels assigned to neighbour superpixels are different and a
line separates them, the energy is reduced. The constant can
be tuned to force more or less the transitions.

The proposed subdivision of the superpixels allows to
locate the plane transitions and thus delineate them in the
image, even when is has no clear edges. The improvement



comes from the fact that these superpixels are more powerful
than the conventional ones as they are obtained from both
3D scene and 2D image information.

C. Dense Labelling Experiments

The proposed MRF formulation is compared to the origi-
nal one by assessing their accuracies using the 6 test image
pairs for which a manual planar segmentation, considered
as ground truth, was performed, as shown in the top row of
Fig. 4. In order to provide a fair comparison, the same camera
motion and planes are used as input to both MRF approaches.
Fig. 4 shows the obtained labelling, providing a qualitative
assessment of the segmentation results. On the bottom right
corner of each labelling image, the average Jaccard index
computed for all plane labels is shown. The Jaccard index
is the ratio between the number of pixels equally labelled
(in the ground-truth and in the evaluated labelling) and the
number of pixels of the union set. When the index is equal
to one, the ground-truth and evaluated labellings are equal.
This provides a quantitative evaluation of the methods. The
execution time of each method, in seconds, for each test pair,
is shown on the top left corner of the images.

The proposed MRF approach has an average computa-
tional time of 0.707±0.113 s, being 40 times faster than
the original MRF whose execution time is 28.296±9.084 s.
This dramatic improvement in the computational efficiency
is crucial for vSLAM applications that require online execu-
tion. When comparing the labelling accuracy of both MRF
methods, it can be seen that the new formulation is superior
to the original one as it provides a higher Jaccard index for
all images. A more careful analysis of the obtained labellings
also shows that the proposed approach is more effective in
discarding non-planar objects that appear close to the camera.

This experiment demonstrates that the proposed MRF
formulation is superior to the original one, being able to
provide better segmentation results in a fraction of the time.
This makes the proposed method an important alternative for
planar segmentation schemes, being useful both in pipelines
that require online execution and applications that can run
offline.

V. EXPERIMENTS IN LARGE-SCALE SEQUENCES

This section reports experiments on 4 sequences of the
KITTI dataset [16], with different lengths, to assess the
accuracy of the πMatch pipeline updated with the proposed
modifications to two of its modules. Instead of running
in a sequential manner as in [8], and in order to achieve
better computational performance, another modification is
performed to the architecture of the pipeline. It consisted
in organizing the pipeline in a multi-thread structure imple-
mented in C++, where the modules of AC extraction, plane-
based Structure from Motion (SfM), discrete optimization
and MRF are executed in distinct threads. The computational
times reported in this section were measured with this
modification.

Experiments were performed with the ACs extractor con-
figured to divide the image into 16 blocks and to limit

(a) Obtained trajectories and per-pair motion errors.

(b) Motion errors using the metrics presented in [16]

Fig. 5: Trajectories and obtained motion errors for 4 se-
quences of the KITTI dataset, with different lengths: Se-
quence 1 - 125 frames, Sequence 2 - 268 frames, Sequence
3 - 395 frames and Sequence 4 - 1101 frames.

the maximum number of outputted ACs to 800, for com-
putational efficiency. In order to numerically evaluate the
global performances for the analysed sequences, the average
rotation (ER) and translation (Et) errors are computed using
the error metrics proposed in [16]. The distribution of rota-
tion (eR) and translation (et) errors, computed as explained
in Section III-A using the ground truth, and the obtained
trajectories are also shown in Fig. 5.

Analysing the results, it can be seen that they are similar
to the ones reported in [8] for the first 3 smaller sequences.
However, for the 1101-frame sequence, the new pipeline was
able to outperform the original one, providing a significantly
smaller scale drift. This indicates that the new module for
AC extraction,VLFeat Accelerated, provides higher quality
ACs than the original one, benefiting the scale estimation,
which is a difficult problem in monocular vSLAM/SfM.

Fig. 6 shows the reconstruction results obtained with the
new MRF formulation for sequences 3 and 4. The high
quality dense PPRs that were obtained are not only due to
the good segmentation ability of the proposed MRF, but also
because the planes in the scene are very accurately estimated.

Using the new version of the pipeline, inserted in a multi-
thread architecture, it achieves an average computational time



(a) Sequence 3 (395 frames)

(b) Sequence 4 (1101 frames)

Fig. 6: Reconstruction results for Sequences 3 and 4. Some
areas are shown in greater detail for better visualization.

of 1.151 s per frame, being several times faster than the
original, as shown in Fig. 1. If the discrete optimization of
planes and the MRF segmentation steps are removed, the
method achieves an average time of 0.719 s per frame.

The average motion per frame in the KITTI dataset is
approximately 0.5 m. In order to assess the performance of
the proposed pipeline in a more challenging sequence, the
loop closing trajectory presented in [13] was used. This is
a 1370-frame stereo sequence acquired with a moving car
that travelled 1100 m, having an average displacement of 0.8
m per frame. Although the average per-frame displacement
is not very high, the vehicle travelled more than 0.8m in
more than 40% of the trajectory. Not only the wide baselines
but also the fact that this sequence has many curves and
variations in altitude make it very challenging, especially in
the estimation of scale.

The performance of the proposed approach is compared
with the sophisticated point-based algorithm VisualSfM [17].
The monocular sequence resulting from the acquisition of
the left channel is fed to both methods and results show
that both of them have difficulty in handling the wide
baselines, providing a high loop-closing error (Fig. 7a).
In order to identify the source of error, and since this
is a stereo sequence, the complete dataset (left and right
channels, and extrinsic calibration of the stereo rig) was
used as input to the VisualSfM pipeline, and the estimated
motions are considered as a pseudo ground truth. The relative
scales of the pseudo GT are injected in the trajectories
estimated by the monocular VisualSfM and πMatch, and
the resulting paths are depicted in Fig. 7b. It can be seen

(a) Obtained trajectories (b) Trajectories with injected GT scale

(c) Motion errors and execution times

Fig. 7: (a) Trajectories provided by the proposed version
of πMatch and monocular VisualSfM and (b) the same
trajectories with their relative scales corrected using the GT
scales. (c) Loop-closing errors computed as described in [13]
for the trajectories shown in (b) and execution times per
frame.

that all three trajectories are almost identical, demonstrating
the accurate estimation of the rotation and direction of
translation by our method. The errors computed using the
loop-closing error metrics described in [13], obtained with
these modified trajectories, are shown in Fig. 7c, as well
as their computational times, per frame. Results show that
the methods are equivalent in terms of accuracy, having
the important difference that πMatch is significantly faster
than VisualSfM. In the case of pure motion estimation,
without dense reconstruction, πMatch provides not only the
camera motion but also the 3D planes in the scene, as
opposed to VisualSfM that outputs a sparse point cloud.
When dense reconstructions are required, πMatch is more
than an order of magnitude faster than VisualSfM, while
providing much more visually pleasant 3D reconstructions.
Fig. 8 evinces this fact by showing the 3D reconstructions
provided by πMatch and VisualSfM, where some areas can
be seen in greater detail. VisualSfM’s dense reconstructions
are typically populated by noisy 3D points and contain gaps
where texture is low. On the other hand, πMatch provides
clean reconstructions, where only the structural planes are
shown. We believe that the ability to produce such dense
and accurate 3D models from monocular sequences is an
interesting advance in the literature, especially since this is
performed at nearly 1fps. Note that such a scheme could be
used for online indoor reconstruction of environments, by
mounting a camera on a robot travelling at about 1m/s.



Fig. 8: 3D reconstructions of the 1370-frame loop closing sequence obtained with πMatch (blue arrows) and VisualSfM
(red arrows), where some areas are shown in greater detail for better visualization.

VI. CONCLUSIONS

This paper advances the state-of-the-art in monocular vS-
LAM by improving πMatch, which is a recent feature-based
algorithm that provides accurate PPRs of the scene. The
improvements consisted in modifying two of its modules,
yielding higher quality ACs, and dramatically faster planar
segmentations, up to the point that the pipeline can be used
in online applications. Although the problem of robust scale
estimation is still unsolved, experiments show that the quality
of the extracted ACs leads to lower scale drifts for medium
baseline sequences, when compared to the original pipeline.
Drifts in scale occur in more challenging sequences and, as
future work, we intend to use the detected planes, which are
more constant over time than points, to tackle this problem. A
possible idea is to perform a final optimization for correcting
the scale drift using loop closing and information about the
planes that are shared across frames.

REFERENCES

[1] H. Lategahn, A. Geiger, and B. Kitt, “Visual SLAM for autonomous
ground vehicles,” in ICRA, 2011, pp. 1732–1737.

[2] G. Ros, A. Sappa, D. Ponsa, and A. M. Lopez, “Visual slam for
driverless cars: A brief survey,” in Intelligent Vehicles Symposium (IV)
Workshops, vol. 2, 2012.

[3] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in CVPR, June 2015.

[4] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in 2007 6th IEEE and ACM International Symposium
on Mixed and Augmented Reality, ISMAR, 2007.

[5] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” 2017.

[6] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM:
Dense tracking and mapping in real-time,” in Proceedings of the IEEE
International Conference on Computer Vision, 2011, pp. 2320–2327.

[7] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large- Scale
Direct Monocular SLAM,,” in European Conference on Computer
Vision (ECCV), vol. 8690, 2014, pp. 834–849. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-10605-2

[8] C. Raposo and J. P. Barreto, “πMatch: Monocular vSLAM and
Piecewise Planar Reconstruction Using Fast Plane Correspondences,”
pp. 380–395, 2016.

[9] M. Antunes, J. P. Barreto, and U. Nunes, “Piecewise-planar recon-
struction using two views,” Image and Vision Computing, vol. 46, pp.
47–63, 2016.

[10] A. Bódis-Szomorú, H. Riemenschneider, and L. V. Gool, “Fast,
approximate piecewise-planar modeling based on sparse structure-
from-motion and superpixels,” in CVPR, 2014, pp. 469–476.

[11] C. Raposo and J. P. Barreto, “Theory and Practice of Structure-From-
Motion Using Affine Correspondences,” CVPR, 2016.

[12] P. Neubert and P. Protzel, “Compact watershed and preemptive SLIC:
On improving trade-offs of superpixel segmentation algorithms,” in
ICPR, 2014, pp. 996–1001.

[13] C. Raposo, M. Antunes, and J. P. Barreto, “Piecewise-planar stere-
oscan: Sequential structure and motion using plane primitives,”
TPAMI, pp. 1–1, 08 2017.

[14] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate
energy minimization with label costs,” IJCV, vol. 96, 2012.

[15] A. Vedaldi and B. Fulkerson, “VLFeat - An open and portable library
of computer vision algorithms,” Design, vol. 3, 2010.

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in CVPR, 2012.

[17] C. Wu, “Towards linear-time incremental structure from motion,” in
Proceedings of the 2013 International Conference on 3D Vision, ser.
3DV ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
127–134.


