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Abstract—Keypoint detection and matching is of fundamental impor-
tance for many applications in computer and robot vision. The association
of points across different views is problematic because image features can
undergo significant changes in appearance. Unfortunately, state-of-the-art
methods, like the scale-invariant feature transform (SIFT), are not resilient
to the radial distortion that often arises in images acquired by cameras with
microlenses and/or wide field-of-view. This paper proposes modifications to
the SIFT algorithm that substantially improve the repeatability of detection
and effectiveness of matching under radial distortion, while preserving the
original invariance to scale and rotation. The scale-space representation of
the image is obtained using adaptive filtering that compensates the local
distortion, and the keypoint description is carried after implicit image gra-
dient correction. Unlike competing methods, our approach avoids image
resampling (the processing is carried out in the original image plane), it
does not require accurate camera calibration (an approximate modeling of
the distortion is sufficient), and it adds minimal computational overhead.
Extensive experiments show the advantages of our method in establishing
point correspondence across images with radial distortion.

Index Terms—Image keypoints, radial distortion (RD), scale-invariant
feature transform (SIFT) features.

1. INTRODUCTION

Finding point correspondences between two images of the same
scene is a key step of many computer and robot vision algorithms, such
as structure-from-motion (SfM), visual recognition, and image content
retrieval. Current methods for associating points across different views
typically comprise three steps: 1) the detection of keypoints, e.g., cor-
ners and blobs, at distinctive locations that can be repeatedly found
under different viewing conditions; 2) the description of a keypoint
neighborhood patch, usually represented through a feature vector that
must be distinctive and robust to geometric and photometric transfor-
mations; and, finally, 3) the matching of descriptor vectors which is
typically carried using a distance defined in the feature space, e.g.,
Euclidean distance [1]. The literature reports several approaches for
finding image correspondences that differ in one or more of the steps
enumerated previously [1], [2]. The scale-invariant feature transform
(SIFT) [3] is arguably one of the most popular matching algorithms,
being broadly used in robotics because of its invariance to common
image transformations such as scale, rotation, and moderate viewpoint
change [4], [5].
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Many robotic systems employ cameras with unconventional opti-
cal arrangements that introduce radial distortion (RD): fish-eye lenses
provide a wide field-of-view (FOV), which is advantageous for many
robotic tasks like egomotion estimation [6] and visual place recog-
nition [7]; minilenses are often used in flying robots because of their
small size that enables complying with payload requirements [8]; boro-
scopes are employed in medical endoscopy and industrial inspection
for visualizing small cavities with difficult or limited access [9]. Un-
fortunately, the SIFT algorithm, as well as the majority of competing
methods, is meant for perspective images and cannot handle the strong
distortion introduced by these optics [6]-[10]. At the image level, the
RD causes a nonuniform displacement of the pixel positions along ra-
dial directions and toward the center. This leads to a compression of the
image structures that affects the scale-invariant detection in multiple
manners, with some keypoints, that are previously found at fine scales,
being missed; other keypoints being assigned to incorrect scales; and
false keypoints being detected because of spurious image artifacts (e.g.,
straight lines that become curves) [11]. In addition, and since RD also
changes the image gradients, the SIFT description varies with the po-
sition where the feature is projected, which has a pernicious effect in
terms of matching results [11].

This paper presents a set of modifications to the SIFT algorithm that
improve the detection repeatability and matching performance under
RD, while preserving the original invariances to scale and rotation.
Keypoints are detected by looking for extrema in a scale-space rep-
resentation obtained using a kernel that adapts the distortion at each
image pixel position. It is shown that this adaptive filtering can be
well approximated by a horizontal and vertical 1-D correlation using
a Gaussian kernel with standard deviation that varies with the pixel
image radius. Such approximation enables a computational efficiency
that is comparable with the original SIFT algorithm. Additionally, we
propose to achieve description invariance to RD by performing implicit
gradient correction using the Jacobian of the distortion function. The
main virtue of our algorithm, i.e., dubbed sRD-SIFT, is that all the
operations are carried in the original image plane, avoiding the intro-
duction of spectral artifacts, while implicitly reconstructing the image
signal before resampling [10]. Extensive experiments show that sRD-
SIFT has important advantages with respect to alternative approaches
such as explicit distortion correction [4] and the pSIFT algorithm [7].
The paper extends a previous conference publication [12], providing a
more thorough analysis and validation of the framework.

A. Related Work

SIFT has been applied, in the past, to images with significant dis-
tortion. While some works simply ignore the pernicious effects of RD
and directly apply the original algorithm over distorted images [9],
others perform a preliminary correction of distortion through image
rectification and, then, apply SIFT [4]. The latter approach is quite
straightforward, but it has two major drawbacks: the explicit distor-
tion correction can be computationally expensive for the case of large
frames and, more importantly, the interpolation required by the image
rectification introduces artifacts that affect the detection repeatability.

Daniilidis et al. [10] were the first ones arguing that the warping of
wide FOV images should be avoided, and that optical flow in catadiop-
tric views should be computed assuming the sphere S? as the underlying
domain of the image function. In [13], Bulow proposes a scale-space
representation for functions defined in S? by solving the spherical heat
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diffusion equation. Inspired by [13], Hansen et al. investigated the
generalization of the SIFT algorithm for images with domain on the
sphere [7]. The advantages of such generalization are twofold: First,
the SIFT on the sphere can be indistinguishably applied to any type of
central projection image. The only requirement is to know in advance
the intrinsic camera calibration in order to map the image plane into
S?; second, the formulation of SIFT on the sphere enables us to achieve
full invariance to pure camera rotation motion. The original SIFT algo-
rithm that is proposed by Lowe [3], despite being invariant to rotations
on the plane PP, is unable to handle the projective transformations due
to camera rotation [14].

The main difficulty in extending the SIFT algorithm to the sphere is
the computation of a suitable scale-space representation that passes, in
animplicitly or explicitly manner, by backprojecting the image I into S?
and convolving the result with a spherical Gaussian function Gg [13].
Ideally, this operation must avoid the resampling of the original image
signal [10] and must be computationally efficient. So far, the proposed
approaches are the following.

1) Mapping Gg into P? [10]: Instead of backprojecting I into S?,
the kernel Gy is projected into P? and the convolution is carried
directly in the image plane. This avoids image resampling but
leads to an adaptive filtering, with the mapped Gaussian kernel
changing at every image pixel location, and the filtering not being
separable in X and Y [15]. Such complexity makes the solution
unsuitable for generating the multiple levels of the difference-
of-Gaussian (DoG) pyramid.

2) Diffusion in the Spectral Domain [7]: The Gaussian smoothing is
performed in the spectral domain. Let I ¢ be the result of backpro-
jecting the original image I into the sphere. The spectrum of Ig
can be found via a discrete spherical Fourier transform (DSFT),
and the filtering result is achieved by applying the inverse DSFT
to the product of the image spectrum with the transform of Gg.
This operation can be efficiently implemented as long as it is im-
posed an upper limit in bandwidth to keep computation tractable.
The problem is that such limit can lead to aliasing issues [7].

3) Approximated Diffusion (pSIFT) [7]: The diffusion on the sphere
can be efficiently approximated by mapping the image I via the
sphere into the stereographic plane and by convolve the result
with the stereographic projection of Gg. The projected Gaussian
kernel, despite changing at every image pixel location, is always
a symmetric function that can be approximated by successive 1-
D convolutions along X- and Y-directions (separation property).
This enables us to achieve a computational efficiency similar to
the original SIFT, while avoiding the aliasing problems of the
spectral approach. However, the mapping of I requires image
resampling that introduces pernicious artifacts [7].

4) Laplace—Beltrami Operator [16], [17]: Recently, some authors
have applied Riemannian geometry concepts to compute the
scale-space representation of central catadioptric images. The
Gaussian smoothing on the sphere is achieved through a suitable
Laplace— Beltrami (LB) operator that preserves the geometry
of the visual contents and adapts to the nonuniform resolution,
while using the original image pixel values. Unfortunately, the
derived LB operators are specific for catadioptric images and
cannot be applied to cameras with lens distortion.

Comparing with the previously described methods, our framework
is less general in the sense that it requires the distortion to be described
by the division model [18] (this excludes catadioptric images) and is
not invariant to the effects of pure camera rotation motion. However,
in sRD-SIFT, every processing step is carried on the plane using orig-
inal pixel values and, in a similar manner to the pSIFT algorithm, the
computational efficiency of the adaptive filtering is improved by con-
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sidering an approximate kernel function that is separable in X- and
Y -directions. Another advantage is that, unlike the aforementioned
approaches, sSRD-SIFT does not require accurate intrinsic camera cali-
bration (an approximate modeling of the distortion suffices).

B. Article Structure and Notation

The structure of this paper is as follows. Section II is a background
section that briefly reviews the SIFT algorithm, the assumed camera
model, and evaluation metrics that will be used throughout the paper.
The modifications to SIFT detection and description leading to sRD-
SIFT are, respectively, discussed in Sections III and IV. The design of
the algorithm is guided by tests on a representative set of perspective
images to which RD is artificially added. This enables fully controlled
experiments with accurate ground truth and assurance that observations
are only due to the distortion effect. Finally, Section V conducts several
tests with real distorted images undergoing changes in scale, rotation,
and viewpoint.

Convolution kernels are represented by symbols in sans serif font,
e.g., G, and image signals are denoted by symbols in typewriter font,
e.g., I. Vectors and vector functions are typically represented by bold
symbols, and scalars are indicated by plain letters, e.g., x = (z, y)T

and f(x) = (f.(x), f, (x))".

II. BACKGROUND
A. Scale-Invariant Feature Transform

The keypoint detection uses a scale-space representation of the im-
age [19] where the Laplacian-of-Gaussian is approximated by LoG [20].
Let I(x,y) and G(z,y; o) be, respectively, an image signal and a 2-D
Gaussian function with standard deviation o. The blurred version of
I(x,y) is obtained by its convolution with the Gaussian kernel

L(z,y;0) = I(x,y) * G(z,y;0) )

and the DoG pyramid is computed as the difference of consecutive
filtered images with the standard deviation differing by a constant
multiplicative factor:

DoG(x,y,k""'o) = L(z,y; k" "' o) — L(z,y;k"0) . (2)

Each pixel in the DoG pyramid is compared with its neighbors in
order to find local extrema in scale and space dimensions. These ex-
trema are, subsequently, filtered and refined to obtain keypoints. The
next step is the computation of the descriptor vectors using the im-
age gradients of a local patch around each detected keypoint. Scale
invariance is achieved by performing all the computations at the scale
of selection in the Gaussian pyramid. The method starts by finding
the dominant orientation of the local gradients and uses it for rotating
the image patch toward a normalized position. Finally, the SIFT de-
scriptor is computed by performing a Gaussian weighting of gradient
contributions, quantizing the orientations, and building histograms that
accumulate magnitudes. For further details, see [3].

B. Division Model for Radial Distortion

We will assume that the image distortion follows the first-order
division model [18], with the amount of distortion being quantified by
a single parameter & (typically, £ < 0), and the distortion center being
approximated by the image center. Letx = (z,)" andu = (u,v)" be
the coordinates of corresponding points in the distorted and undistorted
images expressed with respect to a reference frame with origin in the
center. f is a vector function that maps points in the undistorted image
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plane I" into points in the distorted image I [18]:
2u
1 —4&(u? +v?)

N O - I
I+ /1t o)

The function is bijective, and the inverse mapping from I to I" is given
by

x
1"‘5(1;‘1‘3/2) ) )

1+ &(2? +9y?)

Given a particular value for the radius » = /2% + 32 in the distorted
image, the corresponding undistorted radius is
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The RD is quantified in the division model by the parameter £. Hence-
forth, and in order to make the compression undergone by a particular
image more intuitive, the amount of distortion will be quantified by

_ u x 100 = —&ry x 100 (6)
87}

%distortioll

with ), denoting the distance from the center to the image corner (the
maximum distorted radius).

C. Performance Metrics

1) Measuring Detection Performance: The repeatability of key-
point detection in different views of a scene is an important metric
to characterize the performance of a particular detection scheme. Let
S; and S, be the sets of keypoints that are independently detected in
images I; and I,. The repeatability is given by

#Strue

TR R @

%chcatability =

with S'™"¢ being the keypoints that are simultaneously detected in the
two views (S'™"¢ = §; N S,), and # denoting set cardinality. A key-
point belongs to S'™¢ jff it is a common detection that satisfies consis-
tency criteria in space and scale [1]." The space consistency concerns
the keypoint pixel location in the two images and can be verified using
the multiview geometry between I; and I, (e.g., a plane homography
H mapping one image into the other, the epipolar constraint, etc.). The
scale consistency refers to the fact that the scales of detection in the
two images must agree. Note that if a keypoint in a distorted image
has scale o4, then in the absence of distortion, the corresponding scale

would be
04

14 &r2
with 7 denoting the original keypoint radius (5). Since the distortion
causes a nonlinear compression that diminishes the size of the image
structures, the evaluation must take into account this effect and perform
an adaptive correction of scale using a linear approximation of the
distortion function.

®)

gy =

'We follow the criteria that are proposed in [ 1] where the consistency in space
and scale implies an overlap between keypoint regions of more than 70%.

2) Measuring Matching Performance: Two keypoints are consid-
ered to be a match iff the Euclidean distance between their SIFT de-
scriptors is below a certain threshold A [3], [7]. Let M be the set of
keypoints in the image I; for which the matching algorithm finds a cor-
respondence in I,. The set M can be divided into the correct matches
M ¢ and incorrect matches M 15¢. Thus, the ability of the matching
algorithm in finding correct matches can be quantified using the recall.
This metric must be complemented by the precision that measures how
well the algorithm discards keypoints that have no correspondence:

B #Altruc

true
recall(X) = g = ﬂ

precision(A)
#M

(€))

In general, a good matching performance is achieved whenever there
is a choice for A that makes both the precision and the recall close to
1. Thus, the matching performance can be evaluated by verifying if the
curve /-precision versus recall for varying A passes at a short distance
of the ideal operation point (0, 1) [1].

III. KEYPOINT DETECTION IN IMAGES WITH RADIAL DISTORTION

The distortion causes a nonuniform compression of the image struc-
tures that affects SIFT detection performance. This can be observed in
the synthetic experiment of Fig. 1(a), where the repeatability of key-
point detection decreases with increasing amounts of added distortion.
A straightforward strategy to avoid the harmful effects of RD is to
explicitly correct the distortion and run the standard SIFT detection on
the rectified frame [4]. Fig. 1 also evaluates this approach, with the test
frames being first distorted and then restored using successive image
resampling. It would be to expect a repeatability close to 100%; how-
ever, and despite the significant improvements with respect to standard
SIFT, the results are far from this score.

The problem is that the distortion correction by image resampling
implicitly requires reconstructing the signal from the initial discrete im-
age. Thus, not only there are high-frequency components that cannot
be recovered (e.g., low resolution and aliasing), but also the recon-
struction filters are imperfect. The bilinear and bicubic interpolations
are, respectively, the first- and second-order approximations of the
ideal reconstruction kernel, i.e., the infinite sinc function [15]. These
approximations introduce spurious frequency components and other
signal artifacts that affect the keypoint detection. The skeptical reader
can easily confirm this fact by observing the experiment of Fig. 2. The
right-most image is the result of a linear rescaling of the left-most im-
age by a factor of 1.5. Note that since the signal resolution is increased,
there are neither aliasing effects nor losses of high-frequency compo-
nents. We would expect for the SIFT detector to find the same keypoints
in the original and expanded frames, but this is clearly not the case.
This largely explains the repeatability results shown in Fig. 1(a). It is
interesting to observe that for RD < 15% the standard SIFT detection
outperforms rectSIFT, meaning that for small amounts of distortion,
the harmful effects of image resampling surpass the benefits of the
explicit correction.

A. Adaptive Gaussian Filtering (RD-SIFT)

We propose to improve the detection repeatability using a model-
based approach for image blurring that compensates for the spectral
modifications caused by RD. While in rectSIFT, the DoG pyramid is
computed after warping the image, in this section, the scale-space
representation is generated directly from the frame with distortion using
adaptive Gaussian filtering. The outcome is a DoG pyramid equivalent
to the one that would be obtained by following the steps.

1) Correct the RD of the image I.
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Keypoint detection in images to which increasing amounts of distortion is artificially added. The curves are obtained by averaging results over

15 images with size 640 x 480 and different visual contents. The detection in the reference image (RD = 0%) is always performed using the standard SIFT. We
compare SIFT directly applied to distorted images (SIFT), SIFT applied over frames where the distortion is corrected using explicit image warping (rectSIFT), the
accurate adaptive filtering derived in Section III-A (RD-SIFT), and its approximated counterpart proposed in Section III-B to diminish the computational overhead
(sRD-SIFT). (a) Detection repeatability. (b) and (c) Robustness to errors in the calibration parameters. (d) Comparison of the computation times for building the
DoG pyramid. The robustness to calibration errors was tested assuming as ground truth the detection results for RD = 15%. The computational time was evaluated
for a constant distortion of 25% and increasing image sizes. (a) Detection repeatability. (b) Disturbance in the center. (¢) Disturbance in % of RD. (d) Time

profiling.

+ Original detection

Fig. 2. SIFT detection in resampled images. The size of the left-most image
is increased by 50% using bilinear interpolation. SIFT keypoint detection is
independently run in each frame, the results are compared, and the differences
overlaid. The reasons for new detections are explained in [3]. More surprisingly
is the fact that there are keypoints in the original image that are not detected in
the scaled version. Replacing bilinear for bicubic interpolation leads to similar
observations (not shown).

2) Blur the undistorted image I through successive convolutions

with a Gaussian function.

3) Apply RD to the blurred images L“.

4) Subtract the distorted blurred images L for obtaining the final

DoG pyramid.

As we will see later, the detection repeatability improves dramati-
cally by avoiding the image resampling required by the warping op-
eration. The adaptive Gaussian function is derived below. Consider
the convolution of the undistorted image I“ with a Gaussian kernel
with standard deviation o. By writing the convolution operation of (1)
explicitly, it comes that the blurred image is

D3PI

U= —00 V= —00

L' (s,t;0) G(s —u,t —v;0). (10)

If I is the original image, then it follows from Section II-B that

the variables (u,v) by (z,y) using the mapping relation (4), we ob-
tain the result of (11). This equation computes the undistorted blurred
image L" directly from the original distorted frame I. However, it is
no longer a strict convolution because the filter function varies with
the image location that is being filtered. Henceforth, we will refer to
this operation as being an adaptive convolution that is denoted by %
whenever convenient, as shown (11), at the bottom of this page. Let us
now apply RD to the blurred image L“ in order to obtain L. This can
be achieved in an implicit manner using again the mapping relations of
Section II-B. After replacing the undistorted image coordinates (s, t)
by their distorted counterpart (h, k) and performing some algebraic
simplifications, we obtain the adaptive filtering of (12), as shown at
the bottom of this page, with 7 being the distance between the center
and the image location where the filter is applied, and § being the ratio
between the radius d of each pixel contribution and r

4P
r NI Ew =
The keypoints are detected by looking for extrema in the DoG pyramid
that is computed by subtracting the images L of (12) for increasing
values of o (2). The new detection algorithm, henceforth dubbed RD-
SIFT, is evaluated against SIFT and rectSIFT using the set of images
with synthetically added distortion. Fig. 1(a) shows that for increasing
RD values, the detection repeatability suffers a much smoother degra-
dation than the one observed for the original SIFT. More importantly,
RD-SIFT outperforms rectSIFT for amounts of distortion up to 45%.
Beyond this point, the compressive effect is so strong that many image
structures disappear and can no longer be filtered out. Since rectSIFT
tries to restore the original signal, it tends to provide slightly better
repeatability under very extreme amounts of RD that are unlikely to
arise in real camera systems.

13)

B. Improving Computational Efficiency (sRD-SIFT)

Unfortunately, the adaptive convolution used in RD-SIFT is com-

I"(u) = I(x) withx = f(u) (3). Replacing I" by I and switching putationally demanding both in terms of memory and operations [10].
1
L"(s,1;0) W6(s— £ @y, t— £ (@y)o)  wiha = —— (11)
-% Z =
h—x+&?(hd? —2)  k—y+&r?(kd® —y)
L(h, k; ( : : ) 12
( o) Z Z 14+&r2(1+ 62 +&r26%) 14+ €r2(1+ 0% + &r262) 7 (12

Ir=—0 Yy=—«



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS

This section derives a filter approximation that enables high detection
repeatability while keeping computation tractable. Let us return to (12)
and analyze how the filter adapts to the RD present in the image. Con-
sider that the point with coordinates (h, k) is near the image center.
In this case, the term £72 is very close to zero and the filtering opera-
tion converges to the standard convolution by a Gaussian kernel. This
makes sense because, since the effect of RD is usually unnoticeable in
the center, there is no need for the filter to make any type of compen-
sation. Consider, now, that the point (h, k) is in the image periphery.
Since the filtering kernel dismisses pixel contributions far away from
the convolution center, it is reasonable to assume that (z, y) is close to
(h, k), and that the ratio ¢ is approximately unitary. Making 6 = 1 in
(12) yields

f(h,k;(r) = ZZ I(:I:,y)G(%, 1]1;;:2;0) (14)
¢y

with T being an approximation of L. The expression can be rewritten
using the adaptive convolution operator L=1Ix G, where G is given
by

G = Gla,y; (1 +&)o0). (15)

From (15), it follows that I is filtered by a Gaussian kernel with a stan-
dard deviation that varies with the image radius 7. As we move far from
the center, the filter adapts to the distortion by giving increasing em-
phasis to the pixel contributions closer to the convolution point. While
the exact filtering of (12) uses a different kernel at every image pixel
location, the approximation of (14) employs the same filter function
for image locations equidistant to the center.

It is well known that the regular 2-D Gaussian function G can be
generated by cascading two 1-D Gaussian kernels [15], [19]. The sepa-
rability property of the regular 2-D Gaussian function [15], [19] is used
in standard scale-space implementations for speeding up decreasing the
computational complexity of image blurring. The filtering is typically
achieved by successively convolving the image with a 1-D Gaussian
kernel with horizontal and vertical orientations. Unfortunately, neither
the exact filter of (12), nor 6, is separable. Despite this, let us consider
the adaptive kernel é, which is defined as

G =g (z,y;(1+&)0) * g (z,y: (1 + &r)o) (16)
with g;, and g, being horizontal and vertical 1-D Gaussian functions
with standard deviations varying with the radius of the convolution
center. Although not discussed in here due to space limitations, it
can be shown that G and G are equally good approximations of the
exact filter function of (12) [11]. Thus, the blurred images L, which are
necessary to build the DoG pyramid, can be approximated by L obtained
by convolving the original distorted image I with the 1-D filters g, and
g, . Fig. 1(a) shows the repeatability of the sSRD-SIFT detector that uses
separable adaptive filtering for the image blurring. The 1-D kernels are
precomputed and stored in a lookup table enabling an implementation
with an overall computation performance very close to standard SIFT
(see Algorithm 1). The marginal deterioration in repeatability caused by
the approximated filtering is largely compensated by the improvements
in computational efficiency [see Fig. 1(d)].

C. Additional Evaluations

1) Robustness to Calibration Errors: The algorithms RD-SIFT,
sRD-SIFT, and rectSIFT require prior knowledge about the center and
amount of distortion. In this experiment, we evaluate the robustness
of the detection to deviations in these parameters eventually due to
calibration errors. Fig. 1(b) shows the repeatability behavior when the

Algorithm 1: sRD-SIFT: Adaptive (horizontal) convolution
Input: I(h,k), €&, 0
Output: L(h, k; o)
/* Compute the filter bank F */
foreach »r = 0 — rp; do
| FIrl] = g (1 +&r2)o)
end
/* Perform horizontal convolution */
foreach h = 0 — hjqz do
foreach k = 0 — kjqz do
Compute the radius » = Vh? + k2
L(h, k;0) =342, T(hk + ) F[r][w + ]
end
end

position error in the distortion center ranges from 0 to 20 pixels (the
shift direction is random). As expected, all the methods are affected by
inaccurate center calibration, but the break in performance is smooth
and proportional to the disturbance. The behavior of the three algo-
rithms is very similar, with RD-SIFT being slightly more robust than
the competitors. Fig. 1(c) shows the repeatability when the error is in
the quantification of the RD. Both RD-SIFT and sRD-SIFT present
a reasonable robustness to the disturbance (the former more than the
latter). rectSIFT seems to be more sensitive, especially when the RD
is overestimated. We believe that this is due to a poorer image signal
reconstruction because of the wider interpolation intervals. From the
tests, we can say that the two algorithms that are herein proposed lead
to significant improvements in detection repeatability, even when the
RD calibration is performed in a coarse manner.

2) Run Time: This experiment compares the execution time of the
different detectors with respect to increasing image resolution. Fig. 1(d)
shows the average run time on the images of the synthetic dataset after
proper scaling and addition of RD = 25%. The measured detection
time is the sum of the time intervals spent in preprocessing, generat-
ing the scale-space representation, and looking for local extrema. In
RD-SIFT and sRD-SIFT, the preprocessing consists in computing the
adaptive filter masks and storing them into memory, while in rectSIFT,
it refers to correcting RD through image re-sampling. Note that for the
case of a monocular image sequence, the explicit RD correction must
be repeated for each frame, while the adaptive masks are computed only
once. From Fig. 1(d), it follows that sRD-SIFT has a computational
efficiency close to standard SIFT. We verified, experimentally, that the
overhead introduced by the adaptive filtering is usually negligible, and
that the time difference is caused by the preprocessing step. The graphic
also shows that rectSIFT is substantially less efficient, presenting an
execution time that grows exponentially with the image resolution.

IV. KEYPOINT DESCRIPTION IN IMAGES WITH RADIAL DISTORTION

The SIFT description is not invariant to RD because the nonlinear
deformation changes the image gradients in the neighborhood of the
keypoint. Thus, the SIFT vector is displaced in the description space
with respect to the position that it would have in the absence of distor-
tion. Since the RD deformation is nonuniform across the image, this
displacement depends on the location where the keypoint is detected.
The current section shows how to keep the descriptor vector stationary
in order to achieve RD invariance.

A. Implicit Gradient Correction

Since we have a model for the distortion, the RD invariance can be
achieved by correcting the deformation before generating the descrip-
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tors. This can be done explicitly by warping the image and computing
the gradients in the undistorted signal, or implicitly, by measuring
the gradients in the original image and correcting the result using
the derivative chain rule. The implicit approach avoids the propaga-
tion of interpolation artifacts inherent to the image resampling and
is, computationally, more efficient because the gradient correction is
only performed in the description regions around the keypoints. Let
I be the original image and I" be its undistorted counterpart. From
Section II-B, it follows that

Applying the derivative chain rule, it yields

VI' = J;.VI (17)

with VI" and VI being, respectively, the gradient vectors in I" and I,
and J¢ being the 2 x 2 Jacobian matrix of the mapping function f given
in (3). The Jacobian matrix can be written in terms of distorted image
coordinate x = (z, y)T by replacing u using the inverse mapping of

(4). It follows that
8&xy
1—- £(r2 _ 8y2)
with 7 denoting the radius of x.

1+&r? (1 —€(r? —8a?)
1—¢&r2 8&xy

In summary, we propose to measure the gradients directly in the
original distorted image I, evaluate the Jacobian matrix J¢ at every rel-
evant pixel location, and correct the gradient vectors VI using (17). The
descriptor is generated from the undistorted gradients VI following
the standard procedure described in Section II-A. The only modifica-
tion is the replacement of the weighting gaussian function G(z,y; o)
by G = G(x,y; (1 + &7?)0), in order to account for the changes in
pixel contributions due to RD.

J =

B. Evaluation in Keypoint Matching

Fig. 3 depicts the curves of precision—recall when the descriptors
for the matching are computed before and after performing distortion
compensation. The comparison with standard SIFT description shows
a dramatic improvement in the retrieval performance. Thus, the first
conclusion is that the correction of image gradients enables achieving
RD invariance during description, which boosts the overall matching
performance. By comparing implicit gradient correction against ex-
plicit image warping, it comes that the former outperforms to the latter
for amounts of distortion of &~ 25%. This is explained by the fact that
the interpolation employed in the resampling process introduces spuri-
ous frequency components that propagate for the first-order derivatives
that are used in the descriptor vector. For very strong distortions, the
explicit image rectification outperforms the implicit gradient correc-
tion. As discussed previously, beyond a certain amount of RD, the
compressive effect becomes so strong that local variations, that would
be observed in the undistorted image, are no longer detectable in the
distorted signal. In other words, it is impossible to recover the gradient
vector VI" using (17) because the corresponding vector VI cannot
be measured. In this case, the interpolation used in the explicit im-
age correction is advantageous because it enables inferring missing
information.

V. EXPERIMENTS WITH REAL IMAGERY

The evaluations of Figs. 1 and 3, that guided the design process,
were carried using a set of artificially distorted images. This section
aims to confirm the results so far by running experiments in images
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Fig. 3. Keypoint matching in images to which distortion is artificially added.
The matching is between the original perspective frames and the corresponding
distorted versions by a certain amount of RD (markers depict the amount of
distortion). The graphics show the curves of /-precison versus recall averaged
across the different images of the dataset. (a) Matching of SIFT descriptors
computed after explicitly correcting the distortion (red lines) with the original
SIFT framework (gray-dashed lines). (b) Matching of SIFT descriptors com-
puted after implicit gradient correction, as proposed in Section IV-A, with the
original SIFT framework. (a) rectSIFT vs SIFT. (b) sSRD-SIFT vs SIFT.

Fig. 4. Calibration grid and three images (out of 13) of each sequence used
in the experiments described in Section V-A. The images were acquired with a
camera with low lens distortion (RD~ 10%), a 4-mm minilens commonly used
in flying robotics’ applications (RD~ 25%) [8], and a fish-eye lens with a wide
FOV (RD= 45%) [6], [7]. The resolution was 640 x 480 for all cases.

acquired by real cameras with lens distortion that undergo changes in
scale, rotation, and viewpoint. The sRD-SIFT keypoint detection and
matching is compared against the original SIFT algorithm, the SIFT run
after performing explicit RD correction via image warping (rectSIFT),
and the pSIFT framework [7]. As discussed in Section I, the pSIFT
detection approximates the spherical diffusion using a stereographic
projection and computes the descriptor by considering a support region
on the sphere, which is resampled to a canonical patch of size 41 x 41.

A. Planar Textured Surfaces

This experiment uses three images sequences of planar scenes ac-
quired using lenses that introduce different amounts of distortion (see
Fig. 4). The results of each sequence are averaged over 78 image pairs
obtained from 13 frames. For the case of rectSIFT and sRD-SIFT, the
distortion center is assumed to be coincident with the image center, and
the distortion parameter £ is roughly estimated by straightening up lines
in the image periphery [21]. For the case of pSIFT, the camera intrinsics
are fully calibrated from images of a checkerboard pattern using the
method proposed in [22]. Since the scenes are planar, the frames are
related by an homography that can be used to verify the correctness
of the matches and the repeatability of detection [1], [2]. We apply a
robust estimation algorithm that uses hundreds of correspondences to
compute these ground truth homographies [2], [14].

The table in Fig. 5 compares the performance of the four stud-
ied algorithms. The two left-most columns concern the computational
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Time (sec) Detect. & Match. (Constant Threshold) Detect.&Match. (500 strongest detections)
Detect.  Total || #S  #S8'°  %Rep. #M'™“°  %Prec. || #S'7"¢  %Rep. #MC %Prec.
& ST 1.57 1.97 1052 596 57 405 62 179 36 122 68
S rectSIFT 3.31 3.73 1057 644 61 431 70 178 36 121 74
pSIFT 2.05 2.78 1224 756 61 524 67 207 41 141 71
sRD-SIFT 1.61 2.32 1080 777 72 528 71 219 44 146 77
« SIFT 1.95 219 1332 871 65 458 47 189 37 101 53
& rectSIFT 4.85 5.66 1375 1022 74 539 68 203 41 113 75
pSIFT 221 237 1558 1168 75 654 57 213 43 121 67
sRD-SIFT 1.99  3.02 1412 1110 78 641 65 228 46 127 74
& SIFT 1.87 2.35 900 295 27 78 30 102 20 32 40
¥ rectSIFT 18.22  20.88 752 419 56 165 67 181 36 72 74
pSIFT 2.33 4.28 1557 795 51 286 63 231 46 83 67
sRD-SIFT 2.01 3.98 1663 809 49 295 65 179 36 78 71
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Fig.5. Table compares the performance of the four algorithms in planar scenes. The left-most group of columns concern the computational overhead, the middle

group refers to detection and matching when the threshold value for keypoint selection in the DoG pyramid is the same for all methods, and the right-most group
repeats the analysis considering only the 500 strongest keypoint detections. #.5, #5'7%¢, and # M **"¢ are, respectively, the average numbers of independent
image detections (#S = min(#5;, #5S5,)), of common detections in the image pair (matching potential), and of correctly established correspondences. We
also show the detection repeatability and the matching precision as defined in Section II-C. (a)—(c) /-precisionversus recall curves that characterize the retrieval
performance of the four descriptors being tested (in this case, the keypoints were detected using sSRD-SIFT). (a) Recall for RD = 10%. (b) Recall for RD = 25%.

(c) Recall for RD = 45%.

overhead and show the time for detection® and the total runtime. It can
be observed that the overhead of pSIFT and sRD-SIFT with respect to
the original SIFT is very small, with the former being slightly slower
than the latter because of the rendering of the stereographic image.
In rectSIFT, the exponential growth of computation time with RD is
justified by the increasing size of the corrected warped frames.

The middle columns show the average results for detection and
matching when the threshold for selecting keypoints in the DoG pyramid
is 1.25 x 1072. The relative performance of SIFT, rectSIFT, and sRD-
SIFT in terms of repeatability and matching precision is in accordance
with the synthetic experiments in Figs. 1 and 3. For RD = 45%, rect-
SIFT presents the highest repeatability score, but SRD-SIFT achieves
substantially more detections thanks to the adaptive filtering that avoids
an excessive blurring in the image periphery. Comparing sRD-SIFT
with pSIFT, the former tends to achieve better repeatability and preci-
sion scores, but in overall terms, the two methods behave quite simi-
larly. Since the test images undergo significant changes in viewpoint
(see Fig. 4), the pSIFT invariance to camera rotation is an advantage
that seems to compensate the drawbacks of the resampling used for
rendering the stereographic image.

For some applications, like robot navigation, it is usually preferable
to have few high-quality keypoints than many points that are often

2The detection time does not include the offline computation of the filter
masks used by pSIFT and sRD-SIFT. For pSIFT, the MATLAB implementation
supplied by the authors took around 5 min to compute the octave filters for
each sequence. For sRD-SIFT, the MATLAB and C implementations took,
respectively, 1.25 and 0.35 s to accomplish the task.

unstable and cannot be reliably detected and matched across different
frames. Taking this into account, we decided to repeat the evaluation
using only the 500 strongest detection responses in each frame. The
results are shown in the right side of the table. The relative performance
of the four methods is roughly the same as above, with the comparative
advantages of sRD-SIFT and pSIFT becoming less pronounced, and
pSIFT emerging as top-performer for RD = 45%.

Fig. 5(a)- (c) aims to compare the four descriptors being tested.
The precision—recall of each method is measured over the same set of
keypoints detected using SRD-SIFT. The results are consistent with the
observations made in Fig. 3, with the implicit gradient correction of
Section IV-A being the top-performer for RD amounts up to 25%. For
very high distortion, the explicit correction by interpolation provides
the best keypoint description and can be used as an alternative to the
implicit gradient correction technique to further improve the matching
results of our framework. Surprisingly, the pSIFT descriptor presents a
break in terms of descriptor distinctiveness for all levels of distortion.
This fact is due to the additional resampling step for mapping the
sphere support regions into a canonical patch of 41 x 41 pixels [7].
The pernicious effects of the operation might be negligible for coarse
scale features, but for fine structures, the interpolation intervals are
often too large and induce gross errors in the rendered patch.

B. Structure-From-Motion

Accurate point correspondence across frames is of key importance in
multiple-view geometry [8], [14]. In this section, we consider 21 image
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Fig.6. Estimation of epipolar geometry from image correspondences obtained

using the four keypoint methods. The graphics show average results for the ratio
of inliers and the reprojection error when the value of the RANSAC threshold
increases. We consider 21 image pairs for each camera and run the estimation
algorithm 50 times for each RANSAC threshold value. (a) Inliers’ ratio. (b)
Reprojection error.

pairs of a scene with depth variation and estimate the relative camera
motion using epipolar geometry. The experiment is performed for each
one of the cameras used in the previous section, which are accurately
calibrated employing the method described in [22]. The rigid camera
motion is estimated by the well-known five-point algorithm [23], which
is run in a robust RANSAC procedure [24]. Fig. 6 compares the STM
results for each camera when the input correspondences are obtained
using SIFT, rectSIFT, pSIFT, and sRD-SIFT.

The RANSAC algorithm is an iterative scheme that computes the es-
sential matrix from five randomly chosen correspondences and counts
the number of point matches that agree with the achieved estimation. A
point match is considered to be an inlier iff the Sampson distance to the
corresponding epipolar line is below a certain threshold value [14]. We
decided to vary this threshold and analyze the inlier correspondences
and the reprojection error after estimating the relative displacement
between cameras. Although not shown in the graphics, SRD-SIFT pro-
vides the largest number of inliers, being closely followed by pSIFT.
rectSIFT and SIFT achieve roughly 20% and 30% less correct corre-
spondences than our framework. Fig. 6(a) depicts the percentage of
point matches that are classified as inliers during the SfM estimation. It
can be observed that sSRD-SIFT is consistently the top-performer, sig-
nificantly ahead of pSIFT for all levels of distortion. The same happens
for the reprojection error meaning that our approach is more accurate
in localizing the keypoints. This advantage is explained by the fact
that we completely avoid image resampling that introduces subpixel
position errors during the interpolation.

C. Structure-From-Motion in Medical Endoscopy

We are currently engaged in a project that aims to implement SfM
from arthroscopic images for the purpose of computer-aided navigation
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” #M  #MU® % Prec  Reproj. Error |
SIFT 110 13 11% —_
rectSIFT 130 52 40% 0.987
pSIFT 300 94 31% 0.927
sRD-SIFT || 306 134 42% 0.457

Fig.7. SfM in endoscopic stereo images with low texture. (a)—(d) Two images
are overlaid and the point correspondences for each method are marked in red.
The table shows the number of input matches for the RANSAC algorithm,
the number of inliers (green matches), and the final reprojection error. The
relative motion between views is refined by minimizing the reprojection error
using iterative bundle adjustment [14]. For the case of SIFT correspondences,
the RANSAC algorithm [24] was unable to converge to a plausible solution.
(a) SIFT. (b) rectSIFT. (c) pSIFT. (d) sSRD-SIFT.

in orthopedic surgery. In this context, finding accurate image corre-
spondences is specially difficult because not only the endoscopic lens
introduces severe RD (RD = 35%), but also the surfaces in the joint
cavity tend to be textureless (e.g., bones). Fig. 7 compares the estima-
tion of the rigid motion between two views of a knee model, when the
point correspondences are obtained using SIFT, rectSIFT, pSIFT, and
sRD-SIFT. The scene is very poorly textured, but there are small image
structures that can be potentially matched to accomplish the task. The
original SIFT provides unreliable matches because it cannot handle the
joint effect of RD and lack of texture. The results improve when the
keypoint detection and matching is carried out after distortion correc-
tion via image resampling. However, and given the reprojection error,
the accuracy of the motion estimation is not the best. The problem when
using rectSIFT is that the interpolation tends to smooth the fine image
structures, and the number of keypoint detections is relatively small.
pSIFT improves the number of input matches, but the interpolation er-
rors during resampling propagate to the camera motion estimation and
the final reprojection error is similar to the one achieved with rectSIFT.
SRD-SIFT seems to handle well the situation, providing the largest
number of inliers and reducing the reprojection error in 50%. This is
an example where using sSRD-SIFT makes all the difference in terms
of the achieved results.

D. Visual Odometry for Recovering Robot Trajectory

In this indoor experiment, a mobile robot with a fish-eye camera
describes a loop around a table. The objective is to recover the motion
from a sparse sequence of 19 images with RD ~ 45%. The motion
estimation is carried by a sequential SfM pipeline that uses as input
the point matches obtained by the four competing keypoint methods.
This pipeline iteratively adds new consecutive frames with a five-point
RANSAC initialization (using two views) [23], a scale factor adjust-
ment (using three views) [14], and a final refinement with a sliding
window bundle adjustment. This experiment is, particularly, challeng-
ing due to the wide-baseline displacements between frames, with the
usage of a fish-eye lens being crucial to have a sufficient overlay be-
tween views and, hence, obtain enough feature matches for the motion
estimation. The trajectory is a closed loop; however, we do not perform
matching between the last and the first view. In this manner, the motion
estimation tends to accumulate drift error, with the corresponding mag-
nitude being an indicator of the quality of input features. Fig. 8 shows
that the motion estimation using sSRD-SIFT keypoints is substantially
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Fig. 8. Robot motion estimation. The trajectory is a closed loop, with the last

image being captured in the same position as the first one.

superior to the others. The reason behind this result is that pSIFT and
rectSIFT establish a lower number of geometrically consistent matches
than SRDSIFT. The absence of good features, conjugated with the lower
subpixel precision and with the stochastic nature of the RANSAC ini-
tialization, leads to high variability of motion estimations in repeated
runs of the SfM pipeline, making rectSIFT and pSIFT unreliable.

VI. CONCLUSION

This paper proposes modifications to the broadly used SIFT frame-
work that make it resilient to image RD, while preserving the origi-
nal invariance to scale, rotation, and moderate viewpoint change. The
only assumptions are that the camera follows the division model [18],
and that the amount of distortion is coarsely known. We ran several
experiments, both in synthetic and real frames, that prove the advan-
tages of sSRD-SIFT whenever there is significant image distortion. Our
method provides significantly more correct point correspondences than
the SIFT algorithm run after correcting the distortion via image warp-
ing. Comparing with the pSIFT algorithm [7], the gains in terms of
number of matches are marginal, but SRD-SIFT has a higher accu-
racy in keypoint localization as proven by the experiments described in
Sections V-B—V-D. These benefits are achieved at the expense of a
small computational overhead when compared with the standard SIFT
implementation. sSRD-SIFT can be advantageous in several robot vision
tasks, ranging from SfM to visual recognition, as well as in medical
applications that rely in endoscopic imagery.

The main virtue of our approach is that it completely avoids image
signal resampling. The interpolation used in previous works, which
require image warping operations [4], [7], severely affects the keypoint
detection performance. With sSRD-SIFT, we show that the RD can be
locally compensated using an adaptive kernel, and that this adaptive
filtering can be implemented in a computationally affordable manner.
The latest version of SRD-SIFT binaries are available for download at
http:/larthronav.isr.uc.pt/ mlourencolsrdsift.
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