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Abstract—This paper presents a general approach for the simul-
taneous tracking of multiple moving targets using a generic active
stereo setup. The problem is formulated on the plane, where cam-
eras are modeled as “line scan cameras,” and targets are described
as points with unconstrained motion. We propose to control the
active system parameters in such a manner that the images of the
targets in the two views are related by a homography. This ho-
mography is specified during the design stage and, thus, can be
used to implicitly encode the desired tracking behavior. Such for-
mulation leads to an elegant geometric framework that enables a
systematic and thorough analysis of the problem at hand. The ben-
efits of the approach are illustrated by applying the framework to
two distinct stereo configurations. In the first case, we assume two
pan-tilt-zoom cameras, with rotation and zoom control, which are
arbitrarily placed in the working environment. It is proved that
such a stereo setup can track up to N = 3 free-moving targets,
while assuring that the image location of each target is the same for
both views. The second example considers a robot head with neck
pan motion and independent eye rotation. For this case, it is shown
that it is not possible to track more than N = 2 targets because of
the lack of zoom. The theoretical framework is used to derive the
control equations, and the implementation of the tracking behavior
is described in detail. The correctness of the results is confirmed
through simulations and real tracking experiments.

Index Terms—Active vision, computer vision, stereo, visual ser-
voing, visual tracking.

I. INTRODUCTION

ACTIVE tracking is a part of the active vision paradigm [1],
[2],where visual systems adapt themselves to the observed
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environment, either to obtain extra information or to perform a
task more efficiently. Active tracking consists of controlling the
degrees of freedom (DOF) of robotized cameras such that spe-
cific scene objects are imaged in a certain manner. An example
of active tracking is fixation, where camera control assures that
gaze is kept on the same object over time.

Fixation can be performed with either one camera (monoc-
ular fixation) or two cameras (binocular fixation). The former
typically employs a pan-tilt-zoom (PTZ) camera such that the
point of interest is aligned with the optical axis and projected
at the image center (fovea) [3], [4]. The latter usually considers
a stereo head [5], with the point of interest being foveated by
intersecting the optical axes of both cameras at the exact target
location (the vergence/fixation point) [5]–[7]. Since the fixation
point lies in the horopter [8], many binocular systems use tar-
get disparity between retinas as feedback-control signal [9]. In
general, and at the low image level, fixation can be formulated
as a regulation-control problem that does not require explicit
target identification or expensive image processing [10]. The
ability to fixate can be helpful to simplify a broad range of
high-level vision tasks, which include object recognition [11],
3-D reconstruction [12], robot navigation [13], monocular depth
inference [14], and robot docking [15].

While fixation concerns tracking a single object, this paper
addresses the problem of using an active stereo setup to simul-
taneously track N > 1 free-moving points of interest. Sommer-
land and Reid proposed an information theoretical framework
for tracking multiple targets with multiple PTZs [16]. However,
they addressed problems. e.g., sensor-target assignment, cam-
era hand-off, and zoom control with no missing new objects,
whereas the focus of this paper is toward extending the clas-
sical binocular fixation framework for the case multiple points
of interest. We aim to push the single focus of the attention
paradigm, which is typical of binocular fixation, toward a more
general multifocal attention framework [17].

In this paper, we show that it is possible to control the cam-
eras’ parameters such that the two views of the N targets are
related by a homography. This homography H—henceforth,
called the configuration homography—is specified in advance
and maps points of interest in one image into corresponding
points of interest in the other image. A suitable choice of H can
either ensure that the N objects are simultaneously visible in
both images and/or enforce a particular relation between views
that can simplify certain high-level visual tasks. This formula-
tion leads to a geometric framework that, for a particular stereo
configuration S, desired homography H, and number of targets
N , enables the feasibility of the tracking task to be determined,
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as well as the derivation of the relevant constraints on the control
parameters.

This problem is fully formulated in the plane, with the cam-
eras being modeled as “line scan cameras,” and the targets being
described as 2-D points. Such simplified model is often used in
binocular-fixation algorithms, where the control in tilt assures
the alignment between the object and the plane defined by the
cameras’ optical axes [6], allowing for the tracking in that plane.
For the case of multiple target tracking, the alignment in tilt is
often impossible to achieve (e.g., for N > 3, the points of in-
terest are in general noncoplanar). However, and for practical
purposes, we can always consider projecting the 3-D target mo-
tion onto the plane defined by the cameras’ optical axes. We will
show that this solution is in particular effective for indoor ap-
plications, where trajectories are usually parallel to the ground
plane.

A. Structure and Main Contributions

Our main contribution is the theoretical framework to control
the active camera system such that the images of the targets in
the two views are related by a homography. The formulation
is general and enables a systematic and thorough analysis of
the tracking by an arbitrary active stereo setup. The analysis
includes devising possible strategies, deciding about the feasi-
bility of the task, and deriving the control equations required for
the practical implementation. The benefits of the framework are
illustrated by applying it to two distinct stereo configurations.
The first scenario assumes two PTZ cameras that have been
arbitrarily placed in the work environment, while the second
scenario focuses on active tracking using a custom made robot
head with neck-pan motion and independent eye rotation.

The structure of the paper is as follows: Section II intro-
duces the notation and relevant background concepts. Section III
presents the projection model for “line scan cameras” and inher-
ent geometry. The homographic curve associated to an arbitrary
configuration homography is derived in Section IV, as a func-
tion of the system kinematics and camera’s intrinsic parameters.
The tracking problem is cast as the control of the active system
parameters such that the homographic curve goes through the
free-moving targets. Section V applies the mathematical formu-
lation to the case of tracking multiple targets using two PTZ
cameras. The feasibility study shows that it is possible to track
up to N = 3 free-moving targets, while assuring that the image
location of each target is the same in both views. For N = 2,
there is an infinite number of solutions for the control param-
eters that give rise to different possible tracking strategies. We
implement two of these strategies using commercial PTZ units
with low-bandwidth position control. For N = 3, the number of
solutions is finite. Simulation results show that the tracking is
possible in practice, but it requires cameras with a wide field-of-
view (FOV). Section VI discusses active tracking using the robot
head. It is shown that since the system has no zoom control, it
is only possible to track a maximum of N = 2 targets. Exper-
imental results of the active-tracking behavior are presented,
with the theoretical framework being applied to derive con-
trol equations in position and velocity, respectively. Section VII

concludes with a discussion about the possible new applications
of the framework.

This paper extends the Perdigoto et al. approach, where the
mathematical framework of the configuration homographies
was presented for the first time. Thus, there is a substantial
overlap between [18] and the contents of Sections II–IV. This
paper provides further details about the application of the frame-
work to the two situations stated earlier. In particular, the space
of solutions for the different tracking tasks are derived and dis-
cussed, simulation results for the tracking of N = 3 targets with
the PTZs, as well as real experiments in tracking N = 2 targets,
are presented, and a detailed description of the tracking im-
plementation using the POPEYE robot head is provided [see
Fig. 11(a)].

II. NOTATION AND BACKGROUND

We do not distinguish between a projective transformation
and the matrix representing it. Matrices are represented by sym-
bols in sans serif font, e.g., M, and vectors by bold symbols,
e.g., Q. Equality of matrices or vectors up to a scalar factor is
written as ∼. Points, lines, and conic curves, unless stated oth-
erwise, are represented in projective homogeneous coordinates.
The following sections briefly introduce background concepts
that will be used in the subsequent parts.

A. Vectorization of Matrix Equations

Let Y, A, X, and B be rectangular matrices such that

Y = A X B.

The aforementioned equality can be rewritten as

vec(Y) =
(
BT ⊗ A

)
vec(X)

where ⊗ denotes the Kronecker product, while vec(X) and
vec(Y) are the column-wise vectorizations of matrices X and
Y (cf., [19, Ch. 4]). It is also convenient to keep in mind the
following property of the Kronecker product:

(A B) ⊗ (C D) = (A ⊗ C) (B ⊗ D) .

B. Vector Representation of Conic Curves

Let us consider a point in the plane, with homogeneous
coordinates

X = ( x y z )T

and a conic curve represented by the symmetric matrix

Ω ∼


 a b/2 d/2

b/2 c e/2
d/2 e/2 f


 .

The point X is on the conic curve iff

XT ΩX = 0.

This second-order polynomial can be rewritten in the following
form:

ωT X̂ = 0
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Fig. 1. Line-scan camera model, where OXY is the world system of coordi-
nates. The camera is centered in C and rotated by an angle θ with respect to the
Y-axis. The 2-D point Q is projected into q in the line image. The dashed lines
L(λ) represent the pencil of the back projection.

with X̂ being the lifted point coordinates of X

X̂ = ( x2 xy y2 xz yz z2 )T

and ω a vector representation of the conic curve

ω = ( a b c d e f )T .

III. MODELING THE LINE-SCAN CAMERA

In this paper, the objects are described as free-moving points,
and the cameras are modeled as “line-scan cameras” that can
translate and rotate around an axis orthogonal to the plane of
motion. The geometry of unidimensional cameras has already
been studied under different contexts of application [20], [21].
This section introduces the projection and back-projection mod-
els that will be considered in the remaining part of the paper.

A. Projection Matrix

Fig. 1 shows a line scan camera with projection center

C = ( Cx Cy 1 )T

and matrix of intrinsic parameters

K ∼
(

f 0
0 1

)
with f standing for the focal length. With no loss of generality,
it will be assumed that the origin of the image is coincident with
the principal point.

Let Q be a generic point in the plane, and q is the 1-D
projective representation of its image. The projection for the
line scan camera can be carried as follows:

q ∼ K R ( I −C′ ) Q (1)

where I denotes the 2 × 2 identity matrix, C′ is the nonhomo-
geneous representation of the projection center, and R encodes
the rotation of the camera by an angle θ

R =
(

cos θ sin θ

− sin θ cos θ

)
.

The result of (1) is a 2 × 3 version of the standard-projection
matrix for the case of 1-D cameras [8].

B. Back-Projection Pencil

Let us now consider the problem of computing the back pro-
jection of an image point q. We define the matrix U such that

U ∼
(

0 −1
1 0

)
.

Since U denotes a rotation by an angle of 90◦, it is easy to verify
that

qT Uq = 0∀q∈P1 .

By left multiplying both sides of (1) by qT U, it follows that

qT U K R ( I −C′ )︸ ︷︷ ︸
LT

Q = 0 (2)

where L is a vector with length 3 that can be interpreted as the
homogeneous representation of a line in the plane. Since L goes
through Q and C, respectively, then it corresponds to the back
projection of the image point q.

Let us define λ such that(
λ

1

)
∼ RT KT UT q. (3)

For each image point q, there is a λ value that parametrizes the
corresponding back-projection line according to the formula

L(λ) ∼ ( I −C′ )T

(
λ

1

)
where L(λ) is the pencil of lines going through the camera
center C. It can be shown that for λ = 0, the line is parallel to
the X-axis, while for λ = ∞, the line becomes parallel to the
Y-axis (see Fig. 1).

IV. HOMOGRAPHIC CURVE

We propose using a 1-D configuration homography H to spec-
ify the desired tracking behavior. The idea is to control the ac-
tive stereo system such that the two views of the N targets are
mapped one into the other by the homography H. This section
discusses the locus of points in the working plane whose stereo
projections are related by a given homography. We show that
this locus is in general a conic curve going through the two
camera centers. The curve—henceforth called the homographic
curve—depends both on the chosen H and on the configuration
of the stereo setup. Thus, the active-tracking problem can be for-
mulated as the manipulation of the cameras’ parameters such
that the homographic curve goes through the N free-moving
targets. Note that the homographic curves generalize both the
horopter [8] and the isodisparity curves proposed in [22]. The
former is the homographic curve for H ∼ I, with points being
projected at the same location in both images. The latter corre-
sponds to the case of H being a 1-D translation that shifts image
points by a constant amount.

A. Image Homography and Pencil Homography

Fig. 2 shows two cameras with centers C1 and C2 , rotation
matrices R1 and R2 , and intrinsics K1 and K2 , respectively. Let
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Fig. 2. Homography H induces an homographic relation between the back-
projection pencils. It follows from Steiner’s theorem that corresponding lines
in two homographically related pencils intersect on a conic locus. Ω is called
the homographic curve of H because the images of any point Q on Ω satisfy
q2 ∼ Hq1 .

the desired image homography be

H ∼
(

a b

c d

)
(4)

where H maps points q1 in the first view into points q2 in the
second view

q2 ∼ Hq1 .

Let us now consider the parameterization of the back-
projection pencils discussed in Section III-B. Each image point
q corresponds to a back-projection line that is parameterized by
λ. Let λ1 and λ2 be the parameters associated with q1 and q2 .
Inverting (3)

q ∼ U K−T R

(
λ

1

)
and replacing in the homography equation, we obtain that(

λ2

1

)
∼ HL

(
λ1

1

)
with

HL ∼ RT
2 KT

2 UT H U K−T
1 R1 .

The image homography H defines a correspondence between
back-projection lines. This correspondence is described by HL

that maps lines of the pencil going through C1 into lines of the
pencil going through C2 . The equation relating H and HL has
been provided earlier and can be rewritten in a vectorized form
(see Section II-A). It follows that

vec(HL ) ∼ M F vec(H) (5)

where M is a 4 × 4 matrix depending on the rotation angles θ1
and θ2

M ∼ RT
1 ⊗ RT

2

∼




1 −tan θ2 −tan θ1 tan θ1 tan θ2

tan θ2 1 −tan θ1 tan θ2 −tan θ1

tan θ1 −tan θ1 tan θ2 1 −tan θ2

tan θ1 tan θ2 tan θ1 tan θ2 1




and F is a matrix encoding the intrinsic parameters

F ∼ (K−1
1 ⊗ KT

2 ) (UT ⊗ UT )

∼




0 0 0 f2

0 0 −1 0
0 −f1 f2 0 0
f1 0 0 0


 .

B. Equation of the Homographic Curve

The homography H transforms points q1 into points q2 , and
establishes an implicit correspondence between the respective
back-projection lines. This correspondence is parameterized by
the 1-D pencil homography HL that maps lines going through
C1 into the lines going through C2 . Let Q be the intersection
point of two corresponding back-projection lines. Since the pro-
jection of Q in the two views must satisfy the original image
homography H, the homographic curve that we are looking for
is the locus of all intersection points Q.

There is a well-known result from projective geometry—
the Steiner’s theorem—stating that locus of intersection of two
homographically related pencils is a conic curve going through
the centers of the pencils [8], [23]. Since our back-projection
pencils are related by a homography HL , the homographic curve
is always a conic Ω going through the camera centers C1 and
C2 (see Fig. 2). Given the 1-D pencil homography HL and the
position of centers C1 and C2 , it is possible to derive an explicit
expression for the conic Ω. The procedure is described in detail
in [23, cf., Chs. 5 and 6, respectively, for details and background]
and briefly outlined as follows.

1) Let l be the line defined by C1 and C2 , respectively, as
shown in Fig. 2. Since l belongs simultaneously to both
back-projection pencils, we compute the corresponding
parameters λ1 and λ2 such that

l ∼ L1(λ1) ∼ L2(λ2).

2) Let us assume l as a line belonging to the pencil L1 . The
1-D homography HL maps l into a line l2 in the second
pencil. We determine l2 taking into account that

l2 ∼ L2(λ′
2)

with (
λ′

2

1

)
∼ HL

(
λ1

1

)
.

In a similar manner, the inverse homography H−1
L trans-

forms l, as an element of pencil L2 , into a line l1 belonging
to the first pencil. Let us repeat the aforementioned com-
putation to determine l1 .

3) Let us compute D as the point of intersection of l1 and l2 ,
respectively. It can be proved that l1 and l2 are the tangents
to the curve in the points, where l intersects Ω [23]. Thus,
D and l are always pole–polar with respect to the conic Ω
satisfying

l ∼ ΩD.
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4) Let us determine an additional point A on Ω by inter-
secting a random pair of corresponding lines m1 and
m2 , respectively. For this, we select an arbitrary value
η1 	= λ1 , obtain m1 ∼ L1(η1), and compute m2 in the
second pencil by considering

m2 ∼ L2(η2)

such that (
η2

1

)
∼ HL

(
η1

1

)
.

5) The 5 DOF of the conic curve Ω are fully constrained
by the four points C1 , C2 , A, and D, respectively. Note
that D defines two independent constraints in the conic
parameters because of the pole–polar relation with l. Let
the four points define a canonical projective basis in the
plane [23]. It can be proved that in this case, the curve
parametrization is always

Ω′ ∼


 0 0 −0.5

0 1 0
−0.5 0 0


 .

6) The Euclidean parametrization of the conic curve can be
determined by applying a change of coordinates S that
maps the basis points back to their Euclidean coordinates.
It follows that

Ω ∼ S−T Ω′ S−1

with S being a 3 × 3 matrix given by

S ∼ (C1 D C2 ) diag
(
(C1 D C2 )−1 A

)
.

Following the aforementioned steps, we derive Ω as a function
of the two camera centers and the homographic relation HL

between pencils. After some tedious algebraic manipulations,
the vectorized form ω of the conic curve can be written as
follows:

ω ∼ N vec(HL )

with N depending on the nonhomogeneous coordinates of C1
and C2 , respectively

N ∼




0 0 −1 0
1 0 0 −1
0 1 0 0

−C1,y 0 C1,x + C2,x C2,y

−C2,x −C1,y − C2,y 0 C1,x

C1,y C2,x C1,y C2,y −C1,x C2,x −C1,x C2,y




.

Replacing vec(HL ) by the result of (5), we finally, obtain ω
in terms of the original configuration homography H defined in
the image plane

ω ∼ N M F vec(H). (6)

Equation (6) is nicely factorized in matrix N that encodes
the position of the centers (or alternatively the translational
component of camera motion), matrix M that depends on the

cameras’ rotations, and matrix F, which is a function of the
optical parameters.

C. Discussion

This section further analyzes (6) in order to gain insight about
the homographic curve and its dependencies. The product of
matrices N and M is a 6 × 4 matrix, where each column µi can
be interpreted as the vectorized representation of a conic

N M ∼ ( µ1 µ2 µ3 µ4 ) .

Let us consider the focal lengths in F and the scalar entries of H
(4). It follows from (6) that

ω ∼ d f2 µ1 − bµ2 − c f1 f2 µ3 + a f1 µ4 . (7)

Equation (7) denotes a linear system of conics with basis µi ,
where i = 1, . . . , 4 [23]. It shows that in general, a homographic
curve ω belongs to a 4-D subspace in the space of all conics.
This subspace is fully defined by the kinematic configuration
of the stereo setup because conics µi , in the basis, depend only
on the rotation and translation of the cameras. The coordinates
of ω in the linear system of conics are a function of the in-
trinsic parameters and the desired configuration homography H,
respectively.

Let V be the fixation point and T be the point in the plane that
is projected at infinity in both views [see Fig. 3(a)]. If C1 and C2
are fixed points, then the coordinates of V and T depend only
on the rotation angles θ1 and θ2 (8). It is curious to verify that
conics µi are rank 2 degenerate conics corresponding to pairs
of lines in the plane. Moreover, and as shown in Fig.3(b)–(e),
these lines can be found by knowing the locations of points C1 ,
C2 , V, and T, respectively

V=
−C2,x tan θ1 + C1,x tan θ2 + (C1,y − C2,y ) tan θ1 tan θ2

−C1,x + C2,x − C1,y tan θ1 + C2,y tan θ2

tan θ2 − tan θ1




T=
 C1,y − C2,y − C1,x tan θ1 + C2,x tan θ2

−C2,y tan θ1 + C1,y tan θ2 + (−C1,x + C2,x) tan θ1 tan θ2

tan θ2− tan θ1


.

(8)

Fig. 4(a)–(c) shows the effect that the choice of the configu-
ration homography H has in shaping the conic ω. It considers a
particular kinematic configuration for the cameras, such that C1 ,
C2 , V, and T are fixed points that implicitly define a subspace
in the space of all conics. Parameters f1 and f2 , respectively,
are assumed to be equal and constant.

Fig. 4(a) concerns the case of H being a diagonal matrix. The
different conics ω are generated by varying the ratio d/a. In this
case, the configuration homography specifies a scaled mapping
between images, and the linear system of conics becomes a
conic pencil [23]. Since the pencil is defined by µ1 and µ4
that intersect at points C1 , C2 , V, and T, respectively, then the
homographic curve ω always goes through these points.
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Fig. 3. Geometric interpretation of (7). V is the fixation point defined by the intersection of the optical axes. T denotes the point at infinity and can be understood
as the intersection of the lines going through the camera centers which are parallel to the “line images.” µi , i = 1, . . . , 4 are rank 2 degenerate conics and form
the basis of the linear system of conics described by (7). As shown in (b)–(e), the pair of lines composing each degenerate conic goes through points C1 , C2 , V,
and T, respectively. These points encode the kinematic configuration of the active stereo system and implicitly define a 4-D linear subspace in the space of all
conics, containing every possible homographic curve ω. (a) C1 , C2 , V, and T. (b) µ1 . (c) µ2 . (d) µ3 . (e) µ4 .

Fig. 4. Dependence between the homographic curve and the selected homography H. The cameras are static, and the focal lengths are constant and equal for
both views (the linear subsystem of (7) is fixed). The entries of matrix H (4) are changed in order to observe different shapes for the conic ω. (a) Scale mapping.
(b) Constant disparity mapping. (c) Projective mapping.

In Fig. 4(b), the configuration homography specifies a dis-
parity of b pixels between the stereo pair of images. H is an
Euclidean transformation that maps the point at infinity, in the
first view, into the point at infinity in the second view. This
explains the fact that T is always in the conic ω. On the other
hand, and since H specifies a shift between images, the image
centers are not mapped one into the other. This is in accordance
with the observation that ω does not go through the fixation
point V. The homographic curves in Fig. 4(b) are basically the
isodisparity curves discussed by Pollefeys et al. in the context
of stereo reconstruction [22].

Finally, Fig. 4(c) shows the homographic curves for the case
of H being a nonaffine projective transformation. Since b is zero,
the linear system of (7) becomes a conic net [23], with point V
being common to every member (the image centers are always
mapped one into the other).

V. ACTIVE TRACKING WITH TWO PAN-TILT-ZOOM CAMERAS

We derived the homographic curve and study its depen-
dence with respect to the specified configuration homography
H, camera-intrinsic parameters, and kinematic configuration of
the stereo setup. This section shows how to apply the established
framework to solve practical problems of active tracking. This

is illustrated by considering a pair of PTZ cameras with pure
rotation motion and zoom control. The two units are arbitrarily
placed in the working space at locations C1 and C2 , respec-
tively. Therefore, the DOFs of the active stereo system are the
pan angles of each camera θ1 and θ2 and the ratio ρ between the
focal lengths that can be manipulated using the zoom control

ρ =
f1

f2
.

Henceforth, we will assume that the desired configuration
homography H is the identity I. In this case, the active-tracking
behavior assures that the N targets are imaged at the same loca-
tion in both views, which might be an useful feature for many
real application scenarios. Note that assuming H ∼ I does not
imply a loss of generality. The framework can be similarly em-
ployed for different choices of the configuration homographies,
motivated by the need to meet the particular requirements of a
certain tracking problem.

Our objective in this paper is to track a set of N free-moving
targets in such a manner that they are imaged at the same position
in both views. Since H ∼ I, it follows from (7) that the curve
ω is always a member of the conic pencil

ω ∼ µ1 + ρµ4 . (9)
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For this particular case, the homographic curve ω is the horopter
of the stereo setup [8]. The curve contains points V and T,
which depend on the rotation angles of the cameras, as well as
the fixed-projection centers C1 and C2 [see Fig. 3(b) and (e)].
Since ω is a function of ρ, θ1 , and θ2 , respectively, the problem
can be stated as controlling the system’s DOF such that the
homographic curve goes through the locations of the N targets.

The remaining part of this section discusses the tracking for
an increasing number N of free-moving targets. With the help
of our geometric framework, we will be able to prove that under
the described conditions, it is possible to track up to N = 3
objects.

A. Tracking for the Case of N = 1

Let the target have coordinates Q at a certain time instant.
From (9) and Fig. 3(b) and (d), respectively, it follows that the
problem is feasible if there is an homographic curve ω such that

( Q̂ Ĉ1 Ĉ2 V̂ T̂ )T︸ ︷︷ ︸
A

ω = 0

where ˆ is the lifted point coordinates (cf., Section II).
Here, A is a 5 × 6 matrix that is a function of θ1 and θ2 [this

dependency is because of pointsV andT, whose coordinates are
provided in (8)]. In general, A has an unidimensional null space
N (A), which can be interpreted as a 6 × 1 vector representing
a conic curve. This curve belongs to the conic pencil of (9),
because it goes through the four intersections of µ1 and µ4 ,
respectively. By replacing ω by N (A) and solving with respect
to ρ, it yields the result, shown at the bottom of the page.

The aforementioned equation is written in terms of the non-
homogeneous coordinates of C1 , C2 , and Q. Any triplet of
values (ρ, θ1 , θ2) satisfying it is an admissible solution for the
active-tracking problem. It should be noted that the tracking is
still feasible for the situation of cameras with no zoom control.
In this case, the ratio ρ is a constant, and the equation expresses
a constraint over the rotation angles θ1 and θ2 , respectively.

Former works in active fixation have already proved the fea-
sibility of tracking a single target whenever the focal length is
equal in both cameras [5]–[7], [24]. For ρ = 1, the homographic
curve ω of (9) becomes a circle (the so-called Vieth–Müller cir-
cle [8]), and any pair (θ1 , θ2) that places V in the circle defined
by C1 , C2 , and Q assures that the target projection is the same
in both views. The constraint derived earlier is a generalization
of this previous result for the case of ρ 	= 1.

B. Tracking for the Case of N = 2

Let Qa and Qb be two free-moving targets. Repeating the
reasoning of the previous section, the tracking for the case of
N = 2 is feasible if there is a nontrivial solution for the follow-

Fig. 5. Solutions for the case of N = 2. The set of feasible solutions defines a
3-D curve in the space of the control variables (ρ, θ1 , θ2 ). This curve depends
on points Qa , Qb , C1 , and C2 , respectively.

ing equation:

( Q̂a Q̂b Ĉ1 Ĉ2 V̂ T̂ )T︸ ︷︷ ︸
B

ω = 0.

Unfortunately, B is, in general, a nonsingular 6 × 6 matrix.
However, and since B is a function of the camera’s rotation
angles, the values of θ1 and θ2 can be chosen such that the
matrix becomes rank deficient. In this case, the equation admits
a nontrivial solution ω ∼ N (B), with N (B) denoting the 1-
D null space of B. The solution ω ∼ N (B) must satisfy the
equality of (9), which leads to an additional constraint involving
the ratio of the focal length ρ{

det(B) = 0
N (B) ∼ µ1 + ρµ4 .

(10)

1) Space of Solutions: Any solution (ρ, θ1 , θ2) of the afore-
mentioned system of equations is a feasible solution for the
tracking problem. It assures that the homographic curve goes
through Qa and Qb and that the targets are projected in the
same location in both images. Each one of the aforementioned
equations is a constraint on the control variables, defining a
surface in the space of parameters (ρ, θ1 , θ2). The feasible so-
lutions are points lying in the locus of intersection of these two
surfaces. Fig. 5 plots an example of this locus for particular
values of Qa , Qb , C1 , and C2 , respectively.

Thus, this particular tracking problem has an infinite number
of solutions for the control parameters. In general, the topol-
ogy of the solution space is difficult to characterize because of
the dependence on the position of the free-moving targets and
camera centers. However, and according to our simulations, the
feasible solutions seem to define a highly nonlinear 3-D curve

ρ =
(C2,x − Qx + (C2,y − Qy ) tan θ2)(Qy − C1,y + (C1,x − Qx) tan θ1)
(Qy − C2,y + (C2,x − Qx) tan θ2)(C1,x − Qx + (C1,y − Qy ) tan θ1)

.
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Fig. 6. Redundant solutions while tracking N = 3 targets using two PTZ
cameras. The system of (11) has eight distinct solutions that can be grouped in
two sets of four elements with the same focal length ratio ρ. Parts (a) and (b)
correspond to two solutions in the same group with the rotation angles differing
by 180◦. These solutions are redundant in the sense that they do not change the
positions, where targets are imaged. (a) ρ = 0.6. (b) ρ = 0.6.

in the space of the parameters. As shown in Fig. 5, there is
typically a range of ρ values for which the curve is not defined.
This means that the ratio of focal lengths cannot arbitrarily fix-
ated; otherwise, it might not exist a feasible solution for the
tracking problem. Thus, and unlike to what happens for N = 1,
the active zoom control is mandatory to accomplish the track-
ing of N = 2 targets, which undergo free motion. This space of
solutions is further discussed in Section V-E, which reports some
real experiments in the simultaneous tracking of two targets.

C. Tracking for the Case of N = 3

Repeating the previous approach, it follows that the solutions
(ρ, θ1 , θ2) for the simultaneous tracking of Qa , Qb , and Qc

must satisfy 


det(C1...6) = 0
det(C1...5,7) = 0
N (C) ∼ µ1 + ρµ4

(11)

where the numbers in subscript denote lines in the 7 × 6 matrix
C

C ∼ ( Q̂a Q̂b Q̂c Ĉ1 Ĉ2 V̂ T̂ )T
.

1) Space of Solutions: In general, the system of (11) has
eight distinct solution triplets (ρ, θ1 , θ2). These solutions can
be clustered in two groups of four with all the elements having
the same focal length ratio ρ. The solutions within each group
differ only by angles of 180◦ in the parameters θ1 and/or θ2 ,
which means that the targets are projected in the same image
position, regardless of the selected triplet [see Fig. 6(a) and (b)].
Thus, each group has a unique solution with practical signifi-
cance, i.e., the one for which both cameras are forward looking
the targets. The two significant solutions arising from the two
groups have inverse values for the focal length ratio ρ and a
difference of 90◦ in the cameras’ orientations [see Fig. 7(a) and
(b)]. Since, for a particular configuration of the free-moving tar-
gets, there are only two effective feasible solutions, it is easy to
conclude that the tracking for N = 3 can only be accomplished
by simultaneously controlling the orientation of both cameras
and the focal length ratio as well.

Fig. 7. Tracking N = 3 targets using two PTZ cameras. Two distinct solutions
with practical significance are shown. The cameras’ orientation differ by an
angle of 90◦, and there is an inversion in the focal length ratios. (a) ρ = 5.
(b) ρ = 0.2.

2) Simulation Results: Fig. 8(a)–(c) presents simulation re-
sults in simultaneously tracking N = 3 free-moving targets
using two PTZs.1 The simulation workspace is depicted in
Fig. 8(a), where the two cameras undergo independent pan
motion. The left camera has a constant FOV of 45◦, and the
right camera has variable zoom to enable the control of the fo-
cal length ratio ρ. The targets Qa , Qb , and Qc move in front
of the cameras according to the arbitrarily defined trajectories.
The tracking objective is to keep the targets at the same image
positions in both views, which is achieved by solving (11). As
discussed earlier, for each time instant, there are two distinct so-
lutions for the control variables. We select the one that is closer
in an Euclidean sense to the current system configuration.

Fig. 8(b) plots the targets’ image positions along time. The
three targets are projected in the same locations in the two
views, which proves the feasibility of the tracking task and the
correctness of the derived control equations. The active sys-
tem configuration is shown in Fig. 8(c). The system’s DOF
vary smoothly along time, which suggests a continuous space
of solutions. This is an important requirement for the practical
feasibility of the tracking task. However, and since the first- and
second-order derivatives of the control parameters tend to take
high values, the tracking must be carried by PTZ units with
good dynamic performance. The simulation does not take into
account the physical limitations such as the camera’s FOV or
the variation range of the tunable parameters. From Fig. 8(b),
it follows that the assumed FOV of 45◦ is clearly insufficient
for assuring the success of the tracking in an hypothetical real
experiment. Although the objects move smoothly in front of the
cameras, the specified active system would quickly lose track
because it would not be able to keep the three targets simultane-
ously visible. This fact is not changed by using the alternative
solution space arising from the second group of solutions of
(11).

The aforementioned observations were confirmed in repeated
simulations, assuming a broad range of target trajectories. It
seems safe to conclude that the tracking of N = 3 targets is
feasible in practice, but it requires the use of PTZ units with
wide FOV lenses (e.g., fish-eye lenses) and mechanical DOF
with high-performance-dynamic response. Unfortunately, and
to the best of our knowledge, there are no commercial systems

1A video of the simulation is provided as supplementary material (Clip 2).
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Fig. 8. Simulation results in tracking N = 3 targets using two PTZ cameras (the video of the simulation is available as supplementary material). (a) Instant of
the simulation. The targets move along arbitrarily defined trajectories. Both cameras undergo independent pan motion, and the right camera has zoom control. The
yellow lines that intersect at each camera represent the FOV that is constant for the left camera and variable for the right camera because of the zoom DOF. The
gray closed curve denotes the homographic conic. (b) and (c) Plots of targets’ image positions and the evolution of the system configuration along time are shown,
respectively. The tracking objective of keeping the targets at the same position in the stereo views is met. The system parameters vary smoothly, which suggests
that the space of solutions is continuous. The tracking is feasible in practice for cameras with an FOV ≥ 145◦.

with such characteristics. A real implementation of the described
tracking behavior would require the development of customized
PTZ units.

D. Tracking for the Case of N > 3

Following the same line of reasoning used to study the track-
ing feasibility for N = 1, 2, and 3, respectively, it is easy to
verify that for N > 3, the constraints outnumber the DOF of the
active system. This means that in general there is no solution for
the problem. Such conclusion is not surprising because the ho-
mographic curve is a conic defined by a maximum of five points.
Thus, and taking into account that ω must also go through the
two projection centers, the tracking for N > 3 is in general not
feasible.

E. Experiments in Tracking N = 2 Targets

This section reports real tracking results using a stereo pair of
PTZ camera units.2 The experimental setup consists of two cal-
ibrated Sony EVI-D31 PTZ charge-coupled device color cam-
eras. Being primarily intended for applications, e.g., surveil-
lance or teleconferencing, these commercial units do not feature
the high communication rate required for the real-time simul-
taneous control of its DOF, thus, hindering a smooth-tracking
implementation. The tracking is, thus, achieved in a discontinu-
ous three-step process: First, the targets are detected in the stereo
images, and their position in the working space is estimated by
triangulation; second, the solution for the control parameters
is determined by solving the appropriate system of equations;
and third, an alignment saccade is performed by sending the
commands to the PTZ units through a serial channel. The base-
line between the cameras is approximately 1.5 m, and we use
white markers as targets that are easily distinguished from the
background, thus keeping image detection simple and robust.

2The experiment video is available as supplementary material (Clip 1).

The tracking of a single object has been implemented
in the past and, therefore, will not be discussed here. In
Section V-C2, we verified through simulation that the track-
ing for N = 3 targets can only be accomplished by PTZ units
with specific features, namely, wide FOV lenses and high-
performance-dynamic behavior. Unfortunately, our Sony cam-
eras do not match these requirements. The FOV ranges from 5◦

to 47.5◦, respectively, and the mechanical performance is rela-
tively limited. Thus, and despite our efforts, it was impossible
to obtain a successful real implementation because of hard-
ware limitations. The remaining part of this section reports
two experiments in aligning the PTZs with respect to N = 2
targets, such that they are projected in the same locations in
both views.

1) Experiment 1: Since the problem of tracking N = 2 tar-
gets admits multiple possible solutions (see Section V-B), we
need additional constrains to select a unique active system con-
figuration at each time instant. In this experiment, we keep the
left PTZ stationary, while the targets undergo arbitrary motion
within the camera FOV. The DOF to be controlled are the rota-
tion angle θ2 and the focal length ratio ρ, which depends on the
zoom of the right camera. After replacing θ1 by a constant k in
(10), we obtain four distinct solutions for (θ2 , ρ). The first equa-
tion becomes a one variable equation that admits four solutions
for θ2 . The second equation on ρ is always possible. Since the
conic ω = N (B) goes through points C1 , C2 , V, and T, then
it is always an element of the pencil defined by µ1 and µ4 (see
Fig. 3 and [23], respectively). This is consistent with the result
of Fig. 5, where a generic vertical plane θ1 = k cuts the curve of
the solution space in four distinct points. Two of these solutions
are discarded because they orient the camera toward a backward-
looking direction. For each tracking instant, we choose the effec-
tive solution that is closer to the current system configuration in
order to assure smooth camera motion. Fig. 9(a)–(c) shows the
experimental results.

2) Experiment 2: In this second experiment, the two tar-
gets are kept static, while the left camera sweeps a predefined
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Fig. 9. Experiment 1 in tracking two targets with two PTZ cameras. The
targets were moved a total of seven times. The left camera is kept stationary,
while the right camera performs a saccadic motion to align the targets’ image
position with the ones observed in the left view. (a) Right images before and
after the alignment saccade. (b) and (c) Plots of the image positions and the
system configuration along time. The tracking objective is fully accomplished
with the targets being projected at the same locations in both retinas. (a) Tracking
instants corresponding to three of the seven motions. (b) Targets’ positions in
both views. (c) System configuration.

set of pan and zoom positions. The objective is to control the
configuration of the right camera such that the two targets are
imaged in the same positions as in the left view. The controlled
DOF are θ2 and ρ, and the mathematical formulation is equiv-
alent to experiment 1. The differences are in the application,
where the left camera acts as a “master” following an arbi-
trary trajectory in pan and zoom, and the right camera acts as a
“slave” that is automatically controlled to maintain the targets
aligned. Fig. 10(a) and (b) plots results of this experiment that
can be watched in the video provided as supplementary material
(Clip 1).

VI. TRACKING WITH AN ACTIVE STEREO HEAD

This section discusses the tracking of N > 1 targets using
the POPEYE active stereo head shown in Fig. 11(a). We start
by using the theoretical framework for studying the feasibility
of the tracking task. It is shown that the tracking for N = 3
cannot be accomplished because of the lack of zoom control.
The tracking for the case of N = 2 is implemented, and results
of real experiments are presented.

While the commercial PTZ cameras have hardware limita-
tions that prevent achieving a smooth active-tracking behavior,
the POPEYE head is a custom-made system that enables a high-
performance-visual control of motion [10]. The implementation
of a suitable closed-control loop requires mapping image infor-

Fig. 10. Experiment 2 in tracking two targets with PTZ cameras. The left
camera sweeps a predefined set of positions in pan and zoom, while the right
camera motion is controlled such that the targets’ image are the same as for
the left view. (a) and (b) Plots of the target’s image position and the system
configuration after each alignment saccade, respectively, which show that the
tracking objective can be successfully accomplished. This master–slave con-
figuration can be helpful in surveillance scenarios, where an operator controls
the master camera for screening certain regions of the working space, and the
automatic control of the slave camera assures a secondary view of those regions.
(a) Targets’ image position in both views. (b) System configuration.

Fig. 11. POPEYE head has a total of 4 DOF and follows the Helmholtz
configuration, with both eyes having a common tilt rotation (neck tilt). In our
experiments, the common neck tilt is kept constant such that the cameras’
optical axes are always coplanar. In (b), a scheme of the assumed kinematic
configuration is shown. The world reference frame is placed at the system’s
rotation center. The angles α, θ1 , and θ2 represent the neck, left camera, and
right camera pan rotations, as seen by the system’s encoders. Target Qj is
projected into points q1 ,j and q2 ,j in left and right images, respectively. φ1 ,j

and φ2 ,j denote the angles between the line of sight and the direction orthogonal
to the rotating baseline. V is the fixation point, and the length of the baseline is
2B . (a) POPEYE head. (b) Kinematic configuration.

mation into position and velocity commands for the system ac-
tuators. A significant part of this section is devoted to applying
our mathematical formulation to derive these control equations.

A. POPEYE Active Stereo Head

Fig. 11(a) shows the POPEYE active stereo head used in our
experiments. The robotic platform has four rotational DOFs—
neck pan, neck tilt, and individual eye pan—and follows the
Helmholtz configuration [25]. The actuators are equipped with
optical encoders in the back-shaft that enable accurate knowl-
edge of the position of the DOFs in real time. The system has
two similar firewire color cameras, with no zoom and equal focal
length. In our experiments, we will control the pan rotations of
the neck, left camera, and right camera (the neck tilt is not used).
The system is initially aligned so that all three pan rotation axes
are parallel relative to each other and orthogonal to the plane that
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contains the optical axes of the two cameras. In the follow-up of
the discussed geometric framework, the cameras are modeled
as line scan cameras. In terms of implementation, the acquired
2-D images are processed to compute targets motion, but only
the horizontal components of position and velocity are used for
the subsequent control steps.

1) Kinematic Configuration: As discussed in [3], it is highly
convenient to model the head kinematics using a system of
coordinates aligned with the controllable DOF and feedback
variables. Fig. 11(b) shows a scheme of the system’s geome-
try and the parameters considered for describing it. The world
reference frame is placed in the center of the platform with the
Z-axis being aligned with the neck pan rotation axis. The neck
rotation α controls the position of the camera centers, which
can be placed in antipodal points of a circle with diameter 2B
(the baseline). Their coordinates in the world reference frame
are given by

C1/2 ∼


∓B cos(α)

∓B sin(α)
1


 . (12)

The pan rotation angles for each camera are θ1 and θ2 , which
are measured with respect to the line orthogonal to the baseline.
All the angles are assumed to be counterclockwise, and for
α = 0, θ1 = 0, θ2 = 0, the baseline is aligned with the X-axis,
and both optical axes are parallel to the Y -axis (initial frontal-
parallel configuration).

We would like to emphasize that there are two important
differences between the current kinematic description and the
one that is considered in Section V. First, the cameras’ locations
C1 and C2 are no longer independent from each other but are
simultaneously controlled by α. Second, the pan rotation angles
are θ1 and θ2 are no longer measured with respect to the world
reference frame but with respect to a line orthogonal to the
moving platform.

2) Projection: Henceforth, and to improve clarity, we will
use the subscript i to indicate the camera number (i = 1, 2) and
the subscript j to refer to the target (j = a, b). Let Qj be the
homogeneous coordinates of a target j in the world reference
frame. The target is projected into q1,j in the first camera and
into q2,j in the second camera. From the result of (1), concerning
the projection into line scan cameras, it follows that

qi,j ∼ K Ri ( I − C′
i ) Qj

where Ki denotes the matrix of intrinsic parameters, C′
i is the

nonhomogeneous representation of the camera center (12), and
Ri is the camera rotation with respect to the world reference
frame

Ri =
(

cos(θi + α) sin(θi + α)
− sin(θi + α) cos(θi + α)

)
.

3) Stereo Reconstruction of Qj : The target position Qj can
be recovered from the pair of stereo images (q1,j , q2,j ) and
from the pose of the robot head (α, θ1 , θ2).

Let the homogeneous coordinates of the image point be

qi,j ∼
(

qi,j

1

)
and let φi,j be the angle between the line of back projection and
the normal to the baseline [see Fig. 11(b)]. It follows that

φi,j = θi + arctan
(

qi,j

f

)
(13)

with f denoting the camera focal length.
From (2), we know that the back-projection line for image

point qi,j is given by

Li,j ∼ ( I − C′
i )T Ri

T KT UT qi,j .

Considering the back-projection lines from the two cameras,
and using triangulation to recover the target position, it follows
that

Qj ∼ L1,j × L2,j .

After some algebraic manipulations, and taking into account the
result of (13), the target position can be rewritten as

Qj ∼


Qj,x

Qj,y

1


=




B
cos α(tan φ1,j + tan φ2,j ) + 2 sin α

tan φ1,j − tan φ2,j

B
sinα(tan φ1,j + tan φ2,j ) − 2 cos α

tan φ1,j − tan φ2,j

1


.

(14)

Equation (14) provides the target world coordinates Qj di-
rectly as a function of the encoder readings—α, θ1 , θ2—and the
stereo image information— q1,j , q2,j . The fixation point V can
be computed in a similar manner by simply replacing q1,j and
q2,j by zero

V ∼




B
cos α(tan θ1 + tan θ2) + 2 sin α

tan θ1 − tan θ2

B
sinα(tan θ1 + tan θ2) − 2 cos α

tan θ1 − tan θ2
1


. (15)

B. Feasibility Analysis

We aim at tracking N targets with the POPEYE stereo head,
assuming a configuration homography H ∼ I. This section
presents the feasibility analysis for the problem at hand. The
analysis is similar in spirit to the one carried in Section V for
the case of two PTZ cameras.

Since the focal lengths of the cameras are equal, then ρ = 1,
and thus, (7) becomes

ω ∼ µ1 + µ4 .

The horopter of two cameras with the same intrinsic parameters
is the well-known Vieth–Müller circle [8]. Thus, the aforemen-
tioned conic ω is a circle, containing points C1 , C2 , V, and
T, as well as the circular points I and J [8], [23]. While in
Section V, the camera centers are fixed points, the points C1
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Fig. 12. Simultaneous tracking of N = 2 targets. The platform rotation places
C1 and C2 at antipodal positions on the circle with diameter 2B . The horopter
(the curve ω for H ∼ I) is the Vieth–Müller circle that goes through the targets
and the camera centers.

and C2 now depend on the rotation angle α. This means that
µ1 and µ4 are a function of the DOF of the system α, θ1 , and
θ2 , respectively. The fact that ω is a circle assures that point V
is aligned with the curve iff point T is also aligned. Henceforth,
we will ignore T because it adds no information to the problem.

1) Tracking for the Case of N = 1: The tracking of a single
target Q is trivial. Let α take a particular value such that C1 and
C2 are antipodal points on the circle of diameter 2B. The three
points Q, C1 , and C2 define a circle in an unique manner. Any
choice of angles (θ1 , θ2) that aligns the fixation point V with
this circle is a feasible solution for the tracking problem.

2) Tracking for the Case of N = 2: Let Qa and Qb be the
target coordinates. The tracking problem is feasible iff there is
a circle ω that simultaneously goes through Qa , Qb and points
C1 , C2 , and V. This means that the following equation must
admit a nontrivial solution:

( Q̂a Q̂b Î Ĵ Ĉ1 Ĉ2 V̂ )T︸ ︷︷ ︸
D

ω = 0.

The existence of a nontrivial solution requires the 7 × 6 matrix
D to be rank deficient. It follows that{

det (D1,...,6) = 0
det (D1,...,5,7) = 0

where the subscripts denote the matrix lines. The two equations
are constraints on the controllable parameters α, θ1 , and θ2 , re-
spectively. The first is a constraint only on α, and provides a
single solution of practical significance. It implies that the plat-
form rotation is uniquely defined by Qa and Qb (see Fig. 12).
The second equation is a condition that is satisfied by any pair
(θ1 , θ2) that places the fixation point on the circle defined by
the targets and the camera centers. Therefore, the simultaneous
tracking of N = 2 targets is a feasible problem, with a unique
solution for the platform rotation, and multiple solutions for the
pan angles (θ1 and θ2 must only assure that V lies on ω)

3) Tracking for the Case of N = 3: For the case of N = 3,
the matrix D in the previous section gives place to the 8 × 6
matrix G

G ∼ ( Q̂a Q̂b Q̂c Î Ĵ Ĉ1 Ĉ2 V̂ )T
.

Enforcing the rank deficiency would lead to two inde-
pendent constraints on the angle α (det (G1,...,6) = 0 ∧
det (G1,...,5,7) = 0) that are either impossible or do not have
a common solution. Thus, for N > 2, the tracking problem

is in general not feasible, as opposed to the case analyzed in
Section V-C. This results from the fact that we have considered
(in the case of the stereo head) the ratio of focal lengths constant
and equal to one, i.e., ρ = 1. In Section V-C, it was shown that
tracking N = 3 targets requires the control of ρ.

C. Tracking Strategy/Constraints in the DOF

Section VI-B2 shows that the stereo head is able to keep
N = 2 targets in the horopter iff the following conditions hold:{

det (D1,...,6) = 0
det (D1,...,5,7) = 0

with

D ∼ ( Q̂a Q̂b Î Ĵ Ĉ1 Ĉ2 V̂ )T
.

Let us take into account the kinematics of our robot head
and replace C1 , C2 , and V with the result given in (12) and
(15). Note that matrix D becomes a function of the target world
coordinates and of the system DOF (α, θ1 , and θ2).

As stated in Section VI-B2, the first constraint det (D1,...,6) =
0 does not involve parameters θ1 and θ2 . By solving the equation
with respect to the neck pan α we obtain

α = arctan
(Q2

b,x+Q2
b,y−B2)Qa,y− (Q2

a,x+ Q2
a,y−B2)Qb,y

(Q2
b,x+ Q2

b,y−B2)Qa,x− (Q2
a,x+ Q2

a,y−B2)Qb,x
.

(16)
Angle α is uniquely defined by the target locations Qa and Qb ,
respectively. The correct α value places the cameras in such
a manner that points Qa , Qb , C1 , and C2 lie on the circular
horopter (see Fig. 12).

Consider the second constraint det (D1,...,5,7) = 0. Replac-
ing α by the expression derived earlier yields an equation on the
angles θ1 and θ2 , respectively. The condition is satisfied by any
duplet of values (θ1 , θ2) that places the fixation point V any-
where on the circle defined by the targets and camera centers.
The tracking problem is undetermined in the sense that there ex-
ist an infinite number of solutions for the control parameters. To
further restrict the problem, we decided to impose an additional
constraint, which requires point V to be kept in the middle of
the arc defined by Q1 and Q2 at all times (see Fig. 12). This
is accomplished by rotating each camera so that its optical axis
halves the angle defined by the two targets back-projection lines
or, in other words, by keeping the two target images symmetric
with respect to image center. Angles θ1 and θ2 can be com-
puted in a straightforward manner as a function of targets world
coordinates and neck pan angle

θ1/2 =
1
2

arctan
−Qa,x ∓ B cos α

Qa,y ± B sinα

+
1
2

arctan
−Qb,x ∓ B cos α

Qb,y ± B sinα
− α. (17)

Note that the constraint in the position of the fixation point is
beneficial in terms of tracking. By forcing V to be in the middle
of Qa and Qb , we take full advantage of the cameras FOV in
the situation of the targets being moving apart [see Fig. 14(b)].
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TABLE I
SUMMARY OF THE CONTROL EQUATIONS FOR SIMULTANEOUSLY TRACKING

TWO TARGETS USING THE POPEYE STEREO HEAD

Equations (16) and (17) provide the values for α, θ1 , θ2
such that the two free-moving targets are projected in the same
position in both retinas, and their images are symmetric with
respect to the center. Since the target locations Qa and Qb

can be determined from stereo triangulation (14), the correct
angles α, θ1 , and θ2 can be directly computed from target image
coordinates qi,j and current kinematic configuration of the robot
head.

Henceforth, we will use the superscript d to denote the desired
(or reference) values for the system DOF (αd , θd

1 , θd
2 ) and the

superscript r to represent the real (or actual) angles measured by
the system encoders (αr , θr

1 , and θr
2 ). The former are the angular

positions for the active system to accomplish the defined track-
ing objectives, while the latter describe the current kinematic
configuration of the robot head. Replacing Qi,j in (16) by the
result of (14), and taking into account the new notation, yields

αd = αr + arctan
(
−2

Γ
λ

)
(18)

with Γ and Λ being auxiliary expressions given in Table I.
Repeating the procedure for the cameras pan angles of (17), we
obtain

θd
i =

φr
ia + φr

ib

2
. (19)

The aforementioned two equations provide suitable servo-
control references for the DOFs of the robot head. The set point
angles αd and θd

i are conveniently expressed as a function of im-
age measures qi,j and the encoder-feedback information αr , θr

i .
The following section describes the system-control architecture
and final implementation.

D. Control Architecture

Each system axis α, θ1 , and θ2 follows a similar control
scheme as shown in Fig. 13. This section presents a brief
overview of the architecture that addresses the active visual

Fig. 13. Control scheme of the DOFs of the POPEYE robot head. Each DOF,
i.e., α, θ1 , and θ2 , has a similar control architecture. The dashed box represents
the inner most servo-loop, which runs at 8 kHz and controls the velocity of the
brushless ac motor. The outer most loop runs at 15 Hz and uses both visual
and mechanical feedback to compute the set point of the inner-most loop.
Table I shows how to compute the reference for the axis controller, given the
image measurements and the encoder information. The final servo command
combines angular velocity with the position error weighted by a constant gain
G. This paper does not discuss the tuning of the PIDs, trajectory generators,
and gains. For details, see [10].

tracking as a regulation-control problem in the image plane (for
a more detailed explanation, see [10]).

Although the axis controller implements a position-control
loop, it can be configured to receive velocity commands. In
such operation mode, the velocity reference is integrated by
a trajectory generator that, in turn, updates the reference of
the proportional integral derivative (PID) position control loop.
In [10], it is shown that operating in velocity mode improves
both the stability and the responsiveness of the active visual
tracking. Therefore, the system axes will be controlled using
this mode, which means that we must compute a velocity refer-
ence/command.

Since (16) and (17) provide the correct reference in angular
position, we can differentiate them with respect to time in order
to obtain angular velocities. It follows that

α̇d =
4Υ

sin(2(φ2b − φ1b))Ψ
+ α̇r (20)

and

θ̇d
i =

φ̇r
i,a + φ̇r

i,b

2
. (21)

with Υ, Ψ, and φ̇r
i,j shown in Table I.

Here α̇d , θ̇d
1 , and θ̇d

2 are the angular velocities of the axes
that keep target image positions symmetric and the same in both
retinas. Unfortunately, pure velocity commands do not encode
position information. As a consequence, the system will not be
able to compensate accumulated position errors, and the tracking
will tend to drift. The problem is solved by adding the angular
position error multiplied by a suitable constant gain G. The final
commands (or set points) sent to the axes controllers are

α̇cmd = α̇d + G (αd − αr )

for the neck pan and

θ̇cmd
i = θ̇d

i + G (θd − θr )

for the eye pan. Note that, while the position term assures step-
disturbance rejection, the velocity term works as a derivative
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component that improves the system-transient response [10].
Table I summarizes the final control equations used in the ex-
periment described in the following section.

E. Experimental Results

This section reports the tracking of two moving targets by
the POPEYE robot head using the strategy established earlier.3

The objective of the experiment is to prove the concept, and not
to necessarily provide a fully functional application. Therefore,
the image processing was simplified by assuming as targets two
color markers that are easily detected and tracked using the
OpenCV implementation of the CAMSHIFT algorithm [26].
The markers are moved around by two persons, and the POPEYE
head tries to project them in the same position in both cameras,
while keeping the images symmetric with respect to center.

Fig. 14(e) shows the image positions of the targets during 2
min of tracking with no interruptions, while Fig. 14(a)–(d) con-
cerns four particular tracking instants. The experiment proves
that the adopted tracking scheme succeeds in projecting the tar-
gets in the same position in the two views. In addition, for each
camera, the target image positions are symmetric with respect
to the center. Such tracking behavior assures that the chances
of target mutual occlusion are minimized and that the stereo
reconstruction of the trajectories is usually possible [see third
row in Fig. 14 (a)–(d)].

Mutual occlusion can only occur when the two targets and
the middle point of the baseline become collinear. This is a
singular configuration, which corresponds to a discontinuity in
solution for the platform orientation α and causes the cameras
to be placed in such a manner that both targets are projected in
the image center. Fig. 14(d) shows a moment when this config-
uration occurs. The mechanical limits for the cameras’ rotation
are reached, and the tracking momentarily fails, which results in
the peaks in the plots of Fig. 14(e). Handling this problem is, for
now, beyond the scope of the paper. The current implementation
is able to gracefully recover the tracking behavior.

Fig. 14(a)–(d) shows two other situations that deserve a par-
ticular remark. In Fig. 14(b), the targets move away from each
other, but the tracking proves to be effective in maintaining them
in the FOV of both cameras. The ability of taking full advantage
of the available FOV results from the strategy of keeping the
fixation point between the targets. The misalignment in image
positions observed in Fig. 14(c) is caused by fast target mo-
tion toward different directions. The system, despite the natural
difficulties in maintaining zero-tracking error, shows a stable
behavior.

VII. DISCUSSIONS AND CONCLUSION

This paper has extended the active-fixation framework for
the case of N > 1 points of interest. The tracking behavior has
been specified by selecting a configuration homography that
defines how the stereo images of the targets should relate. We
have shown that the locus of points whose stereo projections
are consistent with an homography is a plane conic and that

3The experiment video is available as supplementary material (Clip 3).

Fig. 14. Simultaneous tracking of two free-moving targets with the POPEYE
head (the video of the experiment is available as supplementary material). In
(e), plots of the image positions of the targets in the two views along almost 2
min of tracking with no interruptions are shown. The top and bottom red lines
correspond, respectively, to the horizontal coordinates of Qa and Qb in the
left-hand side image. The symmetry with respect to the center is rather obvious.
The dashed green lines concern the horizontal target image coordinates in the
second view (right-hand side camera). The red and green lines are coincident
most of the time, which proves that the tracking objective has been successfully
accomplished. (a)–(d) Four distinct tracking instants, with the two top images
being the stereo views and the bottom image being a top view of the working
plane. The green dots are the recovered target positions, the white dot is the
fixation point V, and the magenta circle is an overlay of the homographic curve.
Note that in (b), the targets move apart, but the system manages to keep them in
both views taking full advantage of the cameras FOV. Instant (d) is a singularity
that arises whenever the two objects are aligned with the cyclopean eye. In this
case, one target occludes the other, and the tracking fails. However, the system
is able to gracefully recover from this situation. (a) 20 s. (b) 31 s. (c) 66 s. (d)
87 s.

the tracking problem can be cast as the alignment of this conic
with the moving targets. This formulation is quite convenient
because it enables the systematic analysis of the feasibility of
a given tracking task and the straightforward derivation of the
relevant constraints and control laws. These features were il-
lustrated through two particular application examples: active
tracking using two PTZ cameras arbitrarily placed in the work-
ing environment (see Section V) and active tracking using the
POPEYE robot head (see Section VI). In the former case, it is
possible to track up to N = 3 free-moving targets, while in the
latter case, the maximum number of targets is N = 2 because
of the lack of zoom control. Simulation results showed that
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tracking N = 3 targets can only be accomplished in practice by
PTZ cameras equipped with wide angle lenses.

Our main contribution is the theoretical formulation using
configuration homographies. The framework provides a geo-
metric insight that can be helpful for applications other than
the ones discussed. A nonexhaustive list of problems that might
benefit from the proposed approach include the following.

1) Active tracking using configuration matrices H 	= I: The
reported experiments in active tracking always assume a
constant configuration homography H = I. However, we
foresee that other useful tracking schemes can be accom-
plished by dynamically changing H. Let us consider a
surveillance scenario where a static wide-angle camera is
combined with an active PTZ unit. The former provides
permanent visual coverage of the space, while the latter
aims at obtaining visual detail of points of interest. In
the simultaneous presence of N = 2 moving targets, the
PTZ must zoom in as much as possible with no loss of
the visibility of objects. Thus, the tracking objective can
be formulated as controlling the PTZ such that the two
targets are kept on opposite sides in the image. Since the
mapping of the two targets in the wide-angle image into
the two lateral limits of the PTZ view is always an affine
1-D transformation, the proposed framework can be ap-
plied to implement the described active-tracking system.
The tracking task seems to be also feasible for N = 3;
however, care must be taken because the mapping of three
points defines a general projective transformation that can
change the order in which targets are projected.

2) Camera placement in surveillance and robotics: The for-
mulation can also be used for camera placement. In this
case, the geometric framework is employed for shaping
the homographic curve such that the stereo images of cer-
tain scene locations are related by a predefined homogra-
phy H. A possible application is indoor surveillance, with
cameras being placed and oriented in order for certain
3-D locations (e.g., entrances) to be imaged according to
certain conditions (e.g., same position in the two views)
that might simplify event detection (e.g., image differ-
ence for detecting that someone crossed the entrance) and
promote collaborative image processing. Another possi-
bility is to use a similar strategy to shape an homographic
curve around a mobile robot equipped with stereo line
scan cameras. This curve will work as a “bumper” to en-
able obstacle detection using very simple visual routines
(e.g., image difference).

3) Robot placement and formation control: Another practi-
cal application might be the positioning of one or multiple
robots relative to three reference points in the scene. In
the former case, we would be interested in guaranteeing
that the landmarks and the robot with the camera occupy
predefined relative positions, which are encoded via a suit-
able configuration homography. Therefore, the goal of the
control would be achieved by changing the position and
orientation of the robot so that the image projections of
the targets correspond to that specific homography. The
approach can be easily extended to problems of robot for-

mation, where the different robots converge to relative
poses encoded by different homographies.

4) 3-D stereo reconstruction: Since the homographic curves
are a generalization of the isodisparity curves used in
stereo reconstruction [22], our results might also be rele-
vant in this context.

A significant limitation of this framework is that it applies
exclusively to targets undergoing a planar motion and cannot be
easily extended to the case of unconstrained 3-D motion. The
difficulty in the generalization is that while a 1-D homography
between line scan images gives rise to a conic curve in the
working plane, a 2-D homography between perspective images
usually corresponds to a planar surface in 3-D. This is rather
limitative and does not sound promising in terms of active-
vision applications.
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