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Chapter 1
Introduction

Visualization and modeling of large environments is an increasingly attractive
proposition. Conventional video cameras provide a limited field of view which
can be highly restrictive. Applications that benefit from wide field of view im-
agery include surveillance, teleconferencing, tele-observation, 3D reconstruction
and model acquisition for virtual reality [20, 70, 66, 57]. Enhanced fields of view
are also advantageous for visual control of motion applications. In egomotion
recovery from video, ambiguities and confusion between translation and rota-
tion may arise whenever the translation direction lies outside the field of view.
Panoramic imaging overcomes the problems making the uncertainty of the esti-
mation independent of motion direction [37, 4]. Works on cooperation, obsta-
cle avoidance and self localization of mobile robots also appear in the literature
[73, 64, 75, 1]. As shown omnidirectional vision is becoming an increasingly
important sub-area in computer vision research [18].

There are two major methods to obtain very wide field of view images. One
approach is to build mosaics/panoramas by composing multiple images taken by
conventional imaging devices [61]. The alternative method is to use specialized
optic-lens arrangements. The approach of combining mirrors with conventional
cameras to enhance the sensor field of view is referred to as catadioptric image
formation [40]. The tradeoff between the two methods is resolution versus speed
of acquisition [45]. In general composing mosaics/panoramas from multiple im-
ages provides larger resolutions at the expense of off-line processing. The use
of special devices such as catadioptric sensors is simpler and faster enabling the
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1. Introduction

capture of dynamic scenes [57].

The single viewpoint constraint is a requirement ensuring that the visual sen-
sor only measures the intensity of light passing through a single point in 3D space
(the projection center). Vision systems verifying the single viewpoint constraint
are called central projection systems. The well known perspective camera is an
example of a central projection system. Central projection systems present inter-
esting geometric properties. A single effective viewpoint is a necessary condition
for the generation of geometrically correct perspective images [5], and for the
existence of epipolar geometry inherent to the moving sensor and independent
of the scene structure [68, 36, 67]. In [5] Baker et al. derives the entire class
of catadioptric sensors verifying the single viewpoint constraint. Useful central
catadioptric systems can be built by combining a parabolic mirror with an ortho-
graphic camera and, an hyperbolic, elliptical or planar mirror with a perspective
camera. Despite the nice properties of central projection stated above, non-central
catadioptric imaging is also an intense research field [6]. Several sensors have
been designed to provide omnidirectional images with specific features. Reflec-
tive surfaces capable of providing wide field of view and yet approximate the
perspective projection are derived in [41]. A prominent characteristic of most
catadioptric sensors is the non-uniform image resolution. Both equi-angular and
equi-areal mirror designs aim to improve the resolution uniformity. The equi-
angular systems establish a linear relation between angles in the camera and in
the mirror [22, 54]. The equi-areal sensors present an area preserving projection
from the associated viewing sphere to the image plane [42].

As stated central catadioptric systems combine two important features: a sin-
gle projection center and a wide field of view. However the mapping between
points in the 3D world and points in the image is in general highly non-linear.
The single viewpoint constraint assures that geometrically correct perspective im-
ages can be generated. Perspective image formation is described by a well known
linear model [39]. Thus one strategy to cope with the non-linearities is to gen-
erate perspective images from the frames captured by the catadioptric sensor and
subsequently process them [5]. This is time consuming and requires an accurate
calibration of the catadioptric system. The present work focuses on general cen-
tral projection systems which include the conventional perspective camera and
the catadioptric sensors verifying the single viewpoint constraint. The geometry

2



1.1. Overview

of central catadioptric image formation is studied in detail and several algorithms
are proposed to work directly with the omnidirectional images without warping
them.

1.1 Overview

In [34], Geyer et al. introduce an unifying theory for all central catadioptric sys-
tems where conventional perspective imaging appears as a particular case. They
show that central panoramic projection is isomorphic to a projective mapping from
the sphere to a plane with a projection center on the perpendicular to the plane.
Chapter 2 introduces a modified version of this unifying model [7, 8]. The map-
ping between points in the 3D world and points in the catadioptric image plane is
split into three steps. World points are mapped into an oriented projective plane
by a linear function described by3ax 4 matrix (similar to the projective camera
model referred in [39]). The oriented projective plane is then transformed by a
non-linear functionh. The last step is a collineation in the plane depending on
the mirror parameters, the pose of the camera in relation to the reflective surface
and the camera intrinsic parameters. The model obtained is general, intuitive and
isolates the non-linear characteristics of general catadioptric image formation.
The established mapping model is used in Chapter 3 to study the geometry of
general central catadioptric line projection. Several projective invariant properties
of catadioptric line images are derived. These properties are useful for calibration
and reconstruction purposes. We show that it is possible to determine the princi-
pal point and the image of the absolute conic from three lines in general position
[7]. The position of the line at infinity in the catadioptric image plane can be
computed from two line images and mirror parameters can be partially recovered
without further information [8]. Moreover we prove that if the system is hyper-
bolic/elliptical and both mirror parameters and camera pose are known then two
line images are enough to calibrate the system. The results obtained support the
conjecture pointed in [34] that an hyperbolic/elliptical system can be calibrated
from a minimum of two lines and a parabolic system requires at least three lines.
In general a line in the scene is mapped into a conic curve in the catadiop-
tric image plane [34]. The calibration algorithms derived in chapter 3 require an
accurate estimation of the conic loci where the lines are mapped. However the

3



1. Introduction

estimation of lines in the catadioptric image plane is hard to accomplish. In gen-
eral only a small arc of the conic is visible in the image and conventional conic
fitting techniques are unable to correctly estimate the curve. Chapter 4 starts by
introducing algorithms to compute the intersections between a line and a conic
and between two conics. The algorithms are both numerically stable and com-
putationally efficient. The main conic fitting techniques available in the literature
are reviewed and evaluated [76, 32]. It is shown that, since they do not cope well
with occlusion, they are not suitable to estimate catadioptric lines from image
points. The geometric properties derived in chapter 3 are used to constrain the
search space and improve the robustness of the conic fitting. This approach leads
to non-linear objective functions which must be minimized using iterative gradi-
ent descending methods [58, 27]. The performance of the method is evaluated
through simulated calibration experiments. It is observed that often the iterative
minimization presents convergence problems.

Paracatadioptric sensors combine a parabolic shaped mirror and a camera in-
ducing an orthographic projection. Such a configuration provides a wide field
of view while keeping a single effective viewpoint. The paracatadioptric line
projection presents specific features. Chapter 5 shows that a set of conic curves
corresponds to paracatadioptric line images if, and only if, certain properties are
verified [11]. These necessary and sufficient conditions are used to constrain the
search space and correctly estimate the curves. The accurate estimation of a min-
imum of three line images allows the complete calibration of the paracatadioptric
camera. If the camera is skewless and the aspect ratio is known then the conic
fitting problem is solved naturally by an eigensystem. For the general situation
the conic curves are estimated using non-linear optimization. Simulation results
are provided to compare the performance of the proposed algorithm with other
calibration approaches. Experiments with real images are also presented.

The final part of chapter 5 focuses on line estimation in calibrated paracata-
dioptric images [9]. The estimation of line images is an important subject for
applications such as reconstruction and visual control of motion [12]. However
the estimation of the conic curves where lines are mapped is hard to accomplish
due to the occlusion problem. A conic curve is the paracatadioptric image of a
line if, and only if, the image of the circular points lie on the curve and two certain
points are conjugate with respect to the conic. Considering the space of all conic
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1.1. Overview

curves, the line images lie in a linear subspace which depends on the system cali-
bration. The paracatadioptric projection of a line can estimated by fitting a conic
in the subspace to the data points. The proposed approach is computationally
efficient since the fitting problem can be solved by an eigensystem.

Whenever a central projection systems acquires an image, points in 3D space
are mapped into points in the 2D image plane. The image formation process rep-
resents a transformation froi? to %2, and mathematical models can be used to
describe it. Chapter 6 discusses the definition of world coordinate systems that
simplify the modeling of general central projection imaging [10]. It is shown
that an adequate choice of the world coordinate reference system can be highly
advantageous. Such a choice does not imply that new information will be avail-
able in the images. Instead the geometric transformations will be represented in
a common and more compact framework, while simultaneously enabling newer
insights.

The first part of chapter 6 focuses on static central projection systems that in-
clude both perspective cameras and catadioptric systems. A systematic approach
to select the world reference frame is presented. In particular we derive coordinate
systems that satisfy two differential constraints (the "compactness” and the "de-
coupling” constraints). These coordinate systems have several advantages for the
representation of the transformations between the 3D world and the image plane.
The second part of the chapter applies the derived mathematical framework to
active visual tracking of a target modeled as a moving point in space. In appli-
cations of visual control of motion the relationship between motion in the scene
and image motion must be established. In the case of active tracking of moving
targets these relationships become more complex due to camera motion. Suitable
world coordinate reference systems are defined for three distinct situations: per-
spective camera with planar translation motion, perspective camera with pan and
tilt rotation motion, and catadioptric imaging system rotating around an axis go-
ing through the effective viewpoint and the camera center. Position and velocity
equations relating image motion, camera motion and target 3D motion are derived
and discussed. Control laws to perform active tracking of moving targets using
visual information are established.

In chapter 6 the moving target is modeled as a point in the scene. However
there are several visual servoing applications where the target must be modeled
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1. Introduction

has a rigid body with translation and rotation motion. Chapter 7 focuses on iter-
ative pose estimation using central panoramic imaging. The jacobian matrix for
general central projection systems is introduced. It is proved that this matrix is
a generalization of the well known interaction matrix for conventional perspec-

tive cameras [28]. Moreover it is shown that the generalized jacobian has exactly
the same singularities as the jacobian of the traditional pinhole camera model.
Experiments showing a rigid body being tracked with a catadioptric camera are
described.

1.2 Contributions

The most relevant contributions of the present thesis can be summarized as follows

¢ A modified version of the unifying model for central catadioptric imaging
is proposed. The image formation is presented as a three step process with
the non-linearities isolated in a functidgrwhich maps points between two
oriented projective planes.

e The geometry of central catadioptric line images is studied in great detail.
Several projective invariant properties are derived. These properties are use-
ful both for calibration and reconstruction tasks.

e Itis proved that any central catadioptric system can be fully calibrated using
a minimum of three line images in general position.

e It is shown that if the system is hyperbolic/elliptical and both mirror pa-
rameters and camera pose are known, then two line images are enough to
calibrate the sensor.

e A method to calibrate paracatadioptric sensors using lines is proposed. Ge-
ometric constraints are used to accurately estimate the set of lines in the
uncalibrated image plane.

¢ An algorithm to estimate lines in calibrated paracatadioptric images is pre-
sented. The proposed method determines the conic locus where the line is
mapped using a minimum of two image points. The algorithm is very robust
to noise and runs in real time.



1.2. Contributions

e The jacobian matrix for general central catadioptric systems is derived and
studied. Experiments on model based tracking and pose estimation of rigid
moving bodies are described.

e Any image formation process is a transformation between points in the 3D
world and points in the image. There are certain world coordinates sys-
tems that are more suitable than others to represent this transformation. We
propose a systematic framework to select the world reference frame that
simplifies the modeling of a certain system/application.
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Chapter 2

An Unifying Theory for Central
Projection Systems

In [34], Geyer et al. introduce an unifying theory for all central catadioptric sys-
tems where conventional perspective imaging appears as a particular case. They
show that central panoramic projection is isomorphic to a projective mapping from
the sphere to a plane with a projection center on the perpendicular to the plane.
The present chapter introduces a modified version of this unifying model [7, 8].
The mapping between points in the 3D world and points in the catadioptric image
plane is split into three steps. World points are mapped into an oriented projective
plane by a linear function described by a 4 matrix (similar to the projective
camera model referred in [39]). The oriented projective plane is then transformed
by a non-linear functioth(). The last step is a collineation in the plane depending
on the mirror parameters, the pose of the camera relative to to the reflective sur-
face and the camera intrinsic parameters. The model obtained is general, intuitive
and isolates the non-linear characteristics of general catadioptric image formation.

The chapter starts by presenting the entire class of central catadioptric systems
derived in [5]. The image formation process is investigated and the general map-
ping model is derived. The conventional perspective camera is a particular case of
the presented unifying theory.



2. An Unifying Theory for Central Projection Systems

Parabolic Hyperbolic

Figure 2.1: The entire class of central catadioptric systems.

2.1 Central Catadioptric Systems

Central catadioptric systems provide a wide field of view while keeping an unique
projection center. The wide field of view is achieved by specialized optic-lens
arrangements. The single viewpoint constraint is verified by a careful selection
and assembly of mirror and imaging device. The final vision system must only
measure the intensity of light passing through a single point in 3D space (the
projection center).

Consider a reflective surfa& a generic poinP lying on S and a plandl
going through poinf? and tangent to the mirror surface. Any ray of light
incident onP is reflected in a ray of light,.. According to the electromagnetic
theory the angle betweanand plandlI (the incident angle) must be equal to the
angle that, makes with the same plane (the reflection angle).
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2.1. Central Catadioptric Systems

Parabolic | /22 +y>+22=2p—z
Hyperbolic (tf)Q o
Elipical | S 2y u
Planar z =1

Table 2.1: Equations for the reflective surfaces

Fig.2.1 shows the four types of central catadioptric systems [5]. A scheme of
a parabolic mirror with latus rectudp is exhibited on the top-left corner. Tab.2.1
provides the equation of the 3D surface assuming the ofigof the coordinate
system coincident with the focus of the paraboloid and the z-axis aligned with the
mirror axis. It is a well known result that any incident ray of light going through
the focus of the paraboloid is reflected into a ray parallel to the surface axis. If
the camera steering the mirror is orthographic and the image plane is orthogonal
to the z-axis then it only captures the rays parallel to the mirror axis. These rays
result from the reflection of the light going through the focus of the mirror. The
vision system has a single effective viewpoint which is the focus of the parabolic
mirror.

The mirror in the top-right corner of Fig. 2.1 has an hyperbolic shape with
a latus rectumip and a distance between fodi. The corresponding hyper-
boloid equation is provided in Tab. 2.1 whete= %(./d? + 4p%> — 2p) and

2
b= \/p(\/m — 2p). Once again the origi® of the coordinate system is
coincident with the inner focus and the z-axis is aligned with the surface symmetry
axis. From the reflection law it comes that any light ray going through the inner
focus is reflected in another ray passing through the outer focus. A conventional
perspective camera positioned in the outer focus only measures the intensity of
light going throughO. A perspective camera steering and hyperbolic mirror such
that its projection center is coincident with the outer focus is a central catadioptric
system. The effective viewpoint is the inner focus of the reflective surface. In a
similar way a central catadioptric system can be built by combining a perspective
camera with an elliptical mirror (see bottom-left corner of Fig. 2.1). The equa-
tion of the ellipsoid is provided in Tab. 2.1 whetg is the latus rectum is the
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2. An Unifying Theory for Central Projection Systems

distance between foai, = 1 (1/d2 + 4p? + 2p) andb = \/p(\/m + 2p).

A catadioptric system made up of a perspective camera steering a planar mirror
also verifies the single view point constraint (bottom-right corner of Fig. 2.1). The
effective projection center is behind the mirror in the perpendicular line passing
through camera center. Its distance to the camera center is twice the distance
between the planar mirror and the camera.

For the parabolic system the distance between the camera and the mirror is
not constrained. The single viewpoint constraint is verified whenever the camera
is orthographic and optical axis is aligned with the axis of the paraboloid. For
the hyperbolic and elliptical systems the center of the perspective camera must be
coincident with the outer focus of the reflective surface. For the planar situation
changes in camera position imply changes in the effective viewpoint. However
in these three cases the alignment between the camera and the mirror is not con-
strained. After rotating the camera around an axis going through its center the
catadioptric systems still verifies the single viewpoint constraint and the projec-
tion center position is kept.

As a final remark notice that the field of view is enhanced by using convex
reflective surfaces like paraboloid and hyperboloid. Elliptical mirrors do not have
the same practical application because they cause a decrease in the field of view.
In the elliptical systems the field of view is traded by resolution which causes a
zoom effect in the images. However the mirror introduces non-linearities in the
imaging formation which is a disadvantage if compared with conventional cam-
eras equipped with zoom lens. It will be shown that the planar system is in many
aspects a degenerate case of the central catadioptric projection. The geometry
of planar catadioptric images is equivalent to conventional perspective imaging.
Nevertheless planar mirrors are currently used to build devices like the Nalwa
pyramid which is a high resolution omnidirectional system with a single projec-
tion center [52].

2.2 General Mapping Model

The present section studies the image formation process in central catadioptric
systems and derives an unifying mapping model.

12
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Figure 2.2: Image formation process. Hyperbolic situation

2.2.1 Central Catadioptric Image Formation

Consider the coordinate systet®ndR.., depicted in Fig.2.2R is the coordi-

nate system attached to the reflective surface. The z-axis is aligned with the mirror
axis and the origii® is coincident with the effective viewpoint of the central pro-
jection system. For parabolic, hyperbolic and elliptical systems the didggthe

inner focus of the reflective surface. The transformation matrix fidto Ream

is provided in equation 2.1. The z-axis $f., is still aligned with the mirror

axis and the distance between the origim&nd O..., is d. For both hyperbolic

and elliptical systemd corresponds to the distance between foci and the central
catadioptric images are acquired by a perspective camera with projection center
in Ocam- The planar system has a perspective camera position€d.ig in a
similar manner. For the parabolic situation the distashteunconstrained and an
orthographic camera with optical axis parallel to the z-axi®Qf,, is used.

13



2. An Unifying Theory for Central Projection Systems

[ Xh=(XVY,21)epP" }
# P=R[I|-C]

{ K= Yz g P }

Figure 2.3: Central catadioptric image formation

10 0 O
0 -1 0 0
Team = (2.1)
0 0 -1 d
0O 0 0 1

Fig.2.3is a step-by-step scheme of the mapping performed by a general central
catadioptric system. Consider a generic scene point visible by the catadioptric
system as depicted in Fig. 2.Xy, is the corresponding vector of homogeneous
coordinates in the world reference frame. Each visible point can be associated
to a projective ray joining the point with the effective viewpoint of the central
projection systemx = PX,;, whereP = R[I| — C] is a3 x4 matrix transforming
points in the world reference frame in projective rays in the coordinate sygtem
attached to the mirror({ represents the world origin coordinates in the mirror
reference frameR is the rotation matrix between the two coordinate systems and
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K P. R.
. 1000
Parabolic S — [0 10 0] I
244/ 22 +y2+22 0001
. 10 0 07
Hyperbolic 2dp 0-10 0/ [any
z(\/d2+4p2+2p)+d\/ac2+y2+22 00 —1d]
. 10 007
Elliptical | — 2dp 0-10 0/ [any
2(y/ @ +4p®—2p)+dy/ 22 +y2+22 00 —1d]
10 007
Planar 4 01001 | any
z 00 —14d

Table 2.2: Mapping parameters

I is a3 x 3 identity matrix). We can think of the projective raxsas points

in an oriented projective plari€2. Notice that in standard projective geometry,
given a projective poink, A\x represents the same point whene¥eg 0. In an
oriented projective plane this is only true\it> 0 [47, 65]. This is important when
modeling panoramic vision sensors where diametrically opposite points relative
to the projection center can be simultaneously imaged.

The projective ray intersects the mirror surface on poidt, (see Fig. 2.2).

The intersection point can be computed by scaling the projectivexray a «

value, such thakx verifies the mirror equation. Thus, replacifg, y, z) by

(kzx, Ky, kz) inthe surface equations of Tab. 2.1 and solving them in orderttee
scaling values for each type of central catadioptric system are obtained (see Tab.
2.2). The intersection pointin mirror homogeneous coordinats,is= (xx, 1)".

Notice thatx depends both or and on the mirror surface.

For the hyperbolic, elliptical and planar catadioptric systems the imaging de-
vice is a conventional perspective camera with center on the didgip, of the
coordinate syste®...,. Fig. 2.2 shows that to each intersection pdqy, cor-
responds a projective ray...,, going through the camera center. Consider the
pin-hole camera moddP, = [I|0] and the coordinate transformation matrix
T.am Of equation 2.1. The projective ray coordinateg,, in Rcam are given
bY Xcam = PcXm With P = P T (See Tab. 2.2). For the parabolic
system an orthographic camera must be used instead of a perspective camera.
The camera center is at infinity and the pin-hole mdelglmust be replaced by
the orthographic camera modB|,. In a similar manner the projective ray is
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2. An Unifying Theory for Central Projection Systems

Xeam = PeXm With P. = P,T.am. Notice in Tab. 2.2 that the resultant matrix
P, no longer depends on the distante

The world pointX,, is imaged ink = K. R¢x.am at the central catadioptric
image plane K. is the matrix of camera intrinsic parameters dgdis a3 x 3
rotation matrix. As stated the hyperbolic, elliptical and planar systems have a
single viewpoint whenever the perspective camera center is in the @igig
of R.am. HOwever the camera pose is not constrained and the optical axis is not
necessarily aligned with the mirror axis. Matii, models the possible rotation
of the camera with respect to the coordinate sys¥em, (see Fig. 2.2). For
the parabolic system the camera is orthographic and the image plane must be
orthogonal to the mirror symmetry axis. The requirement of a single effective
viewpoint constraints the camera pose which can only rotate around the z-axis
of Ream. It is assumed without loss of generality tHat = I for the central
parabolic sensor (see Tab. 2.2).

2.2.2 The Unifying Model

The mapping scheme of Fig. 2.3 with parameters on Tab. 2.2 is general, covering
all central catadioptric systems, in all possible configurations. Visible points in
the scen&X,, are mapped into projective rays/poirisn the catadioptric system
reference frame centered in the effective viewpoint. The transformation is linear
being described by & x 4 matrix P. To each oriented projective ray/poirf
corresponds a projective ray/posty.,, in coordinate syste. .., (see Fig. 2.2).

The relationship between projective pothimeasured in the catadioptric image
plane andk..., is established by a collineation depending on camera orientation
and intrinsic parameters.

For a conventional projective camera the mapping between points in the world
and points in the image is linear if homogeneous coordinates are assumed [39].
In the model established for general central catadioptric imaging all the transfor-
mations are linear with the exception of the mappingahto x¢cam,. AS men-
tioned beforex andx..,, are oriented projective rays/points that must intersect
on the mirror surface. The relationship between these two points is established
bY Xcam = Pc(kx, 1)!. Matrix P. depends on the mirror parameters and on the
type of imaging device. The multiplying parameters a function of the mirror
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[ Xph=(XY,21) ¢ Pi

¢ P=R[I|-C]

[ x= (X,y,z) eT? }

function h ()

[Q =(Q,§,§)spzj

Figure 2.4: New model for central catadioptric image formation

parameters and of point coordinateésee Tab. 2.2). The transformationsointo

Xc.am Ca@N be seen as a non-linear mapping between two oriented projective planes.
Sincexcam IS an oriented projective point, théx..,,, represents the same point
whenever > 0 [65, 47]. The relationship betweenandx..,, can be written as

Xeam = A(Pe.
1

" ]) (2.2)

Replace in equation 2R, x and\ by the values provided on tables 2.2 and
2.3. The values for the parameters are selected according to the type of central
catadioptric system. Notice thatis always greater than zero. After some alge-
braic manipulation you will verify that the transformation>ointo x..,, can be
written in the form of equation 2.3. MatrikI. and function are respectively
provided by equations 2.4 and 2.5. Paramefensdy appear on Tab. 2.3. Matrix
M. only depends on mirror type and shape.

Xcam = Mec.h(X) (2.3)
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A § ®
Parabolic ——z 1 1 1+2
A /x2+y2+22 _'_ + p
) N/ d2+4p2 42
Hyperbolic 2( +4p2+2p) 1 d d+2p
d\/x2+y2+22\/d2+4p2 \/d2+4p2 \/d2+4p2 \/d2+4p2
_ N/ d2+4p2—2 _
Elliptical /4t 4p*—2p) 1 d d—2p
Ay /2212422 R rap? | [ Pap? | [P ap? |\ d®ap?
Planar — 2= 0 1
d /ac2+y2+22

Table 2.3: Multiplying value\ and mapping parametefendy for the new model

0

xT

[ x2 +y2 +Z2

h(x) = \/ﬁ (2.5)
Ve 1
The scheme of Fig. 2.4 is obtained by rearranging the one of Fig. 2.3. The
mapping between points in the workKl, and projective image pointsis given
by equation 2.6. The mapping model is general for all central catadioptric sys-
tems. Depending on the type of system the paramétensd o of function
and matrixM, change according to Tab. 2.3. PoiiXg in projective 3D space
are transformed in points in the oriented projective plane with origin in the ef-
fective viewpoint ¢ = P.X},). Pointsx are mapped into points in a second
oriented projective plane. The correspondence functien A(x) is non-linear.
Projective points in catadioptric image plane are obtained after a collineation
H. (x = H.x with H, provided by equation 2.7).

% = H, H(PXy) (2.6)
H_/_/
H. = K.R:M, (2.7)
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A
#0
Catadioptric
Image Plane

Yo

Figure 2.5: The sphere model for central catadioptric imaging

2.2.3 An Intuitive and “Concrete” Interpretation of the Model

Fig. 2.4 is a schematic of the proposed unifying model for central catadioptric
image formation. The mapping model is made up of three steps. The first step
is the linear transformatio®® = RJ[I| — C] of 3D world coordinates into 2D
sensor coordinates. If nothing is said it will be assumed without loss of generality,
that world and sensor coordinates are the same. Thus, Rineel (no relative
rotation) andC = 0 (coincident origins), arises thRt = [I|0]. The second step is

the non-linear mapping between two oriented projective planes. The last step is
the projective transformatioH. depending on the camera calibration, the mirror
parameters and their relative pose (equation 2.7). The relationship between points
in the catadioptric image plafeand points is linear & = H.X).

The proposed model isolates the non-linearities of the mapping in a single
function 4. Functionf transforms oriented projective pointsin sensor coordi-
nates into pointg. This non-linear transformation, presented in equation 2.5, has
an intuitive “concrete” interpretation. Consider the coordinate sy$tewith ori-
gin O in the effective viewpoint, and an unit sphere centere@ i(see Fig. 2.5).

To each visible scene poiX;, corresponds an oriented projective sayoining
the 3D point with the effective projection center. The projective ray intersects the
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2. An Unifying Theory for Central Projection Systems

unit sphere in a single poiX.. Consider a poin®, with coordinateg0, 0, —¢)*

in ®. To eachx corresponds an oriented projective rayoining O, with the in-
tersection poiniX, in the sphere surface. The non-linear mapgirgprresponds

to projecting the scene in the unity sphere surface and then re-projecting the points
on the sphere into a plane from a novel projection ce@terPoints in catadioptric
image plane are obtained after a collineatid#, of 2D projective point.

The novel projection cent&. = (0,0, —¢)* only depends on mirror param-
eters (see Table.2.3). For a parabolic migot 1 andO. belongs to the sphere
surface. The re-projection is a stereographic projection. For hyperbolic and el-
liptical caseO. is inside the sphere in the negative z-axis. The planar mirror is
a degenerate case of central catadioptric projection where0 and O, is co-
incident withO. The mapping of equation 2.6 becomes linear and the model is
equivalent to the conventional model for projective cameras.

2.2.4 About the Non-Linear Functionh

The mathematical expression of functibns provided by equation 2.6. Notice
thati(Ax) = Ah(x) whenever\ > 0. Thush is a positive homogeneous function.
To each oriented projective raycorresponds one, and only one, oriented projec-
tive rayx such thak = /(x). Since functior is injective then it has an inverse
ht.

The inverse functioh—! maps oriented projective poingsinto oriented pro-
jective pointsx (x = h'(x)). Consider the system of coordinat®s in Fig.
2.5. To each projective ray corresponds a poinX, lying on the surface of
the sphere. Assuming = (7,7, z)! there is a positive multiplying paramet&r
such thatX. = (\.Z, A\.7, \.2)". Changing to sensor coordinatiscomes that
Xe = (AT, A, Az — ). SinceX, lies in the unitary sphere centered in the
origin O then\2z* + 2% + (\.z — £)? = 1. Solving the equation in order tq.
and choosing the positive solution yields

2+ /P (- @+ P
A = 2+ 2 + 22 (2.8)

The 3D pointX, lies on the oriented projective ray. Thus the projective
coordinates ok in the sensor reference frame are= (A\.7, \.y, \.Z — &)". The
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mathematical expression of the inverse function is

2£+\/22+(1f£2)(962+§2)j;

52+g2+22
—1/— z 224 (1—€2)(224+72) _
h(X) = 2+ Zj;r_;(-g2iz)2(x +y )y (2.9)
ze+4/22+(1-E2)(Z2+32) _
52_’_@2_’_52 z— 5

2.3 \Virtual Perspective Images

As referred in [5] a single projection center is a necessary condition for the gen-
eration of geometrically correct perspective images. This section presents two
different approaches to artificially generate perspective images from central cata-
dioptric images. It is assumed that the vision system is calibrated and riktrix
is known (equation 2.7). The projection center of the virtual perspective camera
must be coincident with the effective viewpoidt(see Fig. 2.5). The matrix of
intrinsic parameters ¥, and the rotation matrix between the reference frame
attached to the virtual camera and the sensor coordinate sysieém Both ma-
trices are defined in advance by the user.

The mapping model derived in the previous sections is schematized in Fig. 2.4.
It has been shown that to each painih the catadioptric image plane corresponds
one, and only one, projective ray. The mapping function is = A(H_'%).
Assume thak, is a perspective image point, provided in projective coordinates in
the reference fram&, attached to the virtual camera. The mathematical relation
between pointx, andx is x, = K,R,x. Replacingx yields the result of
equation 2.10 which maps poirgn the catadioptric image into poings, in the
virtual perspective image.

x, = K R A (H, ') (2.10)

Fig. 2.6 shows an omnidirectional image with dimengi®TR x 1704 acquired
by a paracatadioptric camera [35]. A virtual perspective image is exhibited on the
top right corner. The image is generated using the result of equation 2.10 with
R, = I. Points inside the rectangle marked in the omnidirectional frame are
mapped into points in the virtual perspective image. Notice that the scene is not
uniformly sampled by the catadioptric sensor. In Fig. 2.7 the same strategy is
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2. An Unifying Theory for Central Projection Systems

Figure 2.6: Generating geometrically correct perspective images

used to generate a perspective image of the tile panel in the wall. In this situation
R, #1.

An alternative approach can be used to generate perspective images more sulit-
able for visualization purposes. Equation 2.11 is the inverse of the mapping pro-
vided in equation 2.10. All points, in the perspective image plane are trans-
formed into points in the catadioptric image using the derived relation. The bright-
ness (or color) in the perspective image points is then computed using bilinear
interpolation. The results can be observed at the bottom right corners of Fig. 2.6
and 2.7.

x = H.A(R

VK xy)

(2.11)

2.4 Closure

In this chapter we have reviewed the entire class of central catadioptric systems.
Central catadioptric systems combine two useful features: a wide field of view and
a single projection center [5]. Central catadioptric image formation is isomorphic

22



2.4. Closure

Figure 2.7: The perspective image of a detail in the scene

to a projective mapping from the sphere to a plane with projection center in the
perpendicular to the plane [34]. This chapter shows that the image formation can
be modeled as a three step process. A conventidnall projection matrixP

maps the 3D scene in an oriented projective plane. The oriented projective plane
is transformed by a non-linear functién The resulting oriented projective plane

iIs mapped in the final catadioptric image by a collineation which depends on the
camera intrinsic parameters and on the relative pose between the imaging sensor
and the reflective surface. The proposed model is general, intuitive and isolates
the non linearities in an injective functiagn

23



2. An Unifying Theory for Central Projection Systems

24



Chapter 3

Central Catadioptric Line
Projection

The mapping model derived on the previous chapter is made up of three steps:
a linear transformatiod® of 3D world coordinates into 2D sensor coordinates,

a non-linear mapping between two oriented projective planes, and a final 2D
collineationH, (see Fig. 2.4). The present chapter studies the line projection
for central catadioptric systems. It is shown that in general a line is imaged into
a conic curve. Collineatiofl, is ignored in section 3.2. By assumiif), =

I we focus on the effects of the non-linear mappign the catadioptric line
projection. Both affine and euclidean geometry of the resultant conic curve are
studied. However in generdl. # 1. Section 3.3 derives projective invariant
properties of central catadioptric line projection.

3.1 The Central Catadioptric Image of Line

Consider a line in space lying in a plahE= (n,, n,, n.,0)" which contains the
effective viewpoinO (Fig. 3.1). According to the first step of the mapping model
of Fig. 2.4, the 3D line projects iRl = P’‘n. Since it is assumed that the world
reference frame and the sensor system of coordinates are the sanie £thi@(0]
andn = (n,,n,,n.)". Thus the world pointX,, lying on the original line are
mapped into points in the oriented projective plane such thétx = 0.

The non-linear functiork establishes the relationship between posnisnd
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A
Q Catadioptric
Image Plane

0|

g

Figure 3.1: The central catadioptric image of a line

%. Consider the inverse functioim! provided in equation 2.9. lht.x = 0 and

x = h!(%) thenn®.7~1(X) = 0. After some algebraic manipulation the equality
can be written in the forrx'Qx = 0 with Q given by equation 3.1. The non-

linear mappingh between two oriented projective planes transforms thedine

into a conic curve.

ni(l - &) - ngfz ngny (1 — &%) TpTy
Q= ngny(1—62)  n2(1—E&) —n2* nyn. (3.1)
NyNs nyn. n?

Points in the catadioptric image plageare linearly related with point&
through a collineatiodd . (equation 2.6). The projective transformation of a conic
curve is always a conic curve [59, 39, 62]. Thus cdiés mapped in the cata-
dioptric image plane into a coni@ (equation 3.2). In general we may conclude
that a line in the scene is projected into a conic cuivie the catadioptric image
plane [34].

Q=H'OH " (3.2)
Fig.3.1 depicts central catadioptric line projection using the sphere model. The

26



3.2. The Conic CurveQ

world line in space is projected into a great circle on the sphere surface. This
great circle is the curve of intersection of plafle containing both the line and

the projection cente®, and the unit sphere. The projective rasjoining O,

to points in the great circle, form a central cone surface [63]. The central cone,
with vertex inO., projects into the coni€ in the canonical image plane. Notice
that we can always think of a confe in the projective plane as a central cone of
projective rays with vertex in the projection center. Findlyis mapped intd2

by collineationH,. The conic curve& is the catadioptric image of the original
line.

There are two kinds of degenerate conics: a locus of points consisting of a
pair of distinct lines, and a locus consisting in a single line. In the former the rank
of the corresponding x 3 matrix is 2 and in the last the rank is 1. SinEg is
a projective transformation then it is a full rank matrix and the line imQge
degenerate if, and only if, the corresponding cdits also degenerate (equation
3.2). Using the determinant of the matrix provided in equation 3.1 we conclude
that © is rank deficient wheneveyr = 0 orn, = 0. If £ = 0 then the sensor
is a planar catadioptric system (see Tab. 2.3). The mapping becomes similar to
conventional perspective cameras where a line in the scene is projected into a
line. If n, = 0 then the imaged line is coplanar with the Z-axis of the catadioptric
reference frame, and the corresponding catadioptric image is also a line. This can
be easily understood using the sphere model for the mapping (see Fig. 3.1).

3.2 The Conic Curve

From equation 3.2 results thatH. = I then the catadioptric image of a line
is 2 = Q. The present section ignores the collineatldn and focuses on the
effects of the non linear mappirfgin the catadioptric line projection. Both affine
and euclidean geometry of the conic cuf¥are studied.

3.2.1 Affine Geometry of(2

AssumingH, = I then any line contained in plafi@ = (n’,0)*, going through
the projection center of the catadioptric system, is imaged into the €difsee
Fig. 3.2). The affine characterization ©f is performed by assuming that the

27



3. Central Catadioptric Line Projection

Figure 3.2: The central catadioptric image of a line wikEn= 1

line at infinity 7., is in the canonical positiort(, = (0,0, 1)) [29, 39, 30]. The
center is the pole of., with respect to the conic [62, 59]. The cenof conic
Q is computed byC=0*7., with Q* the conic envelope dR (see Tab. 3.1).

The conic curve cuts the line at infinity in two poin@ andR. provided in
Tab. 3.1. If the points are real and distinct, coincident or conjugate complex, then
the conic2 is an hyperbola, a parabola, or an ellipse/circle [62, 59]. Notice that
Q andR are respectively real and distinct, coincident or complex conjugate, if,
and only if, the polynomial\ of equation 3.3 is greater than, equal to, or less than
zero. A is called the conic discriminant. Fdx > 0, A = 0 andA < 0 the conic
curve() is respectively an hyperbola, a parabola, or an ellipse/circle.

A = (ng +ny)(1—¢%) —nig? (3.3)

Consider the normal = (n,, n,, n.)" to planell (see Fig. 3.2) and the angle
a betweem and planeXOY (equation 3.4). From equation 3.3 and 3.4 it arises
that A = 0 whenevertan(a)? = (1 — £%)/£% If the normal to the plandl
intersects the unit sphere in the dashed circles of Fig. 3.2 then the line image is a
parabola. Moreover if the intersection point is between the circles the line image
is an hyperbola and if the intersection point is above or below the circles the line
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Center

(Namzy My, —A)

Ngn (1752)+nZ§2\/Z .
(17 7%52_7;5(1_522) ’ O)ta
(1’ Nany(1-€2)—nz& VA O)t

n2g-ng(1-€2)

Intersection
with 7o

S Q| Q)
I

Table 3.1: Affine geometry of the conic curge

image is an ellipse/circle.

a= arctan(L) (3.4)

2 2
g+ ng

3.2.2 Euclidean Geometry of2

For the affine characterization we have constrained the position of the line at infin-
ity. We now restrict the representation further by assuming that the circular points
I, andJ, are in the canonical positiody, = (1,7,0)! andJ,, = (1, —i,0)").
Consider the degenerate line conig, which consists of the two circular points
(@, = I.Jt, + J..I.). Two lines in the euclidean plane are orthogonal if, and
only if, they are conjugate with respectdq, [39, 59, 30, 29].

A diameter ofQ is a line going through the center of the conic. The principal
axes are a pair of orthogonal diameters which are conjugate with resgectro
general a conic only has a pair of principal axes (the exception is the circle). Any
line containing one of the circular poinks, or J, is called isotropic. A poinF
is a focus ok if, and only if, both isotropic line¥1., andFJ ., are tangent t62.

In general a conic has four foci, two of which are real and two conjugate complex
[62, 59]. Tab. 3.2 summarizes the euclidean parameters of the catadioptric line
image.

3.3 Projective Properties of the Central Catadiop-
tric Line Image

In the central projection model derived in the previous chapter, points in the scene
are projected onto the surface of an unit sphere centered in the effective viewpoint
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oo t.
Principal f= (—ny,ng, 0)"
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L Ng ny t.
F= ("z+\/("i+"§+n§)(1*£2)’ naty/(n2+n3+n2)(1-€2)’ L)%
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Table 3.2: Euclidean geometry of the conic cufve

O. The catadioptric image is captured by a perspective camera which projects
the points from the sphere onto a plane.Hf = I then the image plane is on
the canonical position (by canonical we mean orthogonal to the forward looking
Z axis). Since we are considering a projective framework there is invariance to
scale changes. As a result it can be assumed that, wheHgver I, the image
plane is the plane at infinitld... To each sphere poiilt corresponds a projective
ray going through the camera cen®g. PointP projects onP which is the
intersection of the projective ray.P with IT.

Consider a line in the scene which lies in plddeas depicted in Fig.3.31,
going through the effective viewpoif@ with normaln, intersects the spherical
surface in a great circle. Points on the great circle define a central cone of projec-
tive rays with vertex irD.. The central cone of projective rays intersddtg in
the conic curve® (equation 3.1). Moreover a pencil of parallel planes intersects
IT., in the same line (the horizon line) and a pencil of parallel lines interdécts
in the same point (the direction point). Returning to Fig. 3.% the horizon line
of planeIl, D is the direction point of lind®; P, andN is the direction orthog-
onal toIl. Notice that space linB; P, lies on plandl thus7‘D = 0. Moreover
linesP,P,, 0.0, projective ray€0.P;, O.P, and the normah are coplanar,
thus the corresponding direction poidds O, P,, P, andN are all collinear.

In section 3.2 we have assumed tlit = I. CollineationH, depends on
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3.3. Projective Properties of the Central Catadioptric Line Image

Figure 3.3: The central catadioptric image of a single line

camera intrinsic parameters, the relative rotation between the imaging device and
the reflective surface, and mirror parameters (equation 2.7). In geHerat 1
and the final catadioptric image ahbl,, are related by a general projective trans-
formation between planes (Fig. 3.3). A generic pdiis mapped i = H.P,
the conic curve? is imaged in? = H,'*QH. ', and the linet is transformed
in+ = H. "7 [39, 29].

The projective transformatioH. can change both the position of the line at
infinity 7., and the circular point$,, andJ. [39, 30, 59]. In general the affine
and euclidean parameters derived in section 3.2 do not hold. The circular points
are fixed if, and only if H, is a similarity transformation. If this is not the case,
linesji, 7 and pointd*;, F5, F'5, F'4 are no longer the principal axes and foci of the
conic curvel} (see Tab. 3.2). Moreover poift = H.C is the center of2 and the
conic type is preserved if, and only H. is an affine transformation. Nevertheless
the projective transformation preserves collinearity, incidence and the cross-ratio.
These invariants are used to derive properties of central catadioptric line image
that hold wheneveH, # 1. The properties apply to any line projected on a non-
degenerate conic. Section 3.3.1 establishes properties for single line imaging.
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3. Central Catadioptric Line Projection

The propositions enunciated on section 3.3.2 are only valid for central parabolic
systems{ = 1). Section 3.3.3 studies the central catadioptric projection of a pair
of lines.

3.3.1 Catadioptric Projection of a Single Line

Fig. 3.3 is a scheme of the central catadioptric projection of a line lying on a plane
IT = (n., ny, n.,0)* going through the effective viewpoif. The plane intersects

the sphere on a great circle which is projected on cohit the infinity pland,..

The point conic is transformed by, in 2 which is the the central catadioptric
image of the original line (equation 3.2). The principal pdint= (0,0,1) and

the normal directioiN = (n,, n,, n.)* of planell are mapped on pointd andN

by collineationH.. Planell intersectd 1., on the horizon liné which is mapped

on7 at the catadioptric image plane. Moreover we will consider the absolute conic
Q.. (not depicted) which is transformed in the cofilg, under the projectivity

H..

Proposition 3.1: If the point conic(2 is a line image then the polar of the image
centerO with respect tc{) is the horizon linet of the planell containing the
imaged line and the effective viewpoifit£ 2.0).

Proof: The planell, containing the imaged line, intersects the unit sphere in a
great circle. Consider a generic line, lying bhand going through the effective
viewpointO, with direction poinfD (Fig. 3.3). The line intersects the great circle

in two antipodal point®, andP, which are equidistant t®. This implies that,

in the plane at infinity, point® andO are harmonic with respect 8, andP..
PointsP; andP,, lie in the conic curve, and the locus of direction poini3 is

the horizon liner of planeIl. Thus7 is the polar ofO with respect td2. The
catadioptric image is related with the plane at infinity by a collineakin The
proposition is proved since pole/polar relations are invariant under a projective
transformation.

Proposition 3.2: The absolute coni€.. is mapped on the point confe.. at the
catadioptric image plane. If? is the catadioptric image of a line, then the polar
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3.3. Projective Properties of the Central Catadioptric Line Image

line # of the image cented (7 = Q.0) intersects the conic locu? in two points
1 andJ which lie onQ2...

Proof: In Fig. 3.3 the plan&I intersects the unit sphere on a great circle. The great
circle defines a central cone of projective rays with verte®in The central cone

is a quadric surfacB in space. In general a quadric intersects a plane in a conic
curve. The quadric surfacintersects the plane at infinilyl . in the conic curve

Q. The conic curve2 and the absolute coni.., both lying inII.., intersect in

four points. Each pair of intersection poirteandJ defines a line which is the
horizon line of a pencil of parallel planes (real or complex). These planes intersect
the original quadri@ in conic sections. Notice that both poifitandJ lie in each

one of these intersection conics. They lie simultaneously in the quadric surface
S (they belong ta?) and in the cutting plane (they belong to the corresponding
horizon line). Pointd andJ also belong to the absolute cofi;, and are circular
points. Thus, one concludes that each plane of the defined pencil intersects the
central cones on a circular section (for further details see [63, 62]). Moreover if

a plandl intersects the quadric surfaSen a circular section then its horizon line
must go through two intersection points@fwith Q... The established relations
hold in the catadioptric image plane after the projective transform&fion

Proposition 3.3: Consider the linei defined by the principal poin® and the
normal directionN in the catadioptric image plangi(= O A N). Line i is the
locus where the major axjs of the conic curvé? is mapped by collineatioH,

Proof: Accordingly to Tab. 3.2 the major axis of the conic cukis i =
(—ny,n,,0)!. Both the principal poinO = (0,0, 1)" and the normal direction
N = (ng,ny,n,)! lieonp (7O = @'N = 0). Fig. 3.3 shows that the major axis
[ is the intersection line betwedn,, and the plane containing both the normal
directionn and the Z axis. Since collineatid#, preserves incidence an collinear-
ity then both point®) andN must lie on the locug wherefi is mapped. However
remember that in general lirieis no longer the major axis of the catadioptric line
image(.

Consider liner., = (0,0, 1)" lying on planell.,. Line 7., is mapped on liné
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3. Central Catadioptric Line Projection

by projective transformatioHl ... Line 7, is in the canonical position if, and only
if, H. is an affine transformation. Notice that, is the intersection line between
IT.. and the catadioptric image plane. Consider the intersection pbirdas 7
with 7, andM of 7., with fi. These points are mapped on poibtendM, which
still are intersection points sindd, preserves incidence (see Fig. 3.3).

Corollary 3.1: The pole of ling with respect to the point conif lies on
which is the intersection line of the catadioptric image wiih. .

Proof: The major axig: is a diameter of the point confe, thus the corresponding
pole lies at the line at infinityr,, [59]. Since pole/polar relations are preserved
under projective transformations it comes that the polg gfoint Q*./i with Q*

the conic envelope dR) lies on .

Proposition 3.4: The cross ratio between poin€, N, D and M, lying on j,
only depends on the angle between plahand planeX OY of the catadioptric
reference frame. In particulafM, O;: N, D} = — tan(«)? with a the angle of
equation 3.4.

Proof: We have already seen that the principal poinflg, is O = (0,0,1)*
and the normal direction iN = (n,,n,,n.)!. Moreovers,, = (0,0,1)!, i =
(—ny, ns, 0)! and the coni&? is given by equation 3.1. From proposition 1 comes
that the horizon line of plan&l is 7 = Q0. The intersection point of lines
andiiisD =i A T = (—ngn,, —nyn,,n’ + n2)t. PointM is the direction point
of i, thusM = [i A 7o, = (ns,ny,0)". Computing the cross-ratio between the
four points arise§M, O; N, D} = — tan(«)? with a given by equation 3.4. The
cross-ratio is a projective invariant and the proposition is proved.

Point C is the center of the coni€ lying on planell,, (see Tab. 3.1). By
definition C is the pole of the line at infinity., with respect ta [59, 62]. The
pole/polar relations are preserved by projective transformations. ThGs,sf

mapped on point€ in the catadioptric image then it comes tiat= * 7.
MoreoverC must lie on linei since the major axig goes through the centét.
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3.3. Projective Properties of the Central Catadioptric Line Image

Proposition 3.5: The cross ratio between poin@, N, D and C, lying on ji,
depends only on the shape of the reflective surface used in the central catadioptric
system. In particulafO, D; N, C} = £2.

Proof: The coordinates of poin®®, D andNN have already been derived and cen-
terC is provided on Tab. 3.1. Computing the cross-ratio comesthaD; N, C} =
£2. The proposition is proved since the collineatldp preserves the cross-ratio.

Corollary 3.2: The polar lines of point® and N, with respect to the image of
the absolute coni€l.., are #.. and# (7., = 2,0 and7 = Q. N).

Proof: N is the normal direction of planEl, which intersectdI., on line 7.
Thus, the polar olN with respect to the absolute corfiL, is the horizon liner.

The property is preserved by projective transformatin In a similar manner

the pole/polar relation betwedh andi ., is proved taking into account that plane
IT, is orthogonal to the Z-axis of the catadioptric reference frame (see Fig. 3.3).

ConsideN* lying on line/i in the catadioptric image plane. PoifsandN* are
conjugate with respect to the catadioptric line im&yeN*QIN* = 0). This point

is the locus wher&N* = (QN) A ji is mapped by collineatiofl.. Equation 3.5

is a relation of cross-ratios between poifiisM, N, C andN*. The result can

be proved in a similar manner as proposition 3.4 and 3.5, taking into account that
cross-ratios are projective invariants and tNat= (n,n,,n,n,, —(1 — £2)(n2 +

ng))t. The established relationship will be useful later for calibration purposes.

262{N* N; M, C}

{07N7M70}:§2_ - ~ A~ A
YN* NMC
(1 - 52)(1 + \/1 + 2 (1-¢€2)2 })

(3.5)

3.3.2 Paracatadioptric Projection of a Single Line

The propositions enunciated in this subsection are only valid for central catadiop-
tric systems combining a parabolic mirror with an orthographic camera (Fig. 2.1).
If the mirror is parabolic then the parameter is unitary (Tab. 2.3). Replacifig
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3. Central Catadioptric Line Projection

by 1 on equation 3.1 yields

-n 0 NyN
Q= 0  —n? nyn, (3.6)
NgNy Ny, ng

Consider the scheme of Fig. 3.3 for the central catadioptric projection of a
single line. Plandl, containing both the line and the effective viewpoidf
intersects the sphere in a great circle. For the particular situation of the paracata-
dioptric camera the parametér= 1 and the re-projection cent€d,. lies on the
sphere surface. The mapping from the sphere to the plane at infinitys a
stereographic projection [34]. The stereographic projection maps any circle in the
sphere into a circle in the plane [59]. Thus the great circle is projected into a cir-
cle Q lying on planell,, (equation 3.6). The paracatadioptric image of the line is
Q= H,'QH. !, with H, = K.R.M, (equations 3.2 and 2.7). Since the sys-
tem is parabolic then the optical axis of the orthographic camera must be aligned
with the symmetry axis of the mirror arf@l, = I (Tab. 2.2). The transformation
H. is always affine. Since an affine transformation does not change the type of
conic, then the paracatadioptric line ima@és always a circle/ellipse.

Consider the following points lying on plaid,.: I, = (1,4,0)!, Jo. =
(1,—i,0),, G = (1,0, —i)! andH = (1,0,4)". PointsI,, andJ,, are the circular
points of the plane. It is well known that any circle must go through the circular
points. Since? is always a circle, then it is true thH{ Q1. = 0 andJ!_QJ ., =
0. Moreover from equation 3.6 arises tf@tQH = 0. Thus pointsG andH are
conjugate with respect to the conic cuf®e Assume that collineatiokl, maps
pointsI.., J., G andH into pointsi., J., G andH in the paracatadioptric
image plane.

Proposition 3.6: A conic curvel2 is the paracatadioptric image of a line in the
scene if, and only if, it contains points, andJ .., and pointsGz, H are harmonic
conjugate with respect 1.

Proof: The circleQ2 must go through the plane circular poirdts, J.. [59, 39].
Since collineationH, preserves incidence, then both poiﬁi;;§, J., lie on the
parabolic line imagd&2. Moreover the projective transformation also preserves
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3.3. Projective Properties of the Central Catadioptric Line Image

the cross-ratio and pole/polar relations. Since pofafsH are conjugate with
respect tof2, thenG, H are also conjugate with respect$h Thus, ifQ is a
paracatadioptric line image, then it must vedfyQI.. = 0, J. QJ.. = 0 and
G!QH = 0. The derived conditions are necessary, nevertheless it is not clear that
they are sufficient. By sufficient we mean that if a conic curve in the paracatadiop-
tricimage plane verifies thegeonstraints, then it is the locus where a certain line

in the scene is projected. Notice that, neglecting the scale factor, the conic curve
Q provided by equation 3.6 is a function dfindependent parameters. These
degrees of freedom (DOF) are associated with the pose of plasentaining the

line and the effective viewpoint (Fig. 3.3). Since in general a conic curvé has
DOF, then we must be able to fisdand no more thaB, independent constraints.
This proves the sufficiency of the statement.

Corollary 3.3: In a central parabolic vision system all line images intersect in
two pointsi,, andJ., lying on#..

Proof: The proof of this corollary is straightforward. The circular points of plane
IT lie on line7 . Since the projective transformation preserves incidence and
collinearity, then pointd.., J.. lie on line #., which is the locus wher&.. is
mapped. From proposition 3.6 arises that all paracatadioptric infagesst go
through the image of the circular points which completes the proof.

Proposition 3.7: In a central parabolic image, poif¥ and line#.. are pole/polar
with respect to the corresponding line image

Proof: PlaneIl, with normal directionN, intersects the unit sphere in a great
circle which generates the corf (Fig. 3.3). PointC, provided in Tab. 3.1, is
the center of the conic curve. Makigg= 1 comes thaC = N. For a parabolic
system the center of confe is the normal direction of the plard& containing the
imaged line. Since the conic center is the pole of the line at infinity, then point
and liner,, are pole/polar with respect . Pole/polar relations are projective
invariants and the statement is proved.
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3. Central Catadioptric Line Projection

3.3.3 Catadioptric Projection of a Pair of Lines

Fig. 3.4 depicts the central catadioptric projection of a pair of lines. Two lines,
lying on planesIT; andII;, are imaged on conic®; and€2;. The schematic is
similar to the one used on Fig. 3.3 for a single line. Configurations leading to
degenerate conics are excluded. Thus the imaged lines are not coplanar with the
z-axis and the central catadioptric system is not a perspective camera.

The planedTI; andIl;, going through the effective viewpoi, cut the unit
sphere in two great circles which intersect each other in two antipodal psigts (
andBjy;). The direction point of lind";;B;;, going through the antipodal points, is
D;;. The plane®;;, orthogonal to directiod;; and containing the origi, inter-
sects the infinity plan&l, on line7n;. The directionl_)ij is common to planeHI;
andII;. Their normal vectors belong to pladg; and the corresponding direction
pointsN; andN;, lie on the horizon linej;.

Each great circle defines a central cone of projective rays with vertéxjn
which intersects the plane at infinify, in a conic curve. The conics associated
with IT; andIT; are respectivel§2; and(2;. The conic curves intersect each other
in two real pointsF;; and B;;. These points are the projection of the antipodal
pointsF;; andB;;. The line going through the two intersection pointgijs =
F;; A Byj.

Conics$) andﬁj are imaged in2; andflj. These are the central catadioptric
images of the original lines. Poinig;, B;;, Di;, N; andN; are transformed on
pointsF;;, Bj;, Dy;, N; andN; in the catadioptric image plangy; and; are
the locus where lineg;; and#; are mapped. The projective transformatidn
preserves all the incidence and collinearity relations.

Proposition 3.8: If Fij andBij are the intersection points of two catadioptric line
images(2; and$;, then the image centd is always collinear witi;; and B;;.

Proof: Consider the pland;;, defined by the two antipodal poink;, B;; and
the camera centdd. (Fig. 3.4). Notice thatA;; always contains the effective
viewpointO. The projective ray® F;; andO.B;; lie on the plane ang;; is the
horizon line ofA;;. Moreover the projective ra§. O, intersectind I in 0, also
belongs toA;;. The direction poinO lies onji;; and is collinear withF;; and
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Figure 3.4: The central catadioptric image of a pair of lines

39



3. Central Catadioptric Line Projection

B;;. The proposition is proved since the projective transformaliQrpreserves
collinearity.

Corollary 3.4: Consider two catadioptric line imagés; and$2;, intersecting on
pointsF;; andBy;, and the image centdd. If 7;, #; are the polar lines 00 with
respect t2;, QJ- andji; is the line going through the two intersection points then
i, 7y and fi;; intersect in the same poiﬂf)ij.

Proof: We have already seen that directibg; is common to planekl;, I1; and
A;; (Fig. 3.4). Thus the corresponding vanishing lifigst; andpi;; must intersect
on D;;. From proposition 3.1 comes that the polar lidgsand #; are the locus
where the horizon lines of pland$; andIl; are mapped. Moreover ling; in
IT, is transformed ini; at the catadioptric image plane. SinEk preserves
incidence, comes that, #; andji; must intersect in the same poid;, which is
the locus where the common directiby; is mapped.

Corollary 3.5: Two parallel lines (non-coplanar with the cent®) are projected
in the catadioptric image plane on coni€g andQ;. If the polar lines ofO are
respectivelyt; and;, then the direction of the parallel lines ]_Bij = H. (7 A

7).

Proof: If two lines are parallel then the common directibg of the correspond-
ing planedlI; andIl; is the direction of the parallel lines (Fig. 3.4). The direc-
tion point D;; is mapped iﬂﬁij in the catadioptric image plané{i = H.Dy;).

This is the intersection point of polar linés and7;, as stated in corollary 3.4
(ﬁij = 7; A\ 7;)). From the above comes that the direction of the parallel lines is
Dy; = He ' (75 A 7).

Planedl; andIl; define two great circles in the unit sphere surface as depicted
in Fig. 3.4. The great circles intersect each other on the antipodal dgjnasd

B;;. Plane®;; is orthogonal to directior]_)ij of line F;;B;;, and intersect$l,,

on line7;. Consider the pencil of planes containing [FgB;;. These planes go
through the origirD and the corresponding normal directibhlies on7;. Line

7;; is called the line of the normals of the pencil definedbyandIl;. Each plane
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of the pencil intersects the unit sphere in a great circle going through dsints
andB;;. Thus, any line lying on these planes is projected into a cénigoing
through pointd;;, B;; in the catadioptric image plane.

Q; andflj are two point conics which are the catadioptric images of two lines
lying on planedT; andIl; (Fig. 3.4). Any pair of catadioptric line images has a
line /i;; and7);; associated with it. Consider the pencil of pladiésdefined byl T;
andIl;, and the corresponding plan&g and®;;. /i;; is the line going through the
intersection point;;, B;; of conics$2; and$2;. The horizon line of pland;; is
transformed irfi;; by collineationH,. 7);; is the locus where the line of normajg
is mapped in the catadioptric image plane. The pdfﬁtande, associated with
Q; andQ;, lie in 7j;;. Moreover if a catadioptric line imag@ goes through points
Fij, Bij then the correspondiny lies on7y;; and the imaged line is contained by
a plane of the pencil defined @y; andII;. Notice thatﬂij, depicted in Fig. 3.4,
is a particular case of this family with the corresponding normal d&ﬁ@ﬁn the
intersection of linegi;; andj;.

Proposition 3.9: Consider the pair of catadioptric line imagés and QJ-, inter-
secting on pointﬁ‘ij and Bij, and the corresponding lings; and ;. If conic$2
is a line image going through poinis;, B;; then the pole ofi; with respect ta2
lies onij;.

Proof: The catadioptric line image®, €; and QJ- intersect in only two visible
points. The line going through the intersection poiﬁtﬁand]éij IS flsj. PointY

is the pole offi;; with respect td2 (Y = Q*./i;;). The goal is to prove that point
Y lies on linefj;;. The polar line of the image cent€) with respect t is #.
SinceO lies onjy; (proposition 3.8), then poirY’ (the pole offi;;) must lie onz
[59]. Line # intersectgi; on pointD;;, and the conid? on pointsi, J. SinceY
andji; are pole/polar, then the pairs of poirfts J} and{D;;, Y} are harmonic
conjugates [59]. From proposition 3.1, comes thatthe locus where the horizon
line of planell is mapped. Plané&l, containing the imaged line, belongs to the
pencil defined bylT; andIT; (Fig. 3.4). The pencil common directidd;; is
orthogonal to plan@;; whose vanishing line ig;. Thus, if the absolute conic is
mapped o2, by H,, thenD;; and7j; are pole/polar with respect ... Line

# intersects conic§),, and{2 on the same pair of poinfs J (proposition 3.2).
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Assume that line§ andi; intersect on poink. Sincef)ij andf); are pole/polar
with respect td2,, then the pairs of pointfl, J} and{D;;, K} are also harmonic
conjugatesY andK must be the same point and the proposition is proved.

3.4 Calibration with Minimal Information

The theory derived can be applied to the calibration of central catadioptric system
using line images. Section 3.4.1 proves that, giventthbarameter of the mirror

and the relative pose of the camera and the reflective surface, it is possible to cal-
ibrate any hyperbolic/elliptical system from the image of two lines. Section 3.4.2
shows how to use three line images to calibrate any central panoramic system.

3.4.1 Calibrating an Hyperbolic/Elliptical System from Two
Lines

The calibration strategy presented in this section is only valid for central cata-
dioptric systems with an hyperbolic/elliptical mirror (Fig. 3.1). Thparameter,
depending on mirror shape, is known. The plane at infillty intersects the
catadioptric image plane on line, (Fig. 3.3 and 3.4). It is assumed that the
position oft, is known as well. On the majority of hyperbolic sensors commer-
cially available the perspective camera is not rotated with relation to the reflective
surface. The rotation matriR. is the identity and collineatiokl. is an affine
transformation (equation 2.7). Under this circumstances thesligas in the
canonical position at the catadioptric image plahg & (0,0, 1)").

Tab. 3.4 summarizes the algorithm to estimate the position of €@gidrom
the catadioptric image of two lines. The lines can not be coplanar with the mirror
symmetry axis, otherwise they would be imaged in a degenerate conic (Fig. 3.1).
This is the unique constraint on the line position in the scene. GAgids the
locus where the absolute conic is mappé( = H.'H,™!). If the camera
is not rotated with relation to the mirroR( = I), then collineatiorH, can be
recovered from the Cholesky decompositiorfhf, [39, 30, 29].
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Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Determine the catadioptric line imag€s and (2, using conic
fitting techniques

Compute the pointd';5, B1, where conics2y, €, intersect and
determine |in€)]12 - F12 AN B12

Obtain the linej;» going through the poles ¢f;» with respect to
conics; ansz

Compute the intersection poinI@Im = [l12 N\ T and Ny =
fliz N\ 12

Obtain Cm andN*, such that both pairs of pointeC;2, M.}
and {N12,N12} are harmonic conjugate with respect
{F127B12} ( Ciz = fliz N (Q Mlz) = fl12 N (Q 1\/[12) and
N; 2—9 7712—9 T12)-

Given pointsNj,, Nia, Mis, andCy,, compute the cross-ratio

{C12,Ny2; My, 015} using the relation provided by equatig
3.5.

Determine the image centé from pointsCyz, N1z, M2 and
the value Of{C12, N12; M12; 012}

Obtain the polar lines, 5 of the image pente@ with respect
to conics 24, 25 (71 = 2,0 and7y = 220).

Determine the intersection poirkts, J; of #; with Q, and,, J,
of o with Qo

Estimate coni€., knowing that pointd,, J;, I, andJ, lie in

N

the conic and tha; and#., are pole/polar with respect fa..

Table 3.3: Calibrating an hyperbolic/elliptical system from the imaglofes
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Figure 3.5: Calibrating an hyperbolic/elliptical system from the imagelofes

The Algorithm Steps

The algorithm steps can be followed in the scheme of Fig. 3.5. Start by obtaining
the catadioptric line image®; and(2,. They are estimated by fitting a conic
curve to points selected in the image. For conic fitting techniques see [32, 33,
76]. The next step is to determine lifigz going through the intersection points
of the two conics. The line of the normals, is computed using the result of
proposition 3.9. Lineg 2, 712 have already been determined, @ndis assumed
to be known. The computation of intersection poﬂﬁtﬁz, M, and the respective
conjugatedN*,, C;, lying on line /iy, is trivial.

We have already seen that coni@s and (2, define a family of catadioptric
line images(2. Conic 2 goes through the intersection poirits,, B12 and the
point N associated with it, must lie on linf». The catadioptric line imag®»,
depicted in Fig. 3.5, is a particular realization(@f The original imaged line is
on planell;,. The corresponding normal directid¥, , is mapped on poiristlz,
where linesii;» and#;, intersect. Since bot® andNj, lie on ji;» (proposition
3.8), then this line is the locus where the major axigf is mapped (proposition
3.3). Propositions 3.4, 3.5 and equation 3.5 hold, and the image center can be
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computed as described on steps 6 and 7.

The polar lines of the image centérares; ands,. The computation of the
intersection pointd;, J,, I, andJ, is trivial. From proposition 3.2 comes that
these four points must lie on corfiz... MoreoverQO and#., are pole/polar with
respect td2., (corollary 3.2). We have the necessary five constraints to determine
the absolute conic locus.

Additional Remarks

The proposed algorithm is not valid for central parabolic images. Accordingly
to proposition 3.7, if the system is paraboli={), then pointsN;,, M;, are
coincident with pointsCy2, N%,. The cross-ratio§N%,, Nya; M, C12} and
{C12,Nys; My,, 015} become respectivel§ and 1, despite the imaged lines.
Under these circumstances the image cefiteran not be recovered using the
result of equation 3.5.

The hyperbolic/elliptical system can be calibrated from the image of two lines.
However it seems that more information is needed to obtain the calibration for the
parabolic situation. This supports the conjecture advanced in [34]. According to
the conjecture, the minimum number of lines to calibrate an hyperbolic/elliptical
system is two, while to calibrate a parabolic system is three. The explanation has
to do with the number of unknowns and constraints. The goal is to estimate the
image of the absolute confe.., which has five unknown parameters. Since each
line introduces two additional unknowns, then using two line images we have a
total of nine parameters to determine. The lines are imaged in conic curves by an
hyperbolic/elliptical system. Each conic has five degrees of freedom, thus two line
images provide ten constraints. Since the constraints are more than the unknowns
the system can be calibrated. Consider the statement made on proposition 3.6
for parabolic systems. Any paracatadioptric line im&yenust go through the
locus of the circular points and verify the relatiGfQH = 0 whereG andH
are two fixed points. Thus, the first line image provides five constraints, while
any additional line only gives two constrains more. The calibration from two line
images is an underdetermined problem, since there are only seven constraints for
nine unknowns. We will return to this discussion later on.
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3. Central Catadioptric Line Projection

A
Myl

Figure 3.6: Calibrating a central catadioptric system from the imageliokes
(Part 1)

3.4.2 Full Calibration of a Central Catadioptric System from
Three Lines

It is possible to calibrate any central catadioptric system from the image of three
lines (the conventional perspective camera is not included). The lines must be
projected into three non-degenerate conics that do not intersect in the same pair of
points. The imaged lines can not be coplanar with the mirror symmetry axis, nor
lie in planes that intersect in a same line going through the effective viewfoint
(Fig. 3.4). The proposed algorithm is summarized on Tab. 3.4. It is shown that
three lines are enough to obtain the locus of the absolute é2qicthe position

of line 7, and the paramet&rwithout further information.

The Algorithm Steps

Consider the scheme of Fig. 3.6. The three lines are projected on €ni€3,
and2s, estimated using a conic fitting technique [32, 33, 76]. Each pair of conics
Q;, Q) intersect on two real points which define a lig (ij = 12,13, 23). The
three linesjii2, f113 and ;2 must intersect in the image center (proposition
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3.4. Calibration with Minimal Information

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Determine the catadioptric line imagés,, 2, and Q3 using
conic fitting techniques

For each pair of conic§;, QJ, compute the intersection points
Fy;, By; and determine lingy; = 55 A By; (i = 12,13, 23)

Obtain the image centd as the intersection point of lings .,
fi13 andjias.

For each coni€?; compute the polar ling; of the image cente
O (i=1,23).

For each Aconic curve obtain the poirifisand ji where liner;
intersectq?; (i = 1,2, 3)

Estimate coni&2.. going through pointd;, J;, I, J», I3 andJ;

For each pair of conic§l;, QJ- determine linej; going through
the poles ofi;; with respect td2;, €25 (ij = 12,13, 23)

Obtain the intersection pointNy = iz A fi1z, N2 = 12 A flag
andNsg = 713 A fas.

Determine the lingi; = N; A O associated with the catadioptr
line image(?; (i = 1,2, 3)

Estimate the locus of the line at infinifit, knowing that it goes
through the poles qgi; with respect to coni€?; (i = 1, 2, 3)

For each coni&?; determine the intersection poiby; = ji; A #;
and the poleC; = Q. 7., which must lie on lingy; (i = 1,2, 3)

The mirror parametef is provided by\/{O Di;N;, G} (i =
1,2,3)

Table 3.4: Calibrating a central catadioptric system u8itiges

a7



3. Central Catadioptric Line Projection

Figure 3.7: Calibrating a central catadioptric system from the imageliokes
(Part II)

3.8). Given the image center compute the polar line with respect to each conic
image. The polar ling; intersects the corresponding coi on two pointsi;,

Ji (i = 1,2,3). Accordingly to proposition 3.2 these points lie on the cdiig,

which is the locus where the absolute conic is mapped by collinekfjorConic

Q1. is estimated using the six poinks, J1, I, J», I3, andJs.

Each pair of imaged lines has a line of normals associated with it, which is
mapped onj; in the catadioptric image plangj(= 12, 13,23). The line goes
through the poles ofi;; with respect to conic$); and Qj (proposition 3.9). Re-
member that both point8; and N; lie on 7;. Thus the pairs of line§s s, 7irs;
fi12,fl23 ands,fiag intersect on pointdN;, N, andN; (Fig. 3.7). The determi-
nation of lineji; associated to the line imag& knowing bothO andN; is trivial
(proposition 3.3). The locus of the line at infinity can be easily determined taking
into account that the poles @f, i, andjiz must lie in7., (corollary 3.1). The&
parameter of the system mirror is computed using the result of proposition 3.5.
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3.5. Closure

3.5 Closure

The model established for central catadioptric sensors and the geometric proper-
ties derived can be used in many different ways. A possible application is 3D
reconstruction from panoramic images as described in [66]. It is possible to di-
rectly recover the orientation of any world plafefrom the catadioptric image of

two sets of parallel lines lying on it. Consider that the directions of the two sets of
lines are respectivelld andD’. The direction points are mapped in the catadiop-
tric image plane at point® andD’. These points can be easily determined from
the line images using the result of corollary 3.5. Since i@thndD’ must lie on

the horizon line of plan&l thenr is mapped ot = D AD'. If H, is known then

the horizon line oflI is 7 = H.'# and the orientation of the plane is recovered.

The derived theory can also be used for calibration purposes as discussed on
section 3.4.1 and 3.4.2. The algorithms summarized on Tab. 3.3 and 3.4 show that
two line images are enough to calibrate an hyperbolic/elliptical sensor and any
central panoramic system can be fully calibrated from the image of three lines.
If the catadioptric lines images are correctly determined then the calibration is
straightforward. However the estimation of the these conics using image points
is hard to accomplish. There are several algorithms to fit a conic curve to data
points. In [32, 76] some of these algorithms are reviewed and their performance
is evaluated. A robust conic fitting algorithm has to cope with noisy data points,
biasing due to curvature and partial occlusion. The occlusion problem is of par-
ticular importance for our purposes. By occlusion we mean that the available data
points lie on a small arc of the curve. In these cases, it is very hard to estimate the
correct conic curve, even for small amounts of noise.

Fig. 3.8 is the image of a white board acquired with an hyperbolic sensor.
An edge detector is then used to obtain the sides of the board. Since the board is
a square, the corresponding sides are catadioptric line images. The data points,
picked on each side of the board, are fitted by a conic curve using the approx-
imate mean square algorithm [32]. As it can be observed the estimated curves
go through the sides of the square. According to proposition 3.8, each pair of
catadioptric line images must intersect on two real points. These points define a
line going through the image center. Since there is a single image center, all the
lines going through the intersection points must intersect in a single point. The
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3. Central Catadioptric Line Projection

Figure 3.8: Estimating catadioptric line images using standard conic fitting tech-
niques

estimated conic curves do not satisfy this property. The catadioptric line images
are not correctly determined due to occlusion. The next chapter discusses the ap-
plication of the proposed theory in solving the problem of correctly estimate line
images in the catadioptric image plane.
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Chapter 4

Using Line Images for Calibration
Purposes

The previous chapter proves that an hyperbolic/elliptical system can be calibrated
from the image of two lines and that any central catadioptric sensor can be fully
calibrated using a minimum number of three line images.

In general lines in the scene are mapped into conic loci in the catadioptric im-
age plane. The calibration procedure requires the computation of the intersection
points between lines and conic and between pairs of conics. Section 4.1 proposes
algorithms to accomplish these tasks. It is shown that the problem of intersecting
a line and a conic has a closed form solution. A method to compute the intersec-
tion between two conics is also proposed. Section 4.2 focuses on the estimation
of conic curves. Five conic fitting methods are compared and discussed. It is
shown that in general none of these conventional techniques copes well with oc-
clusion. Section 4.3 uses the geometric properties of catadioptric line projection
to increase the robustness of the conic fitting. The estimated set of conic curves is
used to calibrate the system following the steps summarized in Tab. 3.3 and 3.4.
The calibration results are evaluated using both real images and simulated data.

4.1 Working with Conic Curves

The present section presents a closed form solution to compute the intersection
of a line with a conic curve, and a numerically stable method to determine the

51



4. Using Line Images for Calibration Purposes

intersection of two conics. We start by reviewing the concepts of conic locus,
conic envelope and skew symmetric matrix. For a detailed study on these subjects
see [59, 38].

A conic locus is an algebraic locus of second order. It can be parameterized
by a3 x 3 symmetric matriX2 (equation 4.1). Consider a poixin the projective
planeP2. The point lies in the conic cun@ if, and only if, x'Qx = 0.

a b d
Q=|>b ¢ e (4.1)
d e f

The conic locus is said to be proper or degenerate according as it is or is not
irreducible. For the former the corresponding mafnixs full rank, for the latter
the matrix is rank deficient. There are two distinct kinds of degenerate conic locus:
a pair of distinct lines (rank 2 matrix), and a repeated line (rank 1 matrix).

The dual figure of the conic locuR is the conic envelop&* provided in
equation 4.2. Notice that 2 is a full rank matrix, theff2* = det(Q)Q 1.

fe—e? ed—bf be—cd
Q" =1 ed—bf af —d*> bd—ae (4.2)
be —cd bd —ae ac—b?
Consider the3 x 1 vectorsv = (v,, v,,v,)" andw. We can always associate
a3 x 3 skew symmetric matrixr with vectorv (equation 4.3). Since matrix
is skew symmetric then it verifie8’ = —v. The vector product of andw is

VAW =VW.

v = U, 0 —wu, (4.3)

4.1.1 Intersection of a Line with a Conic

Fig. 4.1 depicts a line = (r,,r,,r,)" and a conic curv&€. A line intersects a
conic locus in two points. We aim to determine poiRts andP~ wherer and2
intersect. Consider poi®, = (—r,, —r,, 7, + r,)" lying on liner (Py'r = 0).
Notice thatP; = I;r with I the3 x 3 matrix provided by equation 4.4.
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4.1. Working with Conic Curves

r=(ry,ty 1z )

Figure 4.1: Intersecting a line with a conic

IL=|00 -1 (4.4)

The polar line ofP; with respect to coni€? iss = QP;. Linesr ands
intersect on poinP, = r A s = rQP;. If P; andP, are distinct then any point
P, lying on liner, can be written as a linear combination of the two conjugate
points (equation 4.5).

P(\) =Py + APy (4.5)

PointP(\) lies in the liner for any value of\. We aim to find the point® (1))
belonging to the conic cun@. Thus,

PO\ . QP =0

ReplacingP () by the result of equation 4.5 and taking into account hat
andP, are conjugate with respect to the conic cufvgields

].:)]_tfz:l.:)]_t)\2 + P2tQP2 == 0

53



4. Using Line Images for Calibration Purposes

//Ir:QS

Figure 4.2: The tangents to the conic going through a point

Solving the above equation in orderXtarises

t
N 4 _P2tQP2
P.'QP,
= +v —rtQ*r

The intersection pointB* andP~ are determined by replacingin equation
4.5. MakingP; = I,r andP, = rQIr yields

P* = (£vV—1'Q*rl + tQ)Lr (4.8)

The formula provided in 4.8 computes the poiRts, P~ where liner inter-
sects the conic cun@. The formula holds even for degenerate conics. If matrix
Q has rank 2 then the conic locus is a pair of distinct lines which inteksectt
two distinct points. If€2 has rank 1 then the conic is a repeated line Since
Q = mm' thenQ* = 0 (equation 4.2) an®* = P~ = tm (equation 4.8). The
formula is still valid for a liner tangent to the conic locu3. Since the line lies
in the conic envelop&* thenr'Q*r = 0. PointsP* andP~ are coincident and
correspond to the tangency point.
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4.1. Working with Conic Curves

Figure 4.3: Intersection of two conics

Consider a generic poitt in the projective plane. The result of equation 4.8
can be used to compute the pair of conjugate pdiitsS— lying in the conic
section (Fig. 4.2). The lines tangent to the cofimn pointsS™ andS~ must
intersect inS. Since pointsS™, S~ are conjugate t&, then they must lie in the
corresponding polar line = ©2S. PointsS*, S~ are the loci where line and
conic2 intersect. Replacing by QS in equation 4.8 yields

S* = (+,/=S'Q(Q*)QSI + (2S)Q)L.OS

Assuming that the conic is proper and matixs full rank comes tha(tSfS) =
det(Q)Q'SQ~!. MoreoverQ) is a symmetric matrix andet(Q)Q~' = Q.
After some algebraic manipulation results

SE = (+1/—det(Q)S'QSI + Q°S)I,OS (4.10)
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4. Using Line Images for Calibration Purposes

4.1.2 Intersection of Two Conic Curves

Consider the conic curve?,; and2, depicted in Fig. 4.3. Two conic curves in-
tersect in four point®**, P*—, P~ andP~~. This section derives an algorithm

to compute the intersection points of a pair of conics. The proposed algorithm is
numerically stable and computationally efficient.

The Self-Polar Triangle Common to a Pair of Conic Curves

Equation 4.11 defines the pencil of conic curgls\). The pencil of conics is the
infinite set of conic curve®(\) which are a linear combination of the base conics
Q, and€2,. Notice that ifP is a point common to botf2; andQ, (P!Q,P =0
andP'Q,P = 0), thenP lies in Q(\) for any value ofA (P*.Q2()\).P = 0). A

pair of conic curves always intersect in four points which can be real or complex,
distinct or coincident. The pencil of conics determined(by and2, is simply

the system of all conics through the four common pointQ pand2,

Q(\) = Q1 + A (4.11)

We shall assume from now on, except when there is an explicit statement to the
contrary, that the four common points of the peiitfl\) are distinct. Point®*+,

P*t—, P~*, P~ define a quadrangle. The diagonal triangle of the quadrangle is
depicted in Fig. 4.3. The vertices of the triangle &g, N, andNN3. It can be
shown that trianglé&N; N, N3 is the single common self-polar triangle for all the
conics in the pencil [59]. This means that the pair of vertisgsN,; N;,N3 and
N,,Nj3 are conjugate with respect to all coni@$)). Putting it in another way
comes thalN,".Q()\).N, = 0, N;*.€22()\).N3 = 0 andN,".Q()\).N3 = 0 for any
value of \.

In general four points define three distinct pairs of lines. Since the common
self-polar triangle is diagonal to the quadrangle defined by the points where the
base conics intersect, arises that the three verlicesN, andN; are the inter-
section points of the three pairs of lines defined by palits, P*—, P~* and
P~ (Fig. 4.3). Moreover each one of these pairs of lines is a degenerate conic of
the pencil defined in equation 4.11. Consider the following third order equation
in A
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4.1. Working with Conic Curves

det(Ql + )\Qz) =0

It can be shown that if conic®; and€2, intersect in four distinct points then
there are three distinct solutions. Assume that the roots axg, A\, and ..
Replacing in equation 4.11 we obtain matriéeg 2, and€2.. Each matrix has
rank 2 and corresponds to a degenerate conic (a pair of lines). Since the degenerate
conics belong to the pendit(\) then they are the three line pairs going through
the intersections o2, and the2,. PointsN;, N, andN3 can be determined by
computing the null spaces of matricQg, €2;, and€2..

Computing the Intersection Points Using the Common Self-Polar Triangle

PointsN;, N5, N3 are the vertices of the self-polar triangle associated with the
pencil of conics2(\) (equation 4.11). We proved that, knowing a pair of conics
of the pencll, it is possible to determine these vertices by solving a third order
equation and performing some additional algebraic manipulation. If the elements
of pencil 2()\) intersect into four distinct points, then the vertid¥g, N,, N3

are non collinear. Any poinP in the projective plane can be written as a linear
combination of three non collinear points. Thus, fixating the scale factor and using
[N;N2Nj;]| as a basis arises

P($,0) = Ny + ¢Ny + N; (4.13)

We aim to determine the parameteérandd such that the corresponding point
P(¢, ) provided by equation 4.13 lies in both base coifigsand2,. The equa-
tion to be solved is

P(¢,0).Q1.P(4,0) =0
P(¢,0) Q3. P(4,0) =0

ReplacingP (¢, ) by the result of equation 4.13 and taking into account that
N1, N, andIN3 are conjugate points with respect to both conics yields

Nth]_Nl —|— ¢2N2t91N2 + 02N3t91N3 == O
NthQNl + ¢2N2tQQN2 + 02N3tQQN3 == O
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Situation A Situation C

- INg=N,=Ng

ieva

Situation B Situation D

Figure 4.4: Degenerate Configurations

Solving the system of equations in orderit@andé results

¢:I: — 4+ N1 ‘Q1N;1 N3’ Q2N3—N; ‘QoN;1 N3'21 N3
N3tﬂlN3N2tﬂzszN;gtﬂzNgNztﬂlNz (4 16)

gt — + N2 Q1 NoN; 'QoN1 — N Qs No N3 1021 Ny
N3’Q1N3N2 Q2:N2—N3 QN3N Q1 N>

The points where conic®, and{2, intersect can be determined by replacing
¢ andd in equation 4.13. The intersection points &€t = P(¢",67), PT~ =
P(¢p™,07), Pt = P(¢,0%) andP~~ = P(¢,07) with ¢*, ¢, 67 andd~
provided in equation 4.16.

Degenerate Configurations

We have just presented an algorithm to determine the points where a pair of conics
curves intersect. The idea is to use the vertices of the self polar triangle common
to both conics to reference the points in the projective plane. A genericlpamt
written as a linear combination of poindé;, N, andN3 (equation 4.13). Since

the base points are conjugate with respect to both conics, the system of equations
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4.2. Fitting a Conic Curve to Image Points

can be simplified and an explicit solution can be easily found (equation 4.16).

The approach is general and can be applied whenever the conics have a com-
mon self polar triangle. For this situation the vertices are non collinear and
N;N-2Nj; can be used as a basis to reference the other points in the projective
plane (equation 4.13). However there are a couple of configurations for which the
self polar triangle degenerates and the vertices become collinear. In this case it is
not possible to establish the desired basis and the algorithm can not be used.

Assume that conic§2; and2, intersect in four distinct points (Fig. 4.3). It
can be shown that no three of these points can be collinear. The corresponding
quadrangle is never degenerate, nor the diagonal triangle associated with it. Since
the vertices are not collinear then there is a valid bNsSBl, N3 and the algorithm
can be applied to determine the four intersection points.

Fig. 4.4 depicts configurations for which the four intersection points are not
distinct. Consider situation A where the pair of conics intersect in two pairs of
coincident points. Despite of the fact that the quadrangle formed by the conic
intersections degenerates into a line segment, the common self polar triangle does
not degenerate. Poinis,, N, andN3 are not collinear and the algorithm can
be used. In situation B only two of the intersection points are coincident. The
associated quadrangle degenerates in a triangle and the self-polar triangle degen-
erates in a line segment. Since poiMg, N3 are coincident we can not establish
a reference basis as done in equation 4.13. The proposed approach can not be ap-
plied to this particular configuration. The same happens for situations C and D. In
the former the conics intersect in three coincident points and in the latter the four
intersection points are the same. In both case the self-polar triangle degenerates
into a point. Point§N,, N, andIN3 are coincident and the desired basis can not
be established.

4.2 Fitting a Conic Curve to Image Points

In last section the conic loci were parameterized By>a3 symmetric matrix?
(equation 4.17). Since the conic curve in the projective pRAdas5 indepen-

dent degrees of freedom (DOF), it is natural to represent such locus by a point in
P?® [59]. An alternative parameterization for the cofilds provided in 4.17. The
representation of conic loci using pointsBf can be extremely useful and con-
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venient. For now on we will assume both parameterizations without distinction.

w = (a,b,c,d,e, f) (4.17)

A conic fitting algorithm determines the conic curve that best fits the data
points according to a certain distance metric. There are several approaches to
estimate a conic curve using points [76, 32]. They differ between each other by
the criteria, or metric, that is minimized in the fitting process. This section reviews
some well known conic fitting methods and compares their performance.

4.2.1 Least Square Fitting Based on Algebraic Distances

Consider the set of distinct pointg = (z;,y;)" with i = 1,2... M lying on

a plane (/ > 5). The algebraic distance; between a poink; and a certain
conic locusw is given by equation 4.18. If the point lies in the curve then the
corresponding algebraic distanegmust be null.

o = a(x;) = ax? + 2bzyy; + cy? + 2dw; + 2ey; + foi=1...M  (4.18)

The M x 6 matrix A provided in equation 4.19 is called the design matrix.
The vector of the algebraic distances between the conic curve and the entire data
setis(ay, as, ..., ay )t = Aw. Itis straightforward that if the set of points lie in
the conic curve ther is rank5 andw is in the null space of the matrix.

3 2my yp 2x 2y 1
x2 2 2 2 2
G TR TR e (4.19)

x?\/[ 22 Y y]zw 20y 2ym 1

Assume that the set of data points lying in the conic has moreiletements.
In general the points are corrupted with noise and ma\rig rank6. If the design
matrix is full rank then there is no null space and the unique solution of equation
Aw = 0 is the trivial one ¢ = 0). A common practice is to fit the data points by
the conic which minimizes the sum of the square of the algebraic distances [19].
Thus we aim to find a minima of the functignprovided in equation 4.20.

60



4.2. Fitting a Conic Curve to Image Points

M
dw) =) ol =w'A'Aw (4.20)
=1
Clearly the trivial solutionv = 0 is a global minima ofp. In order to avoid
it, we must constraiv. Several different methods are proposed in the literature
[55, 69, 32]. We focus exclusively on direct methods for which the fitting problem
can be solved naturally by an eigensystem.

Normal Least Squares (LMS)

The LMS method estimates the conic cuwehat minimizes the algebraic dis-
tance¢ under the constraint’® = 1. The objective function is provided below
where the constraint is introduced using a Lagrange multiplier

¢lms(w7 )\) = thtAw + )\(wtw — 1)

The conic curvev that minimizesy,,,,; is determined by solving the eigensys-
temA'Ad = \&. The minimizer is the eigenvector corresponding to the smallest
eigenvalue of matriXA’A [55].

Approximate Mean Squares (AMS)

The approximate mean square metric has been introduced by Taubin in [69]. The
proposed conic fitting method minimizes the algebraic distance under the con-
straintw! (A" Ax + A,'A )w = 1 whereA, and A, are the partial derivatives

of A.

27 2y7 0 2 0 O 0 27 2y3 0 2 0
L e [V (o e
2$]V[ 2yM 0200 0 QLB]V[ 2yM 0 2 0

Introducing the constraint using a Lagrange multiplier yields

Bams(w, ) = W ATAw + MW (AL Ax + Ay Ay )w — 1)
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4. Using Line Images for Calibration Purposes

The solutionv which minimizes the final objective functia#),,,, can be ana-
lytically determines by solving the generalized eigensystéio = \(A, A+
A,'A )@ [69]. The conic curve estimation is provided by the eigenvector corre-
sponding to the smallest eigenvalue.

Direct Least Square Fitting of Ellipses (FF)

The estimation method proposed by Fitzgibbon and Fisher in [33] is ellipse spe-
cific. Consider the followin@g x 6 matrix

o O OO o o O
o O O o o O
o O O o o

o O O N O O
o O O O O N

o O o O

0

If a conicw verifiesw!Cw = 1 then it must be a circle/ellipse. The conic
fitting method proposed in [33] estimates the curve by minimizing the algebraic
distance to the data points under the constraifitv = 1. The resultant objective
function is provided below where the constraint is introduced using a Lagrange
multiplier

Prp(w, ) = w'A"Aw + A(w'Cw — 1)

It can be proved that the ellipse/cirelevhich minimizesy;; is the eigenvec-
tor corresponding to the single positive eigenvalue of the generalized eigensystem
A'Aw = \Cuw [33]. As a final remark notice that the FF method becomes hyper-
bola specific by replacing matri¥ by —C.

4.2.2 Gradient Weighted Least Squares Fitting

In general the data points used in the conic fitting process are provided by some
image processing algorithm such as edge detection. It is reasonable to assume
that errors are independent from one point to another, because when detecting
a point we usually do not use any information from other points. Moreover it is
also reasonable to assume that errors are constant for all points because we use the
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4.2. Fitting a Conic Curve to Image Points

same signal processing algorithm. Let the error in a generic gpiat(x;, y;)' be
Gaussian with zero mean an@ a 2 covariance matrix-?I. Notice that the error
distribution is assumed to be equal in both directions and uncorrelated. Consider
the algebraic distanag; from pointx; to the conicv. The error in the data point
affects the measurement of the algebraic distance. Using the result of equation
4,18 comes that the variance of the errotins

2 00@ 2 00@ 2 2
o2 = ((8@-) + <8yi) >a (4.26)

An ordinary least square estimator, like the LMS algorithm discussed above,
estimates the conic curvewhich minimizes/Aw| whereA is the design matrix
provided in equation 4.19. It can be shown that the LMS produces the optimal es-
timation ofw in terms of minimum covariance if equations= 0fori =1... M
have the same variance and are statistically independent [55, 58]. According to
equation 4.26 the variance of the error in the algebraic distandepends on the
Laplacian of functiomy on pointx;. Since the variance on the equations is not
constant the LMS estimator does not produce an optimal solution. The estimation
result is statistically biased as discussed in [44]. In order to obtain constant vari-
ance equations, it is sufficient to divide the algebraic distance funat{equation
4.18) by its gradient. The final normalized objective function becomes

M 2
¢grad(w) = Z p) :

2
—1 [ O oy
= () + (3

The minima of functionp,,., can not be found by solving an eigensystem as
we have done for the LMS, AMS and FF estimators. The objective function is non
linear and the problem has not a closed form solution. The minimization process
must be performed using iterative gradient descendent methods such as Gauss-
Newton or Levenberg-Marquardt [58, 27]. As a final remark notice that the AMS
estimator described in section 4.2.1 ignores the dependence of the gradiemt of
w in order to obtain a closed form solution for the minimization problem [76, 32].
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D,=(A,1,0)

Figure 4.5: The orthogonal distance between a point and a conic

4.2.3 Least Squares Fitting Based on Orthogonal Distances

The big advantage of using algebraic distance for the conic fitting is the gain
in computational efficiency. For the methods described in section 4.2.1 the es-
timation problem can be naturally solved by an eigensystem and a closed form
solution is obtained. However there are two major disadvantages in using al-
gebraic distance: a point may contribute differently to the parameter estimation
depending on its position on the conics; and the function to minimize is usually
not invariant under Euclidean transformations [76]. The approach proposed in
section 4.2.2 tries to overcome the former drawback dividing functidoy its
gradient. Nevertheless the derived objective function is still not invariant to rota-
tion and translation. A natural way to cope with these problems is to replace the
algebraic distances by the orthogonal distances which are invariant to Euclidean
transformations and do not exhibit the statistical bias described above.

Consider the scheme depicted in Fig. 4.5. The conic curve is described in
P2 by a3 x 3 symmetric matrix2. The orthogonal distancé between poink
and coniq? is the smallest Euclidean distance among all distances betwaed
points in the conic locus. To compute the orthogonal distahtte conic poink,
closest tox in terms of Euclidean distance, must be determined. Notice that the
line joining pointsx andx must be orthogonal to the tangent to the cdiion
pointx. Thus, given a generic poist we start by determining the conic points
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for which the stated property is verified. It can be shown that in general there are
four different solutions. Given the set of solutions, the Euclidean distance between
x and each candidate potiktis computed. The smallest distance corresponds to
the orthogonal distance between potrdind conic curve?.

The projective plane is euclidean whenever the line at infinity and the circular
points are in the canonical position [59, 39, 30]. Consider pbipt= (), 1,0)"
lying on the line at infinityr,, = (0,0, 1)" as depicted in Fig. 4.5. Any two lines
intersecting inD, have the same direction and are parallel. Phipts called the
direction point since it represents all possible directions in the plane. Each value
of parameter\ corresponds to a different direction. The pencil of lines going
through a poink which is not int,, can be parameterized as follows

I‘()\) = D>\ A X
= f),\X

r()\) is the line going through point with directionD . PointE, = (—1, A, 0)*
also lies in the line at infinityr,, and represents the orthogonal directiodXg.
Any two lines intersecting the line at infinity,, on pointsD, andE, are per-
pendicular to each other. Consider ligi@\) which is the polar of poinE, with
respect to coni€? (s(A) = QE,). The intersection point of linag \) ands(\) is
x¢(A) provided by equation 4.29.

xt(A) =s(A) Ar())

_ (kDo (4.29)

We aim to determine the conic pointsuch that the corresponding tangent to
the conic is perpendicular to the line joinisgandx. Line s(\) intersects2 in
two points. The tangents to the conic on these points must go throughEpint
because()\) isits polar line. Sinc&, andD, are orthogonal directions then both
tangents are perpendicular to ling\). Assume that for a certain value dfines
s(A) andr()) intersect in a poink(A) lying on the conic curveé2. According
to the stated the line(\), joining x andx(\), is orthogonal to the tangent to the
conic on pointx(A). Thus, in order to find points, we must solve the following
equation in\

x¢(A)".Q.x¢(\) =0
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Pointsx are obtained from equation 4.29 by replacixgy the roots of the
above equation. The equationis of fourth order. This means that there are four
A solutions for which lines(\) andr(\) intersect in a conic point. In other words,
there are four conic points such that the line joining andx is perpendicular
to the tangent to the conic on The orthogonal distance between poink and
conic(2 is the distance fromx to the closest conic point.

The minimaw of the objective functiony,,, is the conic curve which fits
the data pointx; by minimizing the sum of the orthogonal distances. Notice
that the problem of finding the minima has not a closed form solution. The mini-
mization process must be performed using iterative gradient descendent methods
such as Gauss-Newton or Levenberg-Marquardt [58, 27]. The conic fitting using
orthogonal distances has the disadvantage of requiring a considerable computa-
tional effort.

M
¢ortho(w) = Z ﬁz
i=1

4.2.4 Performance Evaluation

This section compares and evaluates the performance of the conic estimators
LMS, AMS, FF, GRAD and ORTHO. The LMS, AMS and FF algorithms are in-
troduced in section 4.2.1. The GRAD method corresponds to the gradient weighted
least squares fitting presented in section 4.2.2. The ORTHO algorithm is the conic
fitting method based on orthogonal distances (section 4.2.3).

Noise in the Data Points

The performance evaluation is performed using artificial generated data. The test
conic is uniformly sampled by00 points. Two dimensional Gaussian noise with
zero mean and standard deviatioms added to each sample. These samples are
the data points used by the different estimators. The principal points of the esti-
mated curve are compared with the ground truth and the mean error is computed
over 100 runs of each experiment. Fig 4.6 shows the result of one run for an ad-
ditive white noise with standard deviatien= 12 pixel. The test conic (ground
truth) is depicted by the black solid line. The black dots correspond to the data
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Figure 4.6: Conic fitting in the presence of noise
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Figure 4.7: The performance of the conic estimators in the presence of noise
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points used for the estimation.

Fig. 4.7 shows the performance of the different conic fitting methods in the
presence of noise. For all methods the mean estimation error increases when
the standard deviation of the noise increases. The performance suffers a graceful
degradation in the presence of increasing noise. The GRAD and ORTHO methods
are clearly the most robust ones. This is understandable since the LMS, AMS
and FF methods are based on the algebraic distance which has some problems as
discussed in section 4.2.2. Nevertheless it is important to remind that the GRAD
and ORTHO algorithms do not have a closed form solution. The computational
effort required to find a solution using gradient descendent methods is in general
high. Moreover problems of convergence and local minima may always arise
when using non linear optimization techniques [27]. Among the methods with
closed form solution the FF algorithm seems to be the most robust one. However,
since the FF method is ellipse/circle specific, it requires that the type of conic is
known in advance.

Partial Occlusion of the Conic

In the previous experiment the entire conic curve is uniformly sampled. The
present experiment considers a partial arc of the conic instead of using the en-
tire curve. Consider the problem of fitting a conic to image points. Often the
conic curve is not entirely visible in the image plane. Thus it is important to study
the behavior of the conic fitting methods when the curve is partially occluded.
The data points are generated as follows. An arc of the test conic, with a prede-
fined amplitude, is uniformly sampled BY0 points. The Gaussian noise added

to the samples has a standard deviatioa 2 pixel. The estimated conic is com-
pared with the ground truth and the mean error is computedi®¥auns for each
experiment.

Fig. 4.8 shows the estimation results of the different methods when the sam-
pled arc has an amplitude ©80°, 120°, 90° and60°. When half of the conic is
occluded all the algorithms present a fairly good estimation. For a sampled arc
of 120° only the GRAD, ORTHO and AMS methods provide estimations close to
the original conic. When the occlusion is greater tB@° none of the methods
provide good estimations.
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Figure 4.9: The performance of the conic estimators in the presence of occlusion
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Fig. 4.9 shows the mean estimation error oW runs for each experiment.
The graphic on the left refers to the error in the principal points. The graphic on the
right shows the error on the orientation angle which is the angle between the major
axis of the conic and the plane X axis. As expected an increase on the occlusion
angle corresponds to a decrease in the performance of the estimators. For all
methods the estimation result suffers an abrupt degradation when the occlusion is
higher thar240°. None of them provide an useful estimation when the sampled
arc has an amplitude below)0°. Nevertheless the ORTHO, GRAD and AMS
methods seem to be the ones that better cope with occlusion. The FF method has
clearly the worst performance. The bad behavior of the FF method in the presence
of occlusion is in accordance with the experimental observations presented in [33].

4.3 Calibration of Central Catadioptric Systems

In the previous chapter we have proved that an hyperbolic/elliptical system can
be calibrated from the image of two lines and that any central catadioptric system
can be fully calibrated using a minimum number of three line images. In the
former situation the shape of the reflective surface and the relative pose between
the camera and the mirror must be known in advance. In the second case there
is no requirements besides the system having a single effective viewpoint. The
algorithms are summarized in Tab. 3.3 and 3.4.

After estimating the conic curves the calibration procedure is trivial. Section
4.1 presents methods to determine the intersection points between a line and a
conic and between a pair of conic curves. The methods are computationally effi-
cient and easy to implement. The crucial step in the calibration procedure is the
accurate estimation of the conic curves where the lines are projected. As discussed
at the end of chapter 3 this task is hard to accomplish. In general only a small arc
of the conic locus is visible in the catadioptric image. According to the results of
the previous section the standard conic fitting techniques do not cope well with
occlusion.

This section discusses the conditions that must be verified for a set of conic
curves to be the catadioptric projection of a set of lines in the scene. The condi-
tions are derived taking into account the geometric properties presented in section
3.3. The idea is to use the properties of central catadioptric line projection to
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constrain the search space and improve the performance of the conic fitting in the
presence of occlusion.

4.3.1 Calibration of an Hyperbolic/Elliptical System

Consider a pair of lines in the scene imaged by a central catadioptric system
combining an hyperbolic/elliptical mirror with a conventional perspective cam-
era. Since the shape of the reflective surface is known thephgheameter can be
easily determined (Tab. 2.3). Moreover itis assumed that the camera is not rotated
with relation to the mirror and that the line at infiniéy, is in the canonical posi-

tion in the image plane. The system can be calibrated using the strategy presented
in section 3.4.1 and summarized in Tab. 3.3. The required geometric construction
is schematized on Fig. 3.5 whefh and(2, are the conic loci corresponding to

the catadioptric line images.

The Necessary Conditiong (@4, 02) = 0

Each pair of conic curve®,, 2, has a conid2;, associated with it. The curve
1., depicted in Fig. 3.5, is a particular realization of the family of line images
going through the intersection poirfs, andB;.. PointsO, D, andN;, lie on

line i1, which is the major axis 0f2;,. Assumet = \/{Oﬁ12; N12C1o} with

C1. the conjugate oM, with respect to coni€2y, ({ My, C12; F12, B1a} =
—1). According to the result of proposition 3.5 comes thas an estimate of
parametei which is known. If the pair of conic§;, 2, are the catadioptric
projection of a pair of lines thefiand¢ must be equal.

Consider function/ provided in equation 4.320¢, & is a pair of conic loci
parameterized by points iA® (equation 4.17). The geometric construction of Fig.
3.5 can be performed for any two conigsg, @,. Thus any pair of conic loci has
a value¢ associated with it. Function: makes the correspondence between the
pairs of conics and¢ — £)2.

ve(@1,@2) = (€ =€) (4.32)

The domain of function is the space of pairs of conic curvesdif, @ is a
pair of catadioptric line images then(&q, @2) must be null. Since is always
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Minimization Using the € Constraint (Noise std 0.5 pixels) Minimization Using the § Constraint (Noise std 2 pixels)

Figure 4.10: Calibration of an hyperbolic sensor frdtme images

positive, the pairs of catadioptric line projections are global minima of the func-
tion. Notice however that condition (&4, ) = 0 is necessary but not sufficient
for &1, @2 to be a pair of catadioptric line images. This means that funation
may have other minima than the ones corresponding to the line projections.

The Calibration Procedure

Fig. 4.10 exhibits two simulated test images of a pair of lines acquired by an
hyperbolic sensor. The blue cross signs the image center and the black circle is
the image of the mirror boundary. The lines in the scene are mapped into conic
curves which are marked using dark blue (the ground truth). The data points used
to estimate the line images are taken from the conic arcs inside the circle. Two
dimensional zero mean gaussian noise is added to the image points. On the left the
noise standard deviationis= 0.5 pixels, and on the right the standard deviation
iso = 2 pixels.

An initial estimate ofo; and@, can be obtained by fitting a conic curve to
the data points visible in the image plane. The conic fitting is performed using
the AMS method described in section 4.2.1. The AMS method is suitable for the
task since it has a closed form solution and it is more robust to occlusion than the
LMS and FF algorithms. The initial estimates of the conic curves are marked by
the magenta line. Notice that inside the circle the arcs of the estimated conics are
coincident with the ground truth.
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The initial estimates of conigs; and@, are used to calibrate the catadioptric
system using the procedure summarized on Tab. 3.3. The computed image center
is signed by the small magenta circle in both images of Fig. 4.10. The calibra-
tion results are incorrect in both cases. This is due to a wrong estimation of the
catadioptric line images.

Consider functiory;, provided in equation 4.33. Functiahis the sum of the
square of the algebraic distances between the curve and the corresponding data
points (equation 4.20). According to the discussion above, ifo, correspond
to a pair of catadioptric line images thénand ¢ are the same ang: (04, 2)
must be null. The differencé& — ¢)? is introduced as a penalty term weighted
by a multiplying parametek,. The conic loci can be estimated by minimizing
function ¢,. The function is highly non linear and the minima must be found
using iterative gradient descending methods [58, 27].

en(@1,@2) = G(D1) + P(D2) + kove (@1, D2) (4.33)

The entire procedure can be summarized in the following manner. An initial
estimate of the catadioptric line images is obtained from the data points by apply-
ing the AMS algorithm. The image centérand the image of the absolute conic
Q). are determined following the steps of Tab. 3.3. The valué isfcomputed
using the cross-ratio relation of proposition 3.5. A novel estimation of the line
images is obtained by minimizing functiep where(¢ — €)? is introduced as a
penalty term. The procedure is iterated until the value,of below a certain
threshold.

The conic loci estimated using this procedure are depicted in Fig. 4.10. The
cyan triangle symbolizes the image center computed following the steps of Tab.
3.3. In both images the new estimate of the image center is closer to the ground
truth than the initial one. Nevertheless the improvement is slight and the calibra-
tion results are far from being correct.

Conclusions

The calibration procedure performs the minimization of functjpusing gradient
descendent methods. If the objective function has local minima and/or saddle
points then there is no way to guarantee that the iterative process converges to the
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right solution [58, 27]. In this case the gradient descending method may stop on
one of these points instead of converging to the ground truth. This may explain
the poor calibration results observed in Fig. 4.10.

The domain of functiory, is the space of pairs of conic curves. Since the
domain has dimension greater than 3 the function can not be plotted in a straight-
forward manner. Due to the occlusion problem there are several pairs of conic
curvesw,, @, which minimize the algebraic distance to the data points. This is
the reason why the AMS method is unable to provide a good initial estimate of the
conic loci. If it is true that any pair of lines projects into a pair of conics, it is not
true that any pair of conic loci is the catadioptric image of a pair of lines. The idea
of using functiorv, as a penalty term is to avoid solutions corresponding to conic
loci that can not be line images. However the conditigf®,, @2) = 0 is neces-
sary but not sufficient. Not all minima of are pairs of catadioptric line images.
Thus it is reasonable to assume that the objective funetigaquation 4.32) has
local minima and/or saddle points where the iterative gradient descending method
stops.

4.3.2 Calibration of a General Central Catadioptric System

Any central catadioptric system can be fully calibrated from the image of three
lines. The calibration method is summarized on Tab. 3.4 and the required geo-
metric construction is depicted in Fig. 3.6 and 3.7.

Fig. 4.11 shows a simulated image of three lines in the scene. The lines are
imaged into three conic curves marked using dark blue. Each conic arc visible in
the image is sampled 800 points. Two dimensional zero mean gaussian noise
with standard deviation is added to the data points. In the images of the top row
the noise standard deviationas= 0.5, and in the bottom row is = 2.

The magenta conic loci are the initial estimations of the catadioptric line im-
ages (right images in Fig. 4.11). These estimates are obtained by fitting conics to
the data points using the AMS method (section 4.2.1). According to the result of
proposition 3.8 the image centérmust be collinear with the intersection points
of any two line images. As you can observe this does not happen which proves
that the conic loci are not correctly estimated.

The AMS algorithm fits the conic to the data points by minimizing the sum of
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Figure 4.11: Calibration of a general catadioptric sensor from 3 line images
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Figure 4.12: Geometric properties of a pair of catadioptric line images

the squares of the algebraic distances. Since the curve is partially occluded there
are several minima in the objective function. We aim to overcome the problem
by deriving conditions that must be verified by a set of catadioptric line images.
The idea is to include these conditions as penalty terms and obtain an objective
function with a single minimum in the correct solution.

The Image Center Constraint

Assume that conic§;, flj in Fig. 4.12 are the catadioptric images of a pair of
lines. The conic curves intersect each other on pdigtsB;;. According to the
result of proposition 3.8 the image cen@must lie on lingji;; going through the
intersection pointﬁ‘ij, Bij. Assume thatr;, 7; are the polar lines of the image
centerOQ with respect to conic§l;, flj. The polar lines intersect on poiij.
From corollary 2.4 comes thszij must lie on linef;;. Thus ifQi, QJ- are the
catadioptric projections of a pair of lines then poifitsD;;, F;; andB;; must be
collinear.

Consider the pair of conic lod®;, Qj and pointO. Since the polar lines are
# = ;0 and#; = ;0 then the intersect point B;; = #; A #; = (€;0) A
(€;0). Notice thaD;; andO are conjugate with respect to both conics. Consider
line i;; defined by point® andD;;. Any pointP lying on /i;; can be written as a
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linear combination of point® andf)ij (equation 4.34).

P(\) = O + \Dj; (4.34)

Line /i;; intersect<?2; in two points. The intersection points can be determined
by solving equatiorP(/\)tQiP()\) = 0 in order to\. ReplacingP by the result of
equation 4.34 and taking into account tﬂi?ag andO are conjugate with respect
to €, yields

The same procedure can be used to determine the points wherg;|iaed
conic(Y; intersect. In this case thesolution is

Assume thaty;, §); are the catadioptric projections of a pair of lines &id
is the image center. From the discussion above comes that;jimgersects both
conics in the same pair of points. These points are the locus where the £pnics
$; intersect each other (poinky;, By;). Since the pairs of poin® (A1), P(A})
andP()\; ), P()\;) are coincident then the solutios and \; must be equal.
Thus,

/\2 = )\2 <~ D?-(ij)ijf)tﬂi — Qi]jijf)tflj)f) =0
Assume functiory provided in equation 4.38 with;, @; a pair of conic curves

parameterized i#*®. If &;, &; correspond to the catadioptric projection of a pair
of lines andQ is the image center thep(&;, &;) must be null.

D;;0!; — QID;0'Q;)0)? (4.38)
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Orthogonality Constraints

Consider the pair of conic curve®;, ; depicted in Fig. 4.12.7; is the line
defined by the poles gf;; with respect to conic§y;, Qj. According to proposi-
tion 3.9, if the conic curves are two catadioptric line images theis the locus
where the corresponding line of normals is mapped. This line is defined by the
normal directions to the planes containing the imaged lines and the system effec-
tive viewpoint (Fig. 3.4). Consider the intersection pdint and the image of the
absolute coni@oo. Sinceﬁij is the locus of the common direction of the planes
containing the imaged lines (corollary 2.4) then the polar Iinﬁ)gfwith respect
to Q. is ;.

Assume functiorv defined on equation 4.39 Wheﬁa;o is the conic envelope
of the image of the absolute conic. If coni@s, §2; are the catadioptric projection
of a pair of lines then the pole @f; with respect to the image of the absolute conic
is Dy;. The vector producD;; A (Q%.7;) is zero and functiom (&, &) must be
null.

A~ A A A~

(@, @) = (Dyg A (25 735)) (D A (25.75)) (4.39)

Calibration Procedure

Consider the catadioptric image of three lines depicted in Fig. 4.11. The lines
are projected on conic curvé®;, {2, and2; which are represented i® by
points@,, @, and@s. The initial estimates of the conic loci are obtained using
the AMS algorithm. The image centérand the image of the absolute cofilg,

are estimated following the steps summarized on Tab. 3.4. In general the initial
conic estimates are not accurate and lifags /113 andjizz do not intersect in the
same point (Fig. 3.6). In this case the image center is determined using normal
least squares [58]. A novel estimation for the catadioptric line images is obtained
by minimizing functione, provided in equation 4.40. The image center and the
absolute conic are determined using the new conic estimations. The procedure is
iterated until functiory, takes values below a certain threshold.
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3

€9(@1, @2, 08) = ) O(@:) + ko Y X(@r, @) +hi Y v(@n&5)  (4.40)

1=1 i i

The estimated conic€,, 2, and2; are used to calibrate the system (Tab.
3.4). The final results can be observed on the right of Fig. 4.11. The lines defined
by the conic intersections meet in a single point for both noise level situations
(c = 0.5 ando = 2). As you can observe the intersection point is close to the real
image center.

Conclusions

The domain of functiong andv, provided in equations 4.38 and 4.39, is the
space of pairs of conics. We have shown thatjfo; are the catadioptric images

of a pair of lines then both (&;, ;) andv(&;, ;) must be null. Remark that
conditionsy (&, @;) = 0 andv (s, @;) = 0 are necessary but not sufficient. Both
functions may have minima which do not correspond to pairs of catadioptric line
images.

Functione, (equation 4.40 is highly non linear and the minima must be found
using iterative gradient descending methods [58, 27]. As stated in the previous
section convergence problems may arise whenever the objective function has local
minima and/or saddle points. Functiogsand v are used as penalty terms in
functione,. The goal is to avoid solutions, which minimize the algebraic distances
to the data points, but do not correspond to a coherent catadioptric image of a set
of lines in the scene.

We have performed several experiments like the one depicted in Fig. 4.11.
The proposed approach worked properly in many of the simulations. The conic
loci were accurately estimated and the system was correctly calibrated. Neverthe-
less we have also detected many situations for which the procedure did not work
well. Notice that we have no guarantee that the objective funetitias not mul-
tiple minima and/or saddle points. As stated in the previous section the gradient
descending method may converge to one of these points which do not correspond
to the correct conic loci where the lines are imaged.
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Figure 4.13: Segmentation of catadioptric line images

4.3.3 Experiments with Real Images

Experiments with real images are reported in this section. Fig. 4.13 depicts the
graphic user interface (GUI) used to segment the line images and obtain the data
points to perform the conic fitting. An edge detector is applied to the original cata-
dioptric image [21]. The conic curves corresponding to line images are segmented
by hand.

Fig. 4.14 is an example of a test image. The GUI is used to obtain the data
points corresponding to line images. The initial estimation of the conic loci is
obtained using the AMS method. The result is depicted on the left image where
the estimated conics perfectly fit the visible arcs of the catadioptric line images.
Nevertheless proposition 3.8 is not verified which means that the conic curves are
not correctly estimated. The right image shows the final estimation of the conic
curves obtained by minimizing functiay (equation 4.40) following the proce-
dure of section 4.3.2. This set of catadioptric line images seems coherent since it
verifies the geometric properties derived in chapter 3. The system is calibrated in
a straightforward manner following the steps summarized in Tab. 3.4.

Fig. 4.14 and 4.15 show the same test image. In the fobrfires are used to
calibrate the catadioptric systems. In Fig. 4.15 we are using an additional line for
the same purpose. The left image shows the initial estimation of¢h&adioptric
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Figure 4.14: Calibration of a general catadioptric system

Figure 4.15: Convergence for a wrong minima
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line images obtained using the AMS method. The right image exhibits the final
estimation of the conic loci determined by minimizing functigr{section 4.3.2).

The lines defined by the conic intersections meet in a single point as stated in
proposition 3.8. Compare the left image of Fig. 4.15 with the right image of
Fig. 4.15. Notice that same line images have distinct estimations. Moreover
different calibration results are obtained for the same catadioptric systems using
the same test image. This can only be explained by convergence problems during
the iterative minimization due to the existence of multiple minima.

4.4 Closure

Chapter 3 proves thatin general a line in the scene is mapped in a conic locus in the
catadioptric image plane. Moreover it shows that an hyperbolic/elliptical system
can be calibrated from the image of two lines and that any central catadioptric
sensor can be fully calibrated using a minimum of three line images.

The present chapter starts by reviewing issues on the geometry of conic curves.
Algorithms to compute the intersection between a line and a conic and between a
pair of conics are proposed. It is shown that estimating catadioptric line images
from image points is far from being a trivial task. In general only small arcs of the
line images are visible in the catadioptric image plane. Since standard conic fitting
techniques do not perform well in the presence of strong occlusion, the accurate
estimation of the conic loci is hard to accomplish.

The calibration algorithms of tables 3.3 and 3.4 require the knowledge of the
conic loci where lines are mapped. Due to the occlusion problem these conic
curves can not be accurately estimated using standard conic fitting techniques.
Section 4.3 derives geometric conditions that must be verified by a set of conic loci
to be the catadioptric image of a set of lines. We try to use these necessary condi-
tions to constrain the search space and improve the estimation accuracy. However,
since the resulting objective function must be minimized using gradient descend-
ing techniques, convergence problems may arise. Simulation results show that
the calibration of an hyperbolic/elliptical sensor using just two line images is in
general poor. The objective function presents local minima and/or saddle points
where the iterative minimization process stops. A similar problem is observed
when using three or more lines to calibrate. In some of the experiments the sen-
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sor is successfully calibrated. In others the set of catadioptric line images is not
correctly estimated.
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Chapter 5

The Paracatadioptric Camera

The paracatadioptric sensor combines a parabolic shaped mirror and a camera
inducing an orthographic projection. Such a configuration provides a wide field
of view while keeping a single effective viewpoint. As discussed in chapter 2,
there are other catadioptric configurations providing central panoramic imaging
[5]. Panoramic central catadioptric systems can be built by combining an hy-
perbolic mirror with a perspective camera and, a parabolic mirror with an or-
thographic camera. The construction of the former requires a careful alignment
between the mirror and the imaging device. The camera projection center must
be positioned in the outer focus of the hyperbolic reflective surface. The paracata-
dioptric camera is easier to construct being broadly used in applications requiring
omnidirectional vision [67, 64, 20, 56].

The present chapter focuses exclusively on paracatadioptric sensors. A gen-
eral mapping model for central catadioptric image formation has been introduced
in chapter 2. The central catadioptric projection is isomorphic to a projective
mapping from a sphere, centered in the effective viewpoint, to a plane with pro-
jection center on the perpendicular to the plane [34, 7]. For the particular case of
paracatadioptric sensors the projection center lies on the sphere and the projective
mapping is a stereographic projection. The plane and the final catadioptric image
are related by a affine transformation depending on the mirror and camera intrin-
sic parameters. Section 5.1 reviews the paracatdioptric image formation model.
Due to its particular features the paracatadioptric sensor has properties which are
not verified by other types of central catadioptric systems (section 3.3.2).
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5. The Paracatadioptric Camera

Section 5.2 introduces an effective way to calibrate the paracatadioptric cam-
erausing lines. It has already been proved that three line images are enough to cal-
ibrate any central catadioptric system (section 3.4.2) [8]. However, as discussed
in chapter 4, the estimation of the conic curves where lines are mapped is hard
to accomplish. In section 5.2 we show that a set of conic curves corresponds to
paracatadioptric line images if, and only if, certain properties are verified. These
properties are used to constrain the search space and correctly estimate the curves.
If the camera is skewless and the aspect ratio is known then the conic fitting prob-
lem is solved naturally by an eigensystem. For the general situation the conic
curves are estimated using non-linear optimization.

Section 5.3 proposes a conic fitting method to estimate lines in the paracata-
dioptric image plane. The algorithm is specific for line images and requires that
the calibration of the parabolic system is known. If it is true that any line is pro-
jected into a conic, it is not true that any conic is the image of a line (section
3.3.2). Considering the space of all conic curves, the paracatadioptric line images
lie on a linear subspace which depends on the system calibration. We show that
the line images can be accurately determined by constraining the search space.
The corresponding locus is estimated by fitting a conic in the subspace to the data
points. The approach is computationally efficient since the fitting problem can be
solved by an eigensystem.

5.1 Paracatadioptric Camera Model

This section reviews the image formation model for the paracatadioptric system.
The model presented in here is the particular case of the general mapping model
for central catadioptric systems when thparameter is unitary (see Tab. 2.3).

Assume a paracatadioptric system combining a parabolic mirror with latus
rectum4p, and an orthographic camera. The principal axis of the camera must be
aligned with the symmetry axis of the paraboloid. The paracatadioptric projection
can be modeled by a stereographic projection from an unitary sphere, centered in
the effective viewpoint, into a plarid ., as shown in Fig. 5.1.

The world point shown in Fig. 5.1 is imaged at painin the paracatadioptric
image plane. The mapping can be described as follows. To each visible scene
point corresponds an oriented projective say= (x,y, z)*, joining the 3D point
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A
° X
A
Q Paracatadioptric
Image Plane

Figure 5.1: Model for paracatadioptric image formation

with the projection cente®. The projective ray intersects the unit sphere in a
single pointX.. Consider a poin©., with coordinateg0, 0, —1)*, which lies on

the unitary sphere. To eashcorresponds an oriented projective ajoining O,

with the intersection poinK.. The non-linear mapping (equation 5.1) corre-
sponds to projecting the scene in the unity sphere surface and then re-projecting
the points on the sphere into a plabe, from the novel projection centdd...

Points in catadioptric image plafeare obtained after a collineatidd. of 2D
projective pointsx. Equation 5.2 shows that the affine transformatidpn de-

pends on the intrinsic parametd{s of the orthographic camera, and on the latus
rectum of the parabolic mirror.

A(x) = (z,y,2 + Va2 +y* + 22)' (5.1)
2p 0 O
x=K.| 0 2 0% (5.2)
0 0 1
H,
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5. The Paracatadioptric Camera

Consider the plan&l = (n,0)" going through the effective viewpoi@ as
depicted in Fig. 5.1 = (n,,n,,n.)"). The paracatadioptric image of any line
lying on II is the conic curve). The line in the scene is projected into a great
circle in the sphere surface. This great circle is the curve of intersection of plane
IT, containing both the line and the projection cerderand the unit sphere. The
projective raysx, joining O. to points in the great circle, form a central cone
surface. The central cone, with vertex@., projects into the coni€ in plane
IT., (equation 5.3). Since the image plane &hg are related by collineatioH,,
the result of equation 5.4 comes in a straightforward manner.

—n?2 0  ngn,
Q= 0  —n? nyn, (5.3)
ngn, nyn, n?
a b d
Q=1|b ¢ e | =H"QH, ! (5.4)
d e f

5.2 Paracatadioptric Camera Calibration Using Lines

It has already been proved that any central panoramic system can be fully cali-
brated from the image of three lines in general position [8]. However, since lines
are mapped into conic curves which are only partially visible, the accurate esti-
mation of catadioptric line images is far from being a trivial task

The present section focuses on paracatadioptric camera calibration using lines
in general position. If it is true that any line maps into a conic in the catadioptric
image plane, it is not true that any conic is the image of a line. We derive for
the first time the necessary and sufficient conditions that must be verified by a
set of conic curves to be the paracatadioptric projection of lines. We also show
that the derived conditions can be used to accurately estimate the line images by
non-linear optimization. Moreover if the system is skewless and the aspect ratio
is known then the lines can be computed by solving an eigensystem. Given the
image of at least three lines the paracatadioptric camera is easily calibrated using
the algorithm presented in Tab. 3.4.

Other authors have already proposed algorithms to calibrate a paracatdioptric
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5.2. Paracatadioptric Camera Calibration Using Lines

camera [35, 45, 74]. The approach presented in [45] requires a sequence of para-
catadioptric images. The system is calibrated using the consistency of pairwise
tracked point features across the sequence, based on the characteristics of cata-
dioptric imaging. In [74], the center and focal length are determined by fitting

a circle to the image of the mirror boundary. The method is simple and can be
easily automated, however it is not very accurate and requires the visibility of the
mirror boundary. Its major drawback is that it is only applicable for the situation

of a skewless camera with unitary aspect ratio. Geyer and Daniilidis propose a
calibration algorithm using line images [35]. They present a closed-form solu-
tion for focal length, image center, and aspect ratio for skewless cameras, and a
polynomial root solution in the presence of skew. The line images are estimated
taking into account the properties of parabolic projections. Nevertheless the conic
curves verifying those properties are not necessarily the paracatadioptric projec-
tion of lines. We will return to this discussion and compare the approach of [35]
with the one proposed in here.

5.2.1 Calibration Algorithm

The paracatadioptric system is calibrated whenever the collinedtias known.

The algorithm presented on chapter 3 and summarized in Tab. 3.4 can be used
to calibrate any central catadioptric system from a minimum of three line images.
If the sensor is parabolic then tigeparameter is unitary and the optical axis of
the camera must be aligned with the symmetry axis of the mirror. The camera
can not be rotated with relation to the mirrd®{ = I in equation 2.7) and the
transformationH,. must be affine (equation 5.2). Assume that the image center
is C = (c;,¢,)", and thate?, f, and s, are the aspect ratio, the focal length
and the skew of the orthographic imaging device. The affine transformHijon

is provided in equation 5.5 wherg = 2f,p is a measurement in pixels of the
combined focal length of the camera and the mirror.

afc Sk Cy
He=| 0 oa'f. ¢ (5.5)
0 0 1

Tab. 5.1 summarizes the steps to calibrate a paracatadioptric system from

89



5. The Paracatadioptric Camera

Stepl  Determine the catadioptric line imag€y for
i=1,23... K

Step2  For each pair of conic€;, £2;, compute the in-
tersection point¥’;;, B;; and determine the cot
responding lingi;; = Fi; A By

Step3  Estimate the image centér which is the inter-
section point of lineg;.

Step4  For each conitﬂi compute the polar ling; of
the image cente® (: = 1,2,3. .. K).

Step5  For each conic curve obtain the poithfsandJ;
where liner; intersectd?; (i = 1,2,3... K)

Step6  Estimate the coni€,, going through points;,
JiG=1,23...K)

Step7  Perform the Cholesky decomposition@f,, to
estimate matrid..

Table 5.1: Calibrating a paracatadioptric system using K lihé$(3)

the image ofK lines in general position. The algorithm is an adaptation of the
general method discussed in section 3.4.2. The six last steps in Tab. 3.4 have been
omitted since th¢ parameter is already known to be unitary. Notice Hatcan

be determined from the Cholesky decompositioXf becausél, is an upper
triangular matrix (equation 5.5) arfd., = H, "H. .

The calibration of the paracatadioptric system is straightforward whenever the
conic curves corresponding to the line images are known. However the estimation
of the these conics using image points is hard to accomplish as discussed in chap-
ter 4. There are several algorithms to fit a conic curve to data points. A robust
conic fitting algorithm has to cope with noisy data points, biasing due to curvature
and partial occlusions. The occlusion problem is of particular importance for our
purposes. By occlusion we mean that the available data points lie on a small arc
of the curve. It is intuitive that in this circumstances, even for small amounts of
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5.2. Paracatadioptric Camera Calibration Using Lines

noise, it is very hard to obtain the correct conic curve. The present work aims to
to cope with this problem using the properties of paracatadioptric line projection .

5.2.2 Properties of a Set of Paracatadioptric Line Images

A conic curve has 5 DOF and it can be represented by a symmetric néatrix
(equation 5.4), or by a point = (a, b, c,d, e, f)! in P° [59]. Consider the line
images2 provided in equation 5.4. ReplacifyandH, by the results of equations
5.3 and 5.5 yields

_ n2

a 572

n?sy
b of3
n? sy 2
C —2(—2 + )
p— fC ;C
d ngn, _ Nz(askCy—feca)
QQJSC a?fe 2
e anyn; + onicy—SEnan, + spns(asgey—fecz)
fe 12 af?

f nZ—acynyn: adcZn—ngn;(asycy—fecz) _ n2(aspey—fec?)

- - L fe O‘fc2 O‘chAf _

The paracatadioptric image of a line depends on the intrinsic parameters of
the system and on the orientation of the 3D plahésee Fig. 5.1). After some
algebraic manipulation the previous result can be rewritten in the form of equation
5.7. If the calibration is known then the conic curvas only described by pa-
rameters:, d ande. These three parameters encode the scale information and the
orientation of plandlI containing the imaged line. Considering that cabibas
5 DOF, we may conclude thatDOF depend on the parabolic system parameters,
and the remaining DOF are related with the line that is projected.

a a
oSy
b 2 I a4
(0% Sk
o= = (7" +ad)a (5.7)
d d
e e
| S ] —a?f2a — cpd — cye

AssumeK lines in the scene that are projected itoconic curves in the
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5. The Paracatadioptric Camera

paracatadioptric image plan& (> 3). These conic curves can be represented by
points of P°> as shown in equation 5.8.

O = (a, by, ¢y d;, e, fz’)t, i=1,2,3...K (5.8)

Consider the result of equation 5.7. Notice that

bl bg bg bK QS

ap  ay as arx fe

¢4 ¢y 3 cx  a’st A
a1 a2 as K f P

From the first expression it results thgt = 0 for i = 2,3... K with »;
provided by equation 5.9. Moreover, using the second expression in a similar
manner, comes that, = 0 for: = 2,3 ... K wherey; is given by equation 5.10.

ni = a1b; — a;by, 1=2,3 ... K (5.9)

Xi = a1¢; — a;Cq, i:2,3 ... K (510)

From equation 5.7 it results that each line imagmust verifya? f2a;+c,d; +
cye; + fi = 0. Consider the conic curvel, @, and@s, which are the first three
elements of the set of line imageg’ /2, ¢, andc, can be determined as follows

-1

Oé2fc2 aq d1 €1 fl

Cy =—1| ay do e f 2

Cy az ds e3 f 3
A ~~ J N s

3 r

If K > 3then each conic curvg; with i = 4 ... K must verify the constraint
v; = 0 (equation 5.12).

- A

: =4 ... K (5.12)

vi= 1| a; d; € fzi|

It is clear that if a set of< conic curves corresponds to the paracatadioptric
projection of K lines, thenv;, x; andy;, provided in equations 5.9, 5.10 and 5.12,
must be equal to zero. We have derividd — 5 independent conditions which
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5.2. Paracatadioptric Camera Calibration Using Lines

are necessary for the conic curves to be paracatadioptric line images. However
it has not been proved that these conditions are also sufficient. By sufficient we
mean that, if a certain set of conic curves verifies these conditions then it can be
the paracatadioptric projection of a set of lines.

Consider the uncalibrated imageiflines that are mapped in the same num-
ber of conics. Since each conic ha®OF then a set of< conics has a total
of 5K DOF. Each line introduce® unknowns (DOF), which correspond to the
orientation of the associated plahe(see Fig. 5.1). Moreover theparameters
of matrix H, are also unknown (equation 5.5). Thus there are a totakof+ 5
unknowns (DOF). Sincé K > 2K + 5 then it is obvious that there are sets of
conic curves that can never be the paracatadioptric projection of lines. The con-
ics that can correspond to the image of the lines lie in a subspace of dimension
2K + 5. This means that there até&” — 5 independent constraints, which proves
the sufficiency of the conditions derived above.

5.2.3 Estimation of a Set of’ Paracatadioptric Line Images

Assume that we have a paracatadioptric imag®& dines in the scene. Each line

is projected in a conic curv@; (equation 5.8). The goal is to correctly estimate
the set of conic curves knowing neither the system calibration nor the position of
the lines in the scene.

Conic Fitting Based on Algebraic Distances

Consider the image poinfcg' = (&,9;)t with j = 1,2...M; andM; > 5, lying

on conicw;. The LMS method, discussed on chapter 4, fits the data points by
the conic which minimizes the sum of the square of the algebraic distances. The
function to be minimized ig(&;) = @ A;* A;0; whereA; is the design matrix

2 2090 97 28 245 1
2 2i90y U3 2@y 20y 1 (5.13)

/\2 A A /\2 A A
Ty, 2T0mYm; Y, 2Tm 29m; L

Considering the entire set of conic curves= (&},d% ... &%)" the design
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matrix becomes

A, 0 0 0
0 A, O 0
A=| 0 0 A; -~ 0 (5.14)
0 0 0 Ax |

And the sum of the square of the algebraic distances between the data points
and the set of line images is provided by functign

es(p) = p'A'Ap (5.15)

One way to estimate the set of conic curves is to find the solgiithvat min-
imizeses under the constraint’p = 1. The minimizer is the normalized eigen-
vector of A*A corresponding to the smallest eigenvalue (see section 4.2.1). As
discussed in chapter 4 the problem is that in general the conic curves correspond-
ing to the paracatadioptric projection of lines are strongly occluded in the image.
The standard conic fitting techniques do not work properly under these circum-
stances since the data points do not provide enough information to correctly esti-
mate the conics. Section 5.2.2 shows that a séf @bnic curves corresponds to
the paracatadioptric projection &f lines, if and only if, it verifies the constraints
provided by equations 5.9, 5.10 and 5.12. Our approach consists in using the nec-
essary and sufficient conditions derived above to constrain as much as possible
the search space in the conic fitting problem.

General Situation

Assume the image dk lines acquired by an uncalibrated paracatadioptric cam-
era. Nothing is known about the parameters of mdtfjx The skew can be non
null and the aspect ratio different from one. Functigrprovides the algebraic
distance between the set of conic curyeand the data points (equation 5.15).
We aim minimize of the algebraic distance under the constrgjnts 0, y; = 0
andy; = 0 (equations 5.9, 5.10 and 5.12). One way to achieve this goal is to find
the solutionp which minimizes the functior provided in equation 5.16.
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K K K
eg(P) = €o(P) +EQ 0l + D X7+ Y _v)) (5.16)
1=2 =2 =4

The constraints are introduced as penalty terms weighted by a paradmeter
The minimization of the function, can be stated as a nonlinear least squares prob-
lem. The solution can be found using Gauss-Newton or Levenberg-Marquardt al-
gorithms [58, 27]. Notice that the Jacobian matrix can be explicitly derived in a
straightforward manner.

Skewless Images with Known Aspect Ratio

Assume that the orthographic camera is skewless and that the aspecfriatio
known. Replacings; by 0 in equation 5.7 yield$ = 0 andc = a*a. The
constraints), = 0 andy; = 0 fori = 2... K, becomé); = 0 andc¢; — a*a; = 0

fori = 1... K. Notice that there are two additional constraints because now two
of the calibration parameters are known. The new functios given by equation
5.17.

6(p) = o) +hQQ_b+ 3 (—a'a)’+ ) v)  (6.17)

The minimization of functiory, has not a closed form solution. The minima
must be determined by iterative nonlinear least squares which requires an initial
estimate ofp [58, 27]. The iterative process is in general time consuming and
may not converge correctly. We show now that if the set of lines has only three
elements K’ = 3) then the problem of minimizing function has a closed form
solution.

Consider the partial design mat; provided in equation 5.13. If the camera
is skewless and the aspect ratio is known thea 0 andc; = a*a;. Omitting the
second column of the design matrix and adding the third column multiplied by
to the first column yields
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P2 +atg? 28, 20 1
y 22 +algs 2% 200 1

/\2 4/\2 A ~
T, T Yny, 2oy, 2ym, 1

The sum of the square of the algebraic distances between the conic curve and
the data points i$ = O!AIA;0; whered; = (a;,d;, e, f;)f. A novel design
matrix A can be obtained by replacimy; by A; fori = 1... K in equation 5.14.
Assumingp = (&%, @k ... &%) comes that the sum of the square of the algebraic
distances between the set of line images and the data poifits is

os(p) = p'A'Ap (5.19)

Since the novel design matrix implicitly encodes the constraints = 0 and
¢; — a*a; = 0, functione, can be rewritten as

K
é(p) = 6.(p) + kY V7 (5.20)
=4
As discussed in section 4.2.1 the eigenvector corresponding to the smallest
eigenvalue of matriA’A is the solutionp which minimizes¢ under the con-
straintp’p = 1. Notice that the estimated set of conic curves also verifies the
constraint$; = 0 ande; — a*a; = 0. If K = 3 then the second term of equation
5.20 disappears and the problem becomes closed from. Wheldeves the min-
imization of functiorg, is a nonlinear least squares problem which must be solved
using iterative procedures. However, even in these circumstances, the eigenvec-
tor solution is in general quite accurate. In this case the conditions of equation
5.12 are neglected and the search space is not fully constrained. Nevertheless it is
constrained enough to provide good results.

5.2.4 Performance Evaluation Using Simulated Images

In this section we use simulated images to compare and evaluate the robustness of
our approach.
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N =20 N =140
0=70 ©=140"

a=11;5,=0;f=245 a=11;§,=20;f=245
(e,,) = (330,238) (¢, = (330.238)

Figure 5.2: Simulated80 x 640 images of three randomly generated lines

Simulation Scheme

Assume a paracatadioptric camera with a field of view (FOMBof, correspond-

ing to a full hemisphere, and predefined intrinsic parameters. The image of a set
of K lines is generated as follows. As depicted in Fig. 5.1 to each line in the scene
corresponds a plard with normaln. The K normals are unitary and randomly
chosen from an uniform distribution in the sphere. Each normal defines a plane
that intersects the unit sphere in a great circle. Notice that half of the great circle
is within the camera field of view (the FOV i80°). An anglef, less or equal

to the FQV, is chosen to be the amplitude of the arc that is actually visible in the
paracatadioptric image. The arc is randomly and uniformly positioned along the
part of the great circle which is within the FOV. The visible arc is uniformly sam-
pled by a fixed numbel of sample points. The each sample point corresponds a
projective rayx. The sample rays are projected using formula 5.1 and transformed
using 5.2 with the chosen intrinsic parameters. Two dimensional gaussian noise
with zero mean and standard deviatiois added to each image poit Fig. 5.2
depicts two simulated images ®fandomly generated lines. In the left image the
visible arc has an amplitude = 70° and is sampled bg0 points. The camera
intrinsic parameters appear in the bottom left corner. In the rightimage the visible
arc isf = 140° and the number of sample pointsis = 140. In this case the
camera is not skewless. As a final remark notice that the amplitude of the visible
arc is measured in the great circle where plahétersects the sphere, and not

in the conic curve where the line is projected. In general the visible angle of the
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Figure 5.3: RMS error in the calibration parameters using the closed form algo-
rithm

paracatadioptric line image is much less tidan

Calibration of Skewless Camera with Known Aspect Ratio

Consider a parabolic camera such that the skew ks G=(0), the aspect ratio is
1.21 (@ = 1), and both are assumed to be known. We wish to determine the focal
length (f. = 245) and the image cente(d, c,) = (330, 238)) using the image
of three lines { = 3). The line images are estimated by minimizing the sum
of the square of the algebraic distangegequation 5.19). As discussed in these
circumstances the problem has a closed form solution. The system is calibrated
using the algorithm presented in Tab. 5.1. The data points are artificially generated
using the simulation scheme explained above. The left image of Fig. 5.2 is an
example of a test image. The estimated calibration parameters are compared with
the ground truth and the RMS error is computed awérruns of each experiment.

Fig. 5.3 shows the results for different choicegydamplitude of the visible
arc) andN (number of sample points). For each choicefadnd N the stan-
dard deviation of the additive gaussian noise varies between 0.5 and 6 pixels by
increments of 0.5 pixels. Fér= 170° the algorithms presents an excellent per-
formance. The decrease on the number of sample points 3fidno 80 only
slightly affects the robustness to noise. Since we are only using three lines, the
decrease on the amplitude of the visible &and on the number of poinfs has
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a strong impact on the performance. Even so the calibration using ag6s of
still practicable. The situation ¢f= 70° and N = 20 is very extreme (left image
in Fig. 5.2) leading to a bad estimation of the intrinsic parameters.

An alternative calibration approach is presented in [35]. The authors evaluate
the performance of their algorithm using similar simulation conditions. A direct
comparison can be made between the results presented in here and the ones pre-
sented in [35]. In general terms they estimate the conic curves by exploiting the
fact that the image center must lie in the line going through the intersection points
of any two line images. As discussed in section 5.2.2, this condition is necessary,
but not sufficient, for a set of conic curves to be the paracatadioptric projection
of lines. Since the search space is not fully constrained, they need much more
than three line images to calibrate the sensor. The results presented in Fig. 5.3
are obtained using the minimum theoretical number of lines for calibration [8].
Even so, and as far as we are able to judge from the results presented in [35], the
performance of our approach seems to be significantly better.

Calibration of General Paracatadioptric Systems

Artificial images are generated as explained in section 5.1. Fig. 5.2 depicts on
the right one of the simulated images used during this experiment. The camera
intrinsic parameters are provided in the bottom left corner. It is assumed that
nothing is known about these parameters. We wish to determine the aspect ratio,
skew, focal length and image center using a set dine images.

The set of line images is estimated by minimizing the functipprovided by
equation 5.16. As discussed the minimization can be stated as a nonlinear least
squares problem . There is no closed form solution and the minima is found by
iterative gradient descend methods such as the Gauss-Newton or the Lenvenberg-
Marquardt methods [58, 27]. An initial estimation is needed to start the iterative
minimization. The starting point is the minimizer of the sum of the square of the
algebraic distances, (equation 5.15). After estimating the paracatadioptric line
images the calibration parameters are computed following the steps enunciated
on Tab. 5.1. The results are compared with the ground truth and the median error
is computed ovet00 runs. The median error is used instead of the RMS error
because in some runs the iterative minimization does not converge correctly. Fig.
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Figure 5.4: Median error, mean error and RMS error

5.4 shows the focal length estimation error, sorted in ascending order, ou@the
runs of a certain experiment. The mean, median and RMS error are depicted by
the horizontal lines. As you can observe it is reasonable to argue that the median
error is the one that best reflects the result of the experiment.

In this first set of experiments we aim to calibrate the system using the min-
imum theoretical number of lineg( = 3). The visible ard is always170° but
the number of sample poinf§ changes §¥ = 300, 170, 80). For each choice of
6 and N the standard deviation of the additive gaussian noise varies between 0.5
and 6 pixels by increments of 0.5 pixels.

The minimization of function, is performed using iterative gradient descend-
ing methods. This can be problematic in many ways [58, 27]. The initial estimate
is crucial to assure the convergence to the right solution. It is important to start the
iterative process from a point as close as possible to the global minima. Moreover
the objective function may have local minima and saddle points. This happens
often when there is not enough information to correctly constrain the problem.
By lack of information we mean small number of lines, data points strongly cor-
rupted with noise, visible arcs with small amplitude or not sampled enough. In
these circumstances the iterative minimization may not converge to the right solu-
tion. Fig. 5.5 shows the number of convergence failures ovet(ibheuns of each
experiment. The run fails when the absolute cdiig, determined following the
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Figure 5.5: Convergence of the iterative minimization

steps in Tab. 5.1, is not positive definite and the Cholesky decomposition is not
possible. This can only happen when the set of paracatadioptric line images is far
from being correctly estimated. As expected the convergence is strongly affected
by the noise. Moreover the decrease in the number of sample points also causes
an increase in the number of failures. Notice that we are assuming three randomly
generated line images. This is the minimum number of lines required to calibrate
a paracatadioptric system. Thus it is natural that often the minimization process
does not converge correctly.

Fig. 5.6 shows the median error in the estimation of the different calibration
parameters. The performance clearly decreases when the number of sample points
decreases.

The calibration results presented in Fig. 5.6 are not very impressive. How-
ever we must take into account that we are using only three line images. In this
set of experiments we aim to compare the performance of the calibration algo-
rithm when using3, 5, 7 and9 line images. The amplitude of the visible arc
and the number of sample points are respectively 140° and N = 140 in all
experiments. The median errors in estimating the calibration parameters can be
observed in Fig. 5.7. The increase in the number of lines dramatically improves
the robustness of the calibration.
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Figure 5.8: Estimating line images for calibration purposes

| | 3Lines 4Lines b5Llines 6 Lines |

a  mean 1.0001 0.9998 0.9996
std 0.0012 0.0019 0.0015

f. mean| 699.36  699.37 701.03  701.81
std 17.24 16.00 13.57 10.65

Sy mean 1.46 0.57 -1.95
std 2.35 1.41 1.39
cx mean| 1137.0 1137.6 1143.6 1147.7
std 21.4 22.6 11.0 5.8
cy, mean | 870.90 870.66 874.36 876.64
std 11.84 13.42 8.29 5.66

Table 5.2: Calibration results for different number of lines

5.2.5 Experimental Results Using Real Images

This section applies the proposed calibration approach to real paracatadioptric
images. Five images were taken using a paracatadioptric camera. The image
resolution is1704 x 2272 and the FOV isl80°. Fig. 5.8 is one of those images
where a set of lines is clearly visible. For each image we used an edge detector
and selected points belongingadaifferent lines. Each one of the five images are
calibrated using, 4, 5 and6 lines. Tab. 5.2 presents, for each situation, the mean
of the calibration results as well as the corresponding standard deviation.

In this case nothing is known about the calibration parameters. Thus the esti-
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5.2. Paracatadioptric Camera Calibration Using Lines

Figure 5.9: Perspective obtained by rectifying a paracatadioptric image

mation of the set of line images is performed by finding the solution which min-
imizes the functiore, of equation 5.16. However notice that the image of the
mirror boundary is close to a circle which allows us to infer that the skew is small
and the aspect ratio is approximately unitary. Taking this into account the initial
estimation for the iterative process is obtained using the closed form algorithm
proposed at the end of section 5.2.3. The left and right images on Fig 5.8 show
the initial and final estimate of the set of conic curves. The calibration results
are summarized in Tab. 5.2. Notice that the estimated values for the calibration
parameters are more or less the same for the difféke(iumber of lines). The
standard deviation acts as a measure of confidence. If the standard deviation takes
high values then the results obtained for each image are very different and the
achieved calibration is not trustable. As expected the standard deviation decreases
when the number of lines increases.

To evaluate the correctness of the results we have rectified a paracatadioptric
image. The obtained perspective image is exhibited on Fig. 5.9, where six pairs
of parallel lines are indicated by letters. The lines were estimated using normal
least squares. Consider the direction of those pairs of lines. The angle between
each two directions can be determined using the corresponding vanishing points
and the image of the absolute conic. The vanishing points are the intersections of
the images of the parallel lines, and the absolute conic is known since the perspec-
tive image is artificially generated. The angles between each two directions were
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5. The Paracatadioptric Camera

computed and the results were compared with the angles measured in the scene.
The mean of the error wds51° and standard deviation was35°.

5.3 Direct Least Square Fitting of Paracatadioptric
Line Images

In general the paracatadioptric image of a line is a conic curve. The estimation
of line images is an important subject for applications such as reconstruction and
visual control of motion. However the estimation of the conic curves where lines
are mapped is hard to accomplish. In general only a small arc of the conic is visi-
ble in the image and conventional conic fitting techniques are unable to correctly
estimate the curve (section 4.2). This section shows that for a calibrated para-
catadioptric system the line images can be accurately estimated by constraining
the search space. A conic curve is the paracatadioptric image of a line if, and
only if, the image of the circular points lie on the curve and two certain points
are conjugate with respect to the conic. Considering the space of all conic curves,
the line images lie in a linear subspace which depends on the system calibration.
The paracatadioptric projection of a line can estimated by fitting a conic in the
subspace to the data points. The proposed approach is computationally efficient
since the fitting problem can be solved by an eigensystem

5.3.1 The Necessary and Sufficient Condition

Consider the scheme of Fig. 5.1 for the mapping of a line by a paracatadioptric
sensor. Plan&l, containing both the line and the effective viewpdintintersects
the sphere in a great circle. The mapping from the sphere to plane a stere-
ographic projection. The great circle is projected if®avhich is circle as can be
verified by inspecting equation 5.3. Points in pldiig are mapped into points in
the image by a collineatioHl.. Notice that for the parabolic situatidd.. is al-
ways an affine transformation (equation 5.2). Since an affine transformation does
not change the type of conic, then the paracatadioptric image of &lin@always
a circle/ellipse (equation 5.4).

Consider the following points lying on plaidé,.:
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I=(1,4,0)
j (1,—i,0)"
= (1,0, —)*

H=(1,0,:)"

Assume that the paracatadioptric system is calibrated and the affine transfor-
mationH, is known. The points are mapped in the paracatadioptric image plane
on points:

T - (Z:va iyy Zz)t
j = (jxajyajz)t
<G = (02,9, 9:)"
H = (hy, hy, )

D Qo [
T
m o T T

According to the result of proposition 3.6 (section 3.3.2) the conic c{ri@
the paracatadioptric projection of a line if, and only if, it verifies the conditions
I'O1 = 0, 3103 = 0 andG'XH = 0. The conic curve) can be parameterized
by a pointo = (a,b, c,d, e, f)' in P®. ThusY® = 0, with Y the 3 x 6 matrix
provided in equation 5.23, is a necessary and sufficient condition for a ¢onic
being a paracatadioptric line image.

i iy, 2 i i i2
T=| j2 292y jr 292]- 27y j2 (5.23)

9ehe  Gogy + hahy  gyhy  929. + hih.  gyg. + hyh. g:h.

5.3.2 The Algorithm

Consider the set of image poirts= (;, ;) withi = 1,2... M. The goal is to

fit a conic curvew, corresponding to the paracatadioptric projection of a line, to
the set of data points. The sum of the square of the algebraic distances between
the curve and the image pointsis= O A*AQ with A the design matrix
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A

ZE% 25%1 ?31 :&% 2@'1 2?31 1
ZE% 2:%2 gg :&% 2@'2 2?32 1

2, 2TmUn U3 28w 20m 1

The conic curvey, represented by a point iR®, has5 degrees of freedom
(DOF). Neglecting the scale factor the space of all conics has five dimensions.
The conic fitting algorithms discussed in section 4.2 search the entire space for
the conic that best fits the data accordingly to a certain criteria. However not all
conics can be the paracatadioptric image of a line. The paracatadioptric line image
@ must lie in the null space of matriX (equation 5.23). The null space Wfis a
linear subspace in the space of all conic curves. Our approach fits the data by the
conic curve, lying in this subspace, that minimizes the algebraic distance to the
image points. Consider the singular value decomposition of matrix

Y =USV'

MatricesU, S andV have respectively dimensiénx 3, 3 x 6 and6 x 6. V
is full rank and orthonormal{~! = V). The three last columns &f are an
orthonormal basis of the null space ®f [58, 38]. Consider the change on the
base of representatiain, = V. If & belongs to the null space of matfi, then
the corresponding, has the following structure

a)v = (0,0,0,dv,ev,fy)t (526)
————

p

The algebraic distance between coftiand the data points is = 0'A'AQ.
Rewriting the algebraic distance in terms of the new coordinates atises
OLVA'AV'Q,. Taking into account the structure 6f, (equation 5.26) comes
thata = p' A*Ap with A the bottom righ8 x 3 sub matrix of VA’AV?. We aim
to determine the solutiop which minimizes the algebraic distandeunder the
constraintp'p = 1. The objective function is

Peatpars(ps A) = p' A Ap+ N(p'p — 1) (5.27)
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Figure 5.10: Estimating paracatadioptric line image using different methods

The minima of the objective functiof...,..» is the eigenvector of matriA’ A
corresponding to the smallest eigenvalue. The final cénig computed by re-
placingp in equation 5.27 and making = V*Q,,.

5.3.3 Experiments

The present section evaluates the performance of the proposed CATPARB algo-
rithm. Simulated images, as the ones exhibited in Fig. 5.10, are used to character-
ize the method and compare its performance with other approaches. The artificial
data is generated using the simulation scheme explained in section 5.2.4. Experi-
ments using real images are also presented.

CATPARB Versus Standard Conic Fitting Methods

Several standard conic fitting technigues have been introduced in section 4.2. The
present section compares the AMS and FF methods with the proposed CATPARB
algorithm.

Consider the graphic on Fig. 5.11 which compares the performance of the
three methods. The data points are artificially generated using the simulation
scheme described above. An arc with an amplitgdeis uniformly sampled
by 40 points. Each method fits a conic curve to the data points. The estimated
conic is compared with the ground truth and the RMS error in the principal points
is computed ovet00 runs of each experiment. Both Fig. 5.10 and 5.11 show that
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Figure 5.11: Comparing the performance of AMS, FF and CATPARB methods
(IV =40,0 =80°)

the estimation results dramatically improve when using the CATPARB algorithm.

CATPARB Versus Perspective Rectification

Fig. 5.11 shows that CATPARB performs much better than AMS and FF methods
in estimating the conic locus where a line is mapped by a paracatadioptric sensor.
Notice however that this comparison is not entirely fair. While the FF and AMS
are generic methods to fit a conic curve to image points, the CATPARB algorithm
uses information about the sensor geometry and calibration to perform the estima-
tion. CATPARB is a specific method which requires both the data p&ingnd
the calibration matribH,. to estimate the paracatdioptric line image.

Since the system calibration is known then the line can be determined in
a straightforward manner by performing a perspective rectification of the data
points. Consider the calibration matH, (equation 5.2), the inverse function
h~! (equation 2.9) wheré¢ is made unitary{ = 1), and the data point; lying
on the paracatadioptric line image The equation below computes the rectified
data points;

x; = h '(He'%;)i=1 ... N (5.28)
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Figure 5.12: Comparing the performance of AMS, FF and CATPARB methods
with the direct line estimation (DLE) after perspective rectificatidh=€ 40,60 =
80°)

Assume than = (n,,n,,n.)" is the normal to the planEl containing the
line in the scene which is imaged §& (see Fig. 5.1). If poink; lies in the conic
locus$?, then the rectified point; lies on linen in the conventional perspective
plane. Thus, given the set of rectified data poxts = 1. ..V, we can estimate
line n using normal least squares (section 4.2.1). The solution is obtained by
computing the eigenvector of the design matkiXequation 5.29) corresponding
to the smallest eigenvalue. The conic lod2sn the image plane is computed
fromn = (n,,n,,n,)" andH, using the relations established in equations 5.3
and 5.4.

rr y1 1
T 1

A= | (5.29)
N yn 1

Fig. 5.12 compares the performance of AMS, FF and CATPARB algorithms
with the direct line estimation (DLE) after perspective rectification. The simula-
tion scheme is similar to the one used on previous section and the metric is the
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RMS error on the principal points of the estimated paracatadioptric line image.
It can be observed that the DLE method performs much better than the standard
conic fitting techniques (AMS and FF). This is explained by the fact that DLE
uses, not only the data points, but also information about the image formation
process and sensor calibration. However its performance is clearly worse than the
one of CATPARB method.

As explained in section 4.2.2 it is reasonable to assume that the noise in the
image pointsk; = (i, 9;)" is gaussian, two dimensional and with zero mean. It
is also reasonable to assume that the error is equal in both directions and uncorre-
lated. Thus the noise covariance matrix has the fotirwith I the2 x 2 identity
matrix. Consider the rectified poist and the linen, both lying in the conven-
tional perspective plane. The algebraic distance between the point and the line is
a; = n'x;. Replacingx; by the result of equation 5.28 and assumiig = 1
yieldso; = n'.7i71(%;). Propagating the variance of the image pdintomes
that the noise variance in the algebraic distance is

2y ) (A @7+ 97) + 2005 + 1) (@7 + 57) + Snanydii
Z (1 -2 =g

(5.30)

The least square estimator computes the tinghich minimizes the sum of
the squares of the algebraic distanag$i = 1... N). The estimation is optimal
in terms of minimum covariance if the noise in the algebraic distan¢dsas
always the same variance and is statistically independent [55, 58]. From equation
5.30 comes that the varianeg is a function of the coordinates of the original
image pointk;. Thus the variance of the algebraic distanegis not constant and
the line estimation using least squares is statistically biased [44]. The effects of
the statistical bias are much stronger in the DLE method than in the CATPARB
algorithm, which explains the poorer performance of the former (Fig. 5.12).

Pushing CATPARB to the Limit

The graphic of Fig. 5.13 shows the behavior of the proposed approach in the
presence of increasing noise for different values\oind . As expected the
performance is worse when the number of samples and/or the amplitude of the
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Figure 5.13: Characterization of the performance of the CATPARB algorithm.

visible arc decrease. The results depicted on Fig. 5.13 provide a general idea of
the robustness of the CATPARB algorithm.

Experiments with Real Images

This section presents some results in estimating lines in real paracatadioptric im-
ages. The image resolutioni%04 x 2272 and the sensor is calibrated using the
method proposed in section 5.2.

Fig. 5.14 depicts one of our test images. The conic curve where a line is
projected has onlg independent degrees of freedom (section 3.3.2). Thus two
image points are enough to correctly determine a paracatadioptric line image. We
have selected by hand two points lying on the conic locus where a certain line
in the scene is projected. The estimation results using the proposed CATPARB
algorithm can be observed in Fig. 5.14. The selected points are marked using the
blue crosses. Notice that in general a conic curve can only be estimatedusing
or more data points.

Consider the paracatadioptric image exhibited in Fig. 5.15 with four pairs of
parallel lines denoted bg, b, ¢, d According to proposition 3.1, the polar of
the image center with respect to the conic locus where the line is mapped, is the
horizon of the plan&I containing the original 3D line and the effective viewpoint
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Figure 5.14: Estimating lines in a real paracatadioptric image using only two
points

Figure 5.15: Estimating the angle between pairs of parallel lines
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| G. Truth || Error CATPARB || Error DLE |

a-b 90° 0.8538° 0.3442°
a-c 30° 2.0504° 6.6411°
a-d 30° 1.8212° 0.4977°
b-c 60° 2.9888° 2.4049°
b-d 60° 1.0459° 13.7148°
c-d 60° 3.8717° 16.0897°
median 1.9358° 4.5230°
mean 2.1053° 6.6154°
std 1.1553° 6.8505°

Table 5.3: Recovering angles between pairs of parallel lines

(see Fig. 5.1). Moreover if two imaged lines are parallel then the intersection
of the corresponding horizons is the vanishing point of their common direction
(corollary 3.5).

The eight line images, corresponding to the four pairs of parallel lines, are
estimated using the CATPARB algorithm (see Fig. 5.15). The vanishing point of
each pair is determined in a straightforward manner using the results of corollary
3.3. Since the calibration matrK.. is known then the image of the absolute conic
can be computed makinfgoo = H,.'H.™'. The estimation of the angles between
the pairs of parallel lines from the vanishing points and the absolute conic is trivial
[39, 59]. Tab. 5.3 shows the errors in estimating these angles.

There is an alternative approach to estimate the angles between the pairs of
parallel lines. Instead of applying the CATPARB method and using the geometric
relations derived in chapter 3, we can perform the perspective rectification of the
image points, estimate the lines using normal linear least squares and compute the
angles using standard projective relations. The estimation errors are shown in the
last column of Tab. 5.3. As expected estimating the lines directly in the paracat-
dioptric plane presents better results. We may conclude that the bias introduced
by the perspective rectification has a strong impact on the performance of the DLE
method.
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5.4 Closure

This chapter presents an effective way to calibrate paracatadioptric cameras using
the image of lines in general position. In chapter 3 we proved that a line is mapped
into a conic and that any central catadioptric system can be fully calibrated from a
minimum of three line images in general position. However in chapter 4 we real-
ized that the accurate estimation of lines using image points is hard to accomplish.
This chapter proposes a method to overcome this problem when using parabolic
systems. If it is true that any line is imaged in a conic locus, it is not true that any
conic curve is the paracatadioptric image of a line. The necessary and sufficient
conditions that must be verified by a set of conic curves to be the image of a set
of lines are derived. These conditions are used to constrain the search space and
accurately estimate the set of conic curves required to calibrate the paracatadiop-
tric sensor. If the camera is skewless and the aspect ratio is known then the conic
fitting problem is solved naturally by an eigensystem. Otherwise the estimation is
performed using non-linear optimization techniques. Experimental results show
that the proposed calibration method performs much better than the ones appear-
ing in the literature [35, 45, 74].

The second contribution in this chapter is the CATPARB algorithm to esti-
mate lines images from data points measured in the calibrated paracatadioptric
plane. It has been proved in chapter 3 that a conic curve is the paracatadioptric
image of a line if, and only if, it goes through poirtts, J.. and pointsG, H
are harmonic conjugate with relation to it (proposition 3.6). This provides three
necessary and sufficient conditions which define a linear subspace in the space
of all conic curves. The line image is estimated within this subspace by solving
an eigensystem. The method is accurate, robust and computationally efficient.
Experimental results show that this approach performs much better than estimat-
ing the lines using perspective rectification as is often done in robotic applica-
tions [64]. The estimation after perspective rectification is statistically biased [44]
which strongly affects the results.
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Chapter 6

A General Framework for Selecting
the World Coordinate System

The imaging process can be interpreted as a mapping from points in 3D space into
points in the 2D image plane. The image formation is a transformation Rdm

to R2. Cartesian coordinate systems are typically used to reference points both in
space and in the image plane. The transformation is non-injective and implies loss
of information. The relationship between position and velocity in the 3D space
and position and velocity in the image are in general complex, difficult and non-
linear. This chapter shows that the choice of the coordinate system to reference
points in the 3D space is important. The intrinsic nature of image formation pro-
cess is kept unchanged but the mathematical relationship between the world and
the image becomes simpler and more intuitive. This can help not only the under-
standing of the imaging process but also the development of new algorithms and
applications.

The first part of the chapter focuses on static imaging systems that include both
perspective cameras and central catadioptric systems. A general framework to de-
scribe the mapping from 3D points to 2D points in the image plane is presented.
The mathematical expression of this global mapping depends on the coordinate
system used to reference points in the scene. A systematic approach to select the
most suitable world coordinate system is presented and discussed. Differential
constraints are defined to enable the choice of a 3D reference frame. Coordi-
nate transformations satisfying these differential constraints bring advantageous
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properties when mapping 3D space velocities into 2D image velocities. One such
coordinate transformation is described for the case of the perspective camera and
then generalized for central catadioptric image formation. The coordinate trans-
formation does not imply that new information is available in the images. Instead
the geometric transformations are represented in a common and more compact
framework, enabling newer insights into the image formation process. Examples
and applications that benefit from an adequate choice of the world coordinate sys-
tem are presented and discussed.

The second part of the chapter applies the derived mathematical framework to
active tracking of moving targets [2]. For this purpose it is assumed that the imag-
ing sensor is mounted on a moving platform. The goal of the tracking application
is to control the motion of the platform in such a way that the position of the target
in the image plane is kept constant. Three different cases are considered: a per-
spective camera with translational motion in the XY plane, a perspective camera
with rotational pan and tilt motion and a parabolic omnidirectional camera with a
rotational degree of freedom around the Z axis. The platforms considered in this
work have less than 3 degrees of freedom (DOF). For the purpose of controlling
the constrained 3D motion of these robots it is not necessary to determine the full
pose of the target. It is assumed that target motion is characterized by the 3D posi-
tion and velocity of the corresponding mass center in an inertial reference frame.
It is also assumed that the position of each degree of freedom is known (possibly
via an encoder).

For the visual control of motion the relationship between motion in the scene
and motion in the image must be established. The image motion depends both on
target and camera 3D motion. The mathematical expression of the global mapping
depends on the world coordinates used to reference points in the scene. General
criteria to select suitable coordinate systems are discussed. Adequate choices are
presented for each type of platform. The derived mathematical framework is used
to establish the position and velocity relationships between target 3D motion, cam-
era motion and image motion. The expressions obtained are used to implement
image based active visual tracking. Simplifications of the equations obtained (to
decouple the degrees of freedom of the pan and tilt vision system) are discussed.
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Y
‘ functionfh 0
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Xj=(xj.y ) eR?

Figure 6.1: Mapping in central projection systems

6.1 World Coordinates for Static Imaging Systems

The two first sections refer to static central projection vision systems. Examples
of such systems are the perspective camera and catadioptric systems that verify the
fixed viewpoint constraint [5]. The image acquisition process maps points from
the 3D space into the 2D image plane. Image formation performs a transforma-
tion from R3 to R? that can be denoted . A generic framework to illustrate

the transformatiod is proposed. This framework is general to both conventional
perspective cameras and central projection catadioptric systems. It is desirable
thatF be as simple as possible and as compact as possible. This can be achieved
by selecting a specific coordinate systems to reference the world points. General
criteria to select the world coordinate system are presented and discussed. Advan-
tages of using different world coordinate systems to change the format &f the
mapping are presented.
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6.1.1 Mapping Points from the 3D Space inthe 2D Image Plane

Fig. 6.1 depicts a generic framework to illustrate the transformatitnom R3 in
R? performed by a central projection vision system. The schematic of Fig. 6.1 is
an adaptation of the one of Fig. 2.3.

Xw = (X,Y, Z)" is a vector with the Cartesian 3D coordinates of a point in
space. The domain of transformation is thetset visible points in the world with
N C R3. Functionf,, mapsR2 into the projective spacB3. It is a non-injective
and surjective function transforming,, = (X,Y,2) in X;,, = (X,Y,Z,1)!
that are the homogeneous world point coordinatiess an arbitrary3 x 4 ho-
mogeneous matrix with rank 3. It represents a general projective transformation
performing a linear mapping @3 into the projective plan®? (x = PX,,). The
rank 3 requirement is due to the fact that if the rank is less than 3 then the range
of the matrix will be a line or a point and not the whole plane. The rank 3 re-
guirement guarantees that the transformation is surjective. In the c&sbaihg
a camera model it can be written Bs= RJ[I| — C|] wherel is a3 x 3 identity
matrix, andR the rotation matrix between camera and world coordinate systems
and C the projection center in world coordinates [39]. If nothing is stated we
will assumeP = [I|0]. Functionf; transforms coordinates in the projective plane
x = (z,y, )" into Cartesian coordinates in the image plane= (z;,y;)". Itis
a non-injective, surjective function &2 in R? that maps projective rays in the
world into points in the image. For a conventional perspective camera with matrix
of intrinsic parameterk, = I comes thak; = fi(x) & (z;,y:) = (£,%). Asit
will be shown latter, for the case of general central catadioptric systems function
f; encodes the non-linear transformatfomtroduced in chapter 2.

The transformatior¥ maps 3D world points into 2D points in the image.
Points in the scene are represented using standard cartesian coordinates. How-
ever a different coordinate system can be used to reference points in the 3D world
space. Assume thaf = (¢,1, p)" are point coordinates in the new reference
frame and thaX,, = T(Y) whereT is a bijective function fronR3 in R3. The
transformatiornF’, mapping 3D world point& in image points; (see equation
6.1), can be written as the composition of equation 6.2.
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6.1. World Coordinates for Static Imaging Systems

F(Y) = (P, (T())) (6.2)

Equation 6.3, obtained by differentiating equation 6.1 with respect to time,
establishes the relationship between velocity in 3D spfice- (q's,;z},p)t and
velocity in imagex; = (i, ;). X; andY are related by the jacobian math
of transformatior¥. Equation 6.4 shows$r as the product of the Jacobians of the
transformations that make U

% =JpY (6.3)
Jp=J¢. Jp.Jg I (6.4)

FunctionT represents a change of coordinates. It must be bijective which
guarantees that it admits an inverse. Assumelhatthe inverse function ol
(' = T~1). FunctionT', from R2 into R3, transforms cartesian coordinafs,
in new coordinates (equation 6.5).Jr is the jacobian matrix of® (equation
6.6). If T is injective then the jacobian matriky is hon-singular with inverse
Jr [26]. Replacingy by J;.! in equation 6.4 yields equation 6.7 showing the
jacobian matrix off' expressed in terms of the scalar functiofoénd its partial
derivatives.

I'Xw) = (0(X,Y, 2),0(X,Y, 2),p(X,Y, Z)) (6.5)
dx oy ¢z

Jr=| ¥x Yy Yz (6.6)
Px Py Pz

Jp = Jg. Jp.Jp J5t 6.7)

6.1.2 Criteriato Select the World Coordinate System

FunctionF is a transformation fronR3 (3D world space) int®? (image plane).

In equations 6.8 and 6@ andJy are written in terms of scalar functions and their
partial derivatives. The relationship between world and image points can be com-
plex and counter intuitive. The mathematical expression of the mapping function
F depends on the transformatid@h(see equations 6.2, 6.4 and 6.7). The selection
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of a certain coordinate system to reference points in the scene changes the way
F is written but does not change the intrinsic nature of the mapping. However an
adequate choice of the world may lead to simpler mathematical relations between
position and velocity in space and position and velocity in image. In this section
we discuss criteria for the selection of the world coordinate system.

F(Y) = (h(¢.9, p), g(d, 0, p))" (6.8)
JF:[h¢ oy hp] (6.9)
9o Gy Gp

The Compactness Constraint

Consider the general central projection as a mapping of 3D points, expressed in
Cartesian coordinates,, = (X, Y, Z)¢, into 2D image points; = (x;,y;). The
transformation is a function fro®3 into R? with loss of information (depth). In
general the two coordinates in the image plane depend on the three coordinates
in space. The image provides partial information about each one of the three
world coordinates but we are not able to fully recover any of those parameters
without further constraints. The imaging process implies loss of information and
there is no additional transformatidnthat can change that. However it would be
advantageous that image coordinates depend only on two of the 3D parameters.
In many situations that can be achieved by means of a change of coordinates
T. The change of world coordinates must be performed in such a way'that
only depends on two of those coordinates. Assuming Mat (¢, v, p) are
the new 3D coordinated’ becomes a function of only and > whenever the
partial derivatives:, andg, are zero. If a certain change of coordinaleseads
to a jacobian matrixJy with a zero column then it is said that mappiigis
in a compact form and coordinate transformatibrverifies the "compactness
constraint”.

Assume that a world coordinate system satisfying the "compactness constraint”
is selected. If equation 6.10 is verified then the image coordinjates;) depend
only on (¢,+) and F becomes a function frolR? in R? (x; = F(Y.) with
Y. = (¢,%)). A function fromR? into R? is never invertible, thus putting
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in a compact form is a necessary condition to find out an inverse majpihg

If F~! exists then two of the three 3D parameters of motion can be recovered
from image IC. = F~(x;)) and the jacobian matrify can be written in term

of image coordinates; andy;. By verifying the "compactness constraint” the
relationships in position and velocity between the 3D world and the image plane
tend to be more compact and intuitive and vision yields all the information about
two of the 3D world coordinates and none about the third one.

hy=0 A g,=0 (6.10)

The Decoupling Constraint

Assume that the "compactness constraint” is verified. This means that a coordi-
nate transformatiof” is used such that image coordinates y;) depend only on

(¢, 7). It would be also advantageous to define a world coordinate system such
that z; depends only of» andy; depends only of). This is equivalent to say
thath,, andg, are both zero. The one to one correspondence is an advantageous
feature allowing a better understanding of the imaging process and simplifying
subsequent calculations. If a coordinate transforméiias used such that both
equations 6.10 and 6.11 are verified then it is said Fhat in a compact and
decoupled form and thdl' verifies both the "compactness constraint” and the
"decoupling constraint”.

hy=0 A gs=0 (6.11)

In short, given a general central projection mapping, the goal is to select a
coordinate transformatiolr verifying both:

¢ the "compactness constraint” (equation 6.10)

¢ the "decoupling constraint” (equation 6.11)

The coordinate system used to reference points in the scene does not change
the intrinsic nature of the mapping nor introduces any additional information.
There are situations where it is impossible to find a world coordinates transforma-
tion that verifies the "compactness constraint” and/or the "decoupling constraint”.
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Methodologies to find out if it exists such a transformation will be introduced
latter.

6.2 Applying the Framework to Static Imaging Sys-
tems

The previous section derived a general framework to model central projection sys-
tems and select the most suitable coordinates to reference the world. This section
applies the framework to the situations of a conventional perspective camera and
central catadioptric system.

6.2.1 Conventional Perspective Camera

Consider image acquisition performed by a static conventional perspective cam-
era. The image formation process follows the scheme depicted in Fig. 6.1 where
functionf; is given by equation 6.12. Assume that the matrix of intrinsic param-
eters isK. = I andP = [I|0] (the origin of the cartesian reference frame is
coincident with the camera center and the image plane is perpendicular to the Z
axis). This section derives a world coordinate system that verifies both the com-
pactness and decoupling constraint. If nothing is stated we will work with the
inverse transformatiol instead of the direct transformatian

£0) : (2,,2) — (2, %) (6.12)

2z
Constraining I" to Obtain a New World Coordinate System

Functionsf;, P andfj,, as well as their jacobian matrices, are defined for the
perspective camera case. Replacijg(equation 6.6) in equation 6.7 yields

in terms of the partial derivatives of the scalar functiond athe computation

is omitted). IfF is in a compact form then the third column &f must be zero
(equation 6.10) which leads to equations 6.13. A transformation of coordinates
I' that verifies the compactness constraint can be computed by solving the partial
differential equations 6.13 with respect to the scalar functignsandy (equation

6.5).
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Figure 6.2: Conventional Perspective Camera Case

{ Z(pybz — pztby) + X (dythx — dxtby) =0 (6.13)

Z(¢zx — dxz) + Y(Pvihx — ¢x¢y) =0

The patrtial differential equations corresponding to the "decoupling constraint”
can be derived in a similar way. If the mappiRgs decoupled then both, and
g, Must be zero, which leads to equation 6.14. A world coordinate transformation
I" verifying both the compactness and the decoupling constraint can be computed
by solving simultaneously equations 6.13 and 6.14. Nevertheless the integration
of systems of partial differential equations can be difficult and in general it gener-
ates many solutions. Adequate coordinate systems will be derived by geometrical
means. Equations 6.13 and 6.14 will be used to prove that the selected coordinate
transformation verifies the compactness and/or decoupling constraints.

(6.14)
Z(bzpx —Uxpz) +Y (bypx — xpy) =0
Fig. 6.2 is a representation of the image formation process for the specified
perspective camera situation. A point in the scene with cartesian coordinates
(X,Y, Z) is projected in the image plane at position, y;). It is assumed that
only the points in front of the camera are visiblé & 0). The world points that
can be projected in a certain image vertical line, lie in a vertical plane rotated

{ Z(pzpy — Ovpz) + X(dypx — dxpy) =0
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around the camera referentigl axis, containing the center of projection. In a
similar manner, the world points projected in an horizontal line of the image be-
long to an horizontal plane rotated around fhexis. Consider the pencil of the
vertical planes where each one is indexed by the corresponding rotationgangle
There is a one to one correspondence between the vertical lines in the image and
the ¢ angles. In a similar manner, a pencil of horizontal planes, indexed by the
corresponding rotation angle is defined. Each horizontal line in the image is as-
sociated to one angle. Each paif¢, 1) defines a pair of planes that intersectin a
projective ray. If the depth of the world point along the ray [@lways positive),

the set of value$p, ¢, p) gives the position of the world point in an unique way.

We have derived a new system of coordinates to represent points in the 3D space.
Equation 6.15 establishes the relationship betweeip, p) and the conventional
Cartesian coordinatés(, Y, 7).

¢ = arctan(3)

¢ = arctan(—%) (6.15)

p=VX2+Y2+ 22

Equation 6.16 gives the jacobian matrix of the derived coordinate transforma-
tion . The proposed change of coordinates is a solution of the set of differential
equations 6.13 and 6.14 satisfies both the compactness and decoupling con-
straint for the static perspective camera case.

z 0 X
X2+ZQ X2+ZQ
— Z Y
Jr = 0 vz v (6.16)
X Y Z

VX24Y24Z2 VXPHY24Z2 VX2HY2 422

Table 6.1 summarizes the results obtained in this seclibis.a world coor-
dinate transformation verifying both the compactness and decoupling constraint.
Notice that the new coordinate system is different from the well known spherical
coordinatesT is the inverse function df'. ReplacindI' in equation 6.2f;, P and
f;, were already defined) leads to the mathematical expression of global mapping
F using the new coordinates. The jacobian malgixis obtained replacindr in
equation 6.7 by the result of equation 6.16.
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I'(Xy) = (arctan(Z),arctan(—%), vV X2+ Y2 + Z2)!
2 (tan(¢)7 o taﬂ(iﬂ), 1>t

14
\/1+tan(¢)2+tan(z)

F(Y) = (tan(g), - tan(t))’
1 0 0
JF(T) _ cos(®) 1
0 ~ P 0

Table 6.1: Using a new coordinate system for perspective camera

FXy) = (5, %)
109 =X
7 72

JF(XW) = 1 Y
0 7z —»

Table 6.2: Using a cartesian coordinate system for perspective camera

Applications

The global mappin@' and its jacobian matrix establish the relationship between
position/velocity in space and position/velocity in image for the conventional cam-
era situation. Assume that both image positigrand velocityx; are known.

It was stated that there is a loss of information in the image formation process.
Therefore it is not possible to fully recover 3D target motion from images without
further information. Nevertheless, using a world coordinate system verifying the
compactness and decoupling constraint, it is possible to partially recover the 3D
parameters of motion in a straightforward manner.

Table 6.1 shows the mappirdg and the corresponding jacobian matdix
written in terms of derived system of coordinates. Table 6.2 gives the mathemat-
ical expressions oF andJg using world cartesian coordinates. In the former
situationF is in a compact form and it is possible to invert the mapping to recover
position information. One obtains that= arctan(z;) andy = — arctan(y;).
When using cartesian coordinat®sappears as a function &3 in R2, and the
inversion is not possible.
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Equation 6.17 shows$g written in terms of image coordinates. Itis derived by
replacing in the jacobian matrix of Table 4, ) by (arctan(z;), — arctan(y;)).
Knowing both position and velocity in the image one obtains (1 + 22)'i;
andy) = —(1 4+ y2)~19;. Using the derived world coordinate system it is possible
to partially recover the position and velocity of the target in the scene.

1+ a7 0 0

TR0 e

(6.17)

6.2.2 Central Catadioptric Imaging System

A catadioptric realization of omnidirectional vision combines reflective surfaces
and lenses. Central catadioptric imaging can be highly advantageous for many ap-
plications because it combines two important features: a single projection center
and a wide field of view. The drawback of this type of sensors is that in general
the mapping between points in the 3D world and in the image is highly non-linear.
We wish to study the advantages of working directly with the catadioptric images
without warping them. The proposed framework is used to derive a general trans-
formation of coordinates that leads to a mapping between points in the world and
in the image that verifies both the compactness and the decoupling constraints.
Some applications are presented and discussed.

General Model for Central Projection Systems

An unifying theory for central catadioptric image formation has been presented in
chapter 2. This section reviews the mapping model schematized in Fig. 2.3 and
introduces the assumptions and notation used in the remain of the chapter.
Consider a generic scene point, visible by the catadioptric system, with carte-
sian coordinateX,, in the world reference frame. The corresponding homo-
geneous representationXs,. Visible points in the scen&; are mapped into
projective rays/points in the catadioptric system reference frame centered in the
effective viewpoint. The transformation is linear being describeddy & matrix
P (if nothing is stated it is assumed tHRt= [I|0]). To each oriented projective
ray/pointx = (z,y, z), corresponds a projective ray/pokt= (z,y, 2)" in a co-
ordinate system whose origin is in the camera projection center(Fig. 2.3). Assume
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image plane

Figure 6.3: The sphere model for general central catadioptric image projection

that the matrix of intrinsic parametersks. = I and that the camera is not rotated
with relation to the reflective surfac®( = I). From equations 2.4, 2.5 and 2.6
yields

=8z  (¢—&y z e
VIR +yt+ 22 ety + 2 2y + 2P

Since the cartesian coordinates of the point in the catadioptric image plane are
X; = (%, g)t then the functiorf;, referenced in the scheme of Fig. 6.1, is provided
by equation 6.19. Functiofy depends on mirror parametefsandy. Table 2.3
shows these parameters for the different situations of central catadioptric imaging.

%=

R Sy v = Ky By

Fig. 6.3 depicts the intuitive “concrete” model. To each visible point in space
corresponds an oriented projective rayoining the 3D point with the effective
projection cente. The projective ray intersects a unit sphere centered in
a unique poinfX,,,. Consider a poinO. with coordinateg0, 0, —¢£)* in sphere
reference framé. To eachx corresponds an oriented projective gajoining O,

) (6.19)
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with the intersection poinX,, in the sphere surface. Assume that the catadioptric
image plane is the horizontal pladle= ¢ —2£. The projective raxk intersects the

plane atx; which are the coordinates of the image point. The scene is projected
into the sphere surface and then points on the sphere are re-projected into the cata-
dioptric image plane from a novel projection centr. PointO. = (0,0, —¢)*

only depends on the mirror parameters (see Table.2.3). Notice that ih then

O. is coincident withO and functionf; becomes similar to the one provided in
equation 6.12.

The New World Coordinate System

The image formation process of a general central catadioptric system fits the
scheme depicted in Fig. 6.1. The difference from the previous case of the perspec-
tive camera is that functiof} is given by equation 6.19 instead of equation 6.12
where{ andy depend on the mirror parameters (see Table 2.3). The goal of this
section is to derive a coordinate transformatlofor which the global mapping
F between points in the world and in the catadioptric image is in a compact and
decoupled form. Differential constraints similar to equations 6.13 and 6.14 can be
derived in the same manner for this more general situation. As already mentioned,
integration of partial differential equations can be a complex task, leading to mul-
tiple solutions. Once again the suitable new coordinates are derived geometrically
and the differential constraints are used to confirm the results.

In Fig. 6.3 consider the vertical line in the catadioptric image plane parallel
to the Y axis. All the points in the world that can be projected in this line lie in
a conic surface, with the vertex coincident with the effective viewp@intThe
conic surface intersects the unit sphere on a circumference, passing through the
projection pointX,,,, which limits a circle containing the poi@. = (0,0, —¢)".
The axis of the conic surface is always contained inXi@~ plane. In a similar
way, the world points that can be projected in an horizontal line in the image lie
in a conic surface. The difference is that the axis is now in¥tlieZ plane. We
will call the first pencil of conic surfaces (with the axis x0Z2) the vertical
pencil and the second (with the axis ¥ Z) the horizontal pencil. A vertical
and an horizontal conic surface intersect in two oriented projection rays. This
ambiguity can be solved assuming that the camera used to acquire the catadioptric
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Figure 6.4: Left: Vertical and horizontal pencils of conic surfaces. Intersection of
the lower and upper cone with the unit sphere

images is forward looking and that only points with > —¢ are visible in the

image plane. This section defines a coordinate system based in these two pencils
of cones. It is shown that the resulting transformation of coordinBtesrifies

both the compactness and decoupling constraint for the general central projection
situation.

Consider the dotted conic surface depicted in Fig. 6.4. Its axis coincides with
the referentialX axis, the vertex coincides with the origin and the aperture angle
is «. World points(.X, Y, Z) lying on the conic surface verify equation 6.20. Con-
sider now the conic surface rotated aroundithexis by an angle. Equation 6.21
is obtained multiplying point coordinates by rotation mawiX (wherey is the
unit vector of the Y axis) [51] and replacing them in equation 6.20. Equation 6.21
defines the rotated conic surface depicted in Fig 6.4(Left). Angéethe aperture
angle andp is the rotation angle around Y axis that can be used to index the cones
in the vertical pencil described above.

Z? +Y? = X*tan(a)? (6.20)

(X sin(¢) + Z cos(¢))? — (X cos(¢) — Zsin(¢))*tan(a)?> +Y? =0 (6.21)

131



6. A General Framework for Selecting the World Coordinate System

Observe Fig. 6.4(Right) where the rotated conic surface of equation 6.21, the
unit sphere and the re-projection cen@y are depicted. The lower cone must
intersect the unit sphere on a circle containing the p@in®, —¢). World scene
points lying in this cone project on a vertical line at the catadioptric image plane
(see Fig. 6.3). Fig. 6.4(Right) shows that the aperture angle of the conic surface
must betan(a) = < wheree® = £2sin*(¢) andc¢® = 1 — ¢? (an unit sphere is
assumed). Equation 6.22 is obtained replacing this result in equation 6.21.

2sin(¢)* (X2 + Y2 + Z%) — (X cos(¢) — Zsin(¢))* = 0 (6.22)

Solving equation 6.22 with respect towe are able to compute the verti-
cal conic surface with the desired features that contains a certain world point
(X,Y, 7). Notice however that it is a second order equation, thus for each point
in 3D space, there are twpsolutions. Each solution defines a conic surface con-
taining the point and intersecting the unit sphere in a circle passing through its
projectionX,, at the sphere surface. Nevertheless one of these circles contains
point (0, 0, £)*, while the other contains poiri6, 0, —¢)*. The second solution is
the one that must be used.

The ¢ angle is used in the same manner to represent the horizontal pencil
of conic surfaces. The derivation of the relationship betwgemd point world
coordinateg X, Y, Z) is similar.

At this point, given a world point represented in Cartesian coorditafes, 2 )
we are able to compute a vertical and an horizontal conic surface, respectively ref-
erenced in an unique way hyand, that contain the point. In general the two
cones intersect in two projective rays. However only one of them is visible in the
image. The point lies in this projective ray, and a third coordinatat is the
distance from the center, must be introduced. Equation 6.23 yields the derived
change of coordinatds. Both ¢ andv are in the range-{r /2, 7 /2].

= )
Z+6\/X2+Y2+22)

w = arctan(—wﬁ)
p=VX2+Y2+ 22

¢ = arctan(

(6.23)

Table 6.3 summarizes the results obtained so far for general central projection
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X
arctan(MXQ—W)
arctan(—m)

VX2+Y2+ 22
I+4/1+(1—€2) (tan($)2+tan()2)
v L+ tan(4)? +tan(¢)? tan(¢)
- 144/ 1+(1—£2)(tan(¢)2 +tan()?)
T(Y) —P 1+ tan($)2 1 tan()? tan(y))
V/1+(1-€2) (tan(¢)> +tan (¥)?) =€ (tan(¢)? +tan(1))2)
p 1+tan(¢)2+tan(e)?

(g | 220)

F(Y) = tan(1))
—L_ 0 0
Je(X) = (p-8) | =Y L 0}

Table 6.3: Using a new coordinate system for general central catadioptric imaging

systemsTI is the derived world coordinate transformation that maps cartesian co-
ordinatesX,, in the new coordinate¥ associated with the conic surfaces refer-
ence frameT is the inverse function df'. ReplacingT in equation 6.2f, P and

f,, were already defined) yields the mathematical expression of global mapping
F using the new coordinates. The corresponding jacobian matiix.ig\ccord-

ingly equations 6.10 and 6.11, the derived coordinate transformBtenify both

the compactness and decoupling constraints. Notice tilfat=f0 then we have

the perspective camera situation studied previously. The aperture of the reference
conic surfaces is always/2 and the change of coordinates 6.23 becomes equal
to 6.15. The pencils of conic surfaces degenerate in the pencils of planes previ-
ously derived. The coordinate transformation proposed for the perspective camera
situation is a particular case of this more general solution.

Applications

Applying the derived coordinate transformatiBrdoes not modify the image for-
mation process nor introduces new information in the problem. Instead the geo-
metric transformations are represented in a way that enables newer insights in the
imaging process becoming more suitable to develop certain applications. This sec-
tion shows some advantages in expressing the global mapping function in terms
of an adequate system of world coordinates.
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6. A General Framework for Selecting the World Coordinate System

Figure 6.5: Generating a geometrically correct perspective image.

Using the derived world coordinaté&s, the global mappind" is written in a
compact and decoupled form (see table 6.3). Knowing both target image position
x; and velocityx; the recovery of 3D parameters of motion is straightforward.
As aresultp = arctan(x;) andy = arctan(y;). Replacing these parameters in
the jacobian matrix of table 6.3 yields the jacobian matrix of the global mapping
F written in terms of image coordinates (equation 6.24). It follows that
(14 (wi?f)Q)ilcpjif andy = —(1 + ((ﬁ )2)*15_1'5. Similarly to the perspective
camera case, catadioptric images do not provide any information about the third
parameter of motiop.

z2
) =(p-g| e 00 (6.24)
0 I+ 0

It is a well known result that it is always possible to generate a geometri-
cally correct perspective image from an image acquired by a central projection
catadioptric system[5]. The firstimage of Fig. 6.5 was acquired by an omnidirec-
tional system that combines a parabolic mirror with an orthographic camera. A
generic scene point with cartesian coordin&esis projected at positioR; in the
catadioptric image plane (see Fig.6.3). The field of view is nearly,1#80s all
points in the world such th&t > 0 are visible. Assume a conventional perspec-
tive camera with projection center at the effective viewpd®irgnd optical axis

aligned with the Z-axis. A generic world point with coordinadég = (X, Y, Z)*
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Ground Plane

Figure 6.6: Surveillance application using central panoramic imaging.

is projected in the perspective image at positign= (%, %)t. The goal is to
derive the functiorf, that maps points in the catadioptric image plane into points

in the perspective image plane,(= f,(x;)). This mapping function can be de-
termined in a straightforward manner using the results of table 6.3. As already
mentioned) = arctan(x;) andy = arctan(y;). Replacingp andy in the coordi-

nate transformatiofl’ we are able to compute world coordinadeg as a function

of catadioptric image coordinategandp. Makingx, = (%, %)t the dependence

on p disappears ang,, is obtained as a function of;. Functionf,, is presented

in equation 6.25 for the parabolic system case-(1). The geometrically correct
perspective image generated from the derived mapping function is presented at

Fig. 6.5.

Apz; Apy;
£.0) 1 (25,9 — ,— 6.25
P ) = Gy @) O

Spherical coordinates are broadly used in computer vision and robotics. For
some applications it can be useful to reference world points using spherical coor-
dinates. Assume, as an example, that we intend to use our omnidirectional camera
in a surveillance application to obtain position information of a set of targets. The
imaging system is fixed at the ceiling as depicted in Fig. 6.6. The target position
can be referenced in a simple way using spherical coordifes (¢, ¥, ps)*.

The goal is to derive the functiofy which transforms catadioptric image coor-
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6. A General Framework for Selecting the World Coordinate System

dinatesx;, in the two world spherical coordinatés,, v);) that can be fully re-
covered (¢s, 1) = f5(x;)) without further restrictions X,, = (X,Y, Z)" can

be computed in terms of; andp. Since¢ = arctan(z;) andy = arctan(y;),
thenX,, = T(arctan(z;), arctan(y;), p) (see table 6.3). Replacindy(,Y, 7) in

¢s = arctan(s) andi, = arctan(——) by the obtained result, the depen-
dence orp is eliminated and functiofy is obtained (equation 6.26). In addition,
if the heighth of the room is known and if the imaged point is on the floor one

obtainsp, = hy/(4p2 + a2 + y2)2/(4p2 — a2 — y2)2.

Apx;
4p? —(z?+v?)

—4py; )

() (1,9:) = (arctan( VA +a?—y?)2 —4a?y?

), arctan(

(6.26)

6.3 World Coordinates for Imaging Systems with Mo-
tion

The two previous sections focuses on static central projection imaging systems.
The global mappind® from points in the 3D world in points in the 2D image
plane is derived. It is shown that the mathematical expressidh agpends on

the coordinate system used to reference points in the scene and that an adequate
choice of coordinates presents several advantages. In this situation the imaging
system does not move, thus motion in the image plane only depends on 3D motion
in the scene.

This section focuses on active tracking of moving targets where the goal is
to use visual information to control camera motion such that target image is kept
constant. The mathematical framework derived in section 6.1 is extended to cen-
tral projection imaging systems with rigid motion. Global mapping between 3D
world points and 2D image points is derived. Criteria to select adequate world co-
ordinates are discussed. The results obtained are applied to active visual tracking
using three different platforms and/or imaging sensors.

As mentioned the assumed platforms have less than 3 DOF. To control such a
constrained motion it is enough to work with 3D target position and velocity. If
nothing is stated it is assumed t3&{, is a vector with target mass center position
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6.3. World Coordinates for Imaging Systems with Motion

in cartesian coordinate¥; represents the target position in the established alter-
native system of coordinates ards the vector with the target image coordinates.
Vector® is introduced to represent camera/platform position in an inertial world
reference frame.

6.3.1 Mapping points from the 3D world into the 2D image
plane

Consider the schematic of Fig. 6.1 which depicts the general magpiper-
formed by a static central projection imaging system. Condler R[I| — C],

with R the rotation matrix between camera and world @htthe projection center
coordinates. MatriP depends on the pose of the imaging system in world coor-
dinates. If the imaging system is static then the md®is constant. On the other
hand if the camera moves, its pose changes, and nfatisxno longer constant.
Assume the imaging system is mounted on a moving platform. The pose of the
camera depends on the positi@®nof the platform. Since matrif depends on

the pose of the camera thénis a function of®.

The mapping between the scene and the image plane depends on the target
3D coordinatesC and on the camera pose parameterize@®byl he target image
coordinatex; are given by equation 6.27 where transformaiiboan be written
as the composition of equation 6.28. The difference between equations 6.2 and
6.28 is that matriXP is no longer constant and appears as a functia®.of

x; = F(Y,0) (6.27)
F(Y,0) = £i(P(©).f:(T(T))) (6.28)

The target velocity in the imagg; is computed in 6.29. Equation 6.29 is
obtained by differentiating equation 6.27 with respect to tithe.= [JX|J] is
the jacobian matrix of functioR, Y is the target 3D velocity, an® represents the
camera/platform velocityJ ¥ is given in 6.30 withJ the jacobian matrix of the
inverse coordinate transformatién J€ is computed in 6.31 and does not depend
on the jacobian matrix of the world coordinate transformatign The image
velocityx; depends both on target velocliyand on the camera/platform velocity
©. The second term in equation 6.29 is known in the literature by egomotion and
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represents the image motion induced by camera/platform motion.

X =JEYT +J20 (6.29)
JE =3¢ I3r T It (6.30)
J2 =J;.J9. (6.31)

The target image depends on the relative position between camera and target.
Describing target motion in a coordinate frame attached to the imaging device
simplifies the position/velocity relationships of equations 6.27 to 6.31. The ego-
motion term disappears and the position/velocity in the image depends only on the
position/velocity of the target in the camera system of coordinates. The platform
position, provided, for example, by encoder readings, and joint control commands
are usually defined in an inertial base coordinate frame. If the control input is de-
fined in the camera coordinate system then the transformations between the two
reference systems can not be avoided. In the position/velocity relationships of
equations 6.27 to 6.31, both camera and target motion are described in a com-
mon inertial system of coordinates. Errors in the image plane can be directly
related with the control inputs commands in the task space, thus there is no need
of additional coordinate transformations. Multiple cameras can be integrated in a
natural way by describing the target motion in a common coordinate frame. The
explicit computation of an egomotion term can be used for image segmentation
[60, 17, 15].

6.3.2 Criteria to Select the World Coordinate System

The mathematical expression of the global mapirdepends on system of coor-
dinates used to reference target position in the scene (equation 6.28). The intrinsic
nature of the mapping does not depend on the selected coordinate frame. However,
as seen in section 6.1 for static central catadioptric imaging systems, an adequate
choice of the coordinate system can be highly advantageous. Criteria to select
suitable coordinate transformatiofsfor tracking applications are discussed in

the present section.
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6.3. World Coordinates for Imaging Systems with Motion

Analytical Solution for Visual Control of Motion in Tracking Applications

Consider the imaging system mounted on a moving platform. If nothing is stated
assume a platform with 2 DOFS(is a 2x1 vector). To perform active tracking

of a moving target, the platform motion must be controlled such that the target
projection is kept in constant position/velocity in the image plane. Assume that
xq andxq are the desired target position and velocity in the image. Consider that
©. and®, are the position and velocity commands sent to the platform actuators
which have an unitary transfer function. Thé, and®, must verify bothxy =
F(Y,0,.)andxq = JX.T+J2.0. with Y andY target 3D position and velocity
(see equations 6.27 to 6.31).

If nothing is stated assume in the sequel that at each frame time instant both
target positionx; and velocityx; are measured in the image plane and that the
platform position® and velocity® are estimated using the encoder readings.
The goal is to determine the position and velocity commadgdand®, knowing
x;, %;, © and®.

Proposition 6.1: Assume that it is possible to compute target 3D posiifoinom
target position in image; and camera pos®. In a similar way consider that
camera positior® can be uniquely calculated given target position in image
and in the scen& . If these two conditions hold then, given target position in
imagex; and camera pose, it is possible to compute camera positién such
that target is projected in a pre-defined positg in the image plane. A similar
statement can be made for velocity relationships.

Proof: FunctionF computes target position in imageg given target 3D position
Y and camera pos® (equation 6.27). Assume that it exists a functiowhich
enables the computation af given bothx; and® (equation 6.32). In a similar
way, using functiord, ® can be calculated knowing bot) and Y (equation
6.33).

T = v(x;,09) (6.32)
© =0(x;,Y) (6.33)
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Assume that the target image positienis measured and camera pdeas
estimated from encoder readings. The world target 3D positiofxis ©). The
camera positiol®. such that target image is projected in positignis given in
equation 6.34.

O = 0(xq,v(x;3,0)) (6.34)

Equations 6.35 and 6.36 are obtained differentiating 6.32 and 6.33 with respect
to time. J, = [J1|J®] andJ, = [Ji|J?] are the jacobian matrices of functions
andd.

T=Jx+J°0 (6.35)
©=J%+J5Y (6.36)

Knowing both the target velocity in the image and the camera veloci
at the frame acquisition time instant, it is possible to compute the camera velocity
©. such that target is projected in the image plane with desired velogit¥his
results is shown in equation 6.37 derived by differentiating 6.34 with respect to
time.

O, =Jixg +IFI % +IFI%O (6.37)

Proposition 6.2: Consider the global mapping functid@and the corresponding
jacobian matrixJy = [JX|J&]. If it exists a function that enables the computa-
tion of the target 3D position from target image and camera pose, Jgemust

be invertible. In a similar way if it exists a functiéhthat allows the calculation

of the camera position from the target position in the image and in the world, then
matrix J© must have inverse.

Proof: Assume that the function exists (equation 6.32). The mathematical rela-
tionship of equation 6.38 is obtained replaciign equation 6.29 by the result of
equation 6.35. Equation 6.39 is derived replacing in &;3%y the result presented
in 6.29.
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%= JEJi% + (JRJ® +ID)e (6.38)
YT =JJIEY + (I I + 396 (6.39)

If function v exists then equalities 6.38 and 6.39 must hold. From these equal-
ities comeJi JY = JXJI = I. Thus matrixJ¥ must have inverse which is
Ji. Considering thaf £J® + J@ = J!J€ + J© = 0 and makingli = (J¥)~!
comes the results of equation 6.40.

J=(%)!
{ o g 40

Consider now that functiof exists. In a similar way it can be proved thi
must be invertible and thd, andJ are given by equation 6.41.

Jp= (1)

Equation 6.37 is rewritten in 6.42 using the results of equations 6.40 and 6.41
O, =0 + (JF) ' (ka — %) (6.42)

Coordinate Transformation Constraints

In the previous section proposition 6.2 establishes the necessary conditions for
the existence of functions andf and proposition 6.1 establishes the sufficient
conditions for the existence of an analytical solution for the tracking problem.
Assuming a platform with 2 DOF, thef is a 2 x 2 matrix. This matrix is
invertible or not depending on the features of the system, in particular the kine-
matics of the robotic platform and the type of image sensor. The coordinate frame
where the platform positio® is defined is considered as a problem specification
that can not be changed.
In general, the world target position is referencedby= (¢, v, p)t, which is
a 3x 1 vector. The corresponding jacobian matfikis a 2x 3 matrix similar to
the one shown in equation 6.9. AX23 matrix is never invertible and, accordingly
to proposition 6.2, it is not possible to define a functioto recover target 3D
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position information. As mentioned in section 6.1, the image formation process
transforms points iR 3 into points inR?2. There is a loss of information and world
target position can not be fully recovered from a single image. Nevertheless, as
mentioned in 6.1.2, i is written in a compact form the can be partially
recovered in a straightforward manner. If the recovered target 3D parameters are
enough to derive functiofi then an analytical solution for the tracking problem
can be reached (proposition 6.1).

If it exists a transformation of coordinat&sverifying the compactness con-
straint then itis possible to write the global mapplh@ a compact form (section
6.1.2). This means tha& does not depend gmand that the third column of2
is zero. In practice, if the compactness constraint is verified, we can replace in
equations 6.27 t0 6.4 = (¢,1, p) by T = (¢,¢)" and assume thak} is a
2 x 2 matrix by discarding the null column. The verification of the compactness
constraint is a necessary conditions 8gf being a square matrix with inverse.
Considering the statement of proposition 6.2, the verification of the compactness
constraintis a necessary condition to existdanction. If bothv andé exist then
there is an analytical solution for the active tracking problem (proposition 6.1).

From the statements above we can conclude that it is desirable to select a trans-
formation of coordinate¥' verifying the compactness constraint (equation 6.10).

If T also verifies the decoupling constraint (equation 6.11) eg written in

a decoupled way which simplifies the calculations to obtain the tracking control
laws (equations 6.34 and 6.37). Another useful guideline is to select transforma-
tion I" such that target 3D position is referenced in a coordinate frame of the same
type as the one where camera positdns defined. This can also lead to several
simplifications in the calculation as well as a deeper understanding of the tracking
task.

6.4 Active Tracking of Moving Targets

The derived mathematical framework is applied to active tracking of a moving
target using three different robotic platforms. These examples help the under-
standing of the exposed ideas and illustrate the usefulness of a judicious selection
of the world coordinate system.
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Figure 6.7: Active tracking using a perspective camera with translation motion

6.4.1 Active Tracking using a Perspective Camera with Trans-
lation Motion in the XY Plane

Fig.6.7 depicts a conventional perspective camera with translation motion in the
XOY plane. A schematic of the framework to derive global mapgtng shown

in Fig.6.1. The imaging sensor is a perspective camera with intrinsic parameters
K. = I, therefore functiorf; is the one shown in equation 6.12. The camera
position in theXOY plane in world cartesian coordinates@s= (¢, ty)*. For

this particular cas®(©) is given by equation 6.43. The goal of the application

IS to control camera position and velocity such that target position and velocity in
image are zeroxz = xq = 0). Therefore the camera motion must be controlled

in such a way as to keep the optical axis aligned with target mass center.

0
0 —ty (6.43)
1

Selecting Coordinate TransformationI’

In a similar way to what was done in section 6.1 we intend to select a suitable
coordinate transformatiai (equation 6.5) for this specific application. Functions
f;, P(©) andf,, have been already defined. The jacobian matfixcan be written

in terms of the partial derivatives af by replacingJr in equation 6.30 by the
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result of equation 6.6.

If we intend to select a coordinate transformatiowerifying the compactness
constraint then the third column of matd must be zero (equation 6.10). This
yields the patrtial differential equations shown in 6.44.

{ Z(dyvz — pzty) + (X — tx)(dyox — ¢xiby) =0 (6.44)

Z(9z9x — ¢xz) + (Y — ty)(dvox — oxtby) =0

The system of equatiorts44 can be solved with respect to the partial deriva-
tives of I'. Jr is a 3 x 3 matrix which yields 9 unknowns for 2 equations.
The problem is under determined and multiple solutions can be found. Some of
the solutions obtained can be discarded by considering the additional constraint
det(Jr) # 0 (transformatiorl” must be bijective). Following this procedure the
result of equation 6.45 is derived. If the coordinate transformdfioerifies the
compactness constraint then the structure of the corresponding jacobianJmatrix
must be the one shown in 6.45. Notice that the provided jacobian matrix depends
both onX,, = (X,Y, Z)" and® = (t,,t,)". Any functionT" verifying equation
6.44 must depend, not only a6, but also or®. T" is no longer a transformation
of inertial world cartesian coordinates and we may conclude that it is not possible
to find a transformation of coordinates verifying the compactness constraint.

(X =tx)px H(Y -ty )oy
¢X ¢Y 7
Jr= | ¥y vy - (X—tx)wX;(Y—tY)wy (6.45)
Px Py Pz

The conclusions drawn from the discussion above were expected. If the cam-
era has translation motion there is no way to suppress the dependence on the third
coordinate and it is not possible to perform the required motion control using only
visual information. Some authors overcome the problem by assuming additional
constraints such the target moving in a plane in the world [25, 46]. A systematic
approach to determine if it exists any coordinate transformation verifying the con-
straints specified in 6.1.2 has been presented. The proposed procedure establishes
necessary conditions. The fulfilment of the conditions does not guarantee the ex-
istence of a desired coordinate transformationThis systematic approach will
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_.7X0Z Plane

Figure 6.8: Active tracking using a perspective camera mounted on a pan and tilt
unit

be repeated in the next two cases.

6.4.2 Active Tracking using a Perspective Camera with Pan
and Tilt Rotation Motion

A perspective camera is mounted on a pan and tilt unit such that both rotation axes
go through the optical cent€.. The camera first rotates in pan and then in tilt
(Fick Model) as depicted in Fig. 6.8. The camera position vectér is («,, a;)"*

with o, the pan angle and, the tilt angle.

Consider the global mapping scheme depicted in Fig. 6.1. For this particular
case functiorf; is provided in equation 6.12 (perspective camera \Mth= 1),
Equation 6.46 showP (®) with e=¥= ande~**< the pan and tilt rotation ma-
trices [51]. Unit vectorsk, andy. are associated with th&. andY, axes of the
cartesian coordinate frame attached to the camera (not depicted in Fig. 6.8). The
goal of the tracking application is to control camera rotation such that both target
position and velocity in image is zera{ = xq = 0). To achieve this the camera
optical axis must be aligned with target in 3D space.

P(®) = e~ %3 [1|0] (6.46)

145



6. A General Framework for Selecting the World Coordinate System

: arctan(%)

IXw) = arctan(—\/ﬁ)

| /X2 + YQ + ZQ

[ psin(¢) cos(v)
T(Y) = —psin(y)

| pcos(¢) cos(v)

C)S(d—ap)
- C()C(a)C(p—0p)+S()S (o

F(Y.0) = | G eidhads e,

|~ C()C(a)C(6—ap)+5(%)5(ar)

3 CONASWS(0CE 0 +CWIC)  _ SlanSe=ag)

Je (1.0) = _ CWSWS6-0p) L)

C COSES@)C(ba,) HCWCe)  CWIEs
JF(Y,©) = C)SWSo-ay) =
=0 = C(1)2C(cw)®S(1)2(S(9)% + S(v)? +2C(¢)C(04,)C (¢ —

@)

—C(oy)? +25()Car) S () C (1) C (D — o)
Zo = C)S(a)(S(a ) (@p) + 20(@p>0(¢)5(¢ - O‘p)
~ () (2)) S)C(ar)S(¢ — o)
= = C(1)*(C(9)* + C(ay)* = 2C(,,)C(9)C(d — ap))

Table 6.4: Using a spherical coordinate system for active tracking with a pan and
tilt perspective camera

Selecting Coordinate TransformationT’

Functionsf;, P(©®) andf;,, as well as the corresponding jacobian matrices, are
defined. Assumédr given by equation 6.6. According to equation 6.30, makgix

can be written in terms of the partial derivatives of coordinate transform&tion

The procedure described in section 6.4.1 is repeatdtvéirifies the compactness
constraint then its jacobian matrix must have the structure shown in equation 6.47.
For the pan and tilt tracking situation there is a solutlgrthat only depends on

Xw-. Thus the existence of a cartesian coordinate transformBtierifying the
compactness constraint is not excluded. Nevertheless, repeating the procedure to
achieve a decoupleB function, allows us to conclude that it is not possible to
find a transformatiod’ which verifies the decoupling constraint.
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b Xespe g
Jp= | -tz Yy Yz (6.47)
Px Py Pz

One of the suggested guidelines for the selection of transform&timnto
reference the target 3D position in a coordinate frame of the same type as the one
where the camera positi@ is defined.

Consider the transformation from cartesian coordinates into spherical coordi-
nates proposed in equation 6.48. The anglesd, used to reference the target
3D position, are similar to the camera pan and tilt angles (see Fig. 6.8). Moreover
the jacobian matrix of the coordinate transformation 6.48 follows the structure
presented in equation 6.47 which assures that the compactness constraint is veri-
fied.

¢ = arctan(%)

Y= arctan(—ﬁ) (6.48)

p=VX2+Y2+ 72

Table 6.4 summarizes the results obtained using the coordinate transformation
of equation 6.48. Botli® and its inversél' are presented. Equation 6.49 defines
an angular error vectoA. The goal of the tracking application is to align the
camera optical axis with the target mass center. This is verified whedever
zero. Notice that by using coordinates of the same type to reference both the target
and the camera position, the dependence of the global mappamgthe angular
tracking errorsj, andd, is explicit. The third column of ¥ is zero which means
thatT" verifies the compactness constraint. Due to lack of space the polynomials
=1, =p and=3 are presented at the bottom of the table.

A =(6,,0) = (¢ —ap, b — ) (6.49)

Active Tracking Control Law

Assume tha®. and ©, are the position and velocity commands that must be
sent to platform actuators to accomplish a specified task (the actuators transfer
function is unitary). The goal is to track a moving object such that its projection
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T
o o arctan(yis(atHc(at))
[ = + y; —tan(ay) x2
L ttan(a )4/ 1+ ————Lt——=
1+y, tan i ¢ 2
arctan( Y (at) (y,S(Ot)-;C(at)) )
Yi—tan(ag) — it
_ Ty tan(ag) () \/1+<yi5<at)+0<at))2
: : 14y? _ TiYi .
@c = O+ (1422 +y?) (y:i S (o) +C (o)) (1422 +y?) (yi S (o) +C (o)) X
7 (y;C (o) —S(at)) __ (iS(a)+(1+27)C(an))
(a7 +y7) (i S (o) +C (o)) (+az?+y7) (yi S () +C(an))

Table 6.5: Position and velocity command for active tracking with a pan and tilt
perspective camera

is kept in the image center. The position comméhdcan be obtained by making
xq = 0in equation 6.34@. = 6(0, v(x;, ©))). Notice that the specified tracking
task is accomplished by controlling the camera motion such that the optical axis
becomes aligned with target mass center. Therefore the position command must
be®. = T with T = (¢,)". Considering thal = © + A (equation 6.49)
it results®. = © + A. The explicit computation ofr and# functions can be
avoided by determining angular errdr as a function of target position in image
x; and camera poY®

In table 6.4 the global mapping is written in a compact form such that
depends o and®. The 3D position parametersand:) can be recovered from
the target position in the image:;, y;) and the camera podey,, o) (equation
6.50). The derivation of the angular error vectorfrom equation 6.48 as a func-
tion of target position in the image and the camera pose is straightforward. The
position comman®.. is obtained by makin@. = © + A (table 6.5).

Eyi singathrcosEatgg sin((ozp ))+xi cosgapg
i stn(ag)4cos(a)) cos(ayp)—x; sin(a
¢ - _ a,l"CtaI?l!( ;Z cos(at)—sin(atf g (650)

¢ = arctan(

\/1312‘5‘(?/7; sin(a)+cos(at))?

Consider the jacobian matrices of table 6.4. Replacing anglasdy by
the result of equation 6.50, bothf and J® can be written in terms of target
position in the image and the camera pose. Equation 6.51 sﬁ@v\mch that
JY = [J¥]0], and equation 6.52 givek2. Makingxq = 0 in equation 6.42 the
velocity command is obtained (table 6.5).
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Figure 6.9: The Modular Vision System (MVS) at ISR

23S (o) (1+x2+y2

5 vislod) + (L +af)Clar) - - waﬁyféi;ié?&f»z
F — S o Clay))(1+x2 +y2
(yiC(ow) = S(ag))x;  — (y\/izi&sg(;t)))ig(;t;i’)

(6.51)
—(u: 2 .
jg = | ~wS(a) + (L4 ahCl)) v 652)
—(WiClaw) = S(aw))w: 14y,
If y; = —cot(a;) theny;sin(a;) + cos(ey) = 0 and matrixJ® becomes

non-invertible and a singularity occurs in the derived expressio®.aind Q..

This happens whenever target image lays in an horizontal line that contains the
intersection point of pan rotation axis with image plane. For this 6ase+n/2
andtan(d,) = £oo.

6.4.3 Tracking Applications Using the MDOF and the MVS
Robotic platforms

In our laboratory two robotic platforms have been developed for active tracking:
the MDOF robot head [16] and the MVS modular platform. The MDOF head
has been mainly used in monocular and binocular tracking of a single target [17,
15, 14]. The MVS head has been recently built with the purpose of working
on simultaneous tracking of multiple targets [13]. Fig. 6.9(Left) depicts one of
the MVS robotic eyes. The camera has two degrees of freedom: pan and tilt. The
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6. A General Framework for Selecting the World Coordinate System

rotation axes go through the optical center and the camera undergoes pure rotation
motion. This section describes the application of the equations derived in section
6.4.2 for monocular tracking. Two different behaviors must be considered: the
saccadic motion and the smooth pursuit [16, 17].

The active vision system is in standby until the target appears in the field of
view. Initially the object is projected somewhere in the image periphery. The goal
of the saccadic motion is to position the target image in the foveal region. The
performance of the saccadic control is highly dependent on the accuracy of the
angular error estimation. The importance of using the exact position command of
Tab. 6.5 to accomplish the task is shown. After a successful saccadic motion the
object is projected nearby the image center. The smooth pursuit behavior adjusts
the system position such that the target is kept in the image center. We show that
for the smooth pursuit the global mappiRgcan be approximated by functidh
which yields simpler mathematical expressions and decoupled control of pan and
tilt DOF.. FunctionF is established assuming that the target is projected near the
image center during tracking. The approximation errors are studied.

Saccadic Motion

As mentioned, the angular errd&x = (4,,d;)" (equation 6.49) can be written

as a function of the target position in the image and of the camera pose (table
6.5). Solving the system of equations with respect;tandy; yields the result of
equation 6.53.

(8@’ Cp4+C(r)?) tan(8)+S(ar) Clar) 1=C(5,) (6.53)
Yi = 7 (S(an)T+C(a)?C(6,))+5(an)Clar) (1-C(5,)) tan(er)

{ zi = (1iS(o) + Clay)) tan(d),)

The saccadic motion consists in rotating the camera such that target image
jumps from the periphery to the center of the retina. Tab. 6.5 provides the exact
position comman®.. to accomplish the task. If commaidl. is sent to pan and
tilt motors, then the angular error vectdr becomes null. The saccadic motion
is perfect because target projection moves from its initial position on the image
periphery to the center (repladg 4, by zero in equation 6.53).

The results presented on Tab. 6.5 are novel. In [24] the equations to track an
object moving in a plane with known depth are derived. The control equations
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Figure 6.10: Distance to the image center after the saccadic motion.
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proposed on Tab. 6.5 generalize this result since they assume unconstrained target
motion. In [60, 17] the estimation of the angular erfdiis approximated byA =
(arctan(z;), — arctan(y;))’. This approximation is rather intuitive and simplifies

the derivation of the control law. However the performance of the saccadic control
tends to be poor as shown in Fig. 6.10. Consider that the position command
is ®, = ©® + A. After the saccadic motion, target image moves towards the
foveal region since angles, andd, decrease. However the error angles do not
become necessarily zero, nor the target is projected in the image center. Fig. 6.10
shows the distance to the image center after the saccadic motion for three different
camera tilt positions. The X and Y axes correspond to the initial pan and tilt errors
(0,, 0:) which take values in the range-60°, 60°]. The Z axis is the normalized
distance to the image center after the saccadic motion. To convert into image
pixels the value must be multiplied ldy f with k& the number of pixels per metric

unit andf the camera focal length (in our casg = 225 for both the MDOF and

MVS robot head).

Observing Fig. 6.10 comes that the performance of the saccadic motion de-
creases when the angular errors increase. Since the target starts by appearing in
the image periphery, bot}, andé, take in general high values. One concludes
that the performance of the saccadic control using comn@yiginds to be poor.

The approximatiom = (arctan(z;), — arctan(y;))* is only valid for small angu-
lar errors and camera tilt angles. The command equation of Tab. 6.5 must be used
to control the saccadic motion.

Function F for Smooth Pursuit

In general the active tracking process is initialized by the saccadic motion. Camera
pose changes abruptly such that target projection jumps from the image periphery
to the foveal region. After the saccadic motion the camera orientation is smoothly
adjusted to keep the target image in the center of the retina. This stage is called
the smooth pursuit control.

The global mapping functioR is shown in table 6.4. In the smooth pursuit it
is reasonable to assume that most of the time the target projection is near the image
center. This assumption is used to derive an approximate majppirgguation
6.54 results from making; = 0 in the first equation of 6.53 and, = 0 in
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6.4. Active Tracking of Moving Targets

the second one. Functidn is an approximation of the global mappifty The
approximation has simpler mathematical expressions and presents the advantage
of decoupling the pan and tilt control.

F(T.0) = [ cos(ay) tan(dy) ] (6.54)
— tan(d;)

Consider the approximation error veclor= x; —X; (equation 6.55) measured
in the image plane. The exact image target positiog is- F(Y,©), andx; =
F(Y,®) is the approximate one. Errd depends on the camera tilt positiop
and on the angular tracking errgx.

E(Oét, A) = (Ex(Oét, 517, 6t)7 Ey(Oét, 517, (5t))t (655)

Fig. 6.11 helps to understand the approximation funcRofEach figure rep-
resents the image plane for three different camera tilt positions; i known
then target position in the image depends on the angular trackingArr&oth
the exactx;) and approximatex}) target position in the image are calculated for
a set of values ofA. The values computed af andx; are represented in the im-
age plane. The exact positions on the solid grid are approximated by the positions
of the dashed grid. Conclusions ab&ut= (E,, E,)" can be drawn by observing
Fig. 6.11.

Assume that the angular pan er@gris constant along time. The target is
positioned somewhere in a vertical plane in the 3D world, going through the origin
O of the inertial coordinate frame. This plane is projected in a line in the image.
If o, = 0, the line is vertical, ifa; # 0 the line has a slope whose module is
inversely proportional to module of camera tilt angle. Using the approximation of
equation 6.54 the mentioned plane, containing the target,is projected in a vertical
line in the image. As depicted in Fig. 6.14;, = z; whenevel, = 0 ory = 0.

Some properties of error functidt, (o, 6, d;) can be observed:

® Ex(O, (Sp, (St) =0
° Ex(&t75p75t> = _Ex(Odta _5}77575)
° Ex(&t,dp,(St) = Ex(_&ta(spa _575)
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Figure 6.12: Statistical analysis of approximation error funchom.eft: Mean of
E, (-) andE, (- -). Right: Standard deviation df,, (-) andE, (- -).

Consider that the angular tilt erréy constant. In 3D space the target is some-
where in a cone with vertex in the orig of the inertial coordinate frame. The
image projection of these surfaces are the hyperbolic lines shown in Fig. 6.11.
Whenever; = —a, the conic surface degenerates in ¢h& 7 plane. The plane
projection is an horizontal line also observable in the figure. The approximation of
equation 6.54 generates horizontal lines in the image. Noticejthkaty; when-
every; = —a; or 6, = 0. The following properties of error functiof, (c, d,, d;)
can be observed:

[ ] Ey(at,0,5t) - 0
o E (04,0, —a) =0
[ Ey(Oét,(sp,ét) - Ey(Odl‘J _5p75t>

o Ey(Oéta Op, 0t) = _Ey(_O‘t’ —0p, —01)

A statistical characterization of the angular tracking edor= (0,, 9;)" has
been done experimentally. Assume that bjthndd, have an independent gaus-
sian probability distribution of averag® (the target is almost always near the
center of the image). The standard deviation,pfs 12° and the standard de-
viation of 4, is 8°. The pan and tilt errors are statistically independent thus the
covariance is zero. The approximation errBxsandE, (equation 6.55) depend
ona; andA. Given the camera tilt position, and the statistical characterization
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of the angular tracking erraf, the statistical properties dix andE, can be
derived. Fig. 6.12 shows the averagesandy.,, the standard deviations, and
o, and the covariance,, as a function of camera tilt angte.. 1, ando,, are
zero becausé’, is an odd function of,. 1, is an odd function ofy; because
E,(at,0p,0:) = —E,(—at, —0,, —6;). The figure presents normalized values for
the statistical parameters. To convert into image pixels the value must be mul-
tiplied k. f with k& the number of pixels per metric unit arfdthe camera focal
length (in our casé. f = 225 for both the MDOF and MVS robot head).

The approximation erraE tends to increase with the tracking angular errors
A. E also increases with the absolute value of the camera tilt angdle,| i high
then significative approximation errors arise even when the target is projected near
the image center. If we intend to replace the global mappibg functionF then
both A anda; must be small, which means that the target image must be near the
center and the operating range of tilt DOF can not be large.

Velocity Relationships

From equation 6.29 results that the target velocity in the image is thexsum
Xind + Xego With Xjnq = J g‘r the velocity induced by target motion, akg,, =
J?(;) the velocity induced by camera motion (egomotion). Fig.6.13 depicts the
image velocity field for different circumstances. The columns correspond to dif-
ferent camera tilt angles,; (from left to righta, = —23°,0°,23°). The first two
rows depict the image velocity fields,, when the camera moves in pan and in
tilt and the target is stopped{ = (0, 0)). In the first row the camera velocity
is © = (1,0)", while in the second i® = (0,1)". The third row shows the im-
age velocity fieldk; when both the camera and the target ma®e={ (1,1)" and
Y = (1,1)%). Itis assumed that the camera has a field of view (FO\866f The
small dashed rectangle corresponds to a FOXbfx 18°.

The goal of our tracking application is to keep a zero target image velocity
x; = 0. Considering thak; = Xina + Xego, the camera velocity must tﬁc such
that the egomotion compensates for the image velocity component induced by
target motion in the scenéy;, = —Xina). The velocity comman@., is written
in equation 6.56 as a function of the target velocity in the world (the compactness
constraint is verified, thereforé does not play any role). Notice thatif = 0
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Figure 6.13: Image velocity field for different situations

then perfect tracking is achieved fér, = (¢E, 0)’. The image velocity induced by

the target motion is compensated for by the camera pan rotation. In general the

decoupling between pan and tilt control does not hold as can be seen in the last

row of Fig 6.13.
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target is projected in the center of the image+€ 0). The approximated jacobian
matrices yield simpler mathematical expressions and decoupled pan and tilt con-
trol. The egomotion term is approximated Ry,, = (cos(a;)c,, &;)! which is
independent of the image position. As can be observed in Fig. 6.13 the egomotion
is only constant around the image center. The approximated velocity command
@, is derived makingg; = 0 in equation 6.56. As a resud, = (¢, ) with

the target world velocity approximated By, ¢))" = (i;/ cos(ay), ;)'. As can be
seenin Fig. 6.13 the approximation yielding decoupled pan and tilt control is only
valid for the central area of the image.

T =% = 0 -1

cos(ay) 0 ] (6.57)

6.4.4 Active Tracking Using an Omnidirectional Camera with
a Rotational Degree of Freedom Around theZ axis

Fig. 6.14 shows a picture of the MVS vision system. The robotic eyes of Fig.
6.9(Left) are mounted on the tips of a rotative platform. We intend to use the om-
nidirectional camera to control the platform rotation. The catadioptric system is
mounted in the center of the robotic platform (Fig. 6.9(Right)). The platform rota-
tion axis goes through the catadioptric effective viewp@rdnd the re-projection
centerO.. The goal of the tracking applications is to control the rotation angle
such that the target image lays in the Y axis of the catadioptric image plane. Fig.
6.14 represents the setup.

Functionf; on the global mapping scheme of Fig. 6.1 is provided in equation
6.19 (our catadioptric system is parabolic tfus 1). P(©) is given in equation
6.58 where==“Z is the matrix rotation around the Z axis (Fig. 6.14) [51]. In this
case vecto® has 1x 1 dimension © = «). In the sequel vector® and©.
will be replaced by anda. to reference the camera pose and command. The
goal of the tracking application is to control the camera rotation such that the X
target image position and velocity are zero. The desired image target position is
xq = (0,yq) and the velocity iskq = (0, y4) With y, andy, arbitrary values.

P(©) = e “%[1|0] (6.58)
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Figure 6.14: Active tracking using an omnidirectional camera

Selecting Coordinate TransformationI’

The procedure explained in sections 6.4.1 is repeated to select a suitable world
coordinate frame to reference the target position.

For this particular case it is possible to choose a coordinate transformation
I" verifying the compactness constraint. Nevertheless it is not possible to write
global mappingdF' in a decoupled form.

The proposed change of coordinates is given in equation 6.59. It is similar to
the coordinate transformation used in static catadioptric imaging (equation 6.23).
The only difference is in the coordinate which is defined according to the camera
position parametef. The projective ray constraining the target is defined by the
intersection of a vertical plane, referenceddyvith an horizontal conic surface,
indexed byy. The proposed coordinate system can not be used to reference points
lying on theXOZ plane (Fig. 6.14). We assume that the target is always in front
of the MVS systemY > 0). In this case the transformation of equation 6.59 is
bijective.
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arctan(—=%)

FXy) = arctan(—ZJré X3/+Y2+Z2

VX2+Y2+ 22

tan() tan(y) (I4-1/1+(1—€2) tan()2 (1+tan(¢)?))
T+tan(¢)2 (1+tan(p)2)
T(Y) = (tan (1) (14+/1+(1—€2) tan(1)2 (1-+tan(¢)?2)))
- 14tan ()2 (1+tan(4)?)
[(1—tan()? (1+tan(9)?))+4/1+(1—€?) tan(y)2 (1+tan($)%))
1+tan(2))2 (1+tan(¢)?)

F(Y,a) = (p—¢)cos(a)tan(y) [ 1tinégr)1(;>)t?;r$(aoz)

tan(d))2 tan(qﬁ)fta;l(a) 0
JE(T7 O‘): (90 - 5) COS(O&) tan(éfbs)(?a)n(a) 1+t;r(1)(s<;(51)bgan(a) 0
cos(¢)? cos(¢)?

J5(Y,0)=  —(p— &) cos(a) tan(v) { t E?g@ ttz?l((@i)))

Table 6.6: New coordinate system for active tracking with an omnidirectional
camera

¢ = arctan(—3)

(6.59)

_ _ Y
W = arctan( Z+¢ X2+Y2+Z2)

p=VX2+Y2+ 22

Table 6.6 summarizes the results obtained. The coordinate transforrmation
and its inversel’ are presented. The global mappiFgs written using the new
world coordinatest = (¢, v, p)'. The corresponding jacobian matrices are pre-
sented as well. Notice that the third columnXf is zero, which means that
transformatiorl” verifies the compactness constraint.

Active Tracking Control Law

Consider the angular tracking errér= ¢ — a. The result of equation 6.60 is
derived in a straightforward manner and provides the angular positionjesisoa
function of target image coordinates.

§= arctan(ﬂ) (6.60)
Yi
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The global mapping functiof' is in a compact form, thus it does not depend
on p. Solving the equatiox; = F(Y, «) with respect taY, both ¢ and are
obtained as a function of target position in the image and catadioptric system
pose. Replacing the result in the two first columnsIgfthe compact jacobian
j’Ff is obtained as a function of image coordinates and camera pose (equation
6.61). MatrixJg of equation 6.62 is derived in the same way. The singularity
for 2 = cot(a) is similar to the one that appears for the pan and tilt tracking
situation.

a3 +y? ((p=8)?(1+tan(@)?)+(y; —=; tan(@))?)z; cos(a)
jx _ yi—a; tan(a) (p—8)(yi—w; tan(a))
F tan(e) (27 +47)  ((p=&)2(1+tan(a)?)+(yi—wi tan(a))?)y; cos(a)
yi—x; tan (o) (p—&)(ys— =i tan(a)) (6.61)
I = (—yi, )" (6.62)

The X coordinate of the target position in image is zero whenever the angular
error¢ is zero. The position command such thabecomes null iy, = o +
with § provided by equation 6.60.

Consider the target velocity vectéf = (gﬁ,@z})t. Since matrixj’Fr IS non-
singular, comes thal’ = (J¥)~!(%; — J&&) (equations 6.35 and 6.40). Assume
that JX andJg are the first rows off ¥ andJg. The goal is to determine the
velocity commandi. such that the image velocity;, along the X direction, is
zero. The desired velocity is; = JXY + J2a. (equation 6.29). Making, = 0
and replacingl’ comes thati, = —(J¢)"'J¥ (JX)~'(%; — J&&). The result of
equation 6.63 is achieved taking into account t(RatJ ¥ )~ = (1,0).

{ e = a + arctan(3*) (6.63)

S
Qe (6] v

The control law of equation 6.63 allows to control the angular position and
velocity of the platform where the catadioptric sensor is mounted on in a straight-
forward manner.
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6.5 Closure

Any image formation process can be interpreted as a transformatiorrbto

R2. The transformation is non-injective and implies loss of information. This
chapter shows that the choice of the coordinate system to reference points in the
3D space is important. By selecting a suitable reference frame, the intrinsic nature
of image formation process is kept unchanged, but the mathematical relationship
between the world and the image becomes simpler and more intuitive. This can
help not only the understanding of the imaging process but also the development
of new algorithms and applications.

A general framework to select the most suitable coordinate system for a certain
sensor/system is presented. Two differential constraints are defined to enable the
choice of a 3D reference frame: the compactness constraint and the decoupling
constraint. Itis shown that coordinate transformations satisfying these differential
constraints bring advantageous properties when mapping 3D space velocities into
2D image velocities. The derived framework is applied to conventional perspec-
tive cameras and then generalized to central catadioptric ones. The advantageous
of using this approach for active tracking applications are discussed in the second
part of the chapter. Three different cases are considered: a perspective camera
with translational motion in the XY plane, a perspective camera with rotational
pan and tilt motion and a parabolic omnidirectional camera with a rotational de-
gree of freedom around the Z axis.
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Chapter 7

Pose Estimation Using Central
Panoramic Imaging

Visual servoing can benefit from sensors providing large fields of view. The previ-
ous chapter proposes an application where an omnidirectional camera is used for
active tracking of a moving target. The visual information is used to control the
rotation of the MVS platform. Since the robot has less thdégrees of freedom
(DOF), the target is modeled has a point moving in the scene. However there are
several applications where the target must be modeled has a rigid body with trans-
lation and rotation motion. This chapter focuses on pose estimation using central
panoramic imaging.

Consider the task of positioning a robotic manipulator, with more h2a@F,
using visual information. The approaches to this problem are traditionally classi-
fied in two groups: image based and position based visual servoing [43]. In the
former the task function is defined in the image plane [28]. In the latter the con-
trol input is defined in the 3D task space. The pose of the target is estimated from
image features based on the knowledge of a geometric model of the object and
the camera calibration [72]. With only one camera there are ambiguities and sin-
gularities in pose estimation and the target can get out of the field of view during
the tracking. In [48] a multiple camera approach is used to cope with these dif-
ficulties. Panoramic imaging can overcome the problems avoiding multiple view
geometry and calibration of several cameras.

This chapter introduces the jacobian matfixor a generic central catadiop-
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tric system. MatrixJ is derived from the central catadioptric mapping function
presented in chapter 2. According to this unifying theory, central catadioptric
imaging can be modeled by a non linear functigrwith the type of sensor and
shape of the mirror described by a paramétéfab 2.3). For the particular case

of a conventional perspective camera the parantetenull. Thus, by assuming

¢ = 0, the general central projection jacobian maffixbecomes the well known
interaction matrixJ,, [28]. Moreover it is shown that the derived jacobian matrix
can be decomposed in the product of two matrikeandJ, (Jg = Jc.Jp). Jc is

a 2x2 matrix that is always invertible which proves that the general catadioptric
jacobianJ, has exactly the same singularities as the standard perspective jacobian
Jp [23, 49].

Experiments on iterative pose estimation from points in the catadioptric image
are performed. The singularities &f and the stability and convergence of image
based visual servoing from catadioptric images are discussed. Point-to-contour
tracking [48] on omnidirectional images is used to estimate the rigid displacement
of objects. The application of the derived framework to control the position of a
robotic arm is also discussed.

7.1 Problem Formulation

Fig. 7.1 depicts a moving rigid object observed by a central catadioptric sensor.
The referential framér,, is attached to the moving body. The coordinates system
of the panoramic sensor % which is centered in the effective viewpoint. The

3 x 3 matrix R provides the rotation betweek, andR. The3 x 1 vectort =
(tz,t,,t,) is the translation vector corresponding to the position of the ofigjn

in sensor coordinates. Our goal is to estimate the pose of the rigid body knowing
the coordinate$X;, X2, ..., X'} of a set of N object points.

7.1.1 The Central Panoramic Sensor

Chapter 2 presents an unifying theory for central catadioptric image formation.
The general mapping model is represented in Fig. 2.3. If the system is calibrated
then collineationH,, given in equation 2.7, is known. For the purposes of the
present chapter it is assumed, without loss of generality,Hhat I with I the
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. V7N
% catadioptric image

Figure 7.1: Central catadioptric projection of a rigid body

3 x 3 identity matrix.

Assume a generic 3D point in the scene, with sensor coordiXateg X, Y, 7 ),
which is projected at point; = (z;, y;)" in the catadioptric image plane (Fig. 7.1).
Consider the scheme of Fig. 2.3 whétg = (X’ 1)". SinceP = [I|0] it comes
in a straightforward manner that= (X, Y, Z)'. The oriented projective ray is
mapped into poink by the non-linear function (equation 2.5). CollineatioHl
transforms the projective poigtinto pointx (equation 2.6). Taking into account
thatH. = I yields

X Y Z
VX2+Y2+ 22 VX2V 422 VX2 Y2+ 22

+ &)

%=

The projective rayx = (Z,9, 2)" intersects the catadioptric image plane on
point x; with coordinateq z;, y;)" = (%, g)t. Functionf;, provided in equation
7.2, maps 3D scene points into 2D image points suchxthat f;(X).
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X Y
Z+VX2+ Y2+ 22 Z4/X2+ Y21 22

fi(): (X,Y,Z) — ( ) (7.2)

7.1.2 Measuring the Pose Estimation Error

Consider the scheme depicted in Fig. 7.1 whXre are the body coordinates

of a generic point lying on the moving object. By body coordinates we mean
coordinates in the reference frame attached to the rigid object. The coordinate
systemR attached to the panoramic camera is called the sensor reference frame.
If the pose(R, t) between the two coordinates systems is known then the point
3D position in sensor coordinates is

X = RX, +t (7.3)

Assume that the object moves rigidly with relation to the catadioptric sensor.
The change in pose can be described in a differential way by d kinematic
screwd = (w,v)* [51]. Consider the poinK = (X,Y, Z)! lying on the object.
The 3D velocity of the point in sensor coordinates is

0 —-Z Y 1
X=| 2Z 0 -X 0
0

00
1016 (7.4)
Y X 0 01

-~

Im
PointX is projected into the catadioptric image plane at pgjnt f;(X) with
f; the mapping function provided in equation 7.2J}fis the2 x 3 jacobian matrix
of functionf; then the velocity of the image point due to the object rigid motion is
provided by

x; = JiJm 0 (7.5)
N——~
Jg
We aim to estimate the pose of the rigid body from its catadioptric image.
Consider a se{X;,X? ..., X} of 3D points lying on the object. The posi-
tion of these points in body coordinates is known in advance. This set of points
will be used as a 3D model of the rigid object. If the rotation matriRisand
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7.1. Problem Formulation

the translation vector is then the set of 3D points is imaged in a set of points
s = {x},x?,...,x}. The image points can be determined using the relation of
equation 7.6.

x = f(R.X) +t), j=1,2,3... N (7.6)

Assume an initial pose estimat®, T). Lets = {x},%2,...,%x} be the
corresponding catadioptric projection of the set\dimodel points. If the pose
estimation is correct thehis coincident with the set of real image poistsHow-
ever in general there is an error in the estimate. Veeterdefined ag = s — §
and depends on the pose estimate error.

The error in the pose estimation can be described by a kinematic gcrew
[51, 28, 23]. From the result of equation 7.5 comes thdt— x}) ~ Ji5 with
j=12...N andJ{;,, the jacobian matrixJ, evaluated on thg™ model point.
Equation 7.7 establishes the relationship between the measured imageasrdor
the error on the pose estimation of the rigid bodlyis a2 N x 6 matrix comprised
by the jacobian matrid, evaluated in théV points of the object model.

1_ 31 1
X; — X Jg
2 _ 32 2
X — X; J
1 1
= 2 |e (7.7)
N _ ¢N N
Xp — X Jg
e J

Given the initial pose estimat®, T), the points of the 3D model of the object
are projected in the set of image poigtasing the relation provided in equation
7.6. The error vectoe is the difference between points snands. Vectore is
measured in the image plane and corresponds to the distance between the model
projection and the real image of the object. According to the result of equation 7.7
the image erroe is related to the pose estimation erédsy the jacobian matrid.
Thus knowing botle andJ the pose error can be determined using normal least
squares [58].

5= (J) ' Jle (7.8)

The objective is to update the pose estimation such that the projection of the

167



7. Pose Estimation Using Central Panoramic Imaging

L e I et n I C B L

Figure 7.2: lterative pose estimation as a regulation control probleis the
2N x 2N identity matrix).

3D model becomes coincident with the objectimage and the measured error vector
e converges to zero. This problem is known in the literature as model based
tracking of a rigid object.

7.1.3 Pose Estimation as a Regulation Control Problem

The problem of model based tracking stated in the previous section can be for-
mulated as a regulation control problem [3]. Consider the system depicted in Fig.
7.2 with inputu and outputy. The corresponding state space model is provided
in equation 7.9. The state vector is the image eerand the input matrix is the
jacobianJ (equation 7.7).

{ e(k+1) = e(k) + J(u(k) + 5(k)) 79)

y(k) = e(k)

Accordingly to the system state-space equations the change in pase as
an input perturbation which disturbs the outpifk). The goal is to find a state
feedback controlleL such that ifu(k) = —Le(k) then the disturbance is rejected
and the system state vectoconverges to zero. Or, in other words, the projection
of the 3D model and the image of the object become coincident.

Consider the result of equation 7.8 where the pose estimation &rsode-
termined using the image errer System regulation can be achieved by making
u = ¢ (equation 7.10). Equation 7.11 provides the state space model of the fi-
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7.2. The Jacobian Matrix for General Central Catadioptric Projection

nal closed loop system. System stability and transient response depend on the
eigenvalues of the matrigd — J(J*J)~1J*) [3]. However it is important to re-

mind that the state transition matrix is a function of rigid body position which
changes along time. Thus the analysis of the regulation dynamics is hard to per-
form. Moreover the controller of equation 7.10 is only realizable wiEd) is

non singular. Whenever matri@*®J) is not invertible we are in presence of a
singularity [49, 23].

L=(JJ)'J* (7.10)

(7.11)

{ e(k+1) = (I - J(ItT)"1Jt)e(k) + I5(k)
y(k) = e(k)

7.2 The Jacobian Matrix for General Central Cata-
dioptric Projection

The design the controller of equation 7.10 requires the derivation of matrix
Matrix J depends on the jacobian matdx which is evaluated on the N points of
the object model (equation 7.7). This section derives mdtyix

7.2.1 The Jacobian MatrixJ,

Consider the central catadioptric mapping functfpmhich maps 3D point co-
ordinatesX in image coordinateg;. The corresponding jacobian matidx is
derived by differentiating the function of equation 7.2. The obtained result is pre-
sented in equation 7.12 whege= v X2 + Y2 + 72,

_ 1 pZ + &Y%+ Z2) —£XY —X(p+&2)
-~ p(Z+Ep)? EXY —(pZ+E(X2+2%) Y(p+£2)
(7.12)
Consider the x 3 matrixJ,,, provided in equation 7.4. Notice thag, = [X|I]
with X the skew symmetric matrix associated with point coordinXéequation
4.3). From equation 7.5 results thl§ = J;J,,. The jacobian matrixJ, for

Ji
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7. Pose Estimation Using Central Panoramic Imaging

general central catadioptric projection is provided in equation 7.13.

_X%4Z%+4¢pZ Y pZ+E(Y2+22)
J. = (Z+g (Z+Ep)? (Z+¢p) p(Z+Ep)?
g Y2472 +¢pZ XY X EXY
(Z+€p)? (Z+€p)? (Z+¢p) p(Z+Ep)?
_ XY _ X(pte2)
p(Z+Ep)? p(Z+Ep)?
_PZHEXEHY?) Y (ptEZ)
p(Z+Ep)? p(Z+Ep)?
7.13)

Equation 7.13 presents the jacobian mafkjxas a function of the 3D coor-
dinates of poinX = (X,Y, Z)!. FunctionT', provided in Tab. 6.3 (chapter 6),
transforms the cartesian coordinal€s= (X,Y, Z)" in the special coordinates

= (9,1, p)" (Fig. 6.4). Replacing in equation 7.1X,Y, Z) by T(Y), also
provided in Tab. 6.3, matri¥, is written in terms of ¢, ¢, p). Taking into account
that¢p = arctan(z;) andy = arctan(y;) yields

. _ (4z)HE—yi¢ 14+z2(1-£(E+E)+y?
J, = il E+e Yi PE+E)
g _ (4yHE—aig . T _ziyik
EJré' ’LyZ (A p
ziyi§ _TiE
P
_1+m§+yﬁ1—§(5+§)) )
p(E+E)

714
Equation 7.14 provides the central catadioptric jacobian mdyrias a func-

tion the image coordinates and the pointdepth (= = /1 + (27 + y2)(1 — £2)).

This representation is much more useful from an application point of view.

7.2.2 Additional Considerations

Making ¢ = 0 in equation 7.13 yields

0w Y ;o0 %
PT 14y Xy X 0 -1 X (7.15)
zZ? Z? Z Z?

Matrix J, is the well known jacobian matrix for conventional perspective cam-
eras. MatrixJ,, derived above, is a generalization of the interaction matrix intro-
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7.2. The Jacobian Matrix for General Central Catadioptric Projection

duced in [28].

The jacobianl;, provided in equation 7.12, can be decomposed in the matrix
product of equation 7.16. Ttex 2 matrixJ. depends on point coordinat¥sand
on the mirror parametet. Notice that if¢ = 0 then matrixJ. becomes the x 2
identity matrix. The second matrix has dimensior 3 and is the jacobian of the
conventional perspective mapping functigr= (X/Z, —Y/Z)" obtained making
¢ null in equation 7.2. The eigenvalues of matlixare {Z/(Z + p¢); (Z*(p +

£2))/(p(Z+Ep)?)}. Notice thatl,. is positive definite whenever th&coordinate
IS positive.

Z(pZ+£(Y?%+22)) EXYZ 1 0
_ Z+Ep)? Z+&p)? Z 2
Ji = p(gxf? Z(prSrﬁ()?g)JrZQ)) ] [ g Ly ] (7.16)
p(Z+Ep)? p(Z+E&p)? z Zz?

Je

From the result of equation 7.16 arises that the general catadioptric mhatrix
can be written ad, = J.J,. Matrix J, is the2 x 6 jacobian matrix for the
conventional perspective camera situation (equation 7.15).

The controller of equation 7.10 is realizable if, and onlylJifis a full rank
matrix. J has dimensio2 N x 6 with N the number of points in the 3D model of
the object. Clearly the full rank constraint can not be verified with less than three
points. Equation 7.17 is derived from equation 7.7 knowing Jhat J1.JJ.

oo ..o [3
0 J2 ... 0 || 3

J= L . . (7.17)
N N
0 0 ... JYN ||
g v

Matrix J is the product of & N x 2N square matribC with a matrixP with
dimensior2 N x 6. AssumingZ > 0 then all matricedJ are positive definite and
matrix C is always full rank. MatrixJ is rank deficient if, and only if, matri¥
is also rank deficient. This proves that the general central catadioptric situation

presents the same singularities of the perspective case. These singularities have
been studied in detail in [49, 48].
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7. Pose Estimation Using Central Panoramic Imaging

Figure 7.3: A tracking sequence. The object translates along axis of camera

7.3 Model Based Tracking

Based on the tracking method described above we implemented an object tracker.
Since with catadioptric cameras straight lines map onto the image plane as conics,
we devised a contour-to-point tracker along the lines described in [48]. The figures
below show a rectangular object moving towards the camera and in a direction
perpendicular to the camera.

7.4 Closure

This chapter introduces for the first time the jacobian malkgi%or a general cen-
tral catadioptric system. It is shown that the conventional interaction magrix
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7.4. Closure

Figure 7.4: A tracking sequence. The object translates in front of camera..

for the perspective cameras [28] is a particular case of mafrixvioreover the
general jacobian matrid, can be written as the product of matricksandJ,
(Jg = Jc.Jp). Sinced. is a2 x 2 non singular matrix encoding the mirror infor-
mation, the general catadioptric jacobifinhas exactly the same singularities as
the standard perspective jacobiBn[23, 49].

The general jacobian matrix can be used to extend to central panoramic imag-
ing algorithms and techniques originally developed for perspective cameras. As
an example in [71] Vidal et al. propose a factorization approach for motion seg-
mentation and 3D motion estimation from paracatadioptric images which requires
the jacobian matrix. In this chapter we present some experiments in estimating the
pose of a rigid body imaged by a central catadioptric sensor. Given an initial pose
estimate, the error between the projected model and the actual image of the object
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7. Pose Estimation Using Central Panoramic Imaging

is measured. The pose parameters are updated by minimizing the image error.
Since the objective function is non-linear, the estimation must be performed using
a gradient descending method which requires the derived jacobian matrix. Instead
of studying the pose estimation in a conventional optimization framework we for-
mulated the problem in terms of model-based tracking. The model based tracking
can be interpreted as a regulation control problem in the image plane. The motion
of the rigid body acts as a disturbance that must be compensated.

The model based tracking of a rigid object can be exploited in many ways
for visual servoing applications. The proposed approach is being used in robot
navigation and cooperation [56]. The experimental setup consists in two mobile
platforms both equipped with central catadioptric cameras. A visual landmark,
similar to the one depicted in the figures, is positioned on the room ceiling. One
robot is the leader with independent motion and the other is the slave. The objec-
tive is to control slave motion such that the relative position between the two plat-
forms is kept constant. To achieve this goal both robots use the omnidirectional
vision to estimate their pose from the model based tracking of the landmark. A
method to control the position of a robotic arm using a static catadioptric system
is also being developed. Typically, in visual servoing using a conventional per-
spective camera, the available field of view is only enough to image the region
around the end-effector. The pose of the end-effector is estimated by visual feed-
back, and motion control is achieved using the manipulator jacobian known “a
priori”. The success of this approach is highly dependent on the arm calibration.
We use the wide field of view provided by the omnidirectional sensor to image the
entire arm. The different manipulator links are tracked in the catadioptric image
and the motion of each joint is estimated. This approach increases the robustness
and accuracy of the visual servoing.
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Chapter 8
Final Remarks

This work starts by introducing an image formation model for central catadioptric
systems. The model covers the conventional perspective camera, the paracata-
dioptric sensor and systems combining a perspective camera with an hyperbolic,
elliptical or planar mirrors as described in [5]. In [53] Nayar and Veri prove that
any folded system that uses conic mirrors has a geometrically equivalent system
using a single conic mirror. Thus the folded catadioptric camera with a single pro-
jection center can also be modelled using the proposed framework. Another way
to obtain central panoramic imaging is by using cameras equipped with fish-eye
lens [6]. It is not clear that our framework can be used to model these systems as
well. Such an extension would be an interesting direction of research.

Chapter 3 studies in detail central catadioptric line projection. Several in-
variant properties are derived that are useful both for calibration and reconstruc-
tion. It is proved that any catadioptric system can be fully calibrated from the
image of three lines, and that only two lines are required when the mirror is hy-
perbolic/elliptical and the pose between the camera and the mirror is known in
advance. It would be interesting to investigate the projection of quadric surfaces
by central catadioptric systems. Preliminary studies show that the image of a
sphere is a conic curve, but more research must be done on this topic.

General purpose algorithms to work with conic curves are proposed on chap-
ter 4. A closed form formula that computes the intersection between a line and
a conic is derived. A method to determine the intersections between two conics
Is presented as well. The intersection points are computed by solving a third or-
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der equation in a single variable. The implementation of the algorithm is simple
and numerically stable. We also review the most common used conic fitting tech-
niques. It is shown that the estimation results are poor in the presence of strong
occlusion. Since in general only a small arc of the line image is visible in the
catadioptric image plane, then the accurate estimation of the corresponding conic
locus using standard techniques is hard to accomplish.

In chapter 5 we overcome the problem of estimating lines images for the case
of parabolic systems. We derive for the first time the necessary and sufficient con-
ditions that must be verified by a set of conics to be the paracatadioptric projection
of a set of lines. This allows us to constrain the search space and improve the per-
formance of the conic fitting. A robust method to calibrate the sensor using line
images is proposed. Experimental results show that it works significantly better
than any other algorithm presented so far [74, 45, 35]. Additionally we propose a
computationally efficient algorithm to estimate lines in the paracatadioptric image
plane. The method uses the necessary and sufficient conditions for a conic to be
the paracatadioptric projection of a line. Prior knowledge of system calibration is
required. Experimental results show that the approach is very robust and the esti-
mation results are much better than the ones obtained by performing perspective
rectification. We intend to pursue the research to obtain similar algorithms for hy-
perbolic/elliptical sensors. The major difficulty is that the necessary and sufficient
conditions for a conic to be the image of a line are highly non-linear.

Chapter 6 dicusses the importance of chosing a suitable world coordinate sys-
tem when modelling a general central projection sensor. This is an original topic
which, as far as we know, has never been mentioned in the literature. The choice
of a certain reference frame does not imply that new information will be avail-
able in the images. Instead the geometric transformations can be represented in a
common and more compact way. A generic framework to select the most suitable
world coordinate system for a certain sensor/application is introduced. Examples
of active vision systems which benefit from an adequate choice of the reference
frame are provided. The jacobian matrix for general central projection systems is
studied in chapter 7. This matrix is a generalization of the conventional interaction
matrix for perspective cameras [28]. The derived results are applied to perform
model based tracking of a rigid body on the catadioptric image plane.

An important topic that is not covered at all in the present thesis is the mul-
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tiple view geometry of general central catadioptric systems. The first work that
we are aware on the epipolar geometry of general central projection systems has
been presented by Svoboda et al. [68]. Since then other authors have developed
efforts to derive a general fundamental matrix. In [36, 67] the 2D image plane
is embedded in a higher dimensional space as a way to linearize the relations for
the paracatdioptric image formation. Geyer and Daniilidis come up witkxat
fundamental matrix for parabolic systems [36]. Nevertheless this result requires
the system to be skewless with unitary aspect ratio. In [67] Sturm derives a more
general fundamental relation which mixes parabolic systems with conventional
perspective cameras. More recently Micusik and Padjla explore the distortion
model proposed in [31] to calibrate a camera with fish-eye lens from epipolar ge-
ometry [50]. Despite of these works, the derivation of a fundamental matrix for
general central projection systems which generalize the well known results for
perspective cameras is still an open problem.
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