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c© Copyright by Jõao Pedro de Almeida Barreto 2003
All Rights Reserved

iii



iv



Acknowledgements

The first acknowledgement goes to my advisor Prof. Helder Araujo. He was
the one who introduced me to computer vision research and helped on my first
steps on the field. During these remarkable six years we worked and argued a
lot. It was an enjoyable experience even in the bad moments when things were
not going so well. This experience would never be possible without his help and
advise. Thank you very much for these six years and I hope that we can continue
working together in the future.

I also thank the Institute of Systems and Robotics and its president Prof. Traca
de Almeida. The ISR has been the institution where I’ve developed the majority of
my research and that mainly supported my expenses and travels to conferences. I
also have to acknowledge the Department of Electrical and Computer Engineering
as well as the PRODEP program. I would like to mention in particular the Head
of the Department, Prof. Luis Sa, for his trust and support to the plan of getting a
PRODEP grant.

During these years I’ve collected a huge list of colleagues that in the mean-
while become my personal friends. The “seniors” Jorge Batista and Paulo Peixoto.
Paulo Menezes, who was my advisor during the undergraduate studies (people
never forget the first one). And all the others that I met during these years: Johnny
and Hugo (my emergency technical advisers); Diogo, Perdigoto, Pi, Nuno, Sergio
and Skin (during sometime my undergraduate “slaves”); Paulino, Ana Cristina,
Maia, Cortesao ...

The Calouste de Gulbenkian Foundation has partially supported my stay in
France in 2002. In France I’ve to acknowledge the INRIA Rhone-Alpes and the
Head of group MOVI, Prof. Radu Horaud, who received me. I also would like to
thank all the terrific people that I met. In particular Cristi (my personal optimiza-
tion teacher), Navneet (my ski mate), Peter and Edmond.

In the United States I thank the GRASP Lab., at the University of Pennsylva-
nia, and Prof. Kostas Daniilidis which made this experience possible.

In a personal level I think that the people that I would like to mention would
not fit in this page. Thus I will only say to my family and friends ... thank you
very much!

v



vi



Contents

Acknowledgements v

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 An Unifying Theory for Central Projection Systems 9
2.1 Central Catadioptric Systems . . . . . . . . . . . . . . . . . . . . 10
2.2 General Mapping Model . . . .. . . . . . . . . . . . . . . . . . 12

2.2.1 Central Catadioptric Image Formation . . . . . . . . . . . 13
2.2.2 The Unifying Model . . . . . . . . . . . . . . . . . . . . 16
2.2.3 An Intuitive and “Concrete” Interpretation of the Model . 19
2.2.4 About the Non-Linear Function} . . . . . . . . . . . . . 20

2.3 Virtual Perspective Images . . . . . . . . . . . . . . . . . . . . . 21
2.4 Closure . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Central Catadioptric Line Projection 25
3.1 The Central Catadioptric Image of Line . . . . . . . . . . . . . . 25
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Chapter 1

Introduction

Visualization and modeling of large environments is an increasingly attractive

proposition. Conventional video cameras provide a limited field of view which

can be highly restrictive. Applications that benefit from wide field of view im-

agery include surveillance, teleconferencing, tele-observation, 3D reconstruction

and model acquisition for virtual reality [20, 70, 66, 57]. Enhanced fields of view

are also advantageous for visual control of motion applications. In egomotion

recovery from video, ambiguities and confusion between translation and rota-

tion may arise whenever the translation direction lies outside the field of view.

Panoramic imaging overcomes the problems making the uncertainty of the esti-

mation independent of motion direction [37, 4]. Works on cooperation, obsta-

cle avoidance and self localization of mobile robots also appear in the literature

[73, 64, 75, 1]. As shown omnidirectional vision is becoming an increasingly

important sub-area in computer vision research [18].

There are two major methods to obtain very wide field of view images. One

approach is to build mosaics/panoramas by composing multiple images taken by

conventional imaging devices [61]. The alternative method is to use specialized

optic-lens arrangements. The approach of combining mirrors with conventional

cameras to enhance the sensor field of view is referred to as catadioptric image

formation [40]. The tradeoff between the two methods is resolution versus speed

of acquisition [45]. In general composing mosaics/panoramas from multiple im-

ages provides larger resolutions at the expense of off-line processing. The use

of special devices such as catadioptric sensors is simpler and faster enabling the
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1. Introduction

capture of dynamic scenes [57].

The single viewpoint constraint is a requirement ensuring that the visual sen-

sor only measures the intensity of light passing through a single point in 3D space

(the projection center). Vision systems verifying the single viewpoint constraint

are called central projection systems. The well known perspective camera is an

example of a central projection system. Central projection systems present inter-

esting geometric properties. A single effective viewpoint is a necessary condition

for the generation of geometrically correct perspective images [5], and for the

existence of epipolar geometry inherent to the moving sensor and independent

of the scene structure [68, 36, 67]. In [5] Baker et al. derives the entire class

of catadioptric sensors verifying the single viewpoint constraint. Useful central

catadioptric systems can be built by combining a parabolic mirror with an ortho-

graphic camera and, an hyperbolic, elliptical or planar mirror with a perspective

camera. Despite the nice properties of central projection stated above, non-central

catadioptric imaging is also an intense research field [6]. Several sensors have

been designed to provide omnidirectional images with specific features. Reflec-

tive surfaces capable of providing wide field of view and yet approximate the

perspective projection are derived in [41]. A prominent characteristic of most

catadioptric sensors is the non-uniform image resolution. Both equi-angular and

equi-areal mirror designs aim to improve the resolution uniformity. The equi-

angular systems establish a linear relation between angles in the camera and in

the mirror [22, 54]. The equi-areal sensors present an area preserving projection

from the associated viewing sphere to the image plane [42].

As stated central catadioptric systems combine two important features: a sin-

gle projection center and a wide field of view. However the mapping between

points in the 3D world and points in the image is in general highly non-linear.

The single viewpoint constraint assures that geometrically correct perspective im-

ages can be generated. Perspective image formation is described by a well known

linear model [39]. Thus one strategy to cope with the non-linearities is to gen-

erate perspective images from the frames captured by the catadioptric sensor and

subsequently process them [5]. This is time consuming and requires an accurate

calibration of the catadioptric system. The present work focuses on general cen-

tral projection systems which include the conventional perspective camera and

the catadioptric sensors verifying the single viewpoint constraint. The geometry

2



1.1. Overview

of central catadioptric image formation is studied in detail and several algorithms

are proposed to work directly with the omnidirectional images without warping

them.

1.1 Overview

In [34], Geyer et al. introduce an unifying theory for all central catadioptric sys-

tems where conventional perspective imaging appears as a particular case. They

show that central panoramic projection is isomorphic to a projective mapping from

the sphere to a plane with a projection center on the perpendicular to the plane.

Chapter 2 introduces a modified version of this unifying model [7, 8]. The map-

ping between points in the 3D world and points in the catadioptric image plane is

split into three steps. World points are mapped into an oriented projective plane

by a linear function described by a3 × 4 matrix (similar to the projective camera

model referred in [39]). The oriented projective plane is then transformed by a

non-linear function}. The last step is a collineation in the plane depending on

the mirror parameters, the pose of the camera in relation to the reflective surface

and the camera intrinsic parameters. The model obtained is general, intuitive and

isolates the non-linear characteristics of general catadioptric image formation.

The established mapping model is used in Chapter 3 to study the geometry of

general central catadioptric line projection. Several projective invariant properties

of catadioptric line images are derived. These properties are useful for calibration

and reconstruction purposes. We show that it is possible to determine the princi-

pal point and the image of the absolute conic from three lines in general position

[7]. The position of the line at infinity in the catadioptric image plane can be

computed from two line images and mirror parameters can be partially recovered

without further information [8]. Moreover we prove that if the system is hyper-

bolic/elliptical and both mirror parameters and camera pose are known then two

line images are enough to calibrate the system. The results obtained support the

conjecture pointed in [34] that an hyperbolic/elliptical system can be calibrated

from a minimum of two lines and a parabolic system requires at least three lines.

In general a line in the scene is mapped into a conic curve in the catadiop-

tric image plane [34]. The calibration algorithms derived in chapter 3 require an

accurate estimation of the conic loci where the lines are mapped. However the

3



1. Introduction

estimation of lines in the catadioptric image plane is hard to accomplish. In gen-

eral only a small arc of the conic is visible in the image and conventional conic

fitting techniques are unable to correctly estimate the curve. Chapter 4 starts by

introducing algorithms to compute the intersections between a line and a conic

and between two conics. The algorithms are both numerically stable and com-

putationally efficient. The main conic fitting techniques available in the literature

are reviewed and evaluated [76, 32]. It is shown that, since they do not cope well

with occlusion, they are not suitable to estimate catadioptric lines from image

points. The geometric properties derived in chapter 3 are used to constrain the

search space and improve the robustness of the conic fitting. This approach leads

to non-linear objective functions which must be minimized using iterative gradi-

ent descending methods [58, 27]. The performance of the method is evaluated

through simulated calibration experiments. It is observed that often the iterative

minimization presents convergence problems.

Paracatadioptric sensors combine a parabolic shaped mirror and a camera in-

ducing an orthographic projection. Such a configuration provides a wide field

of view while keeping a single effective viewpoint. The paracatadioptric line

projection presents specific features. Chapter 5 shows that a set of conic curves

corresponds to paracatadioptric line images if, and only if, certain properties are

verified [11]. These necessary and sufficient conditions are used to constrain the

search space and correctly estimate the curves. The accurate estimation of a min-

imum of three line images allows the complete calibration of the paracatadioptric

camera. If the camera is skewless and the aspect ratio is known then the conic

fitting problem is solved naturally by an eigensystem. For the general situation

the conic curves are estimated using non-linear optimization. Simulation results

are provided to compare the performance of the proposed algorithm with other

calibration approaches. Experiments with real images are also presented.

The final part of chapter 5 focuses on line estimation in calibrated paracata-

dioptric images [9]. The estimation of line images is an important subject for

applications such as reconstruction and visual control of motion [12]. However

the estimation of the conic curves where lines are mapped is hard to accomplish

due to the occlusion problem. A conic curve is the paracatadioptric image of a

line if, and only if, the image of the circular points lie on the curve and two certain

points are conjugate with respect to the conic. Considering the space of all conic
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1.1. Overview

curves, the line images lie in a linear subspace which depends on the system cali-

bration. The paracatadioptric projection of a line can estimated by fitting a conic

in the subspace to the data points. The proposed approach is computationally

efficient since the fitting problem can be solved by an eigensystem.

Whenever a central projection systems acquires an image, points in 3D space

are mapped into points in the 2D image plane. The image formation process rep-

resents a transformation from<3 to <2, and mathematical models can be used to

describe it. Chapter 6 discusses the definition of world coordinate systems that

simplify the modeling of general central projection imaging [10]. It is shown

that an adequate choice of the world coordinate reference system can be highly

advantageous. Such a choice does not imply that new information will be avail-

able in the images. Instead the geometric transformations will be represented in

a common and more compact framework, while simultaneously enabling newer

insights.

The first part of chapter 6 focuses on static central projection systems that in-

clude both perspective cameras and catadioptric systems. A systematic approach

to select the world reference frame is presented. In particular we derive coordinate

systems that satisfy two differential constraints (the ”compactness” and the ”de-

coupling” constraints). These coordinate systems have several advantages for the

representation of the transformations between the 3D world and the image plane.

The second part of the chapter applies the derived mathematical framework to

active visual tracking of a target modeled as a moving point in space. In appli-

cations of visual control of motion the relationship between motion in the scene

and image motion must be established. In the case of active tracking of moving

targets these relationships become more complex due to camera motion. Suitable

world coordinate reference systems are defined for three distinct situations: per-

spective camera with planar translation motion, perspective camera with pan and

tilt rotation motion, and catadioptric imaging system rotating around an axis go-

ing through the effective viewpoint and the camera center. Position and velocity

equations relating image motion, camera motion and target 3D motion are derived

and discussed. Control laws to perform active tracking of moving targets using

visual information are established.

In chapter 6 the moving target is modeled as a point in the scene. However

there are several visual servoing applications where the target must be modeled
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1. Introduction

has a rigid body with translation and rotation motion. Chapter 7 focuses on iter-

ative pose estimation using central panoramic imaging. The jacobian matrix for

general central projection systems is introduced. It is proved that this matrix is

a generalization of the well known interaction matrix for conventional perspec-

tive cameras [28]. Moreover it is shown that the generalized jacobian has exactly

the same singularities as the jacobian of the traditional pinhole camera model.

Experiments showing a rigid body being tracked with a catadioptric camera are

described.

1.2 Contributions

The most relevant contributions of the present thesis can be summarized as follows

• A modified version of the unifying model for central catadioptric imaging

is proposed. The image formation is presented as a three step process with

the non-linearities isolated in a function} which maps points between two

oriented projective planes.

• The geometry of central catadioptric line images is studied in great detail.

Several projective invariant properties are derived. These properties are use-

ful both for calibration and reconstruction tasks.

• It is proved that any central catadioptric system can be fully calibrated using

a minimum of three line images in general position.

• It is shown that if the system is hyperbolic/elliptical and both mirror pa-

rameters and camera pose are known, then two line images are enough to

calibrate the sensor.

• A method to calibrate paracatadioptric sensors using lines is proposed. Ge-

ometric constraints are used to accurately estimate the set of lines in the

uncalibrated image plane.

• An algorithm to estimate lines in calibrated paracatadioptric images is pre-

sented. The proposed method determines the conic locus where the line is

mapped using a minimum of two image points. The algorithm is very robust

to noise and runs in real time.
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1.2. Contributions

• The jacobian matrix for general central catadioptric systems is derived and

studied. Experiments on model based tracking and pose estimation of rigid

moving bodies are described.

• Any image formation process is a transformation between points in the 3D

world and points in the image. There are certain world coordinates sys-

tems that are more suitable than others to represent this transformation. We

propose a systematic framework to select the world reference frame that

simplifies the modeling of a certain system/application.
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Chapter 2

An Unifying Theory for Central

Projection Systems

In [34], Geyer et al. introduce an unifying theory for all central catadioptric sys-

tems where conventional perspective imaging appears as a particular case. They

show that central panoramic projection is isomorphic to a projective mapping from

the sphere to a plane with a projection center on the perpendicular to the plane.

The present chapter introduces a modified version of this unifying model [7, 8].

The mapping between points in the 3D world and points in the catadioptric image

plane is split into three steps. World points are mapped into an oriented projective

plane by a linear function described by a3 × 4 matrix (similar to the projective

camera model referred in [39]). The oriented projective plane is then transformed

by a non-linear function}(). The last step is a collineation in the plane depending

on the mirror parameters, the pose of the camera relative to to the reflective sur-

face and the camera intrinsic parameters. The model obtained is general, intuitive

and isolates the non-linear characteristics of general catadioptric image formation.

The chapter starts by presenting the entire class of central catadioptric systems

derived in [5]. The image formation process is investigated and the general map-

ping model is derived. The conventional perspective camera is a particular case of

the presented unifying theory.
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2. An Unifying Theory for Central Projection Systems

X

Z

O

X

Z

O

X

Z

O

X

Z

O

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

Elliptical Planar

α
α

4p

d 
(a

ny
)

Parabolic Hyperbolic

4p

α
α

α
α

d

d
d

αα

4p

Figure 2.1: The entire class of central catadioptric systems.

2.1 Central Catadioptric Systems

Central catadioptric systems provide a wide field of view while keeping an unique

projection center. The wide field of view is achieved by specialized optic-lens

arrangements. The single viewpoint constraint is verified by a careful selection

and assembly of mirror and imaging device. The final vision system must only

measure the intensity of light passing through a single point in 3D space (the

projection center).

Consider a reflective surfaceS, a generic pointP lying on S and a planeΠ

going through pointP and tangent to the mirror surface. Any ray of lightri

incident onP is reflected in a ray of lightrr. According to the electromagnetic

theory the angle betweenri and planeΠ (the incident angle) must be equal to the

angle thatrr makes with the same plane (the reflection angle).
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2.1. Central Catadioptric Systems

Parabolic
√
x2 + y2 + z2 = 2p− z

Hyperbolic (z− d
2 )2

a2 − x2

b2 − y2

b2 = 1

Elliptical (z− d
2 )2

a2 + x2

b2 + y2

b2 = 1

Planar z = d
2

Table 2.1: Equations for the reflective surfaces

Fig.2.1 shows the four types of central catadioptric systems [5]. A scheme of

a parabolic mirror with latus rectum4p is exhibited on the top-left corner. Tab.2.1

provides the equation of the 3D surface assuming the originO of the coordinate

system coincident with the focus of the paraboloid and the z-axis aligned with the

mirror axis. It is a well known result that any incident ray of light going through

the focus of the paraboloid is reflected into a ray parallel to the surface axis. If

the camera steering the mirror is orthographic and the image plane is orthogonal

to the z-axis then it only captures the rays parallel to the mirror axis. These rays

result from the reflection of the light going through the focus of the mirror. The

vision system has a single effective viewpoint which is the focus of the parabolic

mirror.

The mirror in the top-right corner of Fig. 2.1 has an hyperbolic shape with

a latus rectum4p and a distance between focid . The corresponding hyper-

boloid equation is provided in Tab. 2.1 wherea = 1
2
(
√
d2 + 4p2 − 2p) and

b =
√
p(
√
d2 + 4p2 − 2p). Once again the originO of the coordinate system is

coincident with the inner focus and the z-axis is aligned with the surface symmetry

axis. From the reflection law it comes that any light ray going through the inner

focus is reflected in another ray passing through the outer focus. A conventional

perspective camera positioned in the outer focus only measures the intensity of

light going throughO. A perspective camera steering and hyperbolic mirror such

that its projection center is coincident with the outer focus is a central catadioptric

system. The effective viewpoint is the inner focus of the reflective surface. In a

similar way a central catadioptric system can be built by combining a perspective

camera with an elliptical mirror (see bottom-left corner of Fig. 2.1). The equa-

tion of the ellipsoid is provided in Tab. 2.1 where4p is the latus rectum,d is the
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2. An Unifying Theory for Central Projection Systems

distance between foci,a = 1
2
(
√
d2 + 4p2 + 2p) andb =

√
p(
√
d2 + 4p2 + 2p).

A catadioptric system made up of a perspective camera steering a planar mirror

also verifies the single view point constraint (bottom-right corner of Fig. 2.1). The

effective projection center is behind the mirror in the perpendicular line passing

through camera center. Its distance to the camera center is twice the distance

between the planar mirror and the camera.

For the parabolic system the distance between the camera and the mirror is

not constrained. The single viewpoint constraint is verified whenever the camera

is orthographic and optical axis is aligned with the axis of the paraboloid. For

the hyperbolic and elliptical systems the center of the perspective camera must be

coincident with the outer focus of the reflective surface. For the planar situation

changes in camera position imply changes in the effective viewpoint. However

in these three cases the alignment between the camera and the mirror is not con-

strained. After rotating the camera around an axis going through its center the

catadioptric systems still verifies the single viewpoint constraint and the projec-

tion center position is kept.

As a final remark notice that the field of view is enhanced by using convex

reflective surfaces like paraboloid and hyperboloid. Elliptical mirrors do not have

the same practical application because they cause a decrease in the field of view.

In the elliptical systems the field of view is traded by resolution which causes a

zoom effect in the images. However the mirror introduces non-linearities in the

imaging formation which is a disadvantage if compared with conventional cam-

eras equipped with zoom lens. It will be shown that the planar system is in many

aspects a degenerate case of the central catadioptric projection. The geometry

of planar catadioptric images is equivalent to conventional perspective imaging.

Nevertheless planar mirrors are currently used to build devices like the Nalwa

pyramid which is a high resolution omnidirectional system with a single projec-

tion center [52].

2.2 General Mapping Model

The present section studies the image formation process in central catadioptric

systems and derives an unifying mapping model.
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Figure 2.2: Image formation process. Hyperbolic situation

2.2.1 Central Catadioptric Image Formation

Consider the coordinate systems< and<cam depicted in Fig.2.2.< is the coordi-

nate system attached to the reflective surface. The z-axis is aligned with the mirror

axis and the originO is coincident with the effective viewpoint of the central pro-

jection system. For parabolic, hyperbolic and elliptical systems the originO is the

inner focus of the reflective surface. The transformation matrix from< to <cam

is provided in equation 2.1. The z-axis of<cam is still aligned with the mirror

axis and the distance between the originsO andOcam is d. For both hyperbolic

and elliptical systemsd corresponds to the distance between foci and the central

catadioptric images are acquired by a perspective camera with projection center

in Ocam. The planar system has a perspective camera positioned inOcam in a

similar manner. For the parabolic situation the distanced is unconstrained and an

orthographic camera with optical axis parallel to the z-axis of<cam is used.
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2. An Unifying Theory for Central Projection Systems

(x ,y ,z ) ε T 2x=

x cam= ε T 2( x       , y       , z       )cam cam cam
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Pc

3
Pε

x̂ = ε P2(x  ,y  ,z  )^ ^ ^

X h ε
3

P= ( X, Y, Z, 1)

P=R[I|−C]

(     x,     y,     z, 1)X m = κκκ

Figure 2.3: Central catadioptric image formation

Tcam =




1 0 0 0

0 −1 0 0

0 0 −1 d

0 0 0 1


 (2.1)

Fig.2.3 is a step-by-step scheme of the mapping performed by a general central

catadioptric system. Consider a generic scene point visible by the catadioptric

system as depicted in Fig. 2.2.Xh is the corresponding vector of homogeneous

coordinates in the world reference frame. Each visible point can be associated

to a projective rayx joining the point with the effective viewpoint of the central

projection system.x = PXh whereP = R[I| −C] is a3×4 matrix transforming

points in the world reference frame in projective rays in the coordinate system<
attached to the mirror (C represents the world origin coordinates in the mirror

reference frame,R is the rotation matrix between the two coordinate systems and
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2.2. General Mapping Model

κ Pc Rc

Parabolic 2p

z+
√
x2+y2+z2

[
1 0 0 0
0 −1 0 0
0 0 0 1

]
I

Hyperbolic 2dp

z(
√
d2+4p2+2p)+d

√
x2+y2+z2

[
1 0 0 0
0 −1 0 0
0 0 −1 d

]
any

Elliptical − 2dp

z(
√
d2+4p2−2p)+d

√
x2+y2+z2

[
1 0 0 0
0 −1 0 0
0 0 −1 d

]
any

Planar d
2z

[
1 0 0 0
0 −1 0 0
0 0 −1 d

]
any

Table 2.2: Mapping parameters

I is a 3 × 3 identity matrix). We can think of the projective raysx as points

in an oriented projective planeT2. Notice that in standard projective geometry,

given a projective pointx, λx represents the same point wheneverλ 6= 0. In an

oriented projective plane this is only true ifλ > 0 [47, 65]. This is important when

modeling panoramic vision sensors where diametrically opposite points relative

to the projection center can be simultaneously imaged.

The projective rayx intersects the mirror surface on pointXm (see Fig. 2.2).

The intersection point can be computed by scaling the projective rayx by a κ

value, such thatκx verifies the mirror equation. Thus, replacing(x, y, z) by

(κx, κy, κz) in the surface equations of Tab. 2.1 and solving them in order toκ, the

scaling values for each type of central catadioptric system are obtained (see Tab.

2.2). The intersection point in mirror homogeneous coordinates isXm = (κx, 1)t.

Notice thatκ depends both onx and on the mirror surface.

For the hyperbolic, elliptical and planar catadioptric systems the imaging de-

vice is a conventional perspective camera with center on the originOcam of the

coordinate system<cam. Fig. 2.2 shows that to each intersection pointXm cor-

responds a projective rayxcam going through the camera center. Consider the

pin-hole camera modelPp = [I|0] and the coordinate transformation matrix

Tcam of equation 2.1. The projective ray coordinatesxcam in <cam are given

by xcam = PcXm with Pc = PpTcam (see Tab. 2.2). For the parabolic

system an orthographic camera must be used instead of a perspective camera.

The camera center is at infinity and the pin-hole modelPp must be replaced by

the orthographic camera modelPo. In a similar manner the projective ray is
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2. An Unifying Theory for Central Projection Systems

xcam = PcXm with Pc = PoTcam. Notice in Tab. 2.2 that the resultant matrix

Pc no longer depends on the distanced.

The world pointXh is imaged inx̂ = KcRcxcam at the central catadioptric

image plane.Kc is the matrix of camera intrinsic parameters andRc is a3 × 3

rotation matrix. As stated the hyperbolic, elliptical and planar systems have a

single viewpoint whenever the perspective camera center is in the originOcam

of <cam. However the camera pose is not constrained and the optical axis is not

necessarily aligned with the mirror axis. MatrixRc models the possible rotation

of the camera with respect to the coordinate system<cam (see Fig. 2.2). For

the parabolic system the camera is orthographic and the image plane must be

orthogonal to the mirror symmetry axis. The requirement of a single effective

viewpoint constraints the camera pose which can only rotate around the z-axis

of <cam. It is assumed without loss of generality thatRc = I for the central

parabolic sensor (see Tab. 2.2).

2.2.2 The Unifying Model

The mapping scheme of Fig. 2.3 with parameters on Tab. 2.2 is general, covering

all central catadioptric systems, in all possible configurations. Visible points in

the sceneXh are mapped into projective rays/pointsx in the catadioptric system

reference frame centered in the effective viewpoint. The transformation is linear

being described by a3 × 4 matrix P. To each oriented projective ray/pointx,

corresponds a projective ray/pointxcam in coordinate system<cam (see Fig. 2.2).

The relationship between projective pointx̂ measured in the catadioptric image

plane andxcam is established by a collineation depending on camera orientation

and intrinsic parameters.

For a conventional projective camera the mapping between points in the world

and points in the image is linear if homogeneous coordinates are assumed [39].

In the model established for general central catadioptric imaging all the transfor-

mations are linear with the exception of the mapping ofx into xcam. As men-

tioned beforex andxcam are oriented projective rays/points that must intersect

on the mirror surface. The relationship between these two points is established

by xcam = Pc(κx, 1)t. Matrix Pc depends on the mirror parameters and on the

type of imaging device. The multiplying parameterκ is a function of the mirror
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H c = .MK   .R   c c c

X h ( X, Y, Z, 1)= ε
3

P

P=R[I|−C]

(x ,y ,z ) ε T 2

(x  ,y  ,z  ) ε 2P

function   

(x   ,y   ,z   )

x=

h ( )

x =

x =^ ^ ^ ^

Figure 2.4: New model for central catadioptric image formation

parameters and of point coordinatesx (see Tab. 2.2). The transformation ofx into

xcam can be seen as a non-linear mapping between two oriented projective planes.

Sincexcam is an oriented projective point, thenλxcam represents the same point

wheneverλ > 0 [65, 47]. The relationship betweenx andxcam can be written as

xcam = λ(Pc.

[
κx

1

]
) (2.2)

Replace in equation 2.2Pc, κ andλ by the values provided on tables 2.2 and

2.3. The values for the parameters are selected according to the type of central

catadioptric system. Notice thatλ is always greater than zero. After some alge-

braic manipulation you will verify that the transformation ofx into xcam can be

written in the form of equation 2.3. MatrixMc and function} are respectively

provided by equations 2.4 and 2.5. Parametersξ andϕ appear on Tab. 2.3. Matrix

Mc only depends on mirror type and shape.

xcam = Mc.}(x) (2.3)
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2. An Unifying Theory for Central Projection Systems

λ ξ ϕ

Parabolic z√
x2+y2+z2

+ 1 1 1 + 2p

Hyperbolic
z(
√
d2+4p2+2p)

d
√
x2+y2+z2

√
d2+4p2

+ 1√
d2+4p2

d√
d2+4p2

d+2p√
d2+4p2

Elliptical
z(
√
d2+4p2−2p)

d
√
x2+y2+z2

√
d2+4p2

+ 1√
d2+4p2

d√
d2+4p2

d−2p√
d2+4p2

Planar 2z

d
√
x2+y2+z2

0 1

Table 2.3: Multiplying valueλ and mapping parametersξ andϕ for the new model

Mc =


 ϕ− ξ 0 0

0 ξ − ϕ 0

0 0 1


 (2.4)

}(x) =




x√
x2+y2+z2

y√
x2+y2+z2

z√
x2+y2+z2

+ ξ


 (2.5)

The scheme of Fig. 2.4 is obtained by rearranging the one of Fig. 2.3. The

mapping between points in the worldXh and projective image pointŝx is given

by equation 2.6. The mapping model is general for all central catadioptric sys-

tems. Depending on the type of system the parametersξ andϕ of function }

and matrixMc change according to Tab. 2.3. PointsXh in projective 3D space

are transformed in pointsx in the oriented projective plane with origin in the ef-

fective viewpoint (x = P.Xh). Pointsx are mapped into points̄x in a second

oriented projective plane. The correspondence functionx̄ = }(x) is non-linear.

Projective pointŝx in catadioptric image plane are obtained after a collineation

Hc (x̂ = Hcx̄ with Hc provided by equation 2.7).

x̂ = Hc }(PXh)︸ ︷︷ ︸
x̄

(2.6)

Hc = KcRcMc (2.7)
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2.2.3 An Intuitive and “Concrete” Interpretation of the Model

Fig. 2.4 is a schematic of the proposed unifying model for central catadioptric

image formation. The mapping model is made up of three steps. The first step

is the linear transformationP = R[I| − C] of 3D world coordinates into 2D

sensor coordinates. If nothing is said it will be assumed without loss of generality,

that world and sensor coordinates are the same. Thus, sinceR = I (no relative

rotation) andC = 0 (coincident origins), arises thatP = [I|0]. The second step is

the non-linear mapping} between two oriented projective planes. The last step is

the projective transformationHc depending on the camera calibration, the mirror

parameters and their relative pose (equation 2.7). The relationship between points

in the catadioptric image planêx and points̄x is linear (̂x = Hcx̄).

The proposed model isolates the non-linearities of the mapping in a single

function}. Function} transforms oriented projective pointsx in sensor coordi-

nates into points̄x. This non-linear transformation, presented in equation 2.5, has

an intuitive “concrete” interpretation. Consider the coordinate system<, with ori-

gin O in the effective viewpoint, and an unit sphere centered inO (see Fig. 2.5).

To each visible scene pointXh corresponds an oriented projective rayx joining

the 3D point with the effective projection center. The projective ray intersects the
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2. An Unifying Theory for Central Projection Systems

unit sphere in a single pointXc. Consider a pointOc with coordinates(0, 0,−ξ)t
in <. To eachx corresponds an oriented projective rayx̄ joining Oc with the in-

tersection pointXc in the sphere surface. The non-linear mapping} corresponds

to projecting the scene in the unity sphere surface and then re-projecting the points

on the sphere into a plane from a novel projection centerOc. Points in catadioptric

image planêx are obtained after a collineationHc of 2D projective points̄x.

The novel projection centerOc = (0, 0,−ξ)t only depends on mirror param-

eters (see Table.2.3). For a parabolic mirrorξ = 1 andOc belongs to the sphere

surface. The re-projection is a stereographic projection. For hyperbolic and el-

liptical caseOc is inside the sphere in the negative z-axis. The planar mirror is

a degenerate case of central catadioptric projection whereξ = 0 andOc is co-

incident withO. The mapping of equation 2.6 becomes linear and the model is

equivalent to the conventional model for projective cameras.

2.2.4 About the Non-Linear Function}

The mathematical expression of function} is provided by equation 2.6. Notice

that}(λx) = λ}(x) wheneverλ > 0. Thus} is a positive homogeneous function.

To each oriented projective rayx corresponds one, and only one, oriented projec-

tive ray x̄ such that̄x = }(x). Since function} is injective then it has an inverse

}
−1.

The inverse function}−1 maps oriented projective points̄x into oriented pro-

jective pointsx (x = }
−1(x̄)). Consider the system of coordinates<c in Fig.

2.5. To each projective raȳx corresponds a pointXc lying on the surface of

the sphere. Assuminḡx = (x̄, ȳ, z̄)t there is a positive multiplying parameterλc
such thatXc = (λcx̄, λcȳ, λcz̄)

t. Changing to sensor coordinates< comes that

Xc = (λcx̄, λcȳ, λcz̄ − ξ)t. SinceXc lies in the unitary sphere centered in the

origin O thenλ2
c x̄

2 + λ2
c ȳ

2 + (λcz̄ − ξ)2 = 1. Solving the equation in order toλc
and choosing the positive solution yields

λc =
z̄ξ +

√
z̄2 + (1 − ξ2)(x̄2 + ȳ2)

x̄2 + ȳ2 + z̄2
(2.8)

The 3D pointXc lies on the oriented projective rayx. Thus the projective

coordinates ofx in the sensor reference frame arex = (λcx̄, λcȳ, λcz̄ − ξ)t. The
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2.3. Virtual Perspective Images

mathematical expression of the inverse function}
−1 is

}
−1(x̄) =




z̄ξ+
√
z̄2+(1−ξ2)(x̄2+ȳ2)

x̄2+ȳ2+z̄2
x̄

z̄ξ+
√
z̄2+(1−ξ2)(x̄2+ȳ2)

x̄2+ȳ2+z̄2
ȳ

z̄ξ+
√
z̄2+(1−ξ2)(x̄2+ȳ2)

x̄2+ȳ2+z̄2
z̄ − ξ


 (2.9)

2.3 Virtual Perspective Images

As referred in [5] a single projection center is a necessary condition for the gen-

eration of geometrically correct perspective images. This section presents two

different approaches to artificially generate perspective images from central cata-

dioptric images. It is assumed that the vision system is calibrated and matrixHc

is known (equation 2.7). The projection center of the virtual perspective camera

must be coincident with the effective viewpointO (see Fig. 2.5). The matrix of

intrinsic parameters isKv and the rotation matrix between the reference frame

attached to the virtual camera and the sensor coordinate system isRv. Both ma-

trices are defined in advance by the user.

The mapping model derived in the previous sections is schematized in Fig. 2.4.

It has been shown that to each pointx̂ in the catadioptric image plane corresponds

one, and only one, projective rayx. The mapping function isx = }(H−1
c x̂).

Assume thatxv is a perspective image point, provided in projective coordinates in

the reference frame<v attached to the virtual camera. The mathematical relation

between pointsxv and x is xv = KvRvx. Replacingx yields the result of

equation 2.10 which maps pointsx̂ in the catadioptric image into pointsxv in the

virtual perspective image.

xv = KvRv}
−1(H−1

c x̂) (2.10)

Fig. 2.6 shows an omnidirectional image with dimension2272×1704 acquired

by a paracatadioptric camera [35]. A virtual perspective image is exhibited on the

top right corner. The image is generated using the result of equation 2.10 with

Rv = I. Points inside the rectangle marked in the omnidirectional frame are

mapped into points in the virtual perspective image. Notice that the scene is not

uniformly sampled by the catadioptric sensor. In Fig. 2.7 the same strategy is
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2. An Unifying Theory for Central Projection Systems

Figure 2.6: Generating geometrically correct perspective images

used to generate a perspective image of the tile panel in the wall. In this situation

Rv 6= I.

An alternative approach can be used to generate perspective images more suit-

able for visualization purposes. Equation 2.11 is the inverse of the mapping pro-

vided in equation 2.10. All pointsxv in the perspective image plane are trans-

formed into points in the catadioptric image using the derived relation. The bright-

ness (or color) in the perspective image points is then computed using bilinear

interpolation. The results can be observed at the bottom right corners of Fig. 2.6

and 2.7.

x̂ = Hc}(R−1
v K−1

v xv) (2.11)

2.4 Closure

In this chapter we have reviewed the entire class of central catadioptric systems.

Central catadioptric systems combine two useful features: a wide field of view and

a single projection center [5]. Central catadioptric image formation is isomorphic
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2.4. Closure

Figure 2.7: The perspective image of a detail in the scene

to a projective mapping from the sphere to a plane with projection center in the

perpendicular to the plane [34]. This chapter shows that the image formation can

be modeled as a three step process. A conventional3 × 4 projection matrixP

maps the 3D scene in an oriented projective plane. The oriented projective plane

is transformed by a non-linear function}. The resulting oriented projective plane

is mapped in the final catadioptric image by a collineation which depends on the

camera intrinsic parameters and on the relative pose between the imaging sensor

and the reflective surface. The proposed model is general, intuitive and isolates

the non linearities in an injective function}.
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Chapter 3

Central Catadioptric Line

Projection

The mapping model derived on the previous chapter is made up of three steps:

a linear transformationP of 3D world coordinates into 2D sensor coordinates,

a non-linear mapping} between two oriented projective planes, and a final 2D

collineationHc (see Fig. 2.4). The present chapter studies the line projection

for central catadioptric systems. It is shown that in general a line is imaged into

a conic curve. CollineationHc is ignored in section 3.2. By assumingHc =

I we focus on the effects of the non-linear mapping} in the catadioptric line

projection. Both affine and euclidean geometry of the resultant conic curve are

studied. However in generalHc 6= I. Section 3.3 derives projective invariant

properties of central catadioptric line projection.

3.1 The Central Catadioptric Image of Line

Consider a line in space lying in a planeΠ = (nx, ny, nz, 0)t which contains the

effective viewpointO (Fig. 3.1). According to the first step of the mapping model

of Fig. 2.4, the 3D line projects inΠ = Ptn. Since it is assumed that the world

reference frame and the sensor system of coordinates are the same, thenP = [I|0]

andn = (nx, ny, nz)
t. Thus the world pointsXw lying on the original line are

mapped into pointsx in the oriented projective plane such thatnt.x = 0.

The non-linear function} establishes the relationship between pointsx and
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Figure 3.1: The central catadioptric image of a line

x̄. Consider the inverse function}−1 provided in equation 2.9. Ifnt.x = 0 and

x = }
−1(x̄) thennt.}−1(x̄) = 0. After some algebraic manipulation the equality

can be written in the form̄xtΩ̄x̄ = 0 with Ω̄ given by equation 3.1. The non-

linear mapping} between two oriented projective planes transforms the linen

into a conic curvēΩ.

Ω̄ =


 n2

x(1 − ξ2) − n2
zξ

2 nxny(1 − ξ2) nxnz

nxny(1 − ξ2) n2
y(1 − ξ2) − n2

zξ
2 nynz

nxnz nynz n2
z


 (3.1)

Points in the catadioptric image planêx are linearly related with points̄x

through a collineationHc (equation 2.6). The projective transformation of a conic

curve is always a conic curve [59, 39, 62]. Thus conicΩ̄ is mapped in the cata-

dioptric image plane into a coniĉΩ (equation 3.2). In general we may conclude

that a line in the scene is projected into a conic curveΩ̂ in the catadioptric image

plane [34].

Ω̂ = Hc
−tΩ̄Hc

−1 (3.2)

Fig.3.1 depicts central catadioptric line projection using the sphere model. The
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3.2. The Conic CurveΩ̄

world line in space is projected into a great circle on the sphere surface. This

great circle is the curve of intersection of planeΠ, containing both the line and

the projection centerO, and the unit sphere. The projective raysx̄, joining Oc

to points in the great circle, form a central cone surface [63]. The central cone,

with vertex inOc, projects into the conic̄Ω in the canonical image plane. Notice

that we can always think of a conic̄Ω in the projective plane as a central cone of

projective rays with vertex in the projection center. FinallyΩ̄ is mapped intôΩ

by collineationHc. The conic curvêΩ is the catadioptric image of the original

line.

There are two kinds of degenerate conics: a locus of points consisting of a

pair of distinct lines, and a locus consisting in a single line. In the former the rank

of the corresponding3 × 3 matrix is 2 and in the last the rank is 1. SinceHc is

a projective transformation then it is a full rank matrix and the line imageΩ̂ is

degenerate if, and only if, the corresponding conicΩ̄ is also degenerate (equation

3.2). Using the determinant of the matrix provided in equation 3.1 we conclude

that Ω̄ is rank deficient wheneverξ = 0 or nz = 0. If ξ = 0 then the sensor

is a planar catadioptric system (see Tab. 2.3). The mapping becomes similar to

conventional perspective cameras where a line in the scene is projected into a

line. If nz = 0 then the imaged line is coplanar with the Z-axis of the catadioptric

reference frame, and the corresponding catadioptric image is also a line. This can

be easily understood using the sphere model for the mapping (see Fig. 3.1).

3.2 The Conic CurveΩ̄

From equation 3.2 results that ifHc = I then the catadioptric image of a line

is Ω̂ = Ω̄. The present section ignores the collineationHc and focuses on the

effects of the non linear mapping} in the catadioptric line projection. Both affine

and euclidean geometry of the conic curveΩ̄ are studied.

3.2.1 Affine Geometry ofΩ̄

AssumingHc = I then any line contained in planeΠ = (nt, 0)t, going through

the projection center of the catadioptric system, is imaged into the conicΩ̄ (see

Fig. 3.2). The affine characterization of̄Ω is performed by assuming that the
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Figure 3.2: The central catadioptric image of a line whenHc = I

line at infinity π̄∞ is in the canonical position (̄π∞ = (0, 0, 1)t) [29, 39, 30]. The

center is the pole of̄π∞ with respect to the conic [62, 59]. The centerC̄ of conic

Ω̄ is computed bȳC=Ω̄∗π̄∞, with Ω̄∗ the conic envelope of̄Ω (see Tab. 3.1).

The conic curve cuts the line at infinity in two points̄Q andR̄ provided in

Tab. 3.1. If the points are real and distinct, coincident or conjugate complex, then

the conicΩ̄ is an hyperbola, a parabola, or an ellipse/circle [62, 59]. Notice that

Q̄ andR̄ are respectively real and distinct, coincident or complex conjugate, if,

and only if, the polynomial∆ of equation 3.3 is greater than, equal to, or less than

zero.∆ is called the conic discriminant. For∆ > 0, ∆ = 0 and∆ < 0 the conic

curveΩ̄ is respectively an hyperbola, a parabola, or an ellipse/circle.

∆ = (n2
x + n2

y)(1 − ξ2) − n2
zξ

2 (3.3)

Consider the normaln = (nx, ny, nz)
t to planeΠ (see Fig. 3.2) and the angle

α betweenn and planeXOY (equation 3.4). From equation 3.3 and 3.4 it arises

that ∆ = 0 whenevertan(α)2 = (1 − ξ2)/ξ2. If the normal to the planeΠ

intersects the unit sphere in the dashed circles of Fig. 3.2 then the line image is a

parabola. Moreover if the intersection point is between the circles the line image

is an hyperbola and if the intersection point is above or below the circles the line
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3.3. Projective Properties of the Central Catadioptric Line Image

Center C̄ = (nxnz, nynz,−∆)t

Intersection
with π̄∞

Q̄ = (1, nxny(1−ξ2)+nzξ2
√

∆
n2

zξ
2−n2

y(1−ξ2)
, 0)t;

R̄ = (1, nxny(1−ξ2)−nzξ2
√

∆

n2
zξ

2−n2
y(1−ξ2) , 0)t

Table 3.1: Affine geometry of the conic curvēΩ.

image is an ellipse/circle.

α = arctan(
nz√
n2
x + n2

y

) (3.4)

3.2.2 Euclidean Geometry of̄Ω

For the affine characterization we have constrained the position of the line at infin-

ity. We now restrict the representation further by assuming that the circular points

Ī∞ and J̄∞ are in the canonical position (Ī∞ = (1, i, 0)t andJ̄∞ = (1,−i, 0)t).

Consider the degenerate line conicω̄∗
∞ which consists of the two circular points

(ω̄∗
∞ = Ī∞J̄t∞ + J̄∞Īt∞). Two lines in the euclidean plane are orthogonal if, and

only if, they are conjugate with respect tōω∗
∞ [39, 59, 30, 29].

A diameter ofΩ̄ is a line going through the center of the conic. The principal

axes are a pair of orthogonal diameters which are conjugate with respect toΩ̄. In

general a conic only has a pair of principal axes (the exception is the circle). Any

line containing one of the circular pointsĪ∞ or J̄∞ is called isotropic. A point̄F

is a focus ofΩ̄ if, and only if, both isotropic lines̄FĪ∞ andF̄J̄∞ are tangent tōΩ.

In general a conic has four foci, two of which are real and two conjugate complex

[62, 59]. Tab. 3.2 summarizes the euclidean parameters of the catadioptric line

imageΩ̄.

3.3 Projective Properties of the Central Catadiop-

tric Line Image

In the central projection model derived in the previous chapter, points in the scene

are projected onto the surface of an unit sphere centered in the effective viewpoint
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3. Central Catadioptric Line Projection

Principal
Axes

µ̄ = (−ny, nx, 0)t;

ν̄ = (nx∆, ny∆, (n
2
x + n2

y)nz)
t

Major
and
Minor
Axes

√
n2

x+n2
y+n2

z

|∆| ;
n2

z

√
n2

x+n2
y+n2

zξ
2

∆2

Foci

F̄1 = ( nx

nz+
√

(n2
x+n2

y+n2
z)(1−ξ2)

, ny

nz+
√

(n2
x+n2

y+n2
z)(1−ξ2)

, 1)t;

F̄2 = ( nx

nz−
√

(n2
x+n2

y+n2
z)(1−ξ2)

, ny

nz−
√

(n2
x+n2

y+n2
z)(1−ξ2)

, 1)t;

F̄3 = (
nxnz−iny

√
(n2

x+n2
y+n2

z)(1−ξ2)

∆
,
nynz+inx

√
(n2

x+n2
y+n2

z)(1−ξ2)

∆
, 1)t;

F̄4 = (
nxnz+iny

√
(n2

x+n2
y+n2

z)(1−ξ2)

∆
,
nynz−inx

√
(n2

x+n2
y+n2

z)(1−ξ2)

∆
, 1)t

Table 3.2: Euclidean geometry of the conic curveΩ̄

O. The catadioptric image is captured by a perspective camera which projects

the points from the sphere onto a plane. IfHc = I then the image plane is on

the canonical position (by canonical we mean orthogonal to the forward looking

Z axis). Since we are considering a projective framework there is invariance to

scale changes. As a result it can be assumed that, wheneverHc = I, the image

plane is the plane at infinityΠ∞. To each sphere pointP corresponds a projective

ray going through the camera centerOc. Point P projects onP̄ which is the

intersection of the projective rayOcP with Π∞.

Consider a line in the scene which lies in planeΠ as depicted in Fig.3.3.Π,

going through the effective viewpointO with normaln, intersects the spherical

surface in a great circle. Points on the great circle define a central cone of projec-

tive rays with vertex inOc. The central cone of projective rays intersectsΠ∞ in

the conic curvēΩ (equation 3.1). Moreover a pencil of parallel planes intersects

Π∞ in the same line (the horizon line) and a pencil of parallel lines intersectsΠ∞
in the same point (the direction point). Returning to Fig. 3.3,π̄ is the horizon line

of planeΠ, D̄ is the direction point of lineP1P2, andN̄ is the direction orthog-

onal toΠ. Notice that space lineP1P2 lies on planeΠ thusπ̄tD̄ = 0. Moreover

linesP1P2, OcO, projective raysOcP1, OcP2 and the normaln are coplanar,

thus the corresponding direction pointsD̄, Ō, P̄1, P̄2 andN̄ are all collinear.

In section 3.2 we have assumed thatHc = I. CollineationHc depends on
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3.3. Projective Properties of the Central Catadioptric Line Image
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Figure 3.3: The central catadioptric image of a single line

camera intrinsic parameters, the relative rotation between the imaging device and

the reflective surface, and mirror parameters (equation 2.7). In generalHc 6= I

and the final catadioptric image andΠ∞ are related by a general projective trans-

formation between planes (Fig. 3.3). A generic pointP̄ is mapped in̂P = HcP̄,

the conic curveΩ is imaged inΩ̂ = Hc
−tΩ̄Hc

−1, and the linēπ is transformed

in π̂ = Hc
−tπ̄ [39, 29].

The projective transformationHc can change both the position of the line at

infinity π̄∞ and the circular points̄I∞ andJ̄∞ [39, 30, 59]. In general the affine

and euclidean parameters derived in section 3.2 do not hold. The circular points

are fixed if, and only if,Hc is a similarity transformation. If this is not the case,

linesµ̂, ν̂ and pointŝF1, F̂2, F̂3, F̂4 are no longer the principal axes and foci of the

conic curveΩ̂ (see Tab. 3.2). Moreover point̂C = HcC̄ is the center of̂Ω and the

conic type is preserved if, and only if,Hc is an affine transformation. Nevertheless

the projective transformation preserves collinearity, incidence and the cross-ratio.

These invariants are used to derive properties of central catadioptric line image

that hold wheneverHc 6= I. The properties apply to any line projected on a non-

degenerate conic. Section 3.3.1 establishes properties for single line imaging.
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3. Central Catadioptric Line Projection

The propositions enunciated on section 3.3.2 are only valid for central parabolic

systems (ξ = 1). Section 3.3.3 studies the central catadioptric projection of a pair

of lines.

3.3.1 Catadioptric Projection of a Single Line

Fig. 3.3 is a scheme of the central catadioptric projection of a line lying on a plane

Π = (nx, ny, nz, 0)t going through the effective viewpointO. The plane intersects

the sphere on a great circle which is projected on conicΩ̄ at the infinity planeΠ∞.

The point conic̄Ω is transformed byHc in Ω̂ which is the the central catadioptric

image of the original line (equation 3.2). The principal pointŌ = (0, 0, 1)t and

the normal direction̄N = (nx, ny, nz)
t of planeΠ are mapped on pointŝO andN̂

by collineationHc. PlaneΠ intersectsΠ∞ on the horizon linēπ which is mapped

onπ̂ at the catadioptric image plane. Moreover we will consider the absolute conic

Ω̄∞ (not depicted) which is transformed in the conicΩ̂∞ under the projectivity

Hc.

Proposition 3.1: If the point conicΩ̂ is a line image then the polar of the image

centerÔ with respect toΩ̂ is the horizon linêπ of the planeΠ containing the

imaged line and the effective viewpoint (π̂ = Ω̂.Ô).

Proof: The planeΠ, containing the imaged line, intersects the unit sphere in a

great circle. Consider a generic line, lying onΠ and going through the effective

viewpointO, with direction pointD̄ (Fig. 3.3). The line intersects the great circle

in two antipodal pointsP1 andP2 which are equidistant toO. This implies that,

in the plane at infinity, points̄D andŌ are harmonic with respect tōP1 andP̄2.

PointsP̄1 andP̄2 lie in the conic curvēΩ, and the locus of direction points̄D is

the horizon linēπ of planeΠ. Thusπ̄ is the polar ofŌ with respect toΩ̄. The

catadioptric image is related with the plane at infinity by a collineationHc. The

proposition is proved since pole/polar relations are invariant under a projective

transformation.

Proposition 3.2: The absolute conic̄Ω∞ is mapped on the point coniĉΩ∞ at the

catadioptric image plane. If̂Ω is the catadioptric image of a line, then the polar
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3.3. Projective Properties of the Central Catadioptric Line Image

line π̂ of the image center̂O (π̂ = Ω̂.Ô) intersects the conic locuŝΩ in two points

Î andĴ which lie onΩ̂∞.

Proof: In Fig. 3.3 the planeΠ intersects the unit sphere on a great circle. The great

circle defines a central cone of projective rays with vertex inOc. The central cone

is a quadric surfaceS in space. In general a quadric intersects a plane in a conic

curve. The quadric surfaceS intersects the plane at infinityΠ∞ in the conic curve

Ω̄. The conic curvēΩ and the absolute conic̄Ω∞, both lying inΠ∞, intersect in

four points. Each pair of intersection pointsĪ and J̄ defines a line which is the

horizon line of a pencil of parallel planes (real or complex). These planes intersect

the original quadricS in conic sections. Notice that both pointsĪ andJ̄ lie in each

one of these intersection conics. They lie simultaneously in the quadric surface

S (they belong toΩ̄) and in the cutting plane (they belong to the corresponding

horizon line). Points̄I andJ̄ also belong to the absolute conicΩ̄∞ and are circular

points. Thus, one concludes that each plane of the defined pencil intersects the

central coneS on a circular section (for further details see [63, 62]). Moreover if

a planeΠ intersects the quadric surfaceS in a circular section then its horizon line

must go through two intersection points ofΩ̄ with Ω̄∞. The established relations

hold in the catadioptric image plane after the projective transformationHc.

Proposition 3.3: Consider the linêµ defined by the principal point̂O and the

normal directionN̂ in the catadioptric image plane (µ̂ = Ô ∧ N̂). Line µ̂ is the

locus where the major axis̄µ of the conic curvēΩ is mapped by collineationHc

Proof: Accordingly to Tab. 3.2 the major axis of the conic curveΩ̄ is µ̄ =

(−ny, nx, 0)t. Both the principal point̄O = (0, 0, 1)t and the normal direction

N̄ = (nx, ny, nz)
t lie on µ̄ (µ̄tŌ = µ̄tN̄ = 0). Fig. 3.3 shows that the major axis

µ̄ is the intersection line betweenΠ∞ and the plane containing both the normal

directionn and the Z axis. Since collineationHc preserves incidence an collinear-

ity then both pointŝO andN̂ must lie on the locuŝµwhereµ̄ is mapped. However

remember that in general linêµ is no longer the major axis of the catadioptric line

imageΩ̂.

Consider linēπ∞ = (0, 0, 1)t lying on planeΠ∞. Line π̄∞ is mapped on linêπ∞
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3. Central Catadioptric Line Projection

by projective transformationHc. Line π̂∞ is in the canonical position if, and only

if, Hc is an affine transformation. Notice thatπ̂∞ is the intersection line between

Π∞ and the catadioptric image plane. Consider the intersection pointsD̄ of π̄

with µ̄, andM̄ of π̄∞ with µ̄. These points are mapped on pointsD̂ andM̂, which

still are intersection points sinceHc preserves incidence (see Fig. 3.3).

Corollary 3.1: The pole of linêµ with respect to the point coniĉΩ lies on π̂∞
which is the intersection line of the catadioptric image withΠ∞.

Proof: The major axis̄µ is a diameter of the point conic̄Ω, thus the corresponding

pole lies at the line at infinitȳπ∞ [59]. Since pole/polar relations are preserved

under projective transformations it comes that the pole ofµ̂ (point Ω̂∗.µ̂ with Ω̂∗

the conic envelope of̂Ω) lies onπ̂∞.

Proposition 3.4: The cross ratio between pointŝO, N̂, D̂ and M̂, lying on µ̂,

only depends on the angle between planeΠ and planeXOY of the catadioptric

reference frame. In particular{M̂, Ô; N̂, D̂} = − tan(α)2 with α the angle of

equation 3.4.

Proof: We have already seen that the principal point inΠ∞ is Ō = (0, 0, 1)t

and the normal direction is̄N = (nx, ny, nz)
t. Moreoverπ̄∞ = (0, 0, 1)t, µ̄ =

(−ny, nx, 0)t and the conic̄Ω is given by equation 3.1. From proposition 1 comes

that the horizon line of planeΠ is π̄ = Ω̄Ō. The intersection point of lines̄π

andµ̄ is D̄ = µ̄ ∧ π̄ = (−nxnz,−nynz, n2
x + n2

y)
t. PointM̄ is the direction point

of µ̄, thusM̄ = µ̄ ∧ π̄∞ = (nx, ny, 0)t. Computing the cross-ratio between the

four points arises{M̄, Ō; N̄, D̄} = − tan(α)2 with α given by equation 3.4. The

cross-ratio is a projective invariant and the proposition is proved.

Point C̄ is the center of the conic̄Ω lying on planeΠ∞ (see Tab. 3.1). By

definitionC̄ is the pole of the line at infinitȳπ∞ with respect tōΩ [59, 62]. The

pole/polar relations are preserved by projective transformations. Thus, ifC̄ is

mapped on pointŝC in the catadioptric image then it comes thatĈ = Ω̂∗.π̂∞.

MoreoverĈ must lie on linêµ since the major axis̄µ goes through the center̄C.
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3.3. Projective Properties of the Central Catadioptric Line Image

Proposition 3.5: The cross ratio between pointŝO, N̂, D̂ and Ĉ, lying on µ̂,

depends only on the shape of the reflective surface used in the central catadioptric

system. In particular{Ô, D̂; N̂, Ĉ} = ξ2.

Proof: The coordinates of points̄O, D̄ andN̄ have already been derived and cen-

terC̄ is provided on Tab. 3.1. Computing the cross-ratio comes that{Ō, D̄; N̄, C̄} =

ξ2. The proposition is proved since the collineationHc preserves the cross-ratio.

Corollary 3.2: The polar lines of pointŝO and N̂, with respect to the image of

the absolute coniĉΩ∞, are π̂∞ and π̂ (π̂∞ = Ω̂∞Ô andπ̂ = Ω̂∞N̂).

Proof: N̄ is the normal direction of planeΠ, which intersectsΠ∞ on line π̄.

Thus, the polar of̄N with respect to the absolute conic̄Ω∞ is the horizon linēπ.

The property is preserved by projective transformationHc. In a similar manner

the pole/polar relation between̂O andπ̂∞ is proved taking into account that plane

Π∞ is orthogonal to the Z-axis of the catadioptric reference frame (see Fig. 3.3).

ConsiderN̂∗ lying on lineµ̂ in the catadioptric image plane. PointsN̂ andN̂∗ are

conjugate with respect to the catadioptric line imageΩ̂ (N̂tΩ̂N̂∗ = 0). This point

is the locus wherēN∗ = (Ω̄N̄) ∧ µ̄ is mapped by collineationHc. Equation 3.5

is a relation of cross-ratios between pointsÔ, M̂, N̂, Ĉ andN̂∗. The result can

be proved in a similar manner as proposition 3.4 and 3.5, taking into account that

cross-ratios are projective invariants and thatN̄∗ = (nxnz, nynz,−(1 − ξ2)(n2
x +

n2
y))

t. The established relationship will be useful later for calibration purposes.

{Ĉ, N̂ ; M̂ , Ô} = ξ2 − 2ξ2{N̂�, N̂ ; M̂ , Ĉ}

(1 − ξ2)(1 +

√
1 + 4ξ2{N̂�,N̂ ;M̂ ,Ĉ}

(1−ξ2)2 )

(3.5)

3.3.2 Paracatadioptric Projection of a Single Line

The propositions enunciated in this subsection are only valid for central catadiop-

tric systems combining a parabolic mirror with an orthographic camera (Fig. 2.1).

If the mirror is parabolic then theξ parameter is unitary (Tab. 2.3). Replacingξ
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3. Central Catadioptric Line Projection

by 1 on equation 3.1 yields

Ω̄ =


 −n2

z 0 nxnz

0 −n2
z nynz

nxnz nynz n2
z


 (3.6)

Consider the scheme of Fig. 3.3 for the central catadioptric projection of a

single line. PlaneΠ, containing both the line and the effective viewpointO,

intersects the sphere in a great circle. For the particular situation of the paracata-

dioptric camera the parameterξ = 1 and the re-projection centerOc lies on the

sphere surface. The mapping from the sphere to the plane at infinityΠ∞ is a

stereographic projection [34]. The stereographic projection maps any circle in the

sphere into a circle in the plane [59]. Thus the great circle is projected into a cir-

cle Ω̄ lying on planeΠ∞ (equation 3.6). The paracatadioptric image of the line is

Ω̂ = Hc
−tΩ̄Hc

−1, with Hc = KcRcMc (equations 3.2 and 2.7). Since the sys-

tem is parabolic then the optical axis of the orthographic camera must be aligned

with the symmetry axis of the mirror andRc = I (Tab. 2.2). The transformation

Hc is always affine. Since an affine transformation does not change the type of

conic, then the paracatadioptric line imageΩ̂ is always a circle/ellipse.

Consider the following points lying on planeΠ∞: Ī∞ = (1, i, 0)t, J̄∞ =

(1,−i, 0)t, Ḡ = (1, 0,−i)t andH̄ = (1, 0, i)t. Points̄I∞ andJ̄∞ are the circular

points of the plane. It is well known that any circle must go through the circular

points. SincēΩ is always a circle, then it is true thatĪt∞Ω̄Ī∞ = 0 andJ̄t∞Ω̄J̄∞ =

0. Moreover from equation 3.6 arises thatḠtΩ̄H̄ = 0. Thus pointsḠ andH̄ are

conjugate with respect to the conic curveΩ̄. Assume that collineationHc maps

points Ī∞, J̄∞, Ḡ andH̄ into pointsÎ∞, Ĵ∞, Ĝ andĤ in the paracatadioptric

image plane.

Proposition 3.6: A conic curveΩ̂ is the paracatadioptric image of a line in the

scene if, and only if, it contains pointsÎ∞ andĴ∞, and pointsĜ, Ĥ are harmonic

conjugate with respect tôΩ.

Proof: The circleΩ̄ must go through the plane circular pointsĪ∞, J̄∞ [59, 39].

Since collineationHc preserves incidence, then both pointsÎ∞, Ĵ∞ lie on the

parabolic line imagêΩ. Moreover the projective transformation also preserves
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3.3. Projective Properties of the Central Catadioptric Line Image

the cross-ratio and pole/polar relations. Since pointsḠ, H̄ are conjugate with

respect toΩ̄, thenĜ, Ĥ are also conjugate with respect tôΩ. Thus, if Ω̂ is a

paracatadioptric line image, then it must verifyÎt∞Ω̂Î∞ = 0, Ĵt∞Ω̂Ĵ∞ = 0 and

ĜtΩ̂Ĥ = 0. The derived conditions are necessary, nevertheless it is not clear that

they are sufficient. By sufficient we mean that if a conic curve in the paracatadiop-

tric image plane verifies these3 constraints, then it is the locus where a certain line

in the scene is projected. Notice that, neglecting the scale factor, the conic curve

Ω̄ provided by equation 3.6 is a function of2 independent parameters. These2

degrees of freedom (DOF) are associated with the pose of planeΠ containing the

line and the effective viewpoint (Fig. 3.3). Since in general a conic curve has5

DOF, then we must be able to find3, and no more than3, independent constraints.

This proves the sufficiency of the statement.

Corollary 3.3: In a central parabolic vision system all line images intersect in

two pointŝI∞ andĴ∞ lying onπ̂∞.

Proof: The proof of this corollary is straightforward. The circular points of plane

Π∞ lie on line π̄∞. Since the projective transformation preserves incidence and

collinearity, then pointŝI∞, Ĵ∞ lie on line π̂∞ which is the locus wherēπ∞ is

mapped. From proposition 3.6 arises that all paracatadioptric imagesΩ̂ must go

through the image of the circular points which completes the proof.

Proposition 3.7: In a central parabolic image, point̂N and lineπ̂∞ are pole/polar

with respect to the corresponding line imageΩ̂.

Proof: PlaneΠ, with normal directionN̄, intersects the unit sphere in a great

circle which generates the conic̄Ω (Fig. 3.3). PointC̄, provided in Tab. 3.1, is

the center of the conic curve. Makingξ = 1 comes that̄C = N̄. For a parabolic

system the center of conic̄Ω is the normal direction of the planeΠ containing the

imaged line. Since the conic center is the pole of the line at infinity, then pointN̄

and lineπ∞ are pole/polar with respect tōΩ. Pole/polar relations are projective

invariants and the statement is proved.
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3. Central Catadioptric Line Projection

3.3.3 Catadioptric Projection of a Pair of Lines

Fig. 3.4 depicts the central catadioptric projection of a pair of lines. Two lines,

lying on planesΠi andΠj, are imaged on conicŝΩi andΩ̂j. The schematic is

similar to the one used on Fig. 3.3 for a single line. Configurations leading to

degenerate conics are excluded. Thus the imaged lines are not coplanar with the

z-axis and the central catadioptric system is not a perspective camera.

The planesΠi andΠj, going through the effective viewpointO, cut the unit

sphere in two great circles which intersect each other in two antipodal points (Fij

andBij). The direction point of lineFijBij, going through the antipodal points, is

D̄ij. The planeΦij, orthogonal to direction̄Dij and containing the originO, inter-

sects the infinity planeΠ∞ on lineη̄ij. The directionD̄ij is common to planesΠi

andΠj. Their normal vectors belong to planeΦij and the corresponding direction

pointsN̄i andN̄j, lie on the horizon linēηij.

Each great circle defines a central cone of projective rays with vertex inOc,

which intersects the plane at infinityΠ∞ in a conic curve. The conics associated

with Πi andΠj are respectivelȳΩi andΩ̄j. The conic curves intersect each other

in two real pointsF̄ij andB̄ij. These points are the projection of the antipodal

pointsFij andBij. The line going through the two intersection points isµ̄ij =

F̄ij ∧ B̄ij.

ConicsΩ̄i andΩ̄j are imaged in̂Ωi andΩ̂j. These are the central catadioptric

images of the original lines. Points̄Fij, B̄ij, D̄ij, N̄i andN̄j are transformed on

pointsF̂ij, B̂ij, D̂ij, N̂i andN̂j in the catadioptric image plane.̂µij and η̂ij are

the locus where lines̄µij and η̄ij are mapped. The projective transformationHc

preserves all the incidence and collinearity relations.

Proposition 3.8: If F̂ij andB̂ij are the intersection points of two catadioptric line

imagesΩ̂i andΩ̂j, then the image center̂O is always collinear witĥFij andB̂ij.

Proof: Consider the planeΛij, defined by the two antipodal pointsFij, Bij and

the camera centerOc (Fig. 3.4). Notice thatΛij always contains the effective

viewpointO. The projective raysOcFij andOcBij lie on the plane and̄µij is the

horizon line ofΛij. Moreover the projective rayOcO, intersectingΠ∞ in Ō, also

belongs toΛij. The direction point̄O lies on µ̄ij and is collinear with̄Fij and
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Figure 3.4: The central catadioptric image of a pair of lines
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3. Central Catadioptric Line Projection

B̄ij. The proposition is proved since the projective transformationHc preserves

collinearity.

Corollary 3.4: Consider two catadioptric line imageŝΩi andΩ̂j, intersecting on

pointsF̂ij andB̂ij, and the image center̂O. If π̂i, π̂j are the polar lines of̂O with

respect tôΩi, Ω̂j andµ̂ij is the line going through the two intersection points then

π̂i, π̂j andµ̂ij intersect in the same point̂Dij.

Proof: We have already seen that directionD̄ij is common to planesΠi, Πj and

Λij (Fig. 3.4). Thus the corresponding vanishing linesπ̄i, π̄j andµ̄ij must intersect

on D̄ij. From proposition 3.1 comes that the polar linesπ̂i and π̂j are the locus

where the horizon lines of planesΠi andΠj are mapped. Moreover linēµij in

Π∞ is transformed in̂µij at the catadioptric image plane. SinceHc preserves

incidence, comes that̂πi, π̂j andµ̂ij must intersect in the same pointD̂ij, which is

the locus where the common direction̄Dij is mapped.

Corollary 3.5: Two parallel lines (non-coplanar with the centerO) are projected

in the catadioptric image plane on conicŝΩi andΩ̂j. If the polar lines ofÔ are

respectivelŷπi and π̂j, then the direction of the parallel lines is̄Dij = Hc
−1(π̂i ∧

π̂j).

Proof: If two lines are parallel then the common directionD̄ij of the correspond-

ing planesΠi andΠj is the direction of the parallel lines (Fig. 3.4). The direc-

tion point D̄ij is mapped inD̂ij in the catadioptric image plane (D̂ij = HcD̄ij).

This is the intersection point of polar lineŝπi and π̂j, as stated in corollary 3.4

(D̂ij = π̂i ∧ π̂j)). From the above comes that the direction of the parallel lines is

D̄ij = Hc
−1(π̂i ∧ π̂j).

PlanesΠi andΠj define two great circles in the unit sphere surface as depicted

in Fig. 3.4. The great circles intersect each other on the antipodal pointsFij and

Bij. PlaneΦij is orthogonal to direction̄Dij of line FijBij, and intersectsΠ∞
on line η̄ij. Consider the pencil of planes containing lineFijBij. These planes go

through the originO and the corresponding normal direction̄N lies onη̄ij. Line

η̄ij is called the line of the normals of the pencil defined byΠi andΠj. Each plane
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3.3. Projective Properties of the Central Catadioptric Line Image

of the pencil intersects the unit sphere in a great circle going through pointsFij

andBij. Thus, any line lying on these planes is projected into a conicΩ̂ going

through pointŝFij, B̂ij in the catadioptric image plane.

Ω̂i andΩ̂j are two point conics which are the catadioptric images of two lines

lying on planesΠi andΠj (Fig. 3.4). Any pair of catadioptric line images has a

line µ̂ij andη̂ij associated with it. Consider the pencil of planesΠ, defined byΠi

andΠj, and the corresponding planesΛij andΦij. µ̂ij is the line going through the

intersection pointŝFij, B̂ij of conicsΩ̂i andΩ̂j. The horizon line of planeΛij is

transformed in̂µij by collineationHc. η̂ij is the locus where the line of normalsη̄ij
is mapped in the catadioptric image plane. The pointsN̂i andN̂j, associated with

Ω̂i andΩ̂j, lie in η̂ij. Moreover if a catadioptric line imagêΩ goes through points

F̂ij, B̂ij then the correspondinĝN lies onη̂ij and the imaged line is contained by

a plane of the pencil defined byΠi andΠj. Notice thatΩ̂ij, depicted in Fig. 3.4,

is a particular case of this family with the corresponding normal pointN̂ij in the

intersection of lineŝµij andη̂ij.

Proposition 3.9: Consider the pair of catadioptric line imageŝΩi andΩ̂j, inter-

secting on pointŝFij andB̂ij, and the corresponding lineŝµij and η̂ij. If conicΩ̂

is a line image going through pointŝFij, B̂ij then the pole of̂µij with respect tôΩ

lies onη̂ij.

Proof: The catadioptric line imageŝΩ, Ω̂i andΩ̂j intersect in only two visible

points. The line going through the intersection pointsF̂ij andB̂ij is µ̂ij. PointŶ

is the pole of̂µij with respect tôΩ (Ŷ = Ω̂∗.µ̂ij). The goal is to prove that point

Ŷ lies on lineη̂ij. The polar line of the image center̂O with respect toΩ̂ is π̂.

SinceÔ lies onµ̂ij (proposition 3.8), then point̂Y (the pole ofµ̂ij) must lie onπ̂

[59]. Line π̂ intersectŝµij on pointD̂ij, and the coniĉΩ on pointŝI, Ĵ. SinceŶ

andµ̂ij are pole/polar, then the pairs of points{Î, Ĵ} and{D̂ij, Ŷ} are harmonic

conjugates [59]. From proposition 3.1, comes thatπ̂ is the locus where the horizon

line of planeΠ is mapped. PlaneΠ, containing the imaged line, belongs to the

pencil defined byΠi andΠj (Fig. 3.4). The pencil common direction̄Dij is

orthogonal to planeΦij whose vanishing line is̄ηij. Thus, if the absolute conic is

mapped on̂Ω∞ by Hc, thenD̂ij andη̂ij are pole/polar with respect tôΩ∞. Line

π̂ intersects conicŝΩ∞ andΩ̂ on the same pair of pointŝI, Ĵ (proposition 3.2).
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3. Central Catadioptric Line Projection

Assume that lineŝπ andη̂ij intersect on point̂K. SinceD̂ij andη̂ij are pole/polar

with respect tôΩ∞, then the pairs of points{Î, Ĵ} and{D̂ij, K̂} are also harmonic

conjugates.̂Y andK̂ must be the same point and the proposition is proved.

3.4 Calibration with Minimal Information

The theory derived can be applied to the calibration of central catadioptric system

using line images. Section 3.4.1 proves that, given theξ parameter of the mirror

and the relative pose of the camera and the reflective surface, it is possible to cal-

ibrate any hyperbolic/elliptical system from the image of two lines. Section 3.4.2

shows how to use three line images to calibrate any central panoramic system.

3.4.1 Calibrating an Hyperbolic/Elliptical System from Two

Lines

The calibration strategy presented in this section is only valid for central cata-

dioptric systems with an hyperbolic/elliptical mirror (Fig. 3.1). Theξ parameter,

depending on mirror shape, is known. The plane at infinityΠ∞ intersects the

catadioptric image plane on linêπ∞ (Fig. 3.3 and 3.4). It is assumed that the

position ofπ̂∞ is known as well. On the majority of hyperbolic sensors commer-

cially available the perspective camera is not rotated with relation to the reflective

surface. The rotation matrixRc is the identity and collineationHc is an affine

transformation (equation 2.7). Under this circumstances the lineπ̂∞ is in the

canonical position at the catadioptric image plane (π̂∞ = (0, 0, 1)t).

Tab. 3.4 summarizes the algorithm to estimate the position of conicΩ̂∞ from

the catadioptric image of two lines. The lines can not be coplanar with the mirror

symmetry axis, otherwise they would be imaged in a degenerate conic (Fig. 3.1).

This is the unique constraint on the line position in the scene. ConicΩ̂∞ is the

locus where the absolute conic is mapped (Ω̂∞ = Hc
−tHc

−1). If the camera

is not rotated with relation to the mirror (Rc = I), then collineationHc can be

recovered from the Cholesky decomposition ofΩ̂∞ [39, 30, 29].
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3.4. Calibration with Minimal Information

Step 1 Determine the catadioptric line imageŝΩ1 and Ω̂2 using conic
fitting techniques

Step 2 Compute the pointŝF12, B̂12 where conicŝΩ1, Ω̂2 intersect and
determine linêµ12 = F̂12 ∧ B̂12

Step 3 Obtain the linêη12 going through the poles of̂µ12 with respect to
conicsΩ̂1 andΩ̂2

Step 4 Compute the intersection pointŝM12 = µ̂12 ∧ π̂∞ andN̂12 =
µ̂12 ∧ η̂12

Step 5 ObtainĈ12 andN̂∗
12 such that both pairs of points{Ĉ12, M̂12}

and {N̂∗
12, N̂12} are harmonic conjugate with respect to

{F̂12, B̂12} ( Ĉ12 = µ̂12 ∧ (Ω̂iM̂12) = µ̂12 ∧ (Ω̂jM̂12) and
N̂∗

12 = Ω̂∗
i .η̂12 = Ω̂∗

j .η̂12).

Step 6 Given pointsN̂∗
12, N̂12, M̂12, andĈ12, compute the cross-ratio

{Ĉ12, N̂12; M̂12, Ô12} using the relation provided by equation
3.5.

Step 7 Determine the image center̂O from pointsĈ12, N̂12, M̂12 and
the value of{Ĉ12, N̂12; M̂12, Ô12}

Step 8 Obtain the polar lineŝπ1, π̂2 of the image center̂O with respect
to conicsΩ̂1, Ω̂2 (π̂1 = Ω̂1Ô andπ̂2 = Ω̂2Ô).

Step 9 Determine the intersection pointsÎ1, Ĵ1 of π̂1 with Ω̂1, and̂I2, Ĵ2

of π̂2 with Ω̂2

Step 10 Estimate coniĉΩ∞ knowing that pointŝI1, Ĵ1, Î2 and Ĵ2 lie in
the conic and that̂O1 andπ̂∞ are pole/polar with respect tôΩ∞

Table 3.3: Calibrating an hyperbolic/elliptical system from the image of2 lines
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Figure 3.5: Calibrating an hyperbolic/elliptical system from the image of2 lines

The Algorithm Steps

The algorithm steps can be followed in the scheme of Fig. 3.5. Start by obtaining

the catadioptric line imageŝΩ1 and Ω̂2. They are estimated by fitting a conic

curve to points selected in the image. For conic fitting techniques see [32, 33,

76]. The next step is to determine linêµ12 going through the intersection points

of the two conics. The line of the normalŝη12 is computed using the result of

proposition 3.9. Lineŝµ12, η̂12 have already been determined, andπ̂∞ is assumed

to be known. The computation of intersection pointsN̂12, M̂12 and the respective

conjugateŝN∗
12, Ĉ12 lying on lineµ̂12 is trivial.

We have already seen that conicsΩ̂1 andΩ̂2 define a family of catadioptric

line imagesΩ̂. Conic Ω̂ goes through the intersection pointsF̂12, B̂12 and the

point N̂ associated with it, must lie on linêη12. The catadioptric line imagêΩ12,

depicted in Fig. 3.5, is a particular realization ofΩ̂. The original imaged line is

on planeΠ12. The corresponding normal direction̄N12 is mapped on point̂N12,

where lineŝµ12 andη̂12 intersect. Since botĥO andN̂12 lie on µ̂12 (proposition

3.8), then this line is the locus where the major axis ofΩ̄12 is mapped (proposition

3.3). Propositions 3.4, 3.5 and equation 3.5 hold, and the image center can be
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3.4. Calibration with Minimal Information

computed as described on steps 6 and 7.

The polar lines of the image centerÔ areπ̂1 andπ̂2. The computation of the

intersection pointŝI1, Ĵ1, Î2 and Ĵ2 is trivial. From proposition 3.2 comes that

these four points must lie on coniĉΩ∞. MoreoverÔ andπ̂∞ are pole/polar with

respect tôΩ∞ (corollary 3.2). We have the necessary five constraints to determine

the absolute conic locus.

Additional Remarks

The proposed algorithm is not valid for central parabolic images. Accordingly

to proposition 3.7, if the system is parabolic (ξ=1), then pointsN̂12, M̂12 are

coincident with pointŝC12, N̂∗
12. The cross-ratios{N̂∗

12, N̂12; M̂12, Ĉ12} and

{Ĉ12, N̂12; M̂12, Ô12} become respectively0 and 1, despite the imaged lines.

Under these circumstances the image centerÔ can not be recovered using the

result of equation 3.5.

The hyperbolic/elliptical system can be calibrated from the image of two lines.

However it seems that more information is needed to obtain the calibration for the

parabolic situation. This supports the conjecture advanced in [34]. According to

the conjecture, the minimum number of lines to calibrate an hyperbolic/elliptical

system is two, while to calibrate a parabolic system is three. The explanation has

to do with the number of unknowns and constraints. The goal is to estimate the

image of the absolute coniĉΩ∞, which has five unknown parameters. Since each

line introduces two additional unknowns, then using two line images we have a

total of nine parameters to determine. The lines are imaged in conic curves by an

hyperbolic/elliptical system. Each conic has five degrees of freedom, thus two line

images provide ten constraints. Since the constraints are more than the unknowns

the system can be calibrated. Consider the statement made on proposition 3.6

for parabolic systems. Any paracatadioptric line imageΩ̂ must go through the

locus of the circular points and verify the relation̂GtΩ̂Ĥ = 0 whereĜ andĤ

are two fixed points. Thus, the first line image provides five constraints, while

any additional line only gives two constrains more. The calibration from two line

images is an underdetermined problem, since there are only seven constraints for

nine unknowns. We will return to this discussion later on.
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Figure 3.6: Calibrating a central catadioptric system from the image of3 lines
(Part I)

3.4.2 Full Calibration of a Central Catadioptric System from

Three Lines

It is possible to calibrate any central catadioptric system from the image of three

lines (the conventional perspective camera is not included). The lines must be

projected into three non-degenerate conics that do not intersect in the same pair of

points. The imaged lines can not be coplanar with the mirror symmetry axis, nor

lie in planes that intersect in a same line going through the effective viewpointO

(Fig. 3.4). The proposed algorithm is summarized on Tab. 3.4. It is shown that

three lines are enough to obtain the locus of the absolute conicΩ̂∞, the position

of line π̂∞ and the parameterξ without further information.

The Algorithm Steps

Consider the scheme of Fig. 3.6. The three lines are projected on conicsΩ̂1, Ω̂2

andΩ̂3, estimated using a conic fitting technique [32, 33, 76]. Each pair of conics

Ω̂i, Ω̂j intersect on two real points which define a lineµ̂ij (ij = 12, 13, 23). The

three linesµ̂12, µ̂13 and µ̂12 must intersect in the image centerÔ (proposition
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3.4. Calibration with Minimal Information

Step 1 Determine the catadioptric line imageŝΩ1, Ω̂2 and Ω̂3 using
conic fitting techniques

Step 2 For each pair of conicŝΩi, Ω̂j, compute the intersection points
F̂ij, B̂ij and determine linêµij = F̂ij ∧ B̂ij ( ij = 12, 13, 23)

Step 3 Obtain the image center̂O as the intersection point of lineŝµ12,
µ̂13 andµ̂23.

Step 4 For each coniĉΩi compute the polar linêπi of the image center
Ô (i = 1, 2, 3).

Step 5 For each conic curve obtain the pointsÎi and Ĵi where lineπ̂i

intersectŝΩi (i = 1, 2, 3)

Step 6 Estimate coniĉΩ∞ going through pointŝI1, Ĵ1, Î2, Ĵ2, Î3 andĴ3

Step 7 For each pair of conicŝΩi, Ω̂j determine linêηij going through
the poles of̂µij with respect tôΩi, Ω̂j (ij = 12, 13, 23)

Step 8 Obtain the intersection pointŝN1 = η̂12 ∧ η̂13, N̂2 = η̂12 ∧ η̂23

andN̂3 = η̂13 ∧ η̂23.

Step 9 Determine the linêµi = N̂i ∧ Ô associated with the catadioptric
line imageΩ̂i (i = 1, 2, 3)

Step 10 Estimate the locus of the line at infinitŷπ∞ knowing that it goes
through the poles of̂µi with respect to coniĉΩi (i = 1, 2, 3)

Step 11 For each coniĉΩi determine the intersection point̂Di = µ̂i ∧ π̂i

and the polêCi = Ω̂∗
i .π̂∞ which must lie on linêµi (i = 1, 2, 3)

Step 12 The mirror parameterξ is provided by
√

{Ô, D̂i; N̂i, Ĉi} (i =
1, 2, 3)

Table 3.4: Calibrating a central catadioptric system using3 lines
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3. Central Catadioptric Line Projection
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Figure 3.7: Calibrating a central catadioptric system from the image of3 lines
(Part II)

3.8). Given the image center compute the polar line with respect to each conic

image. The polar linêπi intersects the corresponding conicΩ̂i on two pointŝIi,

Ĵi (i = 1, 2, 3). Accordingly to proposition 3.2 these points lie on the conicΩ̂∞,

which is the locus where the absolute conic is mapped by collineationHc. Conic

Ω̂∞ is estimated using the six pointsÎ1, Ĵ1, Î2, Ĵ2, Î3, andĴ3.

Each pair of imaged lines has a line of normals associated with it, which is

mapped on̂ηij in the catadioptric image plane (ij = 12, 13, 23). The line goes

through the poles of̂µij with respect to conicŝΩi andΩ̂j (proposition 3.9). Re-

member that both pointŝNi andN̂j lie on η̂ij. Thus the pairs of lineŝη12, η̂13;

η̂12,η̂23 andη̂13,η̂23 intersect on pointŝN1, N̂2 andN̂3 (Fig. 3.7). The determi-

nation of lineµ̂i associated to the line imagêΩi knowing bothÔ andN̂i is trivial

(proposition 3.3). The locus of the line at infinity can be easily determined taking

into account that the poles of̂µ1, µ̂2 andµ̂3 must lie inπ̂∞ (corollary 3.1). Theξ

parameter of the system mirror is computed using the result of proposition 3.5.
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3.5. Closure

3.5 Closure

The model established for central catadioptric sensors and the geometric proper-

ties derived can be used in many different ways. A possible application is 3D

reconstruction from panoramic images as described in [66]. It is possible to di-

rectly recover the orientation of any world planeΠ from the catadioptric image of

two sets of parallel lines lying on it. Consider that the directions of the two sets of

lines are respectivelȳD andD̄′. The direction points are mapped in the catadiop-

tric image plane at pointŝD andD̂′. These points can be easily determined from

the line images using the result of corollary 3.5. Since bothD̄ andD̄′ must lie on

the horizon line of planeΠ thenπ is mapped on̂π = D̂∧D̂′. If Hc is known then

the horizon line ofΠ is π = Hc
tπ̂ and the orientation of the plane is recovered.

The derived theory can also be used for calibration purposes as discussed on

section 3.4.1 and 3.4.2. The algorithms summarized on Tab. 3.3 and 3.4 show that

two line images are enough to calibrate an hyperbolic/elliptical sensor and any

central panoramic system can be fully calibrated from the image of three lines.

If the catadioptric lines images are correctly determined then the calibration is

straightforward. However the estimation of the these conics using image points

is hard to accomplish. There are several algorithms to fit a conic curve to data

points. In [32, 76] some of these algorithms are reviewed and their performance

is evaluated. A robust conic fitting algorithm has to cope with noisy data points,

biasing due to curvature and partial occlusion. The occlusion problem is of par-

ticular importance for our purposes. By occlusion we mean that the available data

points lie on a small arc of the curve. In these cases, it is very hard to estimate the

correct conic curve, even for small amounts of noise.

Fig. 3.8 is the image of a white board acquired with an hyperbolic sensor.

An edge detector is then used to obtain the sides of the board. Since the board is

a square, the corresponding sides are catadioptric line images. The data points,

picked on each side of the board, are fitted by a conic curve using the approx-

imate mean square algorithm [32]. As it can be observed the estimated curves

go through the sides of the square. According to proposition 3.8, each pair of

catadioptric line images must intersect on two real points. These points define a

line going through the image center. Since there is a single image center, all the

lines going through the intersection points must intersect in a single point. The
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3. Central Catadioptric Line Projection

Figure 3.8: Estimating catadioptric line images using standard conic fitting tech-
niques

estimated conic curves do not satisfy this property. The catadioptric line images

are not correctly determined due to occlusion. The next chapter discusses the ap-

plication of the proposed theory in solving the problem of correctly estimate line

images in the catadioptric image plane.
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Chapter 4

Using Line Images for Calibration

Purposes

The previous chapter proves that an hyperbolic/elliptical system can be calibrated

from the image of two lines and that any central catadioptric sensor can be fully

calibrated using a minimum number of three line images.

In general lines in the scene are mapped into conic loci in the catadioptric im-

age plane. The calibration procedure requires the computation of the intersection

points between lines and conic and between pairs of conics. Section 4.1 proposes

algorithms to accomplish these tasks. It is shown that the problem of intersecting

a line and a conic has a closed form solution. A method to compute the intersec-

tion between two conics is also proposed. Section 4.2 focuses on the estimation

of conic curves. Five conic fitting methods are compared and discussed. It is

shown that in general none of these conventional techniques copes well with oc-

clusion. Section 4.3 uses the geometric properties of catadioptric line projection

to increase the robustness of the conic fitting. The estimated set of conic curves is

used to calibrate the system following the steps summarized in Tab. 3.3 and 3.4.

The calibration results are evaluated using both real images and simulated data.

4.1 Working with Conic Curves

The present section presents a closed form solution to compute the intersection

of a line with a conic curve, and a numerically stable method to determine the
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4. Using Line Images for Calibration Purposes

intersection of two conics. We start by reviewing the concepts of conic locus,

conic envelope and skew symmetric matrix. For a detailed study on these subjects

see [59, 38].

A conic locus is an algebraic locus of second order. It can be parameterized

by a3×3 symmetric matrixΩ (equation 4.1). Consider a pointx in the projective

planeP2. The point lies in the conic curveΩ if, and only if,xtΩx = 0.

Ω =


 a b d

b c e

d e f


 (4.1)

The conic locus is said to be proper or degenerate according as it is or is not

irreducible. For the former the corresponding matrixΩ is full rank, for the latter

the matrix is rank deficient. There are two distinct kinds of degenerate conic locus:

a pair of distinct lines (rank 2 matrix), and a repeated line (rank 1 matrix).

The dual figure of the conic locusΩ is the conic envelopeΩ∗ provided in

equation 4.2. Notice that ifΩ is a full rank matrix, thenΩ∗ = det(Ω)Ω−1.

Ω∗ =


 fc− e2 ed− bf be− cd

ed− bf af − d2 bd− ae

be− cd bd− ae ac− b2


 (4.2)

Consider the3 × 1 vectorsv = (vx, vy, vz)
t andw. We can always associate

a 3 × 3 skew symmetric matrix̃v with vectorv (equation 4.3). Since matrix̃v

is skew symmetric then it verifies̃vt = −ṽ. The vector product ofv andw is

v ∧w = ṽw.

ṽ =


 0 −vz vy

vz 0 −vx
−vy vx 0


 (4.3)

4.1.1 Intersection of a Line with a Conic

Fig. 4.1 depicts a liner = (rx, ry, rz)
t and a conic curveΩ. A line intersects a

conic locus in two points. We aim to determine pointsP+ andP− wherer andΩ

intersect. Consider pointP1 = (−rz,−rz, rx + ry)
t lying on liner (P1

tr = 0).

Notice thatP1 = Isr with Is the3 × 3 matrix provided by equation 4.4.
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Figure 4.1: Intersecting a line with a conic

Is =


 0 0 −1

0 0 −1

1 1 0


 (4.4)

The polar line ofP1 with respect to conicΩ is s = ΩP1. Lines r and s

intersect on pointP2 = r ∧ s = r̃ΩP1. If P1 andP2 are distinct then any point

P, lying on liner, can be written as a linear combination of the two conjugate

points (equation 4.5).

P(λ) = P2 + λP1 (4.5)

PointP(λ) lies in the liner for any value ofλ. We aim to find the pointsP(λ)

belonging to the conic curveΩ. Thus,

P(λ)t.Ω.P(λ) = 0

ReplacingP(λ) by the result of equation 4.5 and taking into account thatP1

andP2 are conjugate with respect to the conic curveΩ yields

P1
tΩP1

tλ2 + P2
tΩP2 = 0
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Figure 4.2: The tangents to the conic going through a point

Solving the above equation in order toλ arises

λ = ±
√

−P2
tΩP2

P1
tΩP1

= ±√−rtΩ∗r

The intersection pointsP+ andP− are determined by replacingλ in equation

4.5. MakingP1 = Isr andP2 = r̃ΩIsr yields

P± = (±√−rtΩ∗rI + r̃Ω)Isr (4.8)

The formula provided in 4.8 computes the pointsP+, P− where liner inter-

sects the conic curveΩ. The formula holds even for degenerate conics. If matrix

Ω has rank 2 then the conic locus is a pair of distinct lines which intersectr in

two distinct points. IfΩ has rank 1 then the conic is a repeated linem. Since

Ω = mmt thenΩ∗ = 0 (equation 4.2) andP+ = P− = r̃m (equation 4.8). The

formula is still valid for a liner tangent to the conic locusΩ. Since the liner lies

in the conic envelopeΩ∗ thenrtΩ∗r = 0. PointsP+ andP− are coincident and

correspond to the tangency point.
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Figure 4.3: Intersection of two conics

Consider a generic pointS in the projective plane. The result of equation 4.8

can be used to compute the pair of conjugate pointsS+,S− lying in the conic

section (Fig. 4.2). The lines tangent to the conicΩ on pointsS+ andS− must

intersect inS. Since pointsS+, S− are conjugate toS, then they must lie in the

corresponding polar liner = ΩS. PointsS+, S− are the loci where liner and

conicΩ intersect. Replacingr by ΩS in equation 4.8 yields

S± = (±
√

−StΩ(Ω∗)ΩSI + ˜(ΩS)Ω)IsΩS

Assuming that the conic is proper and matrixΩ is full rank comes that ˜(ΩS) =

det(Ω)Ω−tS̃Ω−1. MoreoverΩ is a symmetric matrix anddet(Ω)Ω−1 = Ω∗.

After some algebraic manipulation results

S± = (±
√

−det(Ω)StΩSI + Ω∗S̃)IsΩS (4.10)
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4.1.2 Intersection of Two Conic Curves

Consider the conic curvesΩ1 andΩ2 depicted in Fig. 4.3. Two conic curves in-

tersect in four pointsP++, P+−, P−+ andP−−. This section derives an algorithm

to compute the intersection points of a pair of conics. The proposed algorithm is

numerically stable and computationally efficient.

The Self-Polar Triangle Common to a Pair of Conic Curves

Equation 4.11 defines the pencil of conic curvesΩ(λ). The pencil of conics is the

infinite set of conic curvesΩ(λ) which are a linear combination of the base conics

Ω1 andΩ2. Notice that ifP is a point common to bothΩ1 andΩ2 (PtΩ1P = 0

andPtΩ2P = 0), thenP lies in Ω(λ) for any value ofλ (Pt.Ω(λ).P = 0). A

pair of conic curves always intersect in four points which can be real or complex,

distinct or coincident. The pencil of conics determined byΩ1 andΩ2 is simply

the system of all conics through the four common points ofΩ1 andΩ2

Ω(λ) = Ω1 + λΩ2 (4.11)

We shall assume from now on, except when there is an explicit statement to the

contrary, that the four common points of the pencilΩ(λ) are distinct. PointsP++,

P+−, P−+, P−− define a quadrangle. The diagonal triangle of the quadrangle is

depicted in Fig. 4.3. The vertices of the triangle areN1, N2 andN3. It can be

shown that triangleN1N2N3 is the single common self-polar triangle for all the

conics in the pencil [59]. This means that the pair of verticesN1,N2; N1,N3 and

N2,N3 are conjugate with respect to all conicsΩ(λ). Putting it in another way

comes thatN1
t.Ω(λ).N2 = 0, N1

t.Ω(λ).N3 = 0 andN2
t.Ω(λ).N3 = 0 for any

value ofλ.

In general four points define three distinct pairs of lines. Since the common

self-polar triangle is diagonal to the quadrangle defined by the points where the

base conics intersect, arises that the three verticesN1, N2 andN3 are the inter-

section points of the three pairs of lines defined by pointsP++, P+−, P−+ and

P−− (Fig. 4.3). Moreover each one of these pairs of lines is a degenerate conic of

the pencil defined in equation 4.11. Consider the following third order equation

in λ
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det(Ω1 + λΩ2) = 0

It can be shown that if conicsΩ1 andΩ2 intersect in four distinct points then

there are three distinctλ solutions. Assume that the roots areλa, λb andλc.

Replacing in equation 4.11 we obtain matricesΩa, Ωb andΩc. Each matrix has

rank 2 and corresponds to a degenerate conic (a pair of lines). Since the degenerate

conics belong to the pencilΩ(λ) then they are the three line pairs going through

the intersections ofΩ1 and theΩ2. PointsN1, N2 andN3 can be determined by

computing the null spaces of matricesΩa, Ωb andΩc.

Computing the Intersection Points Using the Common Self-Polar Triangle

PointsN1, N2, N3 are the vertices of the self-polar triangle associated with the

pencil of conicsΩ(λ) (equation 4.11). We proved that, knowing a pair of conics

of the pencil, it is possible to determine these vertices by solving a third order

equation and performing some additional algebraic manipulation. If the elements

of pencilΩ(λ) intersect into four distinct points, then the verticesN1, N2, N3

are non collinear. Any pointP in the projective plane can be written as a linear

combination of three non collinear points. Thus, fixating the scale factor and using

[N1N2N3] as a basis arises

P(φ, θ) = N1 + φN2 + θN3 (4.13)

We aim to determine the parametersφ andθ such that the corresponding point

P(φ, θ) provided by equation 4.13 lies in both base conicsΩ1 andΩ2. The equa-

tion to be solved is

{
P(φ, θ)t.Ω1.P(φ, θ) = 0

P(φ, θ)t.Ω2.P(φ, θ) = 0

ReplacingP(φ, θ) by the result of equation 4.13 and taking into account that

N1, N2 andN3 are conjugate points with respect to both conics yields

{
N1

tΩ1N1 + φ2N2
tΩ1N2 + θ2N3

tΩ1N3 = 0

N1
tΩ2N1 + φ2N2

tΩ2N2 + θ2N3
tΩ2N3 = 0
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Figure 4.4: Degenerate Configurations

Solving the system of equations in order toφ andθ results
 φ± = ±

√
N1

tΩ1N1N3
tΩ2N3−N1

tΩ2N1N3
tΩ1N3

N3
tΩ1N3N2

tΩ2N2−N3
tΩ2N3N2

tΩ1N2

θ± = ±
√

N2
tΩ1N2N1

tΩ2N1−N2
tΩ2N2N1

tΩ1N1

N3
tΩ1N3N2

tΩ2N2−N3
tΩ2N3N2

tΩ1N2

(4.16)

The points where conicsΩ1 andΩ2 intersect can be determined by replacing

φ andθ in equation 4.13. The intersection points areP++ = P(φ+, θ+), P+− =

P(φ+, θ−), P−+ = P(φ−, θ+) andP−− = P(φ−, θ−) with φ+, φ−, θ+ andθ−

provided in equation 4.16.

Degenerate Configurations

We have just presented an algorithm to determine the points where a pair of conics

curves intersect. The idea is to use the vertices of the self polar triangle common

to both conics to reference the points in the projective plane. A generic pointP is

written as a linear combination of pointsN1, N2 andN3 (equation 4.13). Since

the base points are conjugate with respect to both conics, the system of equations
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can be simplified and an explicit solution can be easily found (equation 4.16).

The approach is general and can be applied whenever the conics have a com-

mon self polar triangle. For this situation the vertices are non collinear and

N1N2N3 can be used as a basis to reference the other points in the projective

plane (equation 4.13). However there are a couple of configurations for which the

self polar triangle degenerates and the vertices become collinear. In this case it is

not possible to establish the desired basis and the algorithm can not be used.

Assume that conicsΩ1 andΩ2 intersect in four distinct points (Fig. 4.3). It

can be shown that no three of these points can be collinear. The corresponding

quadrangle is never degenerate, nor the diagonal triangle associated with it. Since

the vertices are not collinear then there is a valid basisN1N2N3 and the algorithm

can be applied to determine the four intersection points.

Fig. 4.4 depicts configurations for which the four intersection points are not

distinct. Consider situation A where the pair of conics intersect in two pairs of

coincident points. Despite of the fact that the quadrangle formed by the conic

intersections degenerates into a line segment, the common self polar triangle does

not degenerate. PointsN1, N2 andN3 are not collinear and the algorithm can

be used. In situation B only two of the intersection points are coincident. The

associated quadrangle degenerates in a triangle and the self-polar triangle degen-

erates in a line segment. Since pointsN2, N3 are coincident we can not establish

a reference basis as done in equation 4.13. The proposed approach can not be ap-

plied to this particular configuration. The same happens for situations C and D. In

the former the conics intersect in three coincident points and in the latter the four

intersection points are the same. In both case the self-polar triangle degenerates

into a point. PointsN1, N2 andN3 are coincident and the desired basis can not

be established.

4.2 Fitting a Conic Curve to Image Points

In last section the conic loci were parameterized by a3 × 3 symmetric matrixΩ

(equation 4.17). Since the conic curve in the projective planeP2 has5 indepen-

dent degrees of freedom (DOF), it is natural to represent such locus by a point in

P5 [59]. An alternative parameterization for the conicΩ is provided in 4.17. The

representation of conic loci using points ofP5 can be extremely useful and con-
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venient. For now on we will assume both parameterizations without distinction.

ω = (a, b, c, d, e, f)t (4.17)

A conic fitting algorithm determines the conic curve that best fits the data

points according to a certain distance metric. There are several approaches to

estimate a conic curve using points [76, 32]. They differ between each other by

the criteria, or metric, that is minimized in the fitting process. This section reviews

some well known conic fitting methods and compares their performance.

4.2.1 Least Square Fitting Based on Algebraic Distances

Consider the set of distinct pointsxi = (xi, yi)
t with i = 1, 2 . . .M lying on

a plane (M ≥ 5). The algebraic distanceαi between a pointxi and a certain

conic locusω is given by equation 4.18. If the point lies in the curve then the

corresponding algebraic distanceαi must be null.

αi = α(xi) = ax2
i + 2bxiyi + cy2

i + 2dxi + 2eyi + f , i = 1 . . .M (4.18)

TheM × 6 matrix A provided in equation 4.19 is called the design matrix.

The vector of the algebraic distances between the conic curve and the entire data

set is(α1, α2, . . . , αM)t = Aω. It is straightforward that if the set of points lie in

the conic curve thenA is rank5 andω is in the null space of the matrix.

A =




x2
1 2x1y1 y2

1 2x1 2y1 1

x2
2 2x2y2 y2

2 2x2 2y2 1
...

...
...

...
...

...

x2
M 2xMyM y2

M 2xM 2yM 1


 (4.19)

Assume that the set of data points lying in the conic has more than5 elements.

In general the points are corrupted with noise and matrixA is rank6. If the design

matrix is full rank then there is no null space and the unique solution of equation

Aω = 0 is the trivial one (ω = 0). A common practice is to fit the data points by

the conic which minimizes the sum of the square of the algebraic distances [19].

Thus we aim to find a minima of the functionφ provided in equation 4.20.
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φ(ω) =
M∑
i=1

α2
i = ωtAtAω (4.20)

Clearly the trivial solutionω = 0 is a global minima ofφ. In order to avoid

it, we must constrainω. Several different methods are proposed in the literature

[55, 69, 32]. We focus exclusively on direct methods for which the fitting problem

can be solved naturally by an eigensystem.

Normal Least Squares (LMS)

The LMS method estimates the conic curveω that minimizes the algebraic dis-

tanceφ under the constraint̂ωtω̂ = 1. The objective function is provided below

where the constraint is introduced using a Lagrange multiplierλ

φlms(ω, λ) = ωtAtAω + λ(ωtω − 1)

The conic curveω that minimizesφlms is determined by solving the eigensys-

temAtAω̂ = λω̂. The minimizer is the eigenvector corresponding to the smallest

eigenvalue of matrixAtA [55].

Approximate Mean Squares (AMS)

The approximate mean square metric has been introduced by Taubin in [69]. The

proposed conic fitting method minimizes the algebraic distance under the con-

straintωt(Ax
tAx + Ay

tAy)ω = 1 whereAx andAy are the partial derivatives

of A.

Ax =




2x1 2y1 0 2 0 0

2x2 2y2 0 2 0 0
...

...
...

...
...

...

2xM 2yM 0 2 0 0


 ; Ay =




0 2x1 2y1 0 2 0

0 2x2 2y2 0 2 0
...

...
...

...
...

...

0 2xM 2yM 0 2 0




Introducing the constraint using a Lagrange multiplier yields

φams(ω, λ) = ωtAtAω + λ(ωt(Ax
tAx + Ay

tAy)ω − 1)
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The solutionω which minimizes the final objective functionφams can be ana-

lytically determines by solving the generalized eigensystemAtAω̂ = λ(Ax
tAx+

Ay
tAy)ω̂ [69]. The conic curve estimation is provided by the eigenvector corre-

sponding to the smallest eigenvalue.

Direct Least Square Fitting of Ellipses (FF)

The estimation method proposed by Fitzgibbon and Fisher in [33] is ellipse spe-

cific. Consider the following6 × 6 matrix

C =




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




If a conic ω verifiesωtCω = 1 then it must be a circle/ellipse. The conic

fitting method proposed in [33] estimates the curve by minimizing the algebraic

distance to the data points under the constraintωtCω = 1. The resultant objective

function is provided below where the constraint is introduced using a Lagrange

multiplier

φff(ω, λ) = ωtAtAω + λ(ωtCω − 1)

It can be proved that the ellipse/circleω which minimizesφff is the eigenvec-

tor corresponding to the single positive eigenvalue of the generalized eigensystem

AtAω = λCω [33]. As a final remark notice that the FF method becomes hyper-

bola specific by replacing matrixC by −C.

4.2.2 Gradient Weighted Least Squares Fitting

In general the data points used in the conic fitting process are provided by some

image processing algorithm such as edge detection. It is reasonable to assume

that errors are independent from one point to another, because when detecting

a point we usually do not use any information from other points. Moreover it is

also reasonable to assume that errors are constant for all points because we use the
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same signal processing algorithm. Let the error in a generic pointxi = (xi, yi)
t be

Gaussian with zero mean and a2× 2 covariance matrixσ2I. Notice that the error

distribution is assumed to be equal in both directions and uncorrelated. Consider

the algebraic distanceαi from pointxi to the conicω. The error in the data point

affects the measurement of the algebraic distance. Using the result of equation

4.18 comes that the variance of the error inαi is

σ2
i =

((
∂αi
∂xi

)2

+

(
∂αi
∂yi

)2
)
σ2 (4.26)

An ordinary least square estimator, like the LMS algorithm discussed above,

estimates the conic curveω which minimizes|Aω| whereA is the design matrix

provided in equation 4.19. It can be shown that the LMS produces the optimal es-

timation ofω in terms of minimum covariance if equationsαi = 0 for i = 1 . . .M

have the same variance and are statistically independent [55, 58]. According to

equation 4.26 the variance of the error in the algebraic distanceαi depends on the

Laplacian of functionα on pointxi. Since the variance on the equations is not

constant the LMS estimator does not produce an optimal solution. The estimation

result is statistically biased as discussed in [44]. In order to obtain constant vari-

ance equations, it is sufficient to divide the algebraic distance functionα (equation

4.18) by its gradient. The final normalized objective function becomes

φgrad(ω) =
M∑
i=1

α2
i(

∂αi

∂xi

)2

+
(
∂αi

∂yi

)2

The minima of functionφgrad can not be found by solving an eigensystem as

we have done for the LMS, AMS and FF estimators. The objective function is non

linear and the problem has not a closed form solution. The minimization process

must be performed using iterative gradient descendent methods such as Gauss-

Newton or Levenberg-Marquardt [58, 27]. As a final remark notice that the AMS

estimator described in section 4.2.1 ignores the dependence of the gradient ofα on

ω in order to obtain a closed form solution for the minimization problem [76, 32].
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Figure 4.5: The orthogonal distance between a point and a conic

4.2.3 Least Squares Fitting Based on Orthogonal Distances

The big advantage of using algebraic distance for the conic fitting is the gain

in computational efficiency. For the methods described in section 4.2.1 the es-

timation problem can be naturally solved by an eigensystem and a closed form

solution is obtained. However there are two major disadvantages in using al-

gebraic distance: a point may contribute differently to the parameter estimation

depending on its position on the conics; and the function to minimize is usually

not invariant under Euclidean transformations [76]. The approach proposed in

section 4.2.2 tries to overcome the former drawback dividing functionα by its

gradient. Nevertheless the derived objective function is still not invariant to rota-

tion and translation. A natural way to cope with these problems is to replace the

algebraic distances by the orthogonal distances which are invariant to Euclidean

transformations and do not exhibit the statistical bias described above.

Consider the scheme depicted in Fig. 4.5. The conic curve is described in

P2 by a3 × 3 symmetric matrixΩ. The orthogonal distanceβ between pointx

and conicΩ is the smallest Euclidean distance among all distances betweenx and

points in the conic locus. To compute the orthogonal distanceβ the conic poinṫx,

closest tox in terms of Euclidean distance, must be determined. Notice that the

line joining pointsx andẋ must be orthogonal to the tangent to the conicΩ on

point ẋ. Thus, given a generic pointx, we start by determining the conic pointsẋ
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4.2. Fitting a Conic Curve to Image Points

for which the stated property is verified. It can be shown that in general there are

four different solutions. Given the set of solutions, the Euclidean distance between

x and each candidate pointẋ is computed. The smallest distance corresponds to

the orthogonal distance between pointx and conic curveΩ.

The projective plane is euclidean whenever the line at infinity and the circular

points are in the canonical position [59, 39, 30]. Consider pointDλ = (λ, 1, 0)t

lying on the line at infinityπ∞ = (0, 0, 1)t as depicted in Fig. 4.5. Any two lines

intersecting inDλ have the same direction and are parallel. PointDλ is called the

direction point since it represents all possible directions in the plane. Each value

of parameterλ corresponds to a different direction. The pencil of lines going

through a pointx which is not inπ∞ can be parameterized as follows

r(λ) = Dλ ∧ x

= D̃λx

r(λ) is the line going through pointx with directionDλ. PointEλ = (−1, λ, 0)t

also lies in the line at infinityπ∞ and represents the orthogonal direction toDλ.

Any two lines intersecting the line at infinityπ∞ on pointsDλ andEλ are per-

pendicular to each other. Consider lines(λ) which is the polar of pointEλ with

respect to conicΩ (s(λ) = ΩEλ). The intersection point of linesr(λ) ands(λ) is

xt(λ) provided by equation 4.29.

xt(λ) = s(λ) ∧ r(λ)

= ˜(ΩEλ)D̃λx
(4.29)

We aim to determine the conic pointsẋ such that the corresponding tangent to

the conic is perpendicular to the line joiningẋ andx. Line s(λ) intersectsΩ in

two points. The tangents to the conic on these points must go through pointEλ

becauses(λ) is its polar line. SinceEλ andDλ are orthogonal directions then both

tangents are perpendicular to liner(λ). Assume that for a certain value ofλ lines

s(λ) andr(λ) intersect in a pointxt(λ) lying on the conic curveΩ. According

to the stated the liner(λ), joiningx andxt(λ), is orthogonal to the tangent to the

conic on pointxt(λ). Thus, in order to find pointṡx, we must solve the following

equation inλ

xt(λ)t.Ω.xt(λ) = 0
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Pointsẋ are obtained from equation 4.29 by replacingλ by the roots of the

above equation. The equation inλ is of fourth order. This means that there are four

λ solutions for which liness(λ) andr(λ) intersect in a conic point. In other words,

there are four conic pointṡx such that the line joiningx andẋ is perpendicular

to the tangent to the conic oṅx. The orthogonal distanceβ between pointx and

conicΩ is the distance fromx to the closest conic poinṫx.

The minimaω of the objective functionφortho is the conic curve which fits

the data pointsxi by minimizing the sum of the orthogonal distances. Notice

that the problem of finding the minima has not a closed form solution. The mini-

mization process must be performed using iterative gradient descendent methods

such as Gauss-Newton or Levenberg-Marquardt [58, 27]. The conic fitting using

orthogonal distances has the disadvantage of requiring a considerable computa-

tional effort.

φortho(ω) =
M∑
i=1

βi

4.2.4 Performance Evaluation

This section compares and evaluates the performance of the conic estimators

LMS, AMS, FF, GRAD and ORTHO. The LMS, AMS and FF algorithms are in-

troduced in section 4.2.1. The GRAD method corresponds to the gradient weighted

least squares fitting presented in section 4.2.2. The ORTHO algorithm is the conic

fitting method based on orthogonal distances (section 4.2.3).

Noise in the Data Points

The performance evaluation is performed using artificial generated data. The test

conic is uniformly sampled by100 points. Two dimensional Gaussian noise with

zero mean and standard deviationσ is added to each sample. These samples are

the data points used by the different estimators. The principal points of the esti-

mated curve are compared with the ground truth and the mean error is computed

over100 runs of each experiment. Fig 4.6 shows the result of one run for an ad-

ditive white noise with standard deviationσ = 12 pixel. The test conic (ground

truth) is depicted by the black solid line. The black dots correspond to the data
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CONIC ESTIMATION ( Noise std 12 pixels; Occluded Arc 0º)
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Figure 4.6: Conic fitting in the presence of noise
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Figure 4.7: The performance of the conic estimators in the presence of noise
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points used for the estimation.

Fig. 4.7 shows the performance of the different conic fitting methods in the

presence of noise. For all methods the mean estimation error increases when

the standard deviation of the noise increases. The performance suffers a graceful

degradation in the presence of increasing noise. The GRAD and ORTHO methods

are clearly the most robust ones. This is understandable since the LMS, AMS

and FF methods are based on the algebraic distance which has some problems as

discussed in section 4.2.2. Nevertheless it is important to remind that the GRAD

and ORTHO algorithms do not have a closed form solution. The computational

effort required to find a solution using gradient descendent methods is in general

high. Moreover problems of convergence and local minima may always arise

when using non linear optimization techniques [27]. Among the methods with

closed form solution the FF algorithm seems to be the most robust one. However,

since the FF method is ellipse/circle specific, it requires that the type of conic is

known in advance.

Partial Occlusion of the Conic

In the previous experiment the entire conic curve is uniformly sampled. The

present experiment considers a partial arc of the conic instead of using the en-

tire curve. Consider the problem of fitting a conic to image points. Often the

conic curve is not entirely visible in the image plane. Thus it is important to study

the behavior of the conic fitting methods when the curve is partially occluded.

The data points are generated as follows. An arc of the test conic, with a prede-

fined amplitude, is uniformly sampled by100 points. The Gaussian noise added

to the samples has a standard deviationσ = 2 pixel. The estimated conic is com-

pared with the ground truth and the mean error is computed over100 runs for each

experiment.

Fig. 4.8 shows the estimation results of the different methods when the sam-

pled arc has an amplitude of180◦, 120◦, 90◦ and60◦. When half of the conic is

occluded all the algorithms present a fairly good estimation. For a sampled arc

of 120◦ only the GRAD, ORTHO and AMS methods provide estimations close to

the original conic. When the occlusion is greater than270◦ none of the methods

provide good estimations.
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Figure 4.8: Conic fitting in the presence of occlusion
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Figure 4.9: The performance of the conic estimators in the presence of occlusion

69



4. Using Line Images for Calibration Purposes

Fig. 4.9 shows the mean estimation error over100 runs for each experiment.

The graphic on the left refers to the error in the principal points. The graphic on the

right shows the error on the orientation angle which is the angle between the major

axis of the conic and the plane X axis. As expected an increase on the occlusion

angle corresponds to a decrease in the performance of the estimators. For all

methods the estimation result suffers an abrupt degradation when the occlusion is

higher than240◦. None of them provide an useful estimation when the sampled

arc has an amplitude below100◦. Nevertheless the ORTHO, GRAD and AMS

methods seem to be the ones that better cope with occlusion. The FF method has

clearly the worst performance. The bad behavior of the FF method in the presence

of occlusion is in accordance with the experimental observations presented in [33].

4.3 Calibration of Central Catadioptric Systems

In the previous chapter we have proved that an hyperbolic/elliptical system can

be calibrated from the image of two lines and that any central catadioptric system

can be fully calibrated using a minimum number of three line images. In the

former situation the shape of the reflective surface and the relative pose between

the camera and the mirror must be known in advance. In the second case there

is no requirements besides the system having a single effective viewpoint. The

algorithms are summarized in Tab. 3.3 and 3.4.

After estimating the conic curves the calibration procedure is trivial. Section

4.1 presents methods to determine the intersection points between a line and a

conic and between a pair of conic curves. The methods are computationally effi-

cient and easy to implement. The crucial step in the calibration procedure is the

accurate estimation of the conic curves where the lines are projected. As discussed

at the end of chapter 3 this task is hard to accomplish. In general only a small arc

of the conic locus is visible in the catadioptric image. According to the results of

the previous section the standard conic fitting techniques do not cope well with

occlusion.

This section discusses the conditions that must be verified for a set of conic

curves to be the catadioptric projection of a set of lines in the scene. The condi-

tions are derived taking into account the geometric properties presented in section

3.3. The idea is to use the properties of central catadioptric line projection to
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constrain the search space and improve the performance of the conic fitting in the

presence of occlusion.

4.3.1 Calibration of an Hyperbolic/Elliptical System

Consider a pair of lines in the scene imaged by a central catadioptric system

combining an hyperbolic/elliptical mirror with a conventional perspective cam-

era. Since the shape of the reflective surface is known then theξ parameter can be

easily determined (Tab. 2.3). Moreover it is assumed that the camera is not rotated

with relation to the mirror and that the line at infinitŷπ∞ is in the canonical posi-

tion in the image plane. The system can be calibrated using the strategy presented

in section 3.4.1 and summarized in Tab. 3.3. The required geometric construction

is schematized on Fig. 3.5 wherêΩ1 andΩ̂2 are the conic loci corresponding to

the catadioptric line images.

The Necessary Conditionνξ(ω̂1, ω̂2) = 0

Each pair of conic curveŝΩ1, Ω̂2 has a coniĉΩ12 associated with it. The curve

Ω̂12, depicted in Fig. 3.5, is a particular realization of the family of line images

going through the intersection pointsF̂12 andB̂12. PointsÔ, D̂12 andN̂12 lie on

line µ̂12 which is the major axis of̂Ω12. Assumeξ̌ =
√
{ÔD̂12; N̂12Ĉ12} with

Ĉ12 the conjugate of̂M12 with respect to coniĉΩ12 ({M̂12, Ĉ12; F̂12, B̂12} =

−1). According to the result of proposition 3.5 comes thatξ̌ is an estimate of

parameterξ which is known. If the pair of conicŝΩ1, Ω̂2 are the catadioptric

projection of a pair of lines theňξ andξ must be equal.

Consider functionνξ provided in equation 4.32.̂ω1, ω̂2 is a pair of conic loci

parameterized by points inP5 (equation 4.17). The geometric construction of Fig.

3.5 can be performed for any two conicsω̂1, ω̂2. Thus any pair of conic loci has

a valueξ̌ associated with it. Functionνξ makes the correspondence between the

pairs of conics and(ξ − ξ̌)2.

νξ(ω̂1, ω̂2) = (ξ − ξ̌)2 (4.32)

The domain of functionνξ is the space of pairs of conic curves. Ifω̂1, ω̂2 is a

pair of catadioptric line images thenνξ(ω̂1, ω̂2) must be null. Sinceνξ is always
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Minimization Using the ξ Constraint (Noise std 0.5 pixels)

Ground Truth
First Estimate
Optimized Result

Minimization Using the ξ Constraint (Noise std 2 pixels)

Ground Truth
First Estimate
Optimized Result

Figure 4.10: Calibration of an hyperbolic sensor from2 line images

positive, the pairs of catadioptric line projections are global minima of the func-

tion. Notice however that conditionνξ(ω̂1, ω̂2) = 0 is necessary but not sufficient

for ω̂1, ω̂2 to be a pair of catadioptric line images. This means that functionνξ

may have other minima than the ones corresponding to the line projections.

The Calibration Procedure

Fig. 4.10 exhibits two simulated test images of a pair of lines acquired by an

hyperbolic sensor. The blue cross signs the image center and the black circle is

the image of the mirror boundary. The lines in the scene are mapped into conic

curves which are marked using dark blue (the ground truth). The data points used

to estimate the line images are taken from the conic arcs inside the circle. Two

dimensional zero mean gaussian noise is added to the image points. On the left the

noise standard deviation isσ = 0.5 pixels, and on the right the standard deviation

is σ = 2 pixels.

An initial estimate ofω̂1 and ω̂2 can be obtained by fitting a conic curve to

the data points visible in the image plane. The conic fitting is performed using

the AMS method described in section 4.2.1. The AMS method is suitable for the

task since it has a closed form solution and it is more robust to occlusion than the

LMS and FF algorithms. The initial estimates of the conic curves are marked by

the magenta line. Notice that inside the circle the arcs of the estimated conics are

coincident with the ground truth.
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The initial estimates of conicŝω1 andω̂2 are used to calibrate the catadioptric

system using the procedure summarized on Tab. 3.3. The computed image center

is signed by the small magenta circle in both images of Fig. 4.10. The calibra-

tion results are incorrect in both cases. This is due to a wrong estimation of the

catadioptric line images.

Consider functionεh provided in equation 4.33. Functionφ is the sum of the

square of the algebraic distances between the curve and the corresponding data

points (equation 4.20). According to the discussion above, ifω̂1, ω̂2 correspond

to a pair of catadioptric line images theňξ and ξ are the same andνξ(ω̂1, ω̂2)

must be null. The difference(ξ − ξ̌)2 is introduced as a penalty term weighted

by a multiplying parameterk0. The conic loci can be estimated by minimizing

function εh. The function is highly non linear and the minima must be found

using iterative gradient descending methods [58, 27].

εh(ω̂1, ω̂2) = φ(ω̂1) + φ(ω̂2) + k0νξ(ω̂1, ω̂2) (4.33)

The entire procedure can be summarized in the following manner. An initial

estimate of the catadioptric line images is obtained from the data points by apply-

ing the AMS algorithm. The image centerÔ and the image of the absolute conic

Ω̂∞ are determined following the steps of Tab. 3.3. The value ofξ̌ is computed

using the cross-ratio relation of proposition 3.5. A novel estimation of the line

images is obtained by minimizing functionεh where(ξ − ξ̌)2 is introduced as a

penalty term. The procedure is iterated until the value ofεh is below a certain

threshold.

The conic loci estimated using this procedure are depicted in Fig. 4.10. The

cyan triangle symbolizes the image center computed following the steps of Tab.

3.3. In both images the new estimate of the image center is closer to the ground

truth than the initial one. Nevertheless the improvement is slight and the calibra-

tion results are far from being correct.

Conclusions

The calibration procedure performs the minimization of functionεh using gradient

descendent methods. If the objective function has local minima and/or saddle

points then there is no way to guarantee that the iterative process converges to the
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right solution [58, 27]. In this case the gradient descending method may stop on

one of these points instead of converging to the ground truth. This may explain

the poor calibration results observed in Fig. 4.10.

The domain of functionεh is the space of pairs of conic curves. Since the

domain has dimension greater than 3 the function can not be plotted in a straight-

forward manner. Due to the occlusion problem there are several pairs of conic

curvesω̂1, ω̂2 which minimize the algebraic distance to the data points. This is

the reason why the AMS method is unable to provide a good initial estimate of the

conic loci. If it is true that any pair of lines projects into a pair of conics, it is not

true that any pair of conic loci is the catadioptric image of a pair of lines. The idea

of using functionνξ as a penalty term is to avoid solutions corresponding to conic

loci that can not be line images. However the conditionνξ(ω̂1, ω̂2) = 0 is neces-

sary but not sufficient. Not all minima ofνξ are pairs of catadioptric line images.

Thus it is reasonable to assume that the objective functionεh (equation 4.32) has

local minima and/or saddle points where the iterative gradient descending method

stops.

4.3.2 Calibration of a General Central Catadioptric System

Any central catadioptric system can be fully calibrated from the image of three

lines. The calibration method is summarized on Tab. 3.4 and the required geo-

metric construction is depicted in Fig. 3.6 and 3.7.

Fig. 4.11 shows a simulated image of three lines in the scene. The lines are

imaged into three conic curves marked using dark blue. Each conic arc visible in

the image is sampled by300 points. Two dimensional zero mean gaussian noise

with standard deviationσ is added to the data points. In the images of the top row

the noise standard deviation isσ = 0.5, and in the bottom row isσ = 2.

The magenta conic loci are the initial estimations of the catadioptric line im-

ages (right images in Fig. 4.11). These estimates are obtained by fitting conics to

the data points using the AMS method (section 4.2.1). According to the result of

proposition 3.8 the image center̂O must be collinear with the intersection points

of any two line images. As you can observe this does not happen which proves

that the conic loci are not correctly estimated.

The AMS algorithm fits the conic to the data points by minimizing the sum of
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Minimization Using Center and Ortogonality Constraints (Noise std 0.5 pixels)

Ground Truth
Initial Estimate

Minimization Using Center and Ortogonality Constraints (Noise std 0.5 pixels)

Ground Truth
Optimized Result

Minimization Using Center and Ortogonality Constraints (Noise std 2 pixels)

Ground Truth
Initial Estimate

Minimization Using Center and Ortogonality Constraints (Noise std 2 pixels)

Ground Truth
Optimized Result

Figure 4.11: Calibration of a general catadioptric sensor from 3 line images
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Figure 4.12: Geometric properties of a pair of catadioptric line images

the squares of the algebraic distances. Since the curve is partially occluded there

are several minima in the objective function. We aim to overcome the problem

by deriving conditions that must be verified by a set of catadioptric line images.

The idea is to include these conditions as penalty terms and obtain an objective

function with a single minimum in the correct solution.

The Image Center Constraint

Assume that conicŝΩi, Ω̂j in Fig. 4.12 are the catadioptric images of a pair of

lines. The conic curves intersect each other on pointsF̂ij, B̂ij. According to the

result of proposition 3.8 the image centerÔ must lie on linêµij going through the

intersection pointŝFij, B̂ij. Assume that̂πi, π̂j are the polar lines of the image

centerÔ with respect to conicŝΩi, Ω̂j. The polar lines intersect on point̂Dij.

From corollary 2.4 comes that̂Dij must lie on lineµ̂ij. Thus if Ω̂i, Ω̂j are the

catadioptric projections of a pair of lines then pointsÔ, D̂ij, F̂ij andB̂ij must be

collinear.

Consider the pair of conic locîΩi, Ω̂j and pointÔ. Since the polar lines are

π̂i = Ω̂iÔ andπ̂j = Ω̂jÔ then the intersect point iŝDij = π̂i ∧ π̂j = (Ω̂iÔ) ∧
(Ω̂jÔ). Notice thatD̂ij andÔ are conjugate with respect to both conics. Consider

line µ̂ij defined by pointŝO andD̂ij. Any pointP lying on µ̂ij can be written as a
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linear combination of pointŝO andD̂ij (equation 4.34).

P(λ) = Ô + λD̂ij (4.34)

Line µ̂ij intersectŝΩi in two points. The intersection points can be determined

by solving equationP(λ)tΩ̂iP(λ) = 0 in order toλ. ReplacingP by the result of

equation 4.34 and taking into account thatD̂ij andÔ are conjugate with respect

to Ω̂i yields

λi = ±
√√√√− ÔtΩ̂iÔ

D̂t
ijΩ̂iD̂ij

The same procedure can be used to determine the points where lineµ̂ij and

conicΩ̂j intersect. In this case theλ solution is

λj = ±
√√√√− ÔtΩ̂jÔ

D̂t
ijΩ̂jD̂ij

Assume that̂Ωi, Ω̂j are the catadioptric projections of a pair of lines andÔ

is the image center. From the discussion above comes that lineµ̂ij intersects both

conics in the same pair of points. These points are the locus where the conicsΩ̂i,

Ω̂j intersect each other (pointŝFij, B̂ij). Since the pairs of pointsP(λ+
i ),P(λ+

j )

and P(λ−i ),P(λ−j ) are coincident then the solutionsλi and λj must be equal.

Thus,

λ2
i = λ2

j ⇔ D̂t
ij(Ω̂jD̂ijÔ

tΩ̂i − Ω̂iD̂ijÔ
tΩ̂j)Ô = 0

Assume functionχ provided in equation 4.38 witĥωi, ω̂j a pair of conic curves

parameterized inP5. If ω̂i, ω̂j correspond to the catadioptric projection of a pair

of lines andÔ is the image center thenχ(ω̂i, ω̂j) must be null.

χ(ω̂i, ω̂j) = (D̂t
ij(Ω̂

t
jD̂ijÔ

tΩ̂i − Ω̂t
iD̂ijÔ

tΩ̂j)Ô)2 (4.38)
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Orthogonality Constraints

Consider the pair of conic curveŝΩi, Ω̂j depicted in Fig. 4.12.η̂ij is the line

defined by the poles of̂µij with respect to conicŝΩi, Ω̂j. According to proposi-

tion 3.9, if the conic curves are two catadioptric line images thenη̂ij is the locus

where the corresponding line of normals is mapped. This line is defined by the

normal directions to the planes containing the imaged lines and the system effec-

tive viewpoint (Fig. 3.4). Consider the intersection pointD̂ij and the image of the

absolute coniĉΩ∞. SinceD̂ij is the locus of the common direction of the planes

containing the imaged lines (corollary 2.4) then the polar line ofD̂ij with respect

to Ω̂∞ is η̂ij.

Assume functionν defined on equation 4.39 wherêΩ∗
∞ is the conic envelope

of the image of the absolute conic. If conicsΩ̂i, Ω̂j are the catadioptric projection

of a pair of lines then the pole of̂ηij with respect to the image of the absolute conic

is D̂ij. The vector product̂Dij ∧ (Ω̂∗
∞η̂ij) is zero and functionν(ω̂i, ω̂j) must be

null.

ν(ω̂i, ω̂j) = (D̂ij ∧ (Ω̂∗
∞η̂ij))

t(D̂ij ∧ (Ω̂∗
∞η̂ij)) (4.39)

Calibration Procedure

Consider the catadioptric image of three lines depicted in Fig. 4.11. The lines

are projected on conic curveŝΩ1, Ω̂2 and Ω̂3 which are represented inP5 by

points ω̂1, ω̂2 and ω̂3. The initial estimates of the conic loci are obtained using

the AMS algorithm. The image center̂O and the image of the absolute conicΩ̂∞
are estimated following the steps summarized on Tab. 3.4. In general the initial

conic estimates are not accurate and linesµ̂12, µ̂13 andµ̂23 do not intersect in the

same point (Fig. 3.6). In this case the image center is determined using normal

least squares [58]. A novel estimation for the catadioptric line images is obtained

by minimizing functionεg provided in equation 4.40. The image center and the

absolute conic are determined using the new conic estimations. The procedure is

iterated until functionεg takes values below a certain threshold.
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εg(ω̂1, ω̂2, ω̂3) =
3∑
i=1

φ(ω̂i) + k0

∑
ij

χ(ω̂i, ω̂j) + k1

∑
ij

ν(ω̂i, ω̂j) (4.40)

The estimated conicŝΩ1, Ω̂2 andΩ̂3 are used to calibrate the system (Tab.

3.4). The final results can be observed on the right of Fig. 4.11. The lines defined

by the conic intersections meet in a single point for both noise level situations

(σ = 0.5 andσ = 2). As you can observe the intersection point is close to the real

image center.

Conclusions

The domain of functionsχ and ν, provided in equations 4.38 and 4.39, is the

space of pairs of conics. We have shown that ifω̂i, ω̂j are the catadioptric images

of a pair of lines then bothχ(ω̂i, ω̂j) and ν(ω̂i, ω̂j) must be null. Remark that

conditionsχ(ω̂i, ω̂j) = 0 andν(ω̂i, ω̂j) = 0 are necessary but not sufficient. Both

functions may have minima which do not correspond to pairs of catadioptric line

images.

Functionεg (equation 4.40 is highly non linear and the minima must be found

using iterative gradient descending methods [58, 27]. As stated in the previous

section convergence problems may arise whenever the objective function has local

minima and/or saddle points. Functionsχ and ν are used as penalty terms in

functionεg. The goal is to avoid solutions, which minimize the algebraic distances

to the data points, but do not correspond to a coherent catadioptric image of a set

of lines in the scene.

We have performed several experiments like the one depicted in Fig. 4.11.

The proposed approach worked properly in many of the simulations. The conic

loci were accurately estimated and the system was correctly calibrated. Neverthe-

less we have also detected many situations for which the procedure did not work

well. Notice that we have no guarantee that the objective functionεg has not mul-

tiple minima and/or saddle points. As stated in the previous section the gradient

descending method may converge to one of these points which do not correspond

to the correct conic loci where the lines are imaged.
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Figure 4.13: Segmentation of catadioptric line images

4.3.3 Experiments with Real Images

Experiments with real images are reported in this section. Fig. 4.13 depicts the

graphic user interface (GUI) used to segment the line images and obtain the data

points to perform the conic fitting. An edge detector is applied to the original cata-

dioptric image [21]. The conic curves corresponding to line images are segmented

by hand.

Fig. 4.14 is an example of a test image. The GUI is used to obtain the data

points corresponding to5 line images. The initial estimation of the conic loci is

obtained using the AMS method. The result is depicted on the left image where

the estimated conics perfectly fit the visible arcs of the catadioptric line images.

Nevertheless proposition 3.8 is not verified which means that the conic curves are

not correctly estimated. The right image shows the final estimation of the conic

curves obtained by minimizing functionεg (equation 4.40) following the proce-

dure of section 4.3.2. This set of catadioptric line images seems coherent since it

verifies the geometric properties derived in chapter 3. The system is calibrated in

a straightforward manner following the steps summarized in Tab. 3.4.

Fig. 4.14 and 4.15 show the same test image. In the former5 lines are used to

calibrate the catadioptric systems. In Fig. 4.15 we are using an additional line for

the same purpose. The left image shows the initial estimation of the6 catadioptric
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Figure 4.14: Calibration of a general catadioptric system

Figure 4.15: Convergence for a wrong minima
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line images obtained using the AMS method. The right image exhibits the final

estimation of the conic loci determined by minimizing functionεg (section 4.3.2).

The lines defined by the conic intersections meet in a single point as stated in

proposition 3.8. Compare the left image of Fig. 4.15 with the right image of

Fig. 4.15. Notice that same line images have distinct estimations. Moreover

different calibration results are obtained for the same catadioptric systems using

the same test image. This can only be explained by convergence problems during

the iterative minimization due to the existence of multiple minima.

4.4 Closure

Chapter 3 proves that in general a line in the scene is mapped in a conic locus in the

catadioptric image plane. Moreover it shows that an hyperbolic/elliptical system

can be calibrated from the image of two lines and that any central catadioptric

sensor can be fully calibrated using a minimum of three line images.

The present chapter starts by reviewing issues on the geometry of conic curves.

Algorithms to compute the intersection between a line and a conic and between a

pair of conics are proposed. It is shown that estimating catadioptric line images

from image points is far from being a trivial task. In general only small arcs of the

line images are visible in the catadioptric image plane. Since standard conic fitting

techniques do not perform well in the presence of strong occlusion, the accurate

estimation of the conic loci is hard to accomplish.

The calibration algorithms of tables 3.3 and 3.4 require the knowledge of the

conic loci where lines are mapped. Due to the occlusion problem these conic

curves can not be accurately estimated using standard conic fitting techniques.

Section 4.3 derives geometric conditions that must be verified by a set of conic loci

to be the catadioptric image of a set of lines. We try to use these necessary condi-

tions to constrain the search space and improve the estimation accuracy. However,

since the resulting objective function must be minimized using gradient descend-

ing techniques, convergence problems may arise. Simulation results show that

the calibration of an hyperbolic/elliptical sensor using just two line images is in

general poor. The objective function presents local minima and/or saddle points

where the iterative minimization process stops. A similar problem is observed

when using three or more lines to calibrate. In some of the experiments the sen-

82



4.4. Closure

sor is successfully calibrated. In others the set of catadioptric line images is not

correctly estimated.
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Chapter 5

The Paracatadioptric Camera

The paracatadioptric sensor combines a parabolic shaped mirror and a camera

inducing an orthographic projection. Such a configuration provides a wide field

of view while keeping a single effective viewpoint. As discussed in chapter 2,

there are other catadioptric configurations providing central panoramic imaging

[5]. Panoramic central catadioptric systems can be built by combining an hy-

perbolic mirror with a perspective camera and, a parabolic mirror with an or-

thographic camera. The construction of the former requires a careful alignment

between the mirror and the imaging device. The camera projection center must

be positioned in the outer focus of the hyperbolic reflective surface. The paracata-

dioptric camera is easier to construct being broadly used in applications requiring

omnidirectional vision [67, 64, 20, 56].

The present chapter focuses exclusively on paracatadioptric sensors. A gen-

eral mapping model for central catadioptric image formation has been introduced

in chapter 2. The central catadioptric projection is isomorphic to a projective

mapping from a sphere, centered in the effective viewpoint, to a plane with pro-

jection center on the perpendicular to the plane [34, 7]. For the particular case of

paracatadioptric sensors the projection center lies on the sphere and the projective

mapping is a stereographic projection. The plane and the final catadioptric image

are related by a affine transformation depending on the mirror and camera intrin-

sic parameters. Section 5.1 reviews the paracatdioptric image formation model.

Due to its particular features the paracatadioptric sensor has properties which are

not verified by other types of central catadioptric systems (section 3.3.2).

85



5. The Paracatadioptric Camera

Section 5.2 introduces an effective way to calibrate the paracatadioptric cam-

era using lines. It has already been proved that three line images are enough to cal-

ibrate any central catadioptric system (section 3.4.2) [8]. However, as discussed

in chapter 4, the estimation of the conic curves where lines are mapped is hard

to accomplish. In section 5.2 we show that a set of conic curves corresponds to

paracatadioptric line images if, and only if, certain properties are verified. These

properties are used to constrain the search space and correctly estimate the curves.

If the camera is skewless and the aspect ratio is known then the conic fitting prob-

lem is solved naturally by an eigensystem. For the general situation the conic

curves are estimated using non-linear optimization.

Section 5.3 proposes a conic fitting method to estimate lines in the paracata-

dioptric image plane. The algorithm is specific for line images and requires that

the calibration of the parabolic system is known. If it is true that any line is pro-

jected into a conic, it is not true that any conic is the image of a line (section

3.3.2). Considering the space of all conic curves, the paracatadioptric line images

lie on a linear subspace which depends on the system calibration. We show that

the line images can be accurately determined by constraining the search space.

The corresponding locus is estimated by fitting a conic in the subspace to the data

points. The approach is computationally efficient since the fitting problem can be

solved by an eigensystem.

5.1 Paracatadioptric Camera Model

This section reviews the image formation model for the paracatadioptric system.

The model presented in here is the particular case of the general mapping model

for central catadioptric systems when theξ parameter is unitary (see Tab. 2.3).

Assume a paracatadioptric system combining a parabolic mirror with latus

rectum4p, and an orthographic camera. The principal axis of the camera must be

aligned with the symmetry axis of the paraboloid. The paracatadioptric projection

can be modeled by a stereographic projection from an unitary sphere, centered in

the effective viewpoint, into a planeΠ∞ as shown in Fig. 5.1.

The world point shown in Fig. 5.1 is imaged at pointx̂ in the paracatadioptric

image plane. The mapping can be described as follows. To each visible scene

point corresponds an oriented projective rayx = (x, y, z)t, joining the 3D point
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Figure 5.1: Model for paracatadioptric image formation

with the projection centerO. The projective ray intersects the unit sphere in a

single pointXc. Consider a pointOc, with coordinates(0, 0,−1)t, which lies on

the unitary sphere. To eachx corresponds an oriented projective rayx̄ joiningOc

with the intersection pointXc. The non-linear mapping} (equation 5.1) corre-

sponds to projecting the scene in the unity sphere surface and then re-projecting

the points on the sphere into a planeΠ∞ from the novel projection centerOc.

Points in catadioptric image planêx are obtained after a collineationHc of 2D

projective points̄x. Equation 5.2 shows that the affine transformationHc de-

pends on the intrinsic parametersKc of the orthographic camera, and on the latus

rectum of the parabolic mirror.

}(x) = (x, y, z +
√
x2 + y2 + z2)t (5.1)

x̂ = Kc


 2p 0 0

0 2p 0

0 0 1




︸ ︷︷ ︸
Hc

x̄ (5.2)
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Consider the planeΠ = (n, 0)t going through the effective viewpointO as

depicted in Fig. 5.1 (n = (nx, ny, nz)
t). The paracatadioptric image of any line

lying on Π is the conic curvêΩ. The line in the scene is projected into a great

circle in the sphere surface. This great circle is the curve of intersection of plane

Π, containing both the line and the projection centerO, and the unit sphere. The

projective rays̄x, joining Oc to points in the great circle, form a central cone

surface. The central cone, with vertex inOc, projects into the conic̄Ω in plane

Π∞ (equation 5.3). Since the image plane andΠ∞ are related by collineationHc,

the result of equation 5.4 comes in a straightforward manner.

Ω̄ =


 −n2

z 0 nxnz

0 −n2
z nynz

nxnz nynz n2
z


 (5.3)

Ω̂ =


 a b d

b c e

d e f


 = Hc

−tΩ̄Hc
−1 (5.4)

5.2 Paracatadioptric Camera Calibration Using Lines

It has already been proved that any central panoramic system can be fully cali-

brated from the image of three lines in general position [8]. However, since lines

are mapped into conic curves which are only partially visible, the accurate esti-

mation of catadioptric line images is far from being a trivial task

The present section focuses on paracatadioptric camera calibration using lines

in general position. If it is true that any line maps into a conic in the catadioptric

image plane, it is not true that any conic is the image of a line. We derive for

the first time the necessary and sufficient conditions that must be verified by a

set of conic curves to be the paracatadioptric projection of lines. We also show

that the derived conditions can be used to accurately estimate the line images by

non-linear optimization. Moreover if the system is skewless and the aspect ratio

is known then the lines can be computed by solving an eigensystem. Given the

image of at least three lines the paracatadioptric camera is easily calibrated using

the algorithm presented in Tab. 3.4.

Other authors have already proposed algorithms to calibrate a paracatdioptric
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camera [35, 45, 74]. The approach presented in [45] requires a sequence of para-

catadioptric images. The system is calibrated using the consistency of pairwise

tracked point features across the sequence, based on the characteristics of cata-

dioptric imaging. In [74], the center and focal length are determined by fitting

a circle to the image of the mirror boundary. The method is simple and can be

easily automated, however it is not very accurate and requires the visibility of the

mirror boundary. Its major drawback is that it is only applicable for the situation

of a skewless camera with unitary aspect ratio. Geyer and Daniilidis propose a

calibration algorithm using line images [35]. They present a closed-form solu-

tion for focal length, image center, and aspect ratio for skewless cameras, and a

polynomial root solution in the presence of skew. The line images are estimated

taking into account the properties of parabolic projections. Nevertheless the conic

curves verifying those properties are not necessarily the paracatadioptric projec-

tion of lines. We will return to this discussion and compare the approach of [35]

with the one proposed in here.

5.2.1 Calibration Algorithm

The paracatadioptric system is calibrated whenever the collineationHc is known.

The algorithm presented on chapter 3 and summarized in Tab. 3.4 can be used

to calibrate any central catadioptric system from a minimum of three line images.

If the sensor is parabolic then theξ parameter is unitary and the optical axis of

the camera must be aligned with the symmetry axis of the mirror. The camera

can not be rotated with relation to the mirror (Rc = I in equation 2.7) and the

transformationHc must be affine (equation 5.2). Assume that the image center

is C = (cx, cy)
t, and thatα2, fo and sk are the aspect ratio, the focal length

and the skew of the orthographic imaging device. The affine transformationHc

is provided in equation 5.5 wherefc = 2fop is a measurement in pixels of the

combined focal length of the camera and the mirror.

Hc =


 αfc sk cx

0 α−1fc cy

0 0 1


 (5.5)

Tab. 5.1 summarizes the steps to calibrate a paracatadioptric system from
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Step 1 Determine the catadioptric line imageŝΩi for
i = 1, 2, 3 . . .K

Step 2 For each pair of conicŝΩi, Ω̂j, compute the in-
tersection pointŝFij, B̂ij and determine the cor-
responding linêµij = F̂ij ∧ B̂ij

Step 3 Estimate the image center̂O which is the inter-
section point of lineŝµij.

Step 4 For each coniĉΩi compute the polar linêπi of
the image center̂O (i = 1, 2, 3 . . .K).

Step 5 For each conic curve obtain the pointsÎi andĴi

where lineπ̂i intersectŝΩi (i = 1, 2, 3 . . .K)

Step 6 Estimate the coniĉΩ∞ going through pointŝIi,
Ĵi (i = 1, 2, 3 . . .K)

Step 7 Perform the Cholesky decomposition ofΩ̂∞ to
estimate matrixHc

Table 5.1: Calibrating a paracatadioptric system using K lines (K > 3)

the image ofK lines in general position. The algorithm is an adaptation of the

general method discussed in section 3.4.2. The six last steps in Tab. 3.4 have been

omitted since theξ parameter is already known to be unitary. Notice thatHc can

be determined from the Cholesky decomposition ofΩ̂∞ becauseHc is an upper

triangular matrix (equation 5.5) and̂Ω∞ = Hc
−tHc

−1.

The calibration of the paracatadioptric system is straightforward whenever the

conic curves corresponding to the line images are known. However the estimation

of the these conics using image points is hard to accomplish as discussed in chap-

ter 4. There are several algorithms to fit a conic curve to data points. A robust

conic fitting algorithm has to cope with noisy data points, biasing due to curvature

and partial occlusions. The occlusion problem is of particular importance for our

purposes. By occlusion we mean that the available data points lie on a small arc

of the curve. It is intuitive that in this circumstances, even for small amounts of
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noise, it is very hard to obtain the correct conic curve. The present work aims to

to cope with this problem using the properties of paracatadioptric line projection .

5.2.2 Properties of a Set of Paracatadioptric Line Images

A conic curve has 5 DOF and it can be represented by a symmetric matrixΩ̂

(equation 5.4), or by a point̂ω = (a, b, c, d, e, f)t in P 5 [59]. Consider the line

imageΩ̂ provided in equation 5.4. ReplacinḡΩ andHc by the results of equations

5.3 and 5.5 yields




a

b

c

d

e

f




=




− n2
z

α2f2
c

n2
zsk

αf3
c

−n2
z

f2
c
(
s2k
f2

c
+ α2)

nxnz

αfc
− n2

z(αskcy−fccx)

α2f3
c

αnynz

fc
+ α2n2

zcy−sknxnz

f2
c

+ skn
2
z(αskcy−fccx)

αf4
c

n2
z−αcynynz

fc
− α3c2yn

2
z−nxnz(αskcy−fccx)

αf2
c

− n2
z(αskcy−fcc2x)

α2f4
c




The paracatadioptric image of a line depends on the intrinsic parameters of

the system and on the orientation of the 3D planeΠ (see Fig. 5.1). After some

algebraic manipulation the previous result can be rewritten in the form of equation

5.7. If the calibration is known then the conic curveω̂ is only described by pa-

rametersa, d ande. These three parameters encode the scale information and the

orientation of planeΠ containing the imaged line. Considering that conicω̂ has

5 DOF, we may conclude that3 DOF depend on the parabolic system parameters,

and the remaining2 DOF are related with the line that is projected.

ω̂ =




a

b

c

d

e

f




=




a

−αsk

fc
a

(
α2s2k
f2

c
+ α4)a

d

e

−α2f 2
c a− cxd− cye




(5.7)

AssumeK lines in the scene that are projected intoK conic curves in the
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paracatadioptric image plane (K > 3). These conic curves can be represented by

points ofP 5 as shown in equation 5.8.

ω̂i = (ai, bi, ci, di, ei, fi)
t, i=1,2,3 . . . K (5.8)

Consider the result of equation 5.7. Notice that

b1
a1

=
b2
a2

=
b3
a3

= . . . =
bK
aK

= −αsk
fc

c1
a1

=
c2
a2

=
c3
a3

= . . . =
cK
aK

=
α2s2

k

f 2
c

+ α4

From the first expression it results thatηi = 0 for i = 2, 3 . . .K with ηi

provided by equation 5.9. Moreover, using the second expression in a similar

manner, comes thatχi = 0 for i = 2, 3 . . .K whereχi is given by equation 5.10.

ηi = a1bi − aib1, i=2,3 . . . K (5.9)

χi = a1ci − aic1, i=2,3 . . . K (5.10)

From equation 5.7 it results that each line imageω̂i must verifyα2f 2
c ai+cxdi+

cyei + fi = 0. Consider the conic curveŝω1, ω̂2 andω̂3, which are the first three

elements of the set of line images.α2f 2
c , cx andcy can be determined as follows


 α2f 2

c

cx

cy


 = −


 a1 d1 e1

a2 d2 e2

a3 d3 e3




︸ ︷︷ ︸
Φ

−1 f1

f2

f3




︸ ︷︷ ︸
Γ

If K > 3 then each conic curvêωi with i = 4 . . .K must verify the constraint

νi = 0 (equation 5.12).

νi =
[
ai di ei fi

]
.

[
−Φ−1Γ

1

]
, i=4 . . . K (5.12)

It is clear that if a set ofK conic curves corresponds to the paracatadioptric

projection ofK lines, thenηi, χi andνi, provided in equations 5.9, 5.10 and 5.12,

must be equal to zero. We have derived3K − 5 independent conditions which
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are necessary for the conic curves to be paracatadioptric line images. However

it has not been proved that these conditions are also sufficient. By sufficient we

mean that, if a certain set of conic curves verifies these conditions then it can be

the paracatadioptric projection of a set of lines.

Consider the uncalibrated image ofK lines that are mapped in the same num-

ber of conics. Since each conic has5 DOF then a set ofK conics has a total

of 5K DOF. Each line introduces2 unknowns (DOF), which correspond to the

orientation of the associated planeΠ (see Fig. 5.1). Moreover the5 parameters

of matrix Hc are also unknown (equation 5.5). Thus there are a total of2K + 5

unknowns (DOF). Since5K > 2K + 5 then it is obvious that there are sets of

conic curves that can never be the paracatadioptric projection of lines. The con-

ics that can correspond to the image of the lines lie in a subspace of dimension

2K + 5. This means that there are3K − 5 independent constraints, which proves

the sufficiency of the conditions derived above.

5.2.3 Estimation of a Set ofK Paracatadioptric Line Images

Assume that we have a paracatadioptric image ofK lines in the scene. Each line

is projected in a conic curvêωi (equation 5.8). The goal is to correctly estimate

the set of conic curves knowing neither the system calibration nor the position of

the lines in the scene.

Conic Fitting Based on Algebraic Distances

Consider the image pointŝxi
j = (x̂j , ŷj)

t with j = 1, 2 . . .Mi andMi > 5, lying

on conicω̂i. The LMS method, discussed on chapter 4, fits the data points by

the conic which minimizes the sum of the square of the algebraic distances. The

function to be minimized isφ(ω̂i) = ω̂tiAi
tAiω̂i whereAi is the design matrix

Ai =




x̂2
1 2x̂1ŷ1 ŷ2

1 2x̂1 2ŷ1 1

x̂2
2 2x̂2ŷ2 ŷ2

2 2x̂2 2ŷ2 1
...

...
...

...
...

...

x̂2
Mi

2x̂Mi
ŷMi

ŷ2
Mi

2x̂Mi
2ŷMi

1


 (5.13)

Considering the entire set of conic curvesp = (ω̂t1, ω̂
t
2 . . . ω̂

t
K)t the design
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matrix becomes

A =




A1 0 0 · · · 0

0 A2 0 · · · 0

0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · AK


 (5.14)

And the sum of the square of the algebraic distances between the data points

and the set of line images is provided by functionεφ

εφ(p) = ptAtAp (5.15)

One way to estimate the set of conic curves is to find the solutionp that min-

imizesεφ under the constraintptp = 1. The minimizer is the normalized eigen-

vector ofAtA corresponding to the smallest eigenvalue (see section 4.2.1). As

discussed in chapter 4 the problem is that in general the conic curves correspond-

ing to the paracatadioptric projection of lines are strongly occluded in the image.

The standard conic fitting techniques do not work properly under these circum-

stances since the data points do not provide enough information to correctly esti-

mate the conics. Section 5.2.2 shows that a set ofK conic curves corresponds to

the paracatadioptric projection ofK lines, if and only if, it verifies the constraints

provided by equations 5.9, 5.10 and 5.12. Our approach consists in using the nec-

essary and sufficient conditions derived above to constrain as much as possible

the search space in the conic fitting problem.

General Situation

Assume the image ofK lines acquired by an uncalibrated paracatadioptric cam-

era. Nothing is known about the parameters of matrixHc. The skew can be non

null and the aspect ratio different from one. Functionεφ provides the algebraic

distance between the set of conic curvesp and the data points (equation 5.15).

We aim minimize of the algebraic distance under the constraintsηi = 0, χi = 0

andνi = 0 (equations 5.9, 5.10 and 5.12). One way to achieve this goal is to find

the solutionp which minimizes the functionε provided in equation 5.16.
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εg(p) = εφ(p) + k(
K∑
i=2

η2
i +

K∑
i=2

χ2
i +

K∑
i=4

ν2
i ) (5.16)

The constraints are introduced as penalty terms weighted by a parameterk.

The minimization of the functionεg can be stated as a nonlinear least squares prob-

lem. The solution can be found using Gauss-Newton or Levenberg-Marquardt al-

gorithms [58, 27]. Notice that the Jacobian matrix can be explicitly derived in a

straightforward manner.

Skewless Images with Known Aspect Ratio

Assume that the orthographic camera is skewless and that the aspect ratioα2 is

known. Replacingsk by 0 in equation 5.7 yieldsb = 0 and c = α4a. The

constraintsηi = 0 andχi = 0 for i = 2 . . .K, becomebi = 0 andci − α4ai = 0

for i = 1 . . .K. Notice that there are two additional constraints because now two

of the calibration parameters are known. The new functionεs is given by equation

5.17.

εs(p) = εφ(p) + k(

K∑
i=1

b2i +

K∑
i=1

(ci − α4ai)
2 +

K∑
i=4

ν2
i ) (5.17)

The minimization of functionεs has not a closed form solution. The minima

must be determined by iterative nonlinear least squares which requires an initial

estimate ofp [58, 27]. The iterative process is in general time consuming and

may not converge correctly. We show now that if the set of lines has only three

elements (K = 3) then the problem of minimizing functionεs has a closed form

solution.

Consider the partial design matrixAi provided in equation 5.13. If the camera

is skewless and the aspect ratio is known thenbi = 0 andci = α4ai. Omitting the

second column of the design matrix and adding the third column multiplied byα4

to the first column yields
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Ǎi =




x̂2
1 + α4ŷ2

1 2x̂1 2ŷ1 1

x̂2
2 + α4ŷ2

2 2x̂2 2ŷ2 1
...

...
...

...

x̂2
Mi

+ α4ŷ2
Mi

2x̂Mi
2ŷMi

1




The sum of the square of the algebraic distances between the conic curve and

the data points išφ = ω̌tiǍ
t
iǍiω̌i where ω̌i = (ai, di, ei, fi)

t. A novel design

matrixǍ can be obtained by replacingAi by Ǎi for i = 1 . . .K in equation 5.14.

Assumingp̌ = (ω̌t1, ω̌
t
2 . . . ω̌

t
K)t comes that the sum of the square of the algebraic

distances between the set of line images and the data points isφ̌s

φ̌s(p̌) = p̌tǍtǍp̌ (5.19)

Since the novel design matrix̌A implicitly encodes the constraintsbi = 0 and

ci − α4ai = 0, functionεs can be rewritten as

ε̌s(p̌) = φ̌s(p̌) + k
K∑
i=4

ν2
i (5.20)

As discussed in section 4.2.1 the eigenvector corresponding to the smallest

eigenvalue of matrix̌AtǍ is the solutioňp which minimizesφ̌ under the con-

straint p̌tp̌ = 1. Notice that the estimated set of conic curves also verifies the

constraintsbi = 0 andci − α4ai = 0. If K = 3 then the second term of equation

5.20 disappears and the problem becomes closed from. WheneverK > 3 the min-

imization of functioňεs is a nonlinear least squares problem which must be solved

using iterative procedures. However, even in these circumstances, the eigenvec-

tor solution is in general quite accurate. In this case the conditions of equation

5.12 are neglected and the search space is not fully constrained. Nevertheless it is

constrained enough to provide good results.

5.2.4 Performance Evaluation Using Simulated Images

In this section we use simulated images to compare and evaluate the robustness of

our approach.
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Figure 5.2: Simulated480 × 640 images of three randomly generated lines

Simulation Scheme

Assume a paracatadioptric camera with a field of view (FOV) of180◦, correspond-

ing to a full hemisphere, and predefined intrinsic parameters. The image of a set

ofK lines is generated as follows. As depicted in Fig. 5.1 to each line in the scene

corresponds a planeΠ with normaln. TheK normals are unitary and randomly

chosen from an uniform distribution in the sphere. Each normal defines a plane

that intersects the unit sphere in a great circle. Notice that half of the great circle

is within the camera field of view (the FOV is180◦). An angleθ, less or equal

to the FOV, is chosen to be the amplitude of the arc that is actually visible in the

paracatadioptric image. The arc is randomly and uniformly positioned along the

part of the great circle which is within the FOV. The visible arc is uniformly sam-

pled by a fixed numberN of sample points. The each sample point corresponds a

projective rayx. The sample rays are projected using formula 5.1 and transformed

using 5.2 with the chosen intrinsic parameters. Two dimensional gaussian noise

with zero mean and standard deviationσ is added to each image pointx̂. Fig. 5.2

depicts two simulated images of3 randomly generated lines. In the left image the

visible arc has an amplitudeθ = 70◦ and is sampled by20 points. The camera

intrinsic parameters appear in the bottom left corner. In the right image the visible

arc isθ = 140◦ and the number of sample points isN = 140. In this case the

camera is not skewless. As a final remark notice that the amplitude of the visible

arc is measured in the great circle where planeΠ intersects the sphere, and not

in the conic curve where the line is projected. In general the visible angle of the
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Figure 5.3: RMS error in the calibration parameters using the closed form algo-
rithm

paracatadioptric line image is much less thanθ.

Calibration of Skewless Camera with Known Aspect Ratio

Consider a parabolic camera such that the skew is 0 (sk = 0), the aspect ratio is

1.21 (α = 1), and both are assumed to be known. We wish to determine the focal

length (fc = 245) and the image center ((cx, cy) = (330, 238)) using the image

of three lines (K = 3). The line images are estimated by minimizing the sum

of the square of the algebraic distancesφ̌s (equation 5.19). As discussed in these

circumstances the problem has a closed form solution. The system is calibrated

using the algorithm presented in Tab. 5.1. The data points are artificially generated

using the simulation scheme explained above. The left image of Fig. 5.2 is an

example of a test image. The estimated calibration parameters are compared with

the ground truth and the RMS error is computed over100 runs of each experiment.

Fig. 5.3 shows the results for different choices ofθ (amplitude of the visible

arc) andN (number of sample points). For each choice ofθ andN the stan-

dard deviation of the additive gaussian noise varies between 0.5 and 6 pixels by

increments of 0.5 pixels. Forθ = 170◦ the algorithms presents an excellent per-

formance. The decrease on the number of sample points from300 to 80 only

slightly affects the robustness to noise. Since we are only using three lines, the

decrease on the amplitude of the visible arcθ and on the number of pointsN has
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a strong impact on the performance. Even so the calibration using arcs of90◦ is

still practicable. The situation ofθ = 70◦ andN = 20 is very extreme (left image

in Fig. 5.2) leading to a bad estimation of the intrinsic parameters.

An alternative calibration approach is presented in [35]. The authors evaluate

the performance of their algorithm using similar simulation conditions. A direct

comparison can be made between the results presented in here and the ones pre-

sented in [35]. In general terms they estimate the conic curves by exploiting the

fact that the image center must lie in the line going through the intersection points

of any two line images. As discussed in section 5.2.2, this condition is necessary,

but not sufficient, for a set of conic curves to be the paracatadioptric projection

of lines. Since the search space is not fully constrained, they need much more

than three line images to calibrate the sensor. The results presented in Fig. 5.3

are obtained using the minimum theoretical number of lines for calibration [8].

Even so, and as far as we are able to judge from the results presented in [35], the

performance of our approach seems to be significantly better.

Calibration of General Paracatadioptric Systems

Artificial images are generated as explained in section 5.1. Fig. 5.2 depicts on

the right one of the simulated images used during this experiment. The camera

intrinsic parameters are provided in the bottom left corner. It is assumed that

nothing is known about these parameters. We wish to determine the aspect ratio,

skew, focal length and image center using a set ofK line images.

The set of line images is estimated by minimizing the functionεg provided by

equation 5.16. As discussed the minimization can be stated as a nonlinear least

squares problem . There is no closed form solution and the minima is found by

iterative gradient descend methods such as the Gauss-Newton or the Lenvenberg-

Marquardt methods [58, 27]. An initial estimation is needed to start the iterative

minimization. The starting point is the minimizer of the sum of the square of the

algebraic distancesεφ (equation 5.15). After estimating the paracatadioptric line

images the calibration parameters are computed following the steps enunciated

on Tab. 5.1. The results are compared with the ground truth and the median error

is computed over100 runs. The median error is used instead of the RMS error

because in some runs the iterative minimization does not converge correctly. Fig.
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Figure 5.4: Median error, mean error and RMS error

5.4 shows the focal length estimation error, sorted in ascending order, over the100

runs of a certain experiment. The mean, median and RMS error are depicted by

the horizontal lines. As you can observe it is reasonable to argue that the median

error is the one that best reflects the result of the experiment.

In this first set of experiments we aim to calibrate the system using the min-

imum theoretical number of lines (K = 3). The visible arcθ is always170◦ but

the number of sample pointsN changes (N = 300, 170, 80). For each choice of

θ andN the standard deviation of the additive gaussian noise varies between 0.5

and 6 pixels by increments of 0.5 pixels.

The minimization of functionεg is performed using iterative gradient descend-

ing methods. This can be problematic in many ways [58, 27]. The initial estimate

is crucial to assure the convergence to the right solution. It is important to start the

iterative process from a point as close as possible to the global minima. Moreover

the objective function may have local minima and saddle points. This happens

often when there is not enough information to correctly constrain the problem.

By lack of information we mean small number of lines, data points strongly cor-

rupted with noise, visible arcs with small amplitude or not sampled enough. In

these circumstances the iterative minimization may not converge to the right solu-

tion. Fig. 5.5 shows the number of convergence failures over the100 runs of each

experiment. The run fails when the absolute conicΩ̂∞, determined following the
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Figure 5.5: Convergence of the iterative minimization

steps in Tab. 5.1, is not positive definite and the Cholesky decomposition is not

possible. This can only happen when the set of paracatadioptric line images is far

from being correctly estimated. As expected the convergence is strongly affected

by the noise. Moreover the decrease in the number of sample points also causes

an increase in the number of failures. Notice that we are assuming three randomly

generated line images. This is the minimum number of lines required to calibrate

a paracatadioptric system. Thus it is natural that often the minimization process

does not converge correctly.

Fig. 5.6 shows the median error in the estimation of the different calibration

parameters. The performance clearly decreases when the number of sample points

decreases.

The calibration results presented in Fig. 5.6 are not very impressive. How-

ever we must take into account that we are using only three line images. In this

set of experiments we aim to compare the performance of the calibration algo-

rithm when using3, 5, 7 and 9 line images. The amplitude of the visible arc

and the number of sample points are respectivelyθ = 140◦ andN = 140 in all

experiments. The median errors in estimating the calibration parameters can be

observed in Fig. 5.7. The increase in the number of lines dramatically improves

the robustness of the calibration.
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Figure 5.6: Median error in the calibration parameters using3 lines
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Figure 5.7: Median error in the calibration parameters using3, 5, 7 and9 lines
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Figure 5.8: Estimating line images for calibration purposes

3 Lines 4 Lines 5 Lines 6 Lines

α mean 1.0001 0.9998 0.9996
std 0.0012 0.0019 0.0015

fc mean 699.36 699.37 701.03 701.81
std 17.24 16.00 13.57 10.65

sk mean 1.46 0.57 -1.95
std 2.35 1.41 1.39

cx mean 1137.0 1137.6 1143.6 1147.7
std 21.4 22.6 11.0 5.8

cy mean 870.90 870.66 874.36 876.64
std 11.84 13.42 8.29 5.66

Table 5.2: Calibration results for different number of lines

5.2.5 Experimental Results Using Real Images

This section applies the proposed calibration approach to real paracatadioptric

images. Five images were taken using a paracatadioptric camera. The image

resolution is1704 × 2272 and the FOV is180◦. Fig. 5.8 is one of those images

where a set of lines is clearly visible. For each image we used an edge detector

and selected points belonging to6 different lines. Each one of the five images are

calibrated using3, 4, 5 and6 lines. Tab. 5.2 presents, for each situation, the mean

of the calibration results as well as the corresponding standard deviation.

In this case nothing is known about the calibration parameters. Thus the esti-
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Figure 5.9: Perspective obtained by rectifying a paracatadioptric image

mation of the set of line images is performed by finding the solution which min-

imizes the functionεg of equation 5.16. However notice that the image of the

mirror boundary is close to a circle which allows us to infer that the skew is small

and the aspect ratio is approximately unitary. Taking this into account the initial

estimation for the iterative process is obtained using the closed form algorithm

proposed at the end of section 5.2.3. The left and right images on Fig 5.8 show

the initial and final estimate of the set of conic curves. The calibration results

are summarized in Tab. 5.2. Notice that the estimated values for the calibration

parameters are more or less the same for the differentK (number of lines). The

standard deviation acts as a measure of confidence. If the standard deviation takes

high values then the results obtained for each image are very different and the

achieved calibration is not trustable. As expected the standard deviation decreases

when the number of lines increases.

To evaluate the correctness of the results we have rectified a paracatadioptric

image. The obtained perspective image is exhibited on Fig. 5.9, where six pairs

of parallel lines are indicated by letters. The lines were estimated using normal

least squares. Consider the direction of those pairs of lines. The angle between

each two directions can be determined using the corresponding vanishing points

and the image of the absolute conic. The vanishing points are the intersections of

the images of the parallel lines, and the absolute conic is known since the perspec-

tive image is artificially generated. The angles between each two directions were
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computed and the results were compared with the angles measured in the scene.

The mean of the error was0.51◦ and standard deviation was0.35◦.

5.3 Direct Least Square Fitting of Paracatadioptric

Line Images

In general the paracatadioptric image of a line is a conic curve. The estimation

of line images is an important subject for applications such as reconstruction and

visual control of motion. However the estimation of the conic curves where lines

are mapped is hard to accomplish. In general only a small arc of the conic is visi-

ble in the image and conventional conic fitting techniques are unable to correctly

estimate the curve (section 4.2). This section shows that for a calibrated para-

catadioptric system the line images can be accurately estimated by constraining

the search space. A conic curve is the paracatadioptric image of a line if, and

only if, the image of the circular points lie on the curve and two certain points

are conjugate with respect to the conic. Considering the space of all conic curves,

the line images lie in a linear subspace which depends on the system calibration.

The paracatadioptric projection of a line can estimated by fitting a conic in the

subspace to the data points. The proposed approach is computationally efficient

since the fitting problem can be solved by an eigensystem

5.3.1 The Necessary and Sufficient Condition

Consider the scheme of Fig. 5.1 for the mapping of a line by a paracatadioptric

sensor. PlaneΠ, containing both the line and the effective viewpointO, intersects

the sphere in a great circle. The mapping from the sphere to planeΠ∞ is a stere-

ographic projection. The great circle is projected intoΩ̄ which is circle as can be

verified by inspecting equation 5.3. Points in planeΠ∞ are mapped into points in

the image by a collineationHc. Notice that for the parabolic situationHc is al-

ways an affine transformation (equation 5.2). Since an affine transformation does

not change the type of conic, then the paracatadioptric image of a lineΩ̂ is always

a circle/ellipse (equation 5.4).

Consider the following points lying on planeΠ∞:
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Ī = (1, i, 0)t

J̄ = (1,−i, 0)t

Ḡ = (1, 0,−i)t
H̄ = (1, 0, i)t

Assume that the paracatadioptric system is calibrated and the affine transfor-

mationHc is known. The points are mapped in the paracatadioptric image plane

on points:

Î = HcĪ = (ix, iy, iz)
t

Ĵ = HcJ̄ = (jx, jy, jz)
t

Ĝ = HcḠ = (gx, gy, gz)
t

Ĥ = HcH̄ = (hx, hy, hz)
t

According to the result of proposition 3.6 (section 3.3.2) the conic curveΩ̂ is

the paracatadioptric projection of a line if, and only if, it verifies the conditions

ÎtΩ̂Î = 0, ĴtΩ̂Ĵ = 0 andĜtΩ̂Ĥ = 0. The conic curvêΩ can be parameterized

by a pointω̂ = (a, b, c, d, e, f)t in P5. ThusΥω̂ = 0, with Υ the3 × 6 matrix

provided in equation 5.23, is a necessary and sufficient condition for a conicω̂

being a paracatadioptric line image.

Υ =


 i2x 2ixiy i2y 2ixiz 2iyiz i2z

j2
x 2jxjy j2

y 2jxjz 2jyjz j2
z

gxhx gxgy + hxhy gyhy gxgz + hxhz gygz + hyhz gzhz


 (5.23)

5.3.2 The Algorithm

Consider the set of image pointsx̂i = (x̂i, ŷi)
t with i = 1, 2 . . .M . The goal is to

fit a conic curvêω, corresponding to the paracatadioptric projection of a line, to

the set of data points. The sum of the square of the algebraic distances between

the curve and the image points isα = ω̂tAtAω̂ with A the design matrix

107



5. The Paracatadioptric Camera

A =




x̂2
1 2x̂1ŷ1 ŷ2

1 2x̂1 2ŷ1 1

x̂2
2 2x̂2ŷ2 ŷ2

2 2x̂2 2ŷ2 1
...

...
...

...
...

...

x̂2
M 2x̂M ŷM ŷ2

M 2x̂M 2ŷM 1




The conic curvêω, represented by a point inP5, has5 degrees of freedom

(DOF). Neglecting the scale factor the space of all conics has five dimensions.

The conic fitting algorithms discussed in section 4.2 search the entire space for

the conic that best fits the data accordingly to a certain criteria. However not all

conics can be the paracatadioptric image of a line. The paracatadioptric line image

ω̂ must lie in the null space of matrixΥ (equation 5.23). The null space ofΥ is a

linear subspace in the space of all conic curves. Our approach fits the data by the

conic curve, lying in this subspace, that minimizes the algebraic distance to the

image points. Consider the singular value decomposition of matrixΥ.

Υ = USVt

MatricesU, S andV have respectively dimension3 × 3, 3 × 6 and6 × 6. V

is full rank and orthonormal (V−1 = Vt). The three last columns ofV are an

orthonormal basis of the null space ofΥ [58, 38]. Consider the change on the

base of representation̂ωv = Vω̂. If ω̂ belongs to the null space of matrixΥ, then

the correspondinĝωv has the following structure

ω̂v = (0, 0, 0, dv, ev, fv︸ ︷︷ ︸
ρ

)t (5.26)

The algebraic distance between conicω̂ and the data points isα = ω̂tAtAω̂.

Rewriting the algebraic distance in terms of the new coordinates arisesα =

ω̂tvVAtAVtω̂v. Taking into account the structure ofω̂v (equation 5.26) comes

thatα = ρtΛtΛρ with Λ the bottom right3 × 3 sub matrix ofVAtAVt. We aim

to determine the solutionρ which minimizes the algebraic distanced under the

constraintρtρ = 1. The objective function is

φcatparb(ρ, λ) = ρtΛtΛρ+ λ(ρtρ− 1) (5.27)

108



5.3. Direct Least Square Fitting of Paracatadioptric Line Images

ξ = 1
α = 1.1 ; s

k
 = 30 ; f = 240

(c
x
,c

y
) = (330,238)

N = 20

Θ = 25°

σ = 5 (pixel)

AMS
FF
CATPARB

N = 20

Θ = 25°

σ = 5 (pixel)

ξ = 1
α = 1.1 ; s

k
 = 30 ; f = 240

(c
x
,c

y
) = (330,238)

AMS
FF
CATPARB

Figure 5.10: Estimating paracatadioptric line image using different methods

The minima of the objective functionφcatparb is the eigenvector of matrixΛtΛ

corresponding to the smallest eigenvalue. The final conicω̂ is computed by re-

placingρ in equation 5.27 and makinĝω = Vtω̂v.

5.3.3 Experiments

The present section evaluates the performance of the proposed CATPARB algo-

rithm. Simulated images, as the ones exhibited in Fig. 5.10, are used to character-

ize the method and compare its performance with other approaches. The artificial

data is generated using the simulation scheme explained in section 5.2.4. Experi-

ments using real images are also presented.

CATPARB Versus Standard Conic Fitting Methods

Several standard conic fitting techniques have been introduced in section 4.2. The

present section compares the AMS and FF methods with the proposed CATPARB

algorithm.

Consider the graphic on Fig. 5.11 which compares the performance of the

three methods. The data points are artificially generated using the simulation

scheme described above. An arc with an amplitude80◦ is uniformly sampled

by 40 points. Each method fits a conic curve to the data points. The estimated

conic is compared with the ground truth and the RMS error in the principal points

is computed over100 runs of each experiment. Both Fig. 5.10 and 5.11 show that
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Figure 5.11: Comparing the performance of AMS, FF and CATPARB methods
(N = 40, θ = 80◦)

the estimation results dramatically improve when using the CATPARB algorithm.

CATPARB Versus Perspective Rectification

Fig. 5.11 shows that CATPARB performs much better than AMS and FF methods

in estimating the conic locus where a line is mapped by a paracatadioptric sensor.

Notice however that this comparison is not entirely fair. While the FF and AMS

are generic methods to fit a conic curve to image points, the CATPARB algorithm

uses information about the sensor geometry and calibration to perform the estima-

tion. CATPARB is a specific method which requires both the data pointsx̂i and

the calibration matrixHc to estimate the paracatdioptric line image.

Since the system calibration is known then the line can be determined in

a straightforward manner by performing a perspective rectification of the data

points. Consider the calibration matrixHc (equation 5.2), the inverse function

}
−1 (equation 2.9) whereξ is made unitary (ξ = 1), and the data pointŝxi lying

on the paracatadioptric line imagêΩ. The equation below computes the rectified

data pointsxi

xi = }
−1(Hc

−1x̂i) i=1 . . . N (5.28)
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Figure 5.12: Comparing the performance of AMS, FF and CATPARB methods
with the direct line estimation (DLE) after perspective rectification (N = 40, θ =
80◦)

Assume thatn = (nx, ny, nz)
t is the normal to the planeΠ containing the

line in the scene which is imaged in̂Ω (see Fig. 5.1). If point̂xi lies in the conic

locusΩ̂, then the rectified pointxi lies on linen in the conventional perspective

plane. Thus, given the set of rectified data pointsxi, i = 1 . . . N , we can estimate

line n using normal least squares (section 4.2.1). The solution is obtained by

computing the eigenvector of the design matrixA (equation 5.29) corresponding

to the smallest eigenvalue. The conic locusΩ̂ in the image plane is computed

from n = (nx, ny, nz)
t andHc using the relations established in equations 5.3

and 5.4.

A =



x1 y1 1

x2 y2 1
...

...
...

xN yN 1


 (5.29)

Fig. 5.12 compares the performance of AMS, FF and CATPARB algorithms

with the direct line estimation (DLE) after perspective rectification. The simula-

tion scheme is similar to the one used on previous section and the metric is the
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RMS error on the principal points of the estimated paracatadioptric line image.

It can be observed that the DLE method performs much better than the standard

conic fitting techniques (AMS and FF). This is explained by the fact that DLE

uses, not only the data points, but also information about the image formation

process and sensor calibration. However its performance is clearly worse than the

one of CATPARB method.

As explained in section 4.2.2 it is reasonable to assume that the noise in the

image pointŝxi = (x̂i, ŷi)
t is gaussian, two dimensional and with zero mean. It

is also reasonable to assume that the error is equal in both directions and uncorre-

lated. Thus the noise covariance matrix has the formσ2I with I the2× 2 identity

matrix. Consider the rectified pointxi and the linen, both lying in the conven-

tional perspective plane. The algebraic distance between the point and the line is

αi = ntxi. Replacingxi by the result of equation 5.28 and assumingHc = I

yieldsαi = nt.}−1(x̂i). Propagating the variance of the image pointx̂i comes

that the noise variance in the algebraic distance is

σ2
i = 4

(n2
x + n2

y)(1 + (x̂2
i + ŷ2

i )) + 2(n2
x + n2

y)(x̂
2
i + ŷ2

i ) + 8nxnyx̂iŷi

(1 − x̂2
i − ŷ2

i )
4

σ2

(5.30)

The least square estimator computes the linen which minimizes the sum of

the squares of the algebraic distancesαi (i = 1 . . .N). The estimation is optimal

in terms of minimum covariance if the noise in the algebraic distancesαi has

always the same variance and is statistically independent [55, 58]. From equation

5.30 comes that the varianceσi is a function of the coordinates of the original

image point̂xi. Thus the variance of the algebraic distancesαi is not constant and

the line estimation using least squares is statistically biased [44]. The effects of

the statistical bias are much stronger in the DLE method than in the CATPARB

algorithm, which explains the poorer performance of the former (Fig. 5.12).

Pushing CATPARB to the Limit

The graphic of Fig. 5.13 shows the behavior of the proposed approach in the

presence of increasing noise for different values ofN and θ. As expected the

performance is worse when the number of samples and/or the amplitude of the
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Figure 5.13: Characterization of the performance of the CATPARB algorithm.

visible arc decrease. The results depicted on Fig. 5.13 provide a general idea of

the robustness of the CATPARB algorithm.

Experiments with Real Images

This section presents some results in estimating lines in real paracatadioptric im-

ages. The image resolution is1704 × 2272 and the sensor is calibrated using the

method proposed in section 5.2.

Fig. 5.14 depicts one of our test images. The conic curve where a line is

projected has only2 independent degrees of freedom (section 3.3.2). Thus two

image points are enough to correctly determine a paracatadioptric line image. We

have selected by hand two points lying on the conic locus where a certain line

in the scene is projected. The estimation results using the proposed CATPARB

algorithm can be observed in Fig. 5.14. The selected points are marked using the

blue crosses. Notice that in general a conic curve can only be estimated using5

or more data points.

Consider the paracatadioptric image exhibited in Fig. 5.15 with four pairs of

parallel lines denoted bya, b, c, d. According to proposition 3.1, the polar of

the image center with respect to the conic locus where the line is mapped, is the

horizon of the planeΠ containing the original 3D line and the effective viewpoint
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5. The Paracatadioptric Camera

Figure 5.14: Estimating lines in a real paracatadioptric image using only two
points

a 

b 

c 
d 

Figure 5.15: Estimating the angle between pairs of parallel lines
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G. Truth Error CATPARB Error DLE

a-b 90◦ 0.8538◦ 0.3442◦

a-c 30◦ 2.0504◦ 6.6411◦

a-d 30◦ 1.8212◦ 0.4977◦

b-c 60◦ 2.9888◦ 2.4049◦

b-d 60◦ 1.0459◦ 13.7148◦

c-d 60◦ 3.8717◦ 16.0897◦

median 1.9358◦ 4.5230◦

mean 2.1053◦ 6.6154◦

std 1.1553◦ 6.8505◦

Table 5.3: Recovering angles between pairs of parallel lines

(see Fig. 5.1). Moreover if two imaged lines are parallel then the intersection

of the corresponding horizons is the vanishing point of their common direction

(corollary 3.5).

The eight line images, corresponding to the four pairs of parallel lines, are

estimated using the CATPARB algorithm (see Fig. 5.15). The vanishing point of

each pair is determined in a straightforward manner using the results of corollary

3.3. Since the calibration matrixHc is known then the image of the absolute conic

can be computed makinĝΩ∞ = Hc
−tHc

−1. The estimation of the angles between

the pairs of parallel lines from the vanishing points and the absolute conic is trivial

[39, 59]. Tab. 5.3 shows the errors in estimating these angles.

There is an alternative approach to estimate the angles between the pairs of

parallel lines. Instead of applying the CATPARB method and using the geometric

relations derived in chapter 3, we can perform the perspective rectification of the

image points, estimate the lines using normal linear least squares and compute the

angles using standard projective relations. The estimation errors are shown in the

last column of Tab. 5.3. As expected estimating the lines directly in the paracat-

dioptric plane presents better results. We may conclude that the bias introduced

by the perspective rectification has a strong impact on the performance of the DLE

method.
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5.4 Closure

This chapter presents an effective way to calibrate paracatadioptric cameras using

the image of lines in general position. In chapter 3 we proved that a line is mapped

into a conic and that any central catadioptric system can be fully calibrated from a

minimum of three line images in general position. However in chapter 4 we real-

ized that the accurate estimation of lines using image points is hard to accomplish.

This chapter proposes a method to overcome this problem when using parabolic

systems. If it is true that any line is imaged in a conic locus, it is not true that any

conic curve is the paracatadioptric image of a line. The necessary and sufficient

conditions that must be verified by a set of conic curves to be the image of a set

of lines are derived. These conditions are used to constrain the search space and

accurately estimate the set of conic curves required to calibrate the paracatadiop-

tric sensor. If the camera is skewless and the aspect ratio is known then the conic

fitting problem is solved naturally by an eigensystem. Otherwise the estimation is

performed using non-linear optimization techniques. Experimental results show

that the proposed calibration method performs much better than the ones appear-

ing in the literature [35, 45, 74].

The second contribution in this chapter is the CATPARB algorithm to esti-

mate lines images from data points measured in the calibrated paracatadioptric

plane. It has been proved in chapter 3 that a conic curve is the paracatadioptric

image of a line if, and only if, it goes through pointsÎ∞, Ĵ∞ and pointsĜ, Ĥ

are harmonic conjugate with relation to it (proposition 3.6). This provides three

necessary and sufficient conditions which define a linear subspace in the space

of all conic curves. The line image is estimated within this subspace by solving

an eigensystem. The method is accurate, robust and computationally efficient.

Experimental results show that this approach performs much better than estimat-

ing the lines using perspective rectification as is often done in robotic applica-

tions [64]. The estimation after perspective rectification is statistically biased [44]

which strongly affects the results.
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Chapter 6

A General Framework for Selecting

the World Coordinate System

The imaging process can be interpreted as a mapping from points in 3D space into

points in the 2D image plane. The image formation is a transformation fromR3

to R2. Cartesian coordinate systems are typically used to reference points both in

space and in the image plane. The transformation is non-injective and implies loss

of information. The relationship between position and velocity in the 3D space

and position and velocity in the image are in general complex, difficult and non-

linear. This chapter shows that the choice of the coordinate system to reference

points in the 3D space is important. The intrinsic nature of image formation pro-

cess is kept unchanged but the mathematical relationship between the world and

the image becomes simpler and more intuitive. This can help not only the under-

standing of the imaging process but also the development of new algorithms and

applications.

The first part of the chapter focuses on static imaging systems that include both

perspective cameras and central catadioptric systems. A general framework to de-

scribe the mapping from 3D points to 2D points in the image plane is presented.

The mathematical expression of this global mapping depends on the coordinate

system used to reference points in the scene. A systematic approach to select the

most suitable world coordinate system is presented and discussed. Differential

constraints are defined to enable the choice of a 3D reference frame. Coordi-

nate transformations satisfying these differential constraints bring advantageous
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properties when mapping 3D space velocities into 2D image velocities. One such

coordinate transformation is described for the case of the perspective camera and

then generalized for central catadioptric image formation. The coordinate trans-

formation does not imply that new information is available in the images. Instead

the geometric transformations are represented in a common and more compact

framework, enabling newer insights into the image formation process. Examples

and applications that benefit from an adequate choice of the world coordinate sys-

tem are presented and discussed.

The second part of the chapter applies the derived mathematical framework to

active tracking of moving targets [2]. For this purpose it is assumed that the imag-

ing sensor is mounted on a moving platform. The goal of the tracking application

is to control the motion of the platform in such a way that the position of the target

in the image plane is kept constant. Three different cases are considered: a per-

spective camera with translational motion in the XY plane, a perspective camera

with rotational pan and tilt motion and a parabolic omnidirectional camera with a

rotational degree of freedom around the Z axis. The platforms considered in this

work have less than 3 degrees of freedom (DOF). For the purpose of controlling

the constrained 3D motion of these robots it is not necessary to determine the full

pose of the target. It is assumed that target motion is characterized by the 3D posi-

tion and velocity of the corresponding mass center in an inertial reference frame.

It is also assumed that the position of each degree of freedom is known (possibly

via an encoder).

For the visual control of motion the relationship between motion in the scene

and motion in the image must be established. The image motion depends both on

target and camera 3D motion. The mathematical expression of the global mapping

depends on the world coordinates used to reference points in the scene. General

criteria to select suitable coordinate systems are discussed. Adequate choices are

presented for each type of platform. The derived mathematical framework is used

to establish the position and velocity relationships between target 3D motion, cam-

era motion and image motion. The expressions obtained are used to implement

image based active visual tracking. Simplifications of the equations obtained (to

decouple the degrees of freedom of the pan and tilt vision system) are discussed.
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Figure 6.1: Mapping in central projection systems

6.1 World Coordinates for Static Imaging Systems

The two first sections refer to static central projection vision systems. Examples

of such systems are the perspective camera and catadioptric systems that verify the

fixed viewpoint constraint [5]. The image acquisition process maps points from

the 3D space into the 2D image plane. Image formation performs a transforma-

tion from R3 to R2 that can be denoted byF. A generic framework to illustrate

the transformationF is proposed. This framework is general to both conventional

perspective cameras and central projection catadioptric systems. It is desirable

thatF be as simple as possible and as compact as possible. This can be achieved

by selecting a specific coordinate systems to reference the world points. General

criteria to select the world coordinate system are presented and discussed. Advan-

tages of using different world coordinate systems to change the format of theF

mapping are presented.
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6.1.1 Mapping Points from the 3D Space in the 2D Image Plane

Fig. 6.1 depicts a generic framework to illustrate the transformationF from R3 in

R2 performed by a central projection vision system. The schematic of Fig. 6.1 is

an adaptation of the one of Fig. 2.3.

Xw = (X, Y, Z)t is a vector with the Cartesian 3D coordinates of a point in

space. The domain of transformation is the setℵ of visible points in the world with

ℵ ⊂ R3. Functionfh mapsR3 into the projective spaceP3. It is a non-injective

and surjective function transformingXw = (X, Y, Z)t in Xh = (X, Y, Z, 1)t

that are the homogeneous world point coordinates.P is an arbitrary3 × 4 ho-

mogeneous matrix with rank 3. It represents a general projective transformation

performing a linear mapping ofP3 into the projective planeP2 (x = PXh). The

rank 3 requirement is due to the fact that if the rank is less than 3 then the range

of the matrix will be a line or a point and not the whole plane. The rank 3 re-

quirement guarantees that the transformation is surjective. In the case ofP being

a camera model it can be written asP = R[I| − C] whereI is a3 × 3 identity

matrix, andR the rotation matrix between camera and world coordinate systems

andC the projection center in world coordinates [39]. If nothing is stated we

will assumeP = [I|0]. Functionfi transforms coordinates in the projective plane

x = (x, y, z)t into Cartesian coordinates in the image planexi = (xi, yi)
t. It is

a non-injective, surjective function ofP2 in R2 that maps projective rays in the

world into points in the image. For a conventional perspective camera with matrix

of intrinsic parametersKc = I comes thatxi = fi(x) ⇔ (xi, yi) = (x
z
, y
z
). As it

will be shown latter, for the case of general central catadioptric systems function

fi encodes the non-linear transformation} introduced in chapter 2.

The transformationF maps 3D world points into 2D points in the image.

Points in the scene are represented using standard cartesian coordinates. How-

ever a different coordinate system can be used to reference points in the 3D world

space. Assume thatΥ = (φ, ψ, ρ)t are point coordinates in the new reference

frame and thatXw = T(Υ) whereT is a bijective function fromR3 in R3. The

transformationF, mapping 3D world pointsΥ in image pointsxi (see equation

6.1), can be written as the composition of equation 6.2.

xi = F(Υ) (6.1)
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F(Υ) = fi(Pfh(T(Υ))) (6.2)

Equation 6.3, obtained by differentiating equation 6.1 with respect to time,

establishes the relationship between velocity in 3D spaceΥ̇ = (φ̇, ψ̇, ρ̇)t and

velocity in imageẋi = (ẋi, ẏi)
t. ẋi andΥ̇ are related by the jacobian matrixJF

of transformationF. Equation 6.4 showsJF as the product of the Jacobians of the

transformations that make upF.

ẋi = JFΥ̇ (6.3)

JF = Jfi .JP.Jfh.JT (6.4)

FunctionT represents a change of coordinates. It must be bijective which

guarantees that it admits an inverse. Assume thatΓ is the inverse function ofT

(Γ = T−1). FunctionΓ, from R3 into R3, transforms cartesian coordinatesXw

in new coordinatesΥ (equation 6.5).JΓ is the jacobian matrix ofΓ (equation

6.6). If T is injective then the jacobian matrixJT is non-singular with inverse

JΓ [26]. ReplacingJT by J−1
Γ in equation 6.4 yields equation 6.7 showing the

jacobian matrix ofF expressed in terms of the scalar function ofΓ and its partial

derivatives.

Γ(Xw) = (φ(X, Y, Z), ψ(X, Y, Z), ρ(X, Y, Z))t (6.5)

JΓ =


 φX φY φZ

ψX ψY ψZ

ρX ρY ρZ


 (6.6)

JF = Jfi .JP.Jfh .J
−1
Γ (6.7)

6.1.2 Criteria to Select the World Coordinate System

FunctionF is a transformation fromR3 (3D world space) intoR2 (image plane).

In equations 6.8 and 6.9F andJF are written in terms of scalar functions and their

partial derivatives. The relationship between world and image points can be com-

plex and counter intuitive. The mathematical expression of the mapping function

F depends on the transformationT (see equations 6.2, 6.4 and 6.7). The selection
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of a certain coordinate system to reference points in the scene changes the way

F is written but does not change the intrinsic nature of the mapping. However an

adequate choice of the world may lead to simpler mathematical relations between

position and velocity in space and position and velocity in image. In this section

we discuss criteria for the selection of the world coordinate system.

F(Υ) = (h(φ, ψ, ρ), g(φ, ψ, ρ))t (6.8)

JF =

[
hφ hψ hρ

gφ gψ gρ

]
(6.9)

The Compactness Constraint

Consider the general central projection as a mapping of 3D points, expressed in

Cartesian coordinatesXw = (X, Y, Z)t, into 2D image pointsxi = (xi, yi). The

transformation is a function fromR3 into R2 with loss of information (depth). In

general the two coordinates in the image plane depend on the three coordinates

in space. The image provides partial information about each one of the three

world coordinates but we are not able to fully recover any of those parameters

without further constraints. The imaging process implies loss of information and

there is no additional transformationT that can change that. However it would be

advantageous that image coordinates depend only on two of the 3D parameters.

In many situations that can be achieved by means of a change of coordinates

T. The change of world coordinates must be performed in such a way thatF

only depends on two of those coordinates. Assuming thatΥ = (φ, ψ, ρ) are

the new 3D coordinates,F becomes a function of onlyφ andψ whenever the

partial derivativeshρ andgρ are zero. If a certain change of coordinatesT leads

to a jacobian matrixJF with a zero column then it is said that mappingF is

in a compact form and coordinate transformationT verifies the ”compactness

constraint”.

Assume that a world coordinate system satisfying the ”compactness constraint”

is selected. If equation 6.10 is verified then the image coordinates(xi, yi) depend

only on (φ, ψ) andF becomes a function fromR2 in R2 (xi = F(Υc) with

Υc = (φ, ψ)t). A function fromR3 into R2 is never invertible, thus puttingF
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6.1. World Coordinates for Static Imaging Systems

in a compact form is a necessary condition to find out an inverse mappingF−1.

If F−1 exists then two of the three 3D parameters of motion can be recovered

from image (Υc = F−1(xi)) and the jacobian matrixJF can be written in term

of image coordinatesxi andyi. By verifying the ”compactness constraint” the

relationships in position and velocity between the 3D world and the image plane

tend to be more compact and intuitive and vision yields all the information about

two of the 3D world coordinates and none about the third one.

hρ = 0 ∧ gρ = 0 (6.10)

The Decoupling Constraint

Assume that the ”compactness constraint” is verified. This means that a coordi-

nate transformationT is used such that image coordinates(xi, yi) depend only on

(φ, ψ). It would be also advantageous to define a world coordinate system such

that xi depends only ofφ andyi depends only ofψ. This is equivalent to say

thathψ andgφ are both zero. The one to one correspondence is an advantageous

feature allowing a better understanding of the imaging process and simplifying

subsequent calculations. If a coordinate transformationT is used such that both

equations 6.10 and 6.11 are verified then it is said thatF is in a compact and

decoupled form and thatT verifies both the ”compactness constraint” and the

”decoupling constraint”.

hψ = 0 ∧ gφ = 0 (6.11)

In short, given a general central projection mapping, the goal is to select a

coordinate transformationT verifying both:

• the ”compactness constraint” (equation 6.10)

• the ”decoupling constraint” (equation 6.11)

The coordinate system used to reference points in the scene does not change

the intrinsic nature of the mapping nor introduces any additional information.

There are situations where it is impossible to find a world coordinates transforma-

tion that verifies the ”compactness constraint” and/or the ”decoupling constraint”.
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Methodologies to find out if it exists such a transformation will be introduced

latter.

6.2 Applying the Framework to Static Imaging Sys-

tems

The previous section derived a general framework to model central projection sys-

tems and select the most suitable coordinates to reference the world. This section

applies the framework to the situations of a conventional perspective camera and

central catadioptric system.

6.2.1 Conventional Perspective Camera

Consider image acquisition performed by a static conventional perspective cam-

era. The image formation process follows the scheme depicted in Fig. 6.1 where

function fi is given by equation 6.12. Assume that the matrix of intrinsic param-

eters isKc = I andP = [I|0] (the origin of the cartesian reference frame is

coincident with the camera center and the image plane is perpendicular to the Z

axis). This section derives a world coordinate system that verifies both the com-

pactness and decoupling constraint. If nothing is stated we will work with the

inverse transformationΓ instead of the direct transformationT.

fi() : (x, y, z) −→ (
x

z
,
y

z
) (6.12)

Constraining Γ to Obtain a New World Coordinate System

Functionsfi, P and fh, as well as their jacobian matrices, are defined for the

perspective camera case. ReplacingJΓ (equation 6.6) in equation 6.7 yieldsJF

in terms of the partial derivatives of the scalar functions ofΓ (the computation

is omitted). IfF is in a compact form then the third column ofJF must be zero

(equation 6.10) which leads to equations 6.13. A transformation of coordinates

Γ that verifies the compactness constraint can be computed by solving the partial

differential equations 6.13 with respect to the scalar functionsφ,ψ andρ (equation

6.5).
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Figure 6.2: Conventional Perspective Camera Case

{
Z(φY ψZ − φZψY ) +X(φY ψX − φXψY ) = 0

Z(φZψX − φXψZ) + Y (φY ψX − φXψY ) = 0
(6.13)

The partial differential equations corresponding to the ”decoupling constraint”

can be derived in a similar way. If the mappingF is decoupled then bothhψ and

gφ must be zero, which leads to equation 6.14. A world coordinate transformation

Γ verifying both the compactness and the decoupling constraint can be computed

by solving simultaneously equations 6.13 and 6.14. Nevertheless the integration

of systems of partial differential equations can be difficult and in general it gener-

ates many solutions. Adequate coordinate systems will be derived by geometrical

means. Equations 6.13 and 6.14 will be used to prove that the selected coordinate

transformation verifies the compactness and/or decoupling constraints.

{
Z(φZρY − φY ρZ) +X(φY ρX − φXρY ) = 0

Z(ψZρX − ψXρZ) + Y (ψY ρX − ψXρY ) = 0
(6.14)

Fig. 6.2 is a representation of the image formation process for the specified

perspective camera situation. A point in the scene with cartesian coordinates

(X, Y, Z) is projected in the image plane at position(xi, yi). It is assumed that

only the points in front of the camera are visible (Z > 0). The world points that

can be projected in a certain image vertical line, lie in a vertical plane rotated
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6. A General Framework for Selecting the World Coordinate System

around the camera referentialY axis, containing the center of projection. In a

similar manner, the world points projected in an horizontal line of the image be-

long to an horizontal plane rotated around theX axis. Consider the pencil of the

vertical planes where each one is indexed by the corresponding rotation angleφ.

There is a one to one correspondence between the vertical lines in the image and

theφ angles. In a similar manner, a pencil of horizontal planes, indexed by the

corresponding rotation angleψ, is defined. Each horizontal line in the image is as-

sociated to oneψ angle. Each pair(φ, ψ) defines a pair of planes that intersect in a

projective ray. If the depth of the world point along the ray isρ (always positive),

the set of values(φ, ψ, ρ) gives the position of the world point in an unique way.

We have derived a new system of coordinates to represent points in the 3D space.

Equation 6.15 establishes the relationship between(φ, ψ, ρ) and the conventional

Cartesian coordinates(X, Y, Z).




φ = arctan(X
Z

)

ψ = arctan(−Y
Z

)

ρ =
√
X2 + Y 2 + Z2

(6.15)

Equation 6.16 gives the jacobian matrix of the derived coordinate transforma-

tion Γ. The proposed change of coordinates is a solution of the set of differential

equations 6.13 and 6.14.Γ satisfies both the compactness and decoupling con-

straint for the static perspective camera case.

JΓ =




Z
X2+Z2 0 − X

X2+Z2

0 − Z
Y 2+Z2

Y
Y 2+Z2

X√
X2+Y 2+Z2

Y√
X2+Y 2+Z2

Z√
X2+Y 2+Z2


 (6.16)

Table 6.1 summarizes the results obtained in this section.Γ is a world coor-

dinate transformation verifying both the compactness and decoupling constraint.

Notice that the new coordinate system is different from the well known spherical

coordinates.T is the inverse function ofΓ. ReplacingT in equation 6.2 (fi, P and

fh were already defined) leads to the mathematical expression of global mapping

F using the new coordinates. The jacobian matrixJF is obtained replacingJΓ in

equation 6.7 by the result of equation 6.16.
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Γ(Xw) = (arctan(X
Z

), arctan(−Y
Z

),
√
X2 + Y 2 + Z2)t

T(Υ) =
ρ√

1+tan(φ)2+tan(ψ)2
(tan(φ),− tan(ψ), 1)t

F(Υ) = (tan(φ),− tan(ψ))t

JF(Υ) =


 1

cos(φ)2
0 0

0 − 1
cos(ψ)2

0




Table 6.1: Using a new coordinate system for perspective camera

F(Xw) = (X
Z
, Y
Z
)t

JF(Xw) =


 1

Z
0 − X

Z2

0 1
Z

− Y
Z2




Table 6.2: Using a cartesian coordinate system for perspective camera

Applications

The global mappingF and its jacobian matrix establish the relationship between

position/velocity in space and position/velocity in image for the conventional cam-

era situation. Assume that both image positionxi and velocityẋi are known.

It was stated that there is a loss of information in the image formation process.

Therefore it is not possible to fully recover 3D target motion from images without

further information. Nevertheless, using a world coordinate system verifying the

compactness and decoupling constraint, it is possible to partially recover the 3D

parameters of motion in a straightforward manner.

Table 6.1 shows the mappingF and the corresponding jacobian matrixJF

written in terms of derived system of coordinates. Table 6.2 gives the mathemat-

ical expressions ofF andJF using world cartesian coordinates. In the former

situationF is in a compact form and it is possible to invert the mapping to recover

position information. One obtains thatφ = arctan(xi) andψ = − arctan(yi).

When using cartesian coordinates,F appears as a function ofR3 in R2, and the

inversion is not possible.
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6. A General Framework for Selecting the World Coordinate System

Equation 6.17 showsJF written in terms of image coordinates. It is derived by

replacing in the jacobian matrix of Table 6.1(φ, ψ) by (arctan(xi),− arctan(yi)).

Knowing both position and velocity in the image one obtainsφ̇ = (1 + x2
i )

−1ẋi

andψ̇ = −(1 + y2
i )

−1ẏi. Using the derived world coordinate system it is possible

to partially recover the position and velocity of the target in the scene.

JF(xi) =

[
1 + x2

i 0 0

0 −(1 + y2
i ) 0

]
(6.17)

6.2.2 Central Catadioptric Imaging System

A catadioptric realization of omnidirectional vision combines reflective surfaces

and lenses. Central catadioptric imaging can be highly advantageous for many ap-

plications because it combines two important features: a single projection center

and a wide field of view. The drawback of this type of sensors is that in general

the mapping between points in the 3D world and in the image is highly non-linear.

We wish to study the advantages of working directly with the catadioptric images

without warping them. The proposed framework is used to derive a general trans-

formation of coordinates that leads to a mapping between points in the world and

in the image that verifies both the compactness and the decoupling constraints.

Some applications are presented and discussed.

General Model for Central Projection Systems

An unifying theory for central catadioptric image formation has been presented in

chapter 2. This section reviews the mapping model schematized in Fig. 2.3 and

introduces the assumptions and notation used in the remain of the chapter.

Consider a generic scene point, visible by the catadioptric system, with carte-

sian coordinatesXw in the world reference frame. The corresponding homo-

geneous representation isXh. Visible points in the sceneXh are mapped into

projective rays/pointsx in the catadioptric system reference frame centered in the

effective viewpoint. The transformation is linear being described by a3×4 matrix

P (if nothing is stated it is assumed thatP = [I|0]). To each oriented projective

ray/pointx = (x, y, z)t, corresponds a projective ray/pointx̂ = (x̂, ŷ, ẑ)t in a co-

ordinate system whose origin is in the camera projection center(Fig. 2.3). Assume
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Figure 6.3: The sphere model for general central catadioptric image projection

that the matrix of intrinsic parameters isKc = I and that the camera is not rotated

with relation to the reflective surface (Rc = I). From equations 2.4, 2.5 and 2.6

yields

x̂ = (
(ϕ− ξ)x√
x2 + y2 + z2

,− (ϕ− ξ)y√
x2 + y2 + z2

,
z√

x2 + y2 + z2
+ ξ)t

Since the cartesian coordinates of the point in the catadioptric image plane are

xi = ( x̂
ẑ
, ŷ
ẑ
)t then the functionfi, referenced in the scheme of Fig. 6.1, is provided

by equation 6.19. Functionfi depends on mirror parametersξ andϕ. Table 2.3

shows these parameters for the different situations of central catadioptric imaging.

fi() : (x, y, z) −→ (
(ϕ− ξ)x

z + ξ
√
x2 + y2 + z2

,− (ϕ− ξ)y

z + ξ
√
x2 + y2 + z2

) (6.19)

Fig. 6.3 depicts the intuitive “concrete” model. To each visible point in space

corresponds an oriented projective rayx joining the 3D point with the effective

projection centerO. The projective ray intersects a unit sphere centered inO in

a unique pointXm. Consider a pointOc with coordinates(0, 0,−ξ)t in sphere

reference frame<. To eachx corresponds an oriented projective rayx̂ joiningOc
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with the intersection pointXm in the sphere surface. Assume that the catadioptric

image plane is the horizontal planeZ = ϕ−2ξ. The projective raŷx intersects the

plane atxi which are the coordinates of the image point. The scene is projected

into the sphere surface and then points on the sphere are re-projected into the cata-

dioptric image plane from a novel projection centerOc. PointOc = (0, 0,−ξ)t
only depends on the mirror parameters (see Table.2.3). Notice that ifξ = 0 then

Oc is coincident withO and functionfi becomes similar to the one provided in

equation 6.12.

The New World Coordinate System

The image formation process of a general central catadioptric system fits the

scheme depicted in Fig. 6.1. The difference from the previous case of the perspec-

tive camera is that functionfi is given by equation 6.19 instead of equation 6.12

whereξ andϕ depend on the mirror parameters (see Table 2.3). The goal of this

section is to derive a coordinate transformationΓ for which the global mapping

F between points in the world and in the catadioptric image is in a compact and

decoupled form. Differential constraints similar to equations 6.13 and 6.14 can be

derived in the same manner for this more general situation. As already mentioned,

integration of partial differential equations can be a complex task, leading to mul-

tiple solutions. Once again the suitable new coordinates are derived geometrically

and the differential constraints are used to confirm the results.

In Fig. 6.3 consider the vertical line in the catadioptric image plane parallel

to the Y axis. All the points in the world that can be projected in this line lie in

a conic surface, with the vertex coincident with the effective viewpointO. The

conic surface intersects the unit sphere on a circumference, passing through the

projection pointXm, which limits a circle containing the pointOc = (0, 0,−ξ)t.
The axis of the conic surface is always contained in theXOZ plane. In a similar

way, the world points that can be projected in an horizontal line in the image lie

in a conic surface. The difference is that the axis is now in theY OZ plane. We

will call the first pencil of conic surfaces (with the axis inXOZ) the vertical

pencil and the second (with the axis inY OZ) the horizontal pencil. A vertical

and an horizontal conic surface intersect in two oriented projection rays. This

ambiguity can be solved assuming that the camera used to acquire the catadioptric
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Figure 6.4: Left: Vertical and horizontal pencils of conic surfaces. Intersection of
the lower and upper cone with the unit sphere

images is forward looking and that only points withZ > −ξ are visible in the

image plane. This section defines a coordinate system based in these two pencils

of cones. It is shown that the resulting transformation of coordinatesΓ verifies

both the compactness and decoupling constraint for the general central projection

situation.

Consider the dotted conic surface depicted in Fig. 6.4. Its axis coincides with

the referentialX axis, the vertex coincides with the origin and the aperture angle

isα. World points(X, Y, Z) lying on the conic surface verify equation 6.20. Con-

sider now the conic surface rotated around theY axis by an angleφ. Equation 6.21

is obtained multiplying point coordinates by rotation matrixeφŷ (whereŷ is the

unit vector of the Y axis) [51] and replacing them in equation 6.20. Equation 6.21

defines the rotated conic surface depicted in Fig 6.4(Left). Angleα is the aperture

angle andφ is the rotation angle around Y axis that can be used to index the cones

in the vertical pencil described above.

Z2 + Y 2 = X2 tan(α)2 (6.20)

(X sin(φ) + Z cos(φ))2 − (X cos(φ) − Z sin(φ))2 tan(α)2 + Y 2 = 0 (6.21)
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Observe Fig. 6.4(Right) where the rotated conic surface of equation 6.21, the

unit sphere and the re-projection centerOc are depicted. The lower cone must

intersect the unit sphere on a circle containing the point(0, 0,−ξ). World scene

points lying in this cone project on a vertical line at the catadioptric image plane

(see Fig. 6.3). Fig. 6.4(Right) shows that the aperture angle of the conic surface

must betan(α) = c
e

wheree2 = ξ2 sin2(φ) andc2 = 1 − e2 (an unit sphere is

assumed). Equation 6.22 is obtained replacing this result in equation 6.21.

ξ2 sin(φ)2(X2 + Y 2 + Z2) − (X cos(φ) − Z sin(φ))2 = 0 (6.22)

Solving equation 6.22 with respect toφ we are able to compute the verti-

cal conic surface with the desired features that contains a certain world point

(X, Y, Z). Notice however that it is a second order equation, thus for each point

in 3D space, there are twoφ solutions. Each solution defines a conic surface con-

taining the point and intersecting the unit sphere in a circle passing through its

projectionXm at the sphere surface. Nevertheless one of these circles contains

point (0, 0, ξ)t, while the other contains point(0, 0,−ξ)t. The second solution is

the one that must be used.

The ψ angle is used in the same manner to represent the horizontal pencil

of conic surfaces. The derivation of the relationship betweenψ and point world

coordinates(X, Y, Z) is similar.

At this point, given a world point represented in Cartesian coordinates(X, Y, Z)

we are able to compute a vertical and an horizontal conic surface, respectively ref-

erenced in an unique way byφ andψ, that contain the point. In general the two

cones intersect in two projective rays. However only one of them is visible in the

image. The point lies in this projective ray, and a third coordinateρ, that is the

distance from the center, must be introduced. Equation 6.23 yields the derived

change of coordinatesΓ. Bothφ andψ are in the range [−π/2, π/2].


φ = arctan( X

Z+ξ
√
X2+Y 2+Z2)

)

ψ = arctan(− Y
Z+ξ

√
X2+Y 2+Z2 )

ρ =
√
X2 + Y 2 + Z2

(6.23)

Table 6.3 summarizes the results obtained so far for general central projection
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Γ(Xw) =


 arctan( X

Z+ξ
√
X2+Y 2+Z2 )

arctan(− Y
Z+ξ

√
X2+Y 2+Z2 )√

X2 + Y 2 + Z2




T(Υ) =




ρ
l+
√

1+(1−ξ2)(tan(φ)2+tan(ψ)2)

1+tan(φ)2+tan(ψ)2
tan(φ)

−ρ l+
√

1+(1−ξ2)(tan(φ)2+tan(ψ)2)

1+tan(φ)2+tan(ψ)2
tan(ψ)

ρ

√
1+(1−ξ2)(tan(φ)2+tan(ψ)2)−ξ(tan(φ)2+tan(ψ)2)

1+tan(φ)2+tan(ψ)2




F(Υ) = (ϕ− ξ)

[
tan(φ)
tan(ψ)

]
JF(Υ) = (ϕ− ξ)

[
1

cos(φ)2
0 0

0 1
cos(ψ)2

0

]

Table 6.3: Using a new coordinate system for general central catadioptric imaging

systems.Γ is the derived world coordinate transformation that maps cartesian co-

ordinatesXw in the new coordinatesΥ associated with the conic surfaces refer-

ence frame.T is the inverse function ofΓ. ReplacingT in equation 6.2 (fi, P and

fh were already defined) yields the mathematical expression of global mapping

F using the new coordinates. The corresponding jacobian matrix isJF. Accord-

ingly equations 6.10 and 6.11, the derived coordinate transformationΓ verify both

the compactness and decoupling constraints. Notice that ifξ = 0 then we have

the perspective camera situation studied previously. The aperture of the reference

conic surfaces is alwaysπ/2 and the change of coordinates 6.23 becomes equal

to 6.15. The pencils of conic surfaces degenerate in the pencils of planes previ-

ously derived. The coordinate transformation proposed for the perspective camera

situation is a particular case of this more general solution.

Applications

Applying the derived coordinate transformationΓ does not modify the image for-

mation process nor introduces new information in the problem. Instead the geo-

metric transformations are represented in a way that enables newer insights in the

imaging process becoming more suitable to develop certain applications. This sec-

tion shows some advantages in expressing the global mapping function in terms

of an adequate system of world coordinates.
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Figure 6.5: Generating a geometrically correct perspective image.

Using the derived world coordinatesΥ, the global mappingF is written in a

compact and decoupled form (see table 6.3). Knowing both target image position

xi and velocityẋi the recovery of 3D parameters of motion is straightforward.

As a resultφ = arctan(xi) andψ = arctan(yi). Replacing these parameters in

the jacobian matrix of table 6.3 yields the jacobian matrix of the global mapping

F written in terms of image coordinates (equation 6.24). It follows thatφ̇ =

(1 +
x2

i

(ϕ−ξ)2 )
−1 ẋi

ϕ−ξ and ψ̇ = −(1 +
y2i

(ϕ−ξ)2 )
−1 ẏi

ϕ−ξ . Similarly to the perspective

camera case, catadioptric images do not provide any information about the third

parameter of motionρ.

JF(xi) = (ϕ− ξ)

[
1 +

x2
i

(ϕ−ξ)2 0 0

0 1 +
y2i

(ϕ−ξ)2 0

]
(6.24)

It is a well known result that it is always possible to generate a geometri-

cally correct perspective image from an image acquired by a central projection

catadioptric system[5]. The first image of Fig. 6.5 was acquired by an omnidirec-

tional system that combines a parabolic mirror with an orthographic camera. A

generic scene point with cartesian coordinatesXw is projected at positionxi in the

catadioptric image plane (see Fig.6.3). The field of view is nearly 180o, thus all

points in the world such thatZ > 0 are visible. Assume a conventional perspec-

tive camera with projection center at the effective viewpoint0 and optical axis

aligned with the Z-axis. A generic world point with coordinatesXw = (X, Y, Z)t
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Figure 6.6: Surveillance application using central panoramic imaging.

is projected in the perspective image at positionxp = (X
Z
, Y
Z

)t. The goal is to

derive the functionfp that maps points in the catadioptric image plane into points

in the perspective image plane (xp = fp(xi)). This mapping function can be de-

termined in a straightforward manner using the results of table 6.3. As already

mentionedφ = arctan(xi) andψ = arctan(yi). Replacingφ andψ in the coordi-

nate transformationT we are able to compute world coordinatesXw as a function

of catadioptric image coordinatesxi andρ. Makingxp = (X
Z
, Y
Z

)t the dependence

on ρ disappears andxp is obtained as a function ofxi. Functionfp is presented

in equation 6.25 for the parabolic system case (ξ = 1). The geometrically correct

perspective image generated from the derived mapping function is presented at

Fig. 6.5.

fp() : (xi, yi) −→ (
4pxi

4p2 − (x2
i + y2

i )
,− 4pyi

4p2 − (x2
i + y2

i )
) (6.25)

Spherical coordinates are broadly used in computer vision and robotics. For

some applications it can be useful to reference world points using spherical coor-

dinates. Assume, as an example, that we intend to use our omnidirectional camera

in a surveillance application to obtain position information of a set of targets. The

imaging system is fixed at the ceiling as depicted in Fig. 6.6. The target position

can be referenced in a simple way using spherical coordinatesΥs = (φs, ψs, ρs)
t.

The goal is to derive the functionfs which transforms catadioptric image coor-
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6. A General Framework for Selecting the World Coordinate System

dinatesxi, in the two world spherical coordinates(φs, ψs) that can be fully re-

covered ((φs, ψs) = fs(xi)) without further restrictions.Xw = (X, Y, Z)t can

be computed in terms ofxi andρ. Sinceφ = arctan(xi) andψ = arctan(yi),

thenXw = T(arctan(xi), arctan(yi), ρ) (see table 6.3). Replacing(X, Y, Z) in

φs = arctan(X
Z

) andψs = arctan( Y√
X2+Z2 ) by the obtained result, the depen-

dence onρ is eliminated and functionfs is obtained (equation 6.26). In addition,

if the heighth of the room is known and if the imaged point is on the floor one

obtainsρs = h
√

(4p2 + x2
i + y2

i )
2/(4p2 − x2

i − y2
i )

2.

fs() : (xi, yi) → (arctan( 4pxi

4p2−(x2
i +y2i )

), arctan( −4pyi√
(4p2+x2

i−y2i )2−4x2
i y

2
i

)

(6.26)

6.3 World Coordinates for Imaging Systems with Mo-

tion

The two previous sections focuses on static central projection imaging systems.

The global mappingF from points in the 3D world in points in the 2D image

plane is derived. It is shown that the mathematical expression ofF depends on

the coordinate system used to reference points in the scene and that an adequate

choice of coordinates presents several advantages. In this situation the imaging

system does not move, thus motion in the image plane only depends on 3D motion

in the scene.

This section focuses on active tracking of moving targets where the goal is

to use visual information to control camera motion such that target image is kept

constant. The mathematical framework derived in section 6.1 is extended to cen-

tral projection imaging systems with rigid motion. Global mapping between 3D

world points and 2D image points is derived. Criteria to select adequate world co-

ordinates are discussed. The results obtained are applied to active visual tracking

using three different platforms and/or imaging sensors.

As mentioned the assumed platforms have less than 3 DOF. To control such a

constrained motion it is enough to work with 3D target position and velocity. If

nothing is stated it is assumed thatXw is a vector with target mass center position

136



6.3. World Coordinates for Imaging Systems with Motion

in cartesian coordinates,Υ represents the target position in the established alter-

native system of coordinates andxi is the vector with the target image coordinates.

VectorΘ is introduced to represent camera/platform position in an inertial world

reference frame.

6.3.1 Mapping points from the 3D world into the 2D image

plane

Consider the schematic of Fig. 6.1 which depicts the general mappingF per-

formed by a static central projection imaging system. ConsiderP = R[I| − C],

with R the rotation matrix between camera and world andC the projection center

coordinates. MatrixP depends on the pose of the imaging system in world coor-

dinates. If the imaging system is static then the matrixP is constant. On the other

hand if the camera moves, its pose changes, and matrixP is no longer constant.

Assume the imaging system is mounted on a moving platform. The pose of the

camera depends on the positionΘ of the platform. Since matrixP depends on

the pose of the camera thenP is a function ofΘ.

The mapping between the scene and the image plane depends on the target

3D coordinatesΥ and on the camera pose parameterized byΘ. The target image

coordinatesxi are given by equation 6.27 where transformationF can be written

as the composition of equation 6.28. The difference between equations 6.2 and

6.28 is that matrixP is no longer constant and appears as a function ofΘ.

xi = F(Υ,Θ) (6.27)

F(Υ,Θ) = fi(P(Θ).fh(T(Υ))) (6.28)

The target velocity in the imagėxi is computed in 6.29. Equation 6.29 is

obtained by differentiating equation 6.27 with respect to time.JF = [JΥ
F |JΘ

F ] is

the jacobian matrix of functionF, Υ̇ is the target 3D velocity, anḋΘ represents the

camera/platform velocity.JΥ
F is given in 6.30 withJΓ the jacobian matrix of the

inverse coordinate transformationΓ. JΘ
F is computed in 6.31 and does not depend

on the jacobian matrix of the world coordinate transformationJΓ. The image

velocityẋi depends both on target velocityΥ̇ and on the camera/platform velocity

Θ̇. The second term in equation 6.29 is known in the literature by egomotion and
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6. A General Framework for Selecting the World Coordinate System

represents the image motion induced by camera/platform motion.

ẋi = JΥ
F Υ̇ + JΘ

F Θ̇ (6.29)

JΥ
F = Jfi.J

Xh
P .Jfh .J

−1
Γ (6.30)

JΘ
F = Jfi.J

Θ
P . (6.31)

The target image depends on the relative position between camera and target.

Describing target motion in a coordinate frame attached to the imaging device

simplifies the position/velocity relationships of equations 6.27 to 6.31. The ego-

motion term disappears and the position/velocity in the image depends only on the

position/velocity of the target in the camera system of coordinates. The platform

position, provided, for example, by encoder readings, and joint control commands

are usually defined in an inertial base coordinate frame. If the control input is de-

fined in the camera coordinate system then the transformations between the two

reference systems can not be avoided. In the position/velocity relationships of

equations 6.27 to 6.31, both camera and target motion are described in a com-

mon inertial system of coordinates. Errors in the image plane can be directly

related with the control inputs commands in the task space, thus there is no need

of additional coordinate transformations. Multiple cameras can be integrated in a

natural way by describing the target motion in a common coordinate frame. The

explicit computation of an egomotion term can be used for image segmentation

[60, 17, 15].

6.3.2 Criteria to Select the World Coordinate System

The mathematical expression of the global mappingF depends on system of coor-

dinates used to reference target position in the scene (equation 6.28). The intrinsic

nature of the mapping does not depend on the selected coordinate frame. However,

as seen in section 6.1 for static central catadioptric imaging systems, an adequate

choice of the coordinate system can be highly advantageous. Criteria to select

suitable coordinate transformationsΓ for tracking applications are discussed in

the present section.
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6.3. World Coordinates for Imaging Systems with Motion

Analytical Solution for Visual Control of Motion in Tracking Applications

Consider the imaging system mounted on a moving platform. If nothing is stated

assume a platform with 2 DOF (Θ is a 2×1 vector). To perform active tracking

of a moving target, the platform motion must be controlled such that the target

projection is kept in constant position/velocity in the image plane. Assume that

xd andẋd are the desired target position and velocity in the image. Consider that

Θc andΘ̇c are the position and velocity commands sent to the platform actuators

which have an unitary transfer function. Thus,Θc andΘ̇c must verify bothxd =

F(Υ,Θc) andẋd = JΥ
F .Υ̇+JΘ

F .Θ̇c with Υ andΥ̇ target 3D position and velocity

(see equations 6.27 to 6.31).

If nothing is stated assume in the sequel that at each frame time instant both

target positionxi and velocityẋi are measured in the image plane and that the

platform positionΘ and velocityΘ̇ are estimated using the encoder readings.

The goal is to determine the position and velocity commandsΘc andΘ̇c knowing

xi, ẋi, Θ andΘ̇.

Proposition 6.1: Assume that it is possible to compute target 3D positionΥ from

target position in imagexi and camera poseΘ. In a similar way consider that

camera positionΘ can be uniquely calculated given target position in imagexi

and in the sceneΥ. If these two conditions hold then, given target position in

imagexi and camera poseΘ, it is possible to compute camera positionΘc such

that target is projected in a pre-defined positionxd in the image plane. A similar

statement can be made for velocity relationships.

Proof: FunctionF computes target position in imagexi given target 3D position

Υ and camera poseΘ (equation 6.27). Assume that it exists a functionυ which

enables the computation ofΥ given bothxi andΘ (equation 6.32). In a similar

way, using functionθ, Θ can be calculated knowing bothxi andΥ (equation

6.33).

Υ = υ(xi,Θ) (6.32)

Θ = θ(xi,Υ) (6.33)
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Assume that the target image positionxi is measured and camera poseΘ is

estimated from encoder readings. The world target 3D position isυ(xi,Θ). The

camera positionΘc such that target image is projected in positionxd is given in

equation 6.34.

Θc = θ(xd, υ(xi,Θ)) (6.34)

Equations 6.35 and 6.36 are obtained differentiating 6.32 and 6.33 with respect

to time.Jυ = [Ji
υ|JΘ

υ ] andJθ = [Ji
θ|JΘ

θ ] are the jacobian matrices of functionsυ

andθ.

Υ̇ = Ji
υẋi + JΘ

υ Θ̇ (6.35)

Θ̇ = Ji
θẋi + JΥ

θ Υ̇ (6.36)

Knowing both the target velocity in the imageẋi and the camera velocitẏΘ

at the frame acquisition time instant, it is possible to compute the camera velocity

Θ̇c such that target is projected in the image plane with desired velocityẋd. This

results is shown in equation 6.37 derived by differentiating 6.34 with respect to

time.

Θ̇c = Ji
θẋd + JΥ

θ Ji
υẋi + JΥ

θ JΘ
υ Θ̇ (6.37)

Proposition 6.2: Consider the global mapping functionF and the corresponding

jacobian matrixJF = [JΥ
F |JΘ

F ]. If it exists a functionυ that enables the computa-

tion of the target 3D position from target image and camera pose, thenJΥ
F must

be invertible. In a similar way if it exists a functionθ that allows the calculation

of the camera position from the target position in the image and in the world, then

matrixJΘ
F must have inverse.

Proof: Assume that the functionυ exists (equation 6.32). The mathematical rela-

tionship of equation 6.38 is obtained replacingΥ̇ in equation 6.29 by the result of

equation 6.35. Equation 6.39 is derived replacing in 6.35ẋi by the result presented

in 6.29.
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6.3. World Coordinates for Imaging Systems with Motion

ẋi = JΥ
FJi

υẋi + (JΥ
FJΘ

υ + JΘ
F )Θ̇ (6.38)

Υ̇ = Ji
υJ

Υ
F Υ̇ + (Ji

υJ
Θ
F + Jθυ)Θ̇ (6.39)

If function υ exists then equalities 6.38 and 6.39 must hold. From these equal-

ities comeJi
υJ

Υ
F = JΥ

FJi
υ = I. Thus matrixJΥ

F must have inverse which is

Ji
υ. Considering thatJΥ

FJΘ
υ + JΘ

F = Ji
υJ

Θ
F + JΘ

υ = 0 and makingJi
υ = (JΥ

F )−1

comes the results of equation 6.40.{
Ji
υ = (JΥ

F )−1

JΘ
υ = −(JΥ

F )−1JΘ
F

(6.40)

Consider now that functionθ exists. In a similar way it can be proved thatJΘ
F

must be invertible and thatJi
θ andJΥ

θ are given by equation 6.41.{
Ji
θ = (JΘ

F )−1

JΥ
θ = −(JΘ

F )−1JΥ
F

(6.41)

Equation 6.37 is rewritten in 6.42 using the results of equations 6.40 and 6.41

Θ̇c = Θ̇ + (JΘ
F )−1(ẋd − ẋi) (6.42)

Coordinate Transformation Constraints

In the previous section proposition 6.2 establishes the necessary conditions for

the existence of functionsυ andθ and proposition 6.1 establishes the sufficient

conditions for the existence of an analytical solution for the tracking problem.

Assuming a platform with 2 DOF, thenJΘ
F is a 2× 2 matrix. This matrix is

invertible or not depending on the features of the system, in particular the kine-

matics of the robotic platform and the type of image sensor. The coordinate frame

where the platform positionΘ is defined is considered as a problem specification

that can not be changed.

In general, the world target position is referenced byΥ = (φ, ψ, ρ)t, which is

a 3× 1 vector. The corresponding jacobian matrixJΥ
F is a 2× 3 matrix similar to

the one shown in equation 6.9. A 2× 3 matrix is never invertible and, accordingly

to proposition 6.2, it is not possible to define a functionυ to recover target 3D
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position information. As mentioned in section 6.1, the image formation process

transforms points inR3 into points inR2. There is a loss of information and world

target position can not be fully recovered from a single image. Nevertheless, as

mentioned in 6.1.2, ifF is written in a compact form thenΥ can be partially

recovered in a straightforward manner. If the recovered target 3D parameters are

enough to derive functionθ then an analytical solution for the tracking problem

can be reached (proposition 6.1).

If it exists a transformation of coordinatesΓ verifying the compactness con-

straint then it is possible to write the global mappingF in a compact form (section

6.1.2). This means thatF does not depend onρ and that the third column ofJΘ
F

is zero. In practice, if the compactness constraint is verified, we can replace in

equations 6.27 to 6.42Υ = (φ, ψ, ρ)t by Υ̂ = (φ, ψ)t and assume thatJΥ
F is a

2 × 2 matrix by discarding the null column. The verification of the compactness

constraint is a necessary conditions forJΥ
F being a square matrix with inverse.

Considering the statement of proposition 6.2, the verification of the compactness

constraint is a necessary condition to exist anυ function. If bothυ andθ exist then

there is an analytical solution for the active tracking problem (proposition 6.1).

From the statements above we can conclude that it is desirable to select a trans-

formation of coordinatesΓ verifying the compactness constraint (equation 6.10).

If Γ also verifies the decoupling constraint (equation 6.11) thenF is written in

a decoupled way which simplifies the calculations to obtain the tracking control

laws (equations 6.34 and 6.37). Another useful guideline is to select transforma-

tion Γ such that target 3D position is referenced in a coordinate frame of the same

type as the one where camera positionΘ is defined. This can also lead to several

simplifications in the calculation as well as a deeper understanding of the tracking

task.

6.4 Active Tracking of Moving Targets

The derived mathematical framework is applied to active tracking of a moving

target using three different robotic platforms. These examples help the under-

standing of the exposed ideas and illustrate the usefulness of a judicious selection

of the world coordinate system.
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Figure 6.7: Active tracking using a perspective camera with translation motion

6.4.1 Active Tracking using a Perspective Camera with Trans-

lation Motion in the XY Plane

Fig.6.7 depicts a conventional perspective camera with translation motion in the

XOY plane. A schematic of the framework to derive global mappingF is shown

in Fig.6.1. The imaging sensor is a perspective camera with intrinsic parameters

Kc = I, therefore functionfi is the one shown in equation 6.12. The camera

position in theXOY plane in world cartesian coordinates isΘ = (tX , tY )t. For

this particular caseP(Θ) is given by equation 6.43. The goal of the application

is to control camera position and velocity such that target position and velocity in

image are zero (xd = ẋd = 0). Therefore the camera motion must be controlled

in such a way as to keep the optical axis aligned with target mass center.

P(Θ) =


 1 0 0 −tX

0 1 0 −tY
0 0 1 0


 (6.43)

Selecting Coordinate TransformationΓ

In a similar way to what was done in section 6.1 we intend to select a suitable

coordinate transformationΓ (equation 6.5) for this specific application. Functions

fi, P(Θ) andfh have been already defined. The jacobian matrixJΥ
F can be written

in terms of the partial derivatives ofΓ by replacingJΓ in equation 6.30 by the
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6. A General Framework for Selecting the World Coordinate System

result of equation 6.6.

If we intend to select a coordinate transformationΓ verifying the compactness

constraint then the third column of matrixJΥ
F must be zero (equation 6.10). This

yields the partial differential equations shown in 6.44.

{
Z(φY ψZ − φZψY ) + (X − tX)(φY ψX − φXψY ) = 0

Z(φZψX − φXψZ) + (Y − tY )(φY ψX − φXψY ) = 0
(6.44)

The system of equations6.44 can be solved with respect to the partial deriva-

tives of Γ. JΓ is a 3 × 3 matrix which yields 9 unknowns for 2 equations.

The problem is under determined and multiple solutions can be found. Some of

the solutions obtained can be discarded by considering the additional constraint

det(JΓ) 6= 0 (transformationΓ must be bijective). Following this procedure the

result of equation 6.45 is derived. If the coordinate transformationΓ verifies the

compactness constraint then the structure of the corresponding jacobian matrixJΓ

must be the one shown in 6.45. Notice that the provided jacobian matrix depends

both onXw = (X, Y, Z)t andΘ = (tx, ty)
t. Any functionΓ verifying equation

6.44 must depend, not only onXw, but also onΘ. Γ is no longer a transformation

of inertial world cartesian coordinates and we may conclude that it is not possible

to find a transformation of coordinates verifying the compactness constraint.

JΓ =


 φX φY − (X−tX )φX+(Y−tY )φY

Z

ψX ψY − (X−tX )ψX+(Y−tY )ψY

Z

ρX ρY ρZ


 (6.45)

The conclusions drawn from the discussion above were expected. If the cam-

era has translation motion there is no way to suppress the dependence on the third

coordinate and it is not possible to perform the required motion control using only

visual information. Some authors overcome the problem by assuming additional

constraints such the target moving in a plane in the world [25, 46]. A systematic

approach to determine if it exists any coordinate transformation verifying the con-

straints specified in 6.1.2 has been presented. The proposed procedure establishes

necessary conditions. The fulfillment of the conditions does not guarantee the ex-

istence of a desired coordinate transformationΓ. This systematic approach will
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Figure 6.8: Active tracking using a perspective camera mounted on a pan and tilt
unit

be repeated in the next two cases.

6.4.2 Active Tracking using a Perspective Camera with Pan

and Tilt Rotation Motion

A perspective camera is mounted on a pan and tilt unit such that both rotation axes

go through the optical centerOc. The camera first rotates in pan and then in tilt

(Fick Model) as depicted in Fig. 6.8. The camera position vector isΘ = (αp, αt)
t

with αp the pan angle andαt the tilt angle.

Consider the global mapping scheme depicted in Fig. 6.1. For this particular

case functionfi is provided in equation 6.12 (perspective camera withKc = I),

Equation 6.46 showsP(Θ) with e−αpŷc ande−αtx̂c the pan and tilt rotation ma-

trices [51]. Unit vectorŝxc andŷc are associated with theXc andYc axes of the

cartesian coordinate frame attached to the camera (not depicted in Fig. 6.8). The

goal of the tracking application is to control camera rotation such that both target

position and velocity in image is zero (xd = ẋd = 0). To achieve this the camera

optical axis must be aligned with target in 3D space.

P(Θ) = e−αtx̂ce−αpŷc [I|0] (6.46)
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Γ(Xw) =


 arctan(X

Z
)

arctan(− Y√
X2+Z2 )√

X2 + Y 2 + Z2




T(Υ) =


 ρ sin(φ) cos(ψ)

−ρ sin(ψ)
ρ cos(φ) cos(ψ)




F(Υ,Θ) =

[
C(ψ)S(φ−αp)

C(ψ)C(αt)C(φ−αp)+S(ψ)S(αt)

−S(ψ)C(αt)−C(ψ)S(αt)C(φ−αp)

C(ψ)C(αt)C(φ−αp)+S(ψ)S(αt)

]

JΥ
F (Υ,Θ) =

[
C(ψ)(S(ψ)S(αt )C(φ−αp)+C(ψ)C(αt))

Ξ1
−S(αt)S(φ−αp)

Ξ1
0

−C(ψ)S(ψ)S(φ−αp)
Ξ1

−C(φ−αp)
Ξ1

0

]

JΘ
F (Υ,Θ) =

[
−C(ψ)(S(ψ)S(αt )C(φ−αp)+C(ψ)C(αt))

Ξ1

C(ψ)Ξ2

Ξ1
C(ψ)S(ψ)S(φ−αp)

Ξ1

Ξ3

Ξ1

]
Ξ1 = C(ψ)2C(αt)

2S(ψ)2(S(φ)2 + S(αp)
2 + 2C(φ)C(αp)C(φ−

αp))
−C(αt)

2 + 2S(αt)C(αt)S(ψ)C(ψ)C(φ− αp)
Ξ2 = C(ψ)S(αt)(S(αp)C(αp) + 2C(αp)C(φ)S(φ− αp)

−S(φ)C(φ)) − S(ψ)C(αt)S(φ− αp)
Ξ3 = 1 − C(ψ)2(C(φ)2 + C(αp)

2 − 2C(αp)C(φ)C(φ− αp))

Table 6.4: Using a spherical coordinate system for active tracking with a pan and
tilt perspective camera

Selecting Coordinate TransformationΓ

Functionsfi, P(Θ) and fh, as well as the corresponding jacobian matrices, are

defined. AssumeJΓ given by equation 6.6. According to equation 6.30, matrixJΥ
F

can be written in terms of the partial derivatives of coordinate transformationΓ.

The procedure described in section 6.4.1 is repeated. IfΓ verifies the compactness

constraint then its jacobian matrix must have the structure shown in equation 6.47.

For the pan and tilt tracking situation there is a solutionJΓ that only depends on

Xw. Thus the existence of a cartesian coordinate transformationΓ verifying the

compactness constraint is not excluded. Nevertheless, repeating the procedure to

achieve a decoupledF function, allows us to conclude that it is not possible to

find a transformationΓ which verifies the decoupling constraint.
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JΓ =


 φX −XφX+ZφZ

Y
φZ

−Y ψY +ZψZ

X
ψY ψZ

ρX ρY ρZ


 (6.47)

One of the suggested guidelines for the selection of transformationΓ is to

reference the target 3D position in a coordinate frame of the same type as the one

where the camera positionΘ is defined.

Consider the transformation from cartesian coordinates into spherical coordi-

nates proposed in equation 6.48. The anglesφ andψ, used to reference the target

3D position, are similar to the camera pan and tilt angles (see Fig. 6.8). Moreover

the jacobian matrix of the coordinate transformation 6.48 follows the structure

presented in equation 6.47 which assures that the compactness constraint is veri-

fied.




φ = arctan(X
Z

)

ψ = arctan(− Y√
X2+Z2 )

ρ =
√
X2 + Y 2 + Z2

(6.48)

Table 6.4 summarizes the results obtained using the coordinate transformation

of equation 6.48. BothΓ and its inverseT are presented. Equation 6.49 defines

an angular error vector∆. The goal of the tracking application is to align the

camera optical axis with the target mass center. This is verified whenever∆ is

zero. Notice that by using coordinates of the same type to reference both the target

and the camera position, the dependence of the global mappingF on the angular

tracking errorsδp andδt is explicit. The third column ofJΥ
F is zero which means

thatΓ verifies the compactness constraint. Due to lack of space the polynomials

Ξ1, Ξ2 andΞ3 are presented at the bottom of the table.

∆ = (δp, δt)
t = (φ− αp, ψ − αt)

t (6.49)

Active Tracking Control Law

Assume thatΘc and Θ̇c are the position and velocity commands that must be

sent to platform actuators to accomplish a specified task (the actuators transfer

function is unitary). The goal is to track a moving object such that its projection
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Θc = Θ +




arctan( xi

yiS(αt)+C(αt)
)

arctan(
yi−tan(αt)

1+yi tan(αt)
+tan(αt)

r
1+

x2
i

(yiS(αt)+C(αt))
2

yi−tan(αt)

1+yi tan(αt)
tan(αt)−

r
1+

x2
i

(yiS(αt)+C(αt))
2

)




Θ̇c = Θ̇ +


 1+y2i

(1+x2
i +y2i )(yiS(αt)+C(αt))

− xiyi

(1+x2
i +y2i )(yiS(αt)+C(αt))

xi(yiC(αt)−S(αt))
(1+x2

i +y2i )(yiS(αt)+C(αt))
− (yiS(αt)+(1+x2

i )C(αt))

(1+x2
i +y2i )(yiS(αt)+C(αt))


 ẋi

Table 6.5: Position and velocity command for active tracking with a pan and tilt
perspective camera

is kept in the image center. The position commandΘc can be obtained by making

xd = 0 in equation 6.34 (Θc = θ(0, υ(xi,Θ))). Notice that the specified tracking

task is accomplished by controlling the camera motion such that the optical axis

becomes aligned with target mass center. Therefore the position command must

beΘc = Υ̂ with Υ̂ = (φ, ψ)t. Considering that̂Υ = Θ + ∆ (equation 6.49)

it resultsΘc = Θ + ∆. The explicit computation ofυ andθ functions can be

avoided by determining angular error∆ as a function of target position in image

xi and camera poseΘ

In table 6.4 the global mappingF is written in a compact form such thatxi

depends on̂Υ andΘ. The 3D position parametersφ andψ can be recovered from

the target position in the image(xi, yi) and the camera pose(αp, αt) (equation

6.50). The derivation of the angular error vector∆ from equation 6.48 as a func-

tion of target position in the image and the camera pose is straightforward. The

position commandΘc is obtained by makingΘc = Θ + ∆ (table 6.5).


 φ = arctan( (yi sin(αt)+cos(αt)) sin(αp)+xi cos(αp)

(yisin(αt)+cos(αt)) cos(αp)−xi sin(αp)

ψ = − arctan( yi cos(αt)−sin(αt)√
x2

i +(yi sin(αt)+cos(αt))2
)

(6.50)

Consider the jacobian matrices of table 6.4. Replacing anglesφ andψ by

the result of equation 6.50, bothJΥ
F andJΘ

F can be written in terms of target

position in the image and the camera pose. Equation 6.51 showsĴΥ
F such that

JΥ
F = [ĴΥ

F |0], and equation 6.52 givesJΘ
F . Making ẋd = 0 in equation 6.42 the

velocity commandΘ̇ is obtained (table 6.5).
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Figure 6.9: The Modular Vision System (MVS) at ISR

ĴΥ
F =


 yiS(αt) + (1 + x2

i )C(αt) − xiS(αt)(1+x2
i +y2i )√

x2
i +(yiS(αt)+C(αt))2

(yiC(αt) − S(αt))xi − (yiS(αt)+C(αt))(1+x2
i +y2i )√

x2
i +(yiS(αt)+C(αt))2




(6.51)

JΘ
F =

[
−(yiS(αt) + (1 + x2

i )C(αt)) xiyi

−(yiC(αt) − S(αt))xi 1 + y2
i

]
(6.52)

If yi = − cot(αt) then yi sin(αt) + cos(αt) = 0 and matrixJΘ
F becomes

non-invertible and a singularity occurs in the derived expressions ofΘc andΘ̇c.

This happens whenever target image lays in an horizontal line that contains the

intersection point of pan rotation axis with image plane. For this caseδp = ±π/2
andtan(δp) = ±∞.

6.4.3 Tracking Applications Using the MDOF and the MVS

Robotic platforms

In our laboratory two robotic platforms have been developed for active tracking:

the MDOF robot head [16] and the MVS modular platform. The MDOF head

has been mainly used in monocular and binocular tracking of a single target [17,

15, 14]. The MVS head has been recently built with the purpose of working

on simultaneous tracking of multiple targets [13]. Fig. 6.9(Left) depicts one of

the MVS robotic eyes. The camera has two degrees of freedom: pan and tilt. The
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rotation axes go through the optical center and the camera undergoes pure rotation

motion. This section describes the application of the equations derived in section

6.4.2 for monocular tracking. Two different behaviors must be considered: the

saccadic motion and the smooth pursuit [16, 17].

The active vision system is in standby until the target appears in the field of

view. Initially the object is projected somewhere in the image periphery. The goal

of the saccadic motion is to position the target image in the foveal region. The

performance of the saccadic control is highly dependent on the accuracy of the

angular error estimation. The importance of using the exact position command of

Tab. 6.5 to accomplish the task is shown. After a successful saccadic motion the

object is projected nearby the image center. The smooth pursuit behavior adjusts

the system position such that the target is kept in the image center. We show that

for the smooth pursuit the global mappingF can be approximated by function̄F

which yields simpler mathematical expressions and decoupled control of pan and

tilt DOF.. FunctionF̄ is established assuming that the target is projected near the

image center during tracking. The approximation errors are studied.

Saccadic Motion

As mentioned, the angular error∆ = (δp, δt)
t (equation 6.49) can be written

as a function of the target position in the image and of the camera pose (table

6.5). Solving the system of equations with respect toxi andyi yields the result of

equation 6.53.

{
xi = (yiS(αt) + C(αt)) tan(δp)

yi = − (S(αt)2C(δp)+C(αt)2) tan(δt)+S(αt)C(αt)(1−C(δp))
(S(αt)2+C(αt)2C(δp))+S(αt)C(αt)(1−C(δp)) tan(δt)

(6.53)

The saccadic motion consists in rotating the camera such that target image

jumps from the periphery to the center of the retina. Tab. 6.5 provides the exact

position commandΘc to accomplish the task. If commandΘc is sent to pan and

tilt motors, then the angular error vector∆ becomes null. The saccadic motion

is perfect because target projection moves from its initial position on the image

periphery to the center (replaceδp, δt by zero in equation 6.53).

The results presented on Tab. 6.5 are novel. In [24] the equations to track an

object moving in a plane with known depth are derived. The control equations
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Figure 6.10: Distance to the image center after the saccadic motion.
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proposed on Tab. 6.5 generalize this result since they assume unconstrained target

motion. In [60, 17] the estimation of the angular error∆ is approximated bȳ∆ =

(arctan(xi),− arctan(yi))
t. This approximation is rather intuitive and simplifies

the derivation of the control law. However the performance of the saccadic control

tends to be poor as shown in Fig. 6.10. Consider that the position command

is Θ̄c = Θ + ∆̄. After the saccadic motion, target image moves towards the

foveal region since anglesδp andδt decrease. However the error angles do not

become necessarily zero, nor the target is projected in the image center. Fig. 6.10

shows the distance to the image center after the saccadic motion for three different

camera tilt positions. The X and Y axes correspond to the initial pan and tilt errors

(δp, δt) which take values in the range[−60◦, 60◦]. The Z axis is the normalized

distance to the image center after the saccadic motion. To convert into image

pixels the value must be multiplied byk.f with k the number of pixels per metric

unit andf the camera focal length (in our casek.f = 225 for both the MDOF and

MVS robot head).

Observing Fig. 6.10 comes that the performance of the saccadic motion de-

creases when the angular errors increase. Since the target starts by appearing in

the image periphery, bothδp andδt take in general high values. One concludes

that the performance of the saccadic control using commandΘ̄c tends to be poor.

The approximation̄∆ = (arctan(xi),− arctan(yi))
t is only valid for small angu-

lar errors and camera tilt angles. The command equation of Tab. 6.5 must be used

to control the saccadic motion.

Function F̄ for Smooth Pursuit

In general the active tracking process is initialized by the saccadic motion. Camera

pose changes abruptly such that target projection jumps from the image periphery

to the foveal region. After the saccadic motion the camera orientation is smoothly

adjusted to keep the target image in the center of the retina. This stage is called

the smooth pursuit control.

The global mapping functionF is shown in table 6.4. In the smooth pursuit it

is reasonable to assume that most of the time the target projection is near the image

center. This assumption is used to derive an approximate mappingF̄. Equation

6.54 results from makingyi = 0 in the first equation of 6.53 andδp = 0 in
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the second one. Function̄F is an approximation of the global mappingF. The

approximation has simpler mathematical expressions and presents the advantage

of decoupling the pan and tilt control.

F̄(Υ,Θ) =

[
cos(αt) tan(δp)

− tan(δt)

]
(6.54)

Consider the approximation error vectorE = xi−x̄i (equation 6.55) measured

in the image plane. The exact image target position isxi = F(Υ,Θ), andx̄i =

F̄(Υ,Θ) is the approximate one. ErrorE depends on the camera tilt positionαt
and on the angular tracking error∆.

E(αt,∆) = (Ex(αt, δp, δt), Ey(αt, δp, δt))
t (6.55)

Fig. 6.11 helps to understand the approximation functionF̄. Each figure rep-

resents the image plane for three different camera tilt positions. Ifαt is known

then target position in the image depends on the angular tracking error∆. Both

the exact (xi) and approximate (̄xi) target position in the image are calculated for

a set of values of∆. The values computed ofxi andx̄i are represented in the im-

age plane. The exact positions on the solid grid are approximated by the positions

of the dashed grid. Conclusions aboutE = (Ex, Ey)
t can be drawn by observing

Fig. 6.11.

Assume that the angular pan errorδp is constant along time. The target is

positioned somewhere in a vertical plane in the 3D world, going through the origin

O of the inertial coordinate frame. This plane is projected in a line in the image.

If αt = 0, the line is vertical, ifαt 6= 0 the line has a slope whose module is

inversely proportional to module of camera tilt angle. Using the approximation of

equation 6.54 the mentioned plane, containing the target,is projected in a vertical

line in the image. As depicted in Fig. 6.11,x̄i = xi wheneverαt = 0 or y = 0.

Some properties of error functionEx(αt, δp, δt) can be observed:

• Ex(0, δp, δt) = 0

• Ex(αt, δp, δt) = −Ex(αt,−δp, δt)

• Ex(αt, δp, δt) = Ex(−αt, δp,−δt)
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Figure 6.11: Approximating the global mapping functionF by F̄. Exact (o) and
approximated (*) target position.
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Figure 6.12: Statistical analysis of approximation error functionE. Left: Mean of
Ex (-) andEy (- -). Right: Standard deviation ofEx (-) andEy (- -).

Consider that the angular tilt errorδt constant. In 3D space the target is some-

where in a cone with vertex in the originO of the inertial coordinate frame. The

image projection of these surfaces are the hyperbolic lines shown in Fig. 6.11.

Wheneverδt = −αt the conic surface degenerates in theOXZ plane. The plane

projection is an horizontal line also observable in the figure. The approximation of

equation 6.54 generates horizontal lines in the image. Notice thatȳi = yi when-

everδt = −αt or δp = 0. The following properties of error functionEy(αt, δp, δt)

can be observed:

• Ey(αt, 0, δt) = 0

• Ey(αt, δp,−αt) = 0

• Ey(αt, δp, δt) = Ey(αt,−δp, δt)

• Ey(αt, δp, δt) = −Ey(−αt,−δp,−δt)

A statistical characterization of the angular tracking error∆ = (δp, δt)
t has

been done experimentally. Assume that bothδp andδt have an independent gaus-

sian probability distribution of average0◦ (the target is almost always near the

center of the image). The standard deviation ofδp is 12◦ and the standard de-

viation of δt is 8◦. The pan and tilt errors are statistically independent thus the

covariance is zero. The approximation errorsEx andEy (equation 6.55) depend

onαt and∆. Given the camera tilt positionαt and the statistical characterization
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of the angular tracking error∆, the statistical properties ofEx andEy can be

derived. Fig. 6.12 shows the averagesµx andµy, the standard deviationsσx and

σy and the covarianceσxy as a function of camera tilt angleαt. µx andσxy are

zero becauseEx is an odd function ofδp. µy is an odd function ofαt because

Ey(αt, δp, δt) = −Ey(−αt,−δp,−δt). The figure presents normalized values for

the statistical parameters. To convert into image pixels the value must be mul-

tiplied k.f with k the number of pixels per metric unit andf the camera focal

length (in our casek.f = 225 for both the MDOF and MVS robot head).

The approximation errorE tends to increase with the tracking angular errors

∆. E also increases with the absolute value of the camera tilt angle. If|αt| is high

then significative approximation errors arise even when the target is projected near

the image center. If we intend to replace the global mappingF by functionF̄ then

both∆ andαt must be small, which means that the target image must be near the

center and the operating range of tilt DOF can not be large.

Velocity Relationships

From equation 6.29 results that the target velocity in the image is the sumẋi =

ẋind + ẋego with ẋind = JΥ
F Υ̇ the velocity induced by target motion, andẋego =

JΘ
F Θ̇ the velocity induced by camera motion (egomotion). Fig.6.13 depicts the

image velocity field for different circumstances. The columns correspond to dif-

ferent camera tilt anglesαt (from left to rightαt = −23◦, 0◦, 23◦). The first two

rows depict the image velocity fieldṡxego when the camera moves in pan and in

tilt and the target is stopped (Υ̇ = (0, 0)t). In the first row the camera velocity

is Θ̇ = (1, 0)t, while in the second iṡΘ = (0, 1)t. The third row shows the im-

age velocity fieldẋi when both the camera and the target move (Θ̇ = (1, 1)t and

Υ̇ = (1, 1)t). It is assumed that the camera has a field of view (FOV) of86◦. The

small dashed rectangle corresponds to a FOV of24◦ × 18◦.

The goal of our tracking application is to keep a zero target image velocity

ẋi = 0. Considering thaṫxi = ẋind + ẋego, the camera velocity must bėΘc such

that the egomotion compensates for the image velocity component induced by

target motion in the scene (ẋego = −ẋind). The velocity commanḋΘc is written

in equation 6.56 as a function of the target velocity in the world (the compactness

constraint is verified, thereforėρ does not play any role). Notice that iḟψ = 0
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Figure 6.13: Image velocity field for different situations

then perfect tracking is achieved forΘ̇c = (φ̇, 0)t. The image velocity induced by

the target motion is compensated for by the camera pan rotation. In general the

decoupling between pan and tilt control does not hold as can be seen in the last

row of Fig 6.13.

Θ̇c = −(JΘ
F )−1ĴΥ

F

[
φ̇

ψ̇

]

=


 1 xi(yiC(αt)−S(αt)

(yiS(αt)+C(αt))
√
x2

i +(yiS(αt)+C(αt)2

0

√
x2

i +(yiS(αt)+C(αt))2

yiS(αt)+C(αt)


[ φ̇

ψ̇

] (6.56)

The jacobian matriceŝJΥ
F andJΘ

F can be approximated bȳJΥ
F andJ̄Θ

F . The

result of equation 6.57 is derived assuming in equations 6.51 and 6.52 that the
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target is projected in the center of the image (xi = 0). The approximated jacobian

matrices yield simpler mathematical expressions and decoupled pan and tilt con-

trol. The egomotion term is approximated by˙̄xego = (cos(αt)α̇p, α̇t)
t which is

independent of the image position. As can be observed in Fig. 6.13 the egomotion

is only constant around the image center. The approximated velocity command
˙̄Θc is derived makingxi = 0 in equation 6.56. As a result̄̇Θc = (φ̇, ψ̇)t with

the target world velocity approximated by(φ̇, ψ̇)t = (ẋi/ cos(αt), ẏi)
t. As can be

seen in Fig. 6.13 the approximation yielding decoupled pan and tilt control is only

valid for the central area of the image.

J̄Υ
F = −J̄Θ

F =

[
cos(αt) 0

0 −1

]
(6.57)

6.4.4 Active Tracking Using an Omnidirectional Camera with

a Rotational Degree of Freedom Around theZ axis

Fig. 6.14 shows a picture of the MVS vision system. The robotic eyes of Fig.

6.9(Left) are mounted on the tips of a rotative platform. We intend to use the om-

nidirectional camera to control the platform rotation. The catadioptric system is

mounted in the center of the robotic platform (Fig. 6.9(Right)). The platform rota-

tion axis goes through the catadioptric effective viewpointO and the re-projection

centerOc. The goal of the tracking applications is to control the rotation angleα,

such that the target image lays in the Y axis of the catadioptric image plane. Fig.

6.14 represents the setup.

Functionfi on the global mapping scheme of Fig. 6.1 is provided in equation

6.19 (our catadioptric system is parabolic thusξ = 1). P(Θ) is given in equation

6.58 wheree−αẑ is the matrix rotation around the Z axis (Fig. 6.14) [51]. In this

case vectorΘ has 1× 1 dimension (Θ = α). In the sequel vectorsΘ andΘc

will be replaced byα andαc to reference the camera pose and command. The

goal of the tracking application is to control the camera rotation such that the X

target image position and velocity are zero. The desired image target position is

xd = (0, yd) and the velocity iṡxd = (0, ẏd) with yd andẏd arbitrary values.

P(Θ) = e−αẑ[I|0] (6.58)
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Figure 6.14: Active tracking using an omnidirectional camera

Selecting Coordinate TransformationΓ

The procedure explained in sections 6.4.1 is repeated to select a suitable world

coordinate frame to reference the target position.

For this particular case it is possible to choose a coordinate transformation

Γ verifying the compactness constraint. Nevertheless it is not possible to write

global mappingF in a decoupled form.

The proposed change of coordinates is given in equation 6.59. It is similar to

the coordinate transformation used in static catadioptric imaging (equation 6.23).

The only difference is in theφ coordinate which is defined according to the camera

position parameterα. The projective ray constraining the target is defined by the

intersection of a vertical plane, referenced byφ, with an horizontal conic surface,

indexed byψ. The proposed coordinate system can not be used to reference points

lying on theXOZ plane (Fig. 6.14). We assume that the target is always in front

of the MVS system (Y > 0). In this case the transformation of equation 6.59 is

bijective.
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6. A General Framework for Selecting the World Coordinate System

Γ(Xw) =


 arctan(−X

Y
)

arctan(− Y
Z+ξ

√
X2+Y 2+Z2√

X2 + Y 2 + Z2




T(Υ) =




tan(φ) tan(ψ)(l+
√

1+(1−ξ2) tan(ψ)2(1+tan(φ)2))

1+tan(ψ)2(1+tan(φ)2)

− (tan(ψ)(l+
√

1+(1−ξ2) tan(ψ)2(1+tan(φ)2)))

1+tan(ψ)2(1+tan(φ)2)

l(1−tan(ψ)2(1+tan(φ)2))+
√

1+(1−ξ2) tan(ψ)2(1+tan(φ)2))

1+tan(ψ)2(1+tan(φ)2)




F(Υ, α) = (ϕ− ξ) cos(α) tan(ψ)

[
tan(φ) − tan(α)
1 + tan(φ) tan(α)

]
JΥ

F (Υ, α)= (ϕ− ξ) cos(α)

[
tan(ψ)
cos(φ)2

tan(φ)−tan(α)
cos(ψ)2

0
tan(ψ) tan(α)

cos(φ)2
1+tan(φ) tan(α)

cos(ψ)2
0

]

JαF(Υ, α)= −(ϕ− ξ) cos(α) tan(ψ)

[
1 + tan(φ) tan(ψ)
−(tan(φ) − tan(α))

]
Table 6.6: New coordinate system for active tracking with an omnidirectional
camera




φ = arctan(−X
Y

)

ψ = arctan(− Y
Z+ξ

√
X2+Y 2+Z2 )

ρ =
√
X2 + Y 2 + Z2

(6.59)

Table 6.6 summarizes the results obtained. The coordinate transformationΓ

and its inverseT are presented. The global mappingF is written using the new

world coordinatesΥ = (φ, ψ, ρ)t. The corresponding jacobian matrices are pre-

sented as well. Notice that the third column ofJΥ
F is zero, which means that

transformationΓ verifies the compactness constraint.

Active Tracking Control Law

Consider the angular tracking errorδ = φ − α. The result of equation 6.60 is

derived in a straightforward manner and provides the angular position errorδ as a

function of target image coordinates.

δ = arctan(
xi
yi

) (6.60)
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The global mapping functionF is in a compact form, thus it does not depend

on ρ. Solving the equationxi = F(Υ, α) with respect toΥ, bothφ andψ are

obtained as a function of target position in the image and catadioptric system

pose. Replacing the result in the two first columns ofJΥ
F the compact jacobian

ĴΥ
F is obtained as a function of image coordinates and camera pose (equation

6.61). MatrixJαF of equation 6.62 is derived in the same way. The singularity

for xi

yi
= cot(α) is similar to the one that appears for the pan and tilt tracking

situation.

ĴΥ
F =


 x2

i +y2i
yi−xi tan(α)

((ϕ−ξ)2(1+tan(α)2)+(yi−xi tan(α))2)xi cos(α)
(ϕ−ξ)(yi−xi tan(α))

tan(α)(x2
i +y2i )

yi−xi tan(α)
((ϕ−ξ)2(1+tan(α)2)+(yi−xi tan(α))2)yi cos(α)

(ϕ−ξ)(yi−xi tan(α))




(6.61)

JαF = (−yi, xi)t (6.62)

The X coordinate of the target position in image is zero whenever the angular

error δ is zero. The position command such thatxi becomes null isαc = α + δ

with δ provided by equation 6.60.

Consider the target velocity vector̂̇Υ = (φ̇, ψ̇)t. Since matrixĴΥ
F is non-

singular, comes that̂̇Υ = (ĴΥ
F )−1(ẋi − JαFα̇) (equations 6.35 and 6.40). Assume

that J̄Υ
F and J̄αF are the first rows of̂JΥ

F andJαF. The goal is to determine the

velocity commandα̇c such that the image velocitẏxi, along the X direction, is

zero. The desired velocity iṡxd = J̄Υ
F

˙̂Υ + J̄αFα̇c (equation 6.29). Makinġxd = 0

and replacing˙̂Υ comes thaṫαc = −(J̄αF)−1J̄Υ
F (ĴΥ

F )−1(ẋi − JαFα̇). The result of

equation 6.63 is achieved taking into account thatJ̄Υ
F (ĴΥ

F )−1 = (1, 0).

{
αc = α + arctan(xi

yi
)

α̇c = α̇− ẋi

yi

(6.63)

The control law of equation 6.63 allows to control the angular position and

velocity of the platform where the catadioptric sensor is mounted on in a straight-

forward manner.
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6.5 Closure

Any image formation process can be interpreted as a transformation fromR3 to

R2. The transformation is non-injective and implies loss of information. This

chapter shows that the choice of the coordinate system to reference points in the

3D space is important. By selecting a suitable reference frame, the intrinsic nature

of image formation process is kept unchanged, but the mathematical relationship

between the world and the image becomes simpler and more intuitive. This can

help not only the understanding of the imaging process but also the development

of new algorithms and applications.

A general framework to select the most suitable coordinate system for a certain

sensor/system is presented. Two differential constraints are defined to enable the

choice of a 3D reference frame: the compactness constraint and the decoupling

constraint. It is shown that coordinate transformations satisfying these differential

constraints bring advantageous properties when mapping 3D space velocities into

2D image velocities. The derived framework is applied to conventional perspec-

tive cameras and then generalized to central catadioptric ones. The advantageous

of using this approach for active tracking applications are discussed in the second

part of the chapter. Three different cases are considered: a perspective camera

with translational motion in the XY plane, a perspective camera with rotational

pan and tilt motion and a parabolic omnidirectional camera with a rotational de-

gree of freedom around the Z axis.
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Chapter 7

Pose Estimation Using Central

Panoramic Imaging

Visual servoing can benefit from sensors providing large fields of view. The previ-

ous chapter proposes an application where an omnidirectional camera is used for

active tracking of a moving target. The visual information is used to control the

rotation of the MVS platform. Since the robot has less that3 degrees of freedom

(DOF), the target is modeled has a point moving in the scene. However there are

several applications where the target must be modeled has a rigid body with trans-

lation and rotation motion. This chapter focuses on pose estimation using central

panoramic imaging.

Consider the task of positioning a robotic manipulator, with more than3 DOF,

using visual information. The approaches to this problem are traditionally classi-

fied in two groups: image based and position based visual servoing [43]. In the

former the task function is defined in the image plane [28]. In the latter the con-

trol input is defined in the 3D task space. The pose of the target is estimated from

image features based on the knowledge of a geometric model of the object and

the camera calibration [72]. With only one camera there are ambiguities and sin-

gularities in pose estimation and the target can get out of the field of view during

the tracking. In [48] a multiple camera approach is used to cope with these dif-

ficulties. Panoramic imaging can overcome the problems avoiding multiple view

geometry and calibration of several cameras.

This chapter introduces the jacobian matrixJ for a generic central catadiop-
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7. Pose Estimation Using Central Panoramic Imaging

tric system. MatrixJ is derived from the central catadioptric mapping function

presented in chapter 2. According to this unifying theory, central catadioptric

imaging can be modeled by a non linear function}, with the type of sensor and

shape of the mirror described by a parameterξ (Tab 2.3). For the particular case

of a conventional perspective camera the parameterξ is null. Thus, by assuming

ξ = 0, the general central projection jacobian matrixJg becomes the well known

interaction matrixJp [28]. Moreover it is shown that the derived jacobian matrix

can be decomposed in the product of two matricesJc andJp (Jg = Jc.Jp). Jc is

a 2×2 matrix that is always invertible which proves that the general catadioptric

jacobianJg has exactly the same singularities as the standard perspective jacobian

Jp [23, 49].

Experiments on iterative pose estimation from points in the catadioptric image

are performed. The singularities ofJg and the stability and convergence of image

based visual servoing from catadioptric images are discussed. Point-to-contour

tracking [48] on omnidirectional images is used to estimate the rigid displacement

of objects. The application of the derived framework to control the position of a

robotic arm is also discussed.

7.1 Problem Formulation

Fig. 7.1 depicts a moving rigid object observed by a central catadioptric sensor.

The referential frame<b is attached to the moving body. The coordinates system

of the panoramic sensor is< which is centered in the effective viewpoint. The

3 × 3 matrix R provides the rotation between<b and<. The3 × 1 vectort =

(tx, ty, tx) is the translation vector corresponding to the position of the originOb

in sensor coordinates. Our goal is to estimate the pose of the rigid body knowing

the coordinates{X1
b,X

2
b , . . . ,X

N
b } of a set ofN object points.

7.1.1 The Central Panoramic Sensor

Chapter 2 presents an unifying theory for central catadioptric image formation.

The general mapping model is represented in Fig. 2.3. If the system is calibrated

then collineationHc, given in equation 2.7, is known. For the purposes of the

present chapter it is assumed, without loss of generality, thatHc = I with I the
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Figure 7.1: Central catadioptric projection of a rigid body

3 × 3 identity matrix.

Assume a generic 3D point in the scene, with sensor coordinatesX = (X, Y, Z)t,

which is projected at pointxi = (xi, yi)
t in the catadioptric image plane (Fig. 7.1).

Consider the scheme of Fig. 2.3 whereXh = (Xt, 1)t. SinceP = [I|0] it comes

in a straightforward manner thatx = (X, Y, Z)t. The oriented projective rayx is

mapped into point̄x by the non-linear function} (equation 2.5). CollineationHc

transforms the projective point̄x into pointx̂ (equation 2.6). Taking into account

thatHc = I yields

x̂ = (
X√

X2 + Y 2 + Z2
,− Y√

X2 + Y 2 + Z2
,

Z√
X2 + Y 2 + Z2

+ ξ)t

The projective raŷx = (x̂, ŷ, ẑ)t intersects the catadioptric image plane on

point xi with coordinates(xi, yi)t = ( x̂
ẑ
, ŷ
ẑ
)t. Functionfi, provided in equation

7.2, maps 3D scene points into 2D image points such thatxi = fi(X).
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fi() : (X, Y, Z) −→ (
X

Z + ξ
√
X2 + Y 2 + Z2

,− Y

Z + ξ
√
X2 + Y 2 + Z2

) (7.2)

7.1.2 Measuring the Pose Estimation Error

Consider the scheme depicted in Fig. 7.1 whereXb are the body coordinates

of a generic point lying on the moving object. By body coordinates we mean

coordinates in the reference frame attached to the rigid object. The coordinate

system< attached to the panoramic camera is called the sensor reference frame.

If the pose(R, t) between the two coordinates systems is known then the point

3D position in sensor coordinates is

X = RXb + t (7.3)

Assume that the object moves rigidly with relation to the catadioptric sensor.

The change in pose can be described in a differential way by a6 × 1 kinematic

screwδ = (ω,v)t [51]. Consider the pointX = (X, Y, Z)t lying on the object.

The 3D velocity of the point in sensor coordinates is

Ẋ =


 0 −Z Y 1 0 0

Z 0 −X 0 1 0

−Y X 0 0 0 1




︸ ︷︷ ︸
Jm

δ (7.4)

PointX is projected into the catadioptric image plane at pointxi = fi(X) with

fi the mapping function provided in equation 7.2. IfJi is the2×3 jacobian matrix

of functionfi then the velocity of the image point due to the object rigid motion is

provided by

ẋi = JiJm︸ ︷︷ ︸
Jg

δ (7.5)

We aim to estimate the pose of the rigid body from its catadioptric image.

Consider a set{X1
b ,X

2
b , . . . ,X

N
b } of 3D points lying on the object. The posi-

tion of these points in body coordinates is known in advance. This set of points

will be used as a 3D model of the rigid object. If the rotation matrix isR and
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the translation vector ist then the set of 3D points is imaged in a set of points

s = {x1
i ,x

2
i , . . . ,x

N
i }. The image points can be determined using the relation of

equation 7.6.

xj
i = fi(R.X

j
b + t), j=1,2,3 . . . N (7.6)

Assume an initial pose estimate(Ř, Ť). Let š = {x̌1
i , x̌

2
i , . . . , x̌

N
i } be the

corresponding catadioptric projection of the set ofN model points. If the pose

estimation is correct theňs is coincident with the set of real image pointss. How-

ever in general there is an error in the estimate. Vectore is defined ase = s − š

and depends on the pose estimate error.

The error in the pose estimation can be described by a kinematic screwδ

[51, 28, 23]. From the result of equation 7.5 comes that(xj
i − x̌j

i) ≈ Jj
gδ with

j = 1, 2 . . .N andJj
g the jacobian matrixJg evaluated on thejth model point.

Equation 7.7 establishes the relationship between the measured image errore and

the errorδ on the pose estimation of the rigid body.J is a2N×6 matrix comprised

by the jacobian matrixJg evaluated in theN points of the object model.


x1
i − x̌1

i

x2
i − x̌2

i
...

xN
i − x̌N

i




︸ ︷︷ ︸
e

=




J1
g

J2
g
...

JN
g




︸ ︷︷ ︸
J

δ (7.7)

Given the initial pose estimate(Ř, Ť), the points of the 3D model of the object

are projected in the set of image pointsš using the relation provided in equation

7.6. The error vectore is the difference between points ins and š. Vectore is

measured in the image plane and corresponds to the distance between the model

projection and the real image of the object. According to the result of equation 7.7

the image errore is related to the pose estimation errorδ by the jacobian matrixJ.

Thus knowing bothe andJ the pose error can be determined using normal least

squares [58].

δ = (JtJ)−1Jte (7.8)

The objective is to update the pose estimation such that the projection of the
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I

I

−L

J z−1+ +
+

+

δ (k)

y(k)u(k) e(k+1) e(k)

Figure 7.2: Iterative pose estimation as a regulation control problem (I is the
2N × 2N identity matrix).

3D model becomes coincident with the object image and the measured error vector

e converges to zero. This problem is known in the literature as model based

tracking of a rigid object.

7.1.3 Pose Estimation as a Regulation Control Problem

The problem of model based tracking stated in the previous section can be for-

mulated as a regulation control problem [3]. Consider the system depicted in Fig.

7.2 with inputu and outputy. The corresponding state space model is provided

in equation 7.9. The state vector is the image errore and the input matrix is the

jacobianJ (equation 7.7).

{
e(k + 1) = e(k) + J(u(k) + δ(k))

y(k) = e(k)
(7.9)

Accordingly to the system state-space equations the change in poseδ acts as

an input perturbation which disturbs the outputy(k). The goal is to find a state

feedback controllerL such that ifu(k) = −Le(k) then the disturbance is rejected

and the system state vectore converges to zero. Or, in other words, the projection

of the 3D model and the image of the object become coincident.

Consider the result of equation 7.8 where the pose estimation errorδ is de-

termined using the image errore. System regulation can be achieved by making

u = δ (equation 7.10). Equation 7.11 provides the state space model of the fi-
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nal closed loop system. System stability and transient response depend on the

eigenvalues of the matrix(I − J(JtJ)−1Jt) [3]. However it is important to re-

mind that the state transition matrix is a function of rigid body position which

changes along time. Thus the analysis of the regulation dynamics is hard to per-

form. Moreover the controller of equation 7.10 is only realizable when(JtJ) is

non singular. Whenever matrix(JtJ) is not invertible we are in presence of a

singularity [49, 23].

L = (JtJ)−1Jt (7.10)

{
e(k + 1) = (I − J(JtJ)−1Jt)e(k) + Jδ(k)

y(k) = e(k)
(7.11)

7.2 The Jacobian Matrix for General Central Cata-

dioptric Projection

The design the controller of equation 7.10 requires the derivation of matrixJ.

Matrix J depends on the jacobian matrixJg which is evaluated on the N points of

the object model (equation 7.7). This section derives matrixJg.

7.2.1 The Jacobian MatrixJg

Consider the central catadioptric mapping functionfi which maps 3D point co-

ordinatesX in image coordinatesxi. The corresponding jacobian matrixJi is

derived by differentiating the function of equation 7.2. The obtained result is pre-

sented in equation 7.12 whereρ =
√
X2 + Y 2 + Z2.

Ji =
1

ρ(Z + ξρ)2

[
ρZ + ξ(Y 2 + Z2) −ξXY −X(ρ + ξZ)

ξXY −(ρZ + ξ(X2 + Z2)) Y (ρ + ξZ)

]
(7.12)

Consider the3×3 matrixJm provided in equation 7.4. Notice thatJm = [X̃|I]
with X̃ the skew symmetric matrix associated with point coordinatesX (equation

4.3). From equation 7.5 results thatJg = JiJm. The jacobian matrixJg for

169



7. Pose Estimation Using Central Panoramic Imaging

general central catadioptric projection is provided in equation 7.13.

Jg =

[
XY

(Z+ξρ)2
−X2+Z2+ξρZ

(Z+ξρ)2
− Y

(Z+ξρ)

−Y 2+Z2+ξρZ
(Z+ξρ)2

XY
(Z+ξρ)2

X
(Z+ξρ)

ρZ+ξ(Y 2+Z2)
ρ(Z+ξρ)2

ξXY
ρ(Z+ξρ)2

− ξXY
ρ(Z+ξρ)2

−X(ρ+ξZ)
ρ(Z+ξρ)2

−ρZ+ξ(X2+Y 2)
ρ(Z+ξρ)2

Y (ρ+ξZ)
ρ(Z+ξρ)2

]
(7.13)

Equation 7.13 presents the jacobian matrixJg as a function of the 3D coor-

dinates of pointX = (X, Y, Z)t. FunctionΓ, provided in Tab. 6.3 (chapter 6),

transforms the cartesian coordinatesX = (X, Y, Z)t in the special coordinates

Υ = (φ, ψ, ρ)t (Fig. 6.4). Replacing in equation 7.13(X, Y, Z) by T(Υ), also

provided in Tab. 6.3, matrixJg is written in terms of(φ, ψ, ρ). Taking into account

thatφ = arctan(xi) andψ = arctan(yi) yields

Jg =

[
−xiyi − (1+x2

i )Ξ−y2i ξ
Ξ+ξ

−yi
− (1+y2i )Ξ−x2

i ξ

Ξ+ξ
−xiyi xi

1+x2
i (1−ξ(Ξ+ξ))+y2i
ρ(Ξ+ξ)

−xiyiξ
ρ

xiyiξ
ρ

−xiΞ
ρ

−1+x2
i +y2i (1−ξ(Ξ+ξ))

ρ(Ξ+ξ)
−yiΞ

ρ

]
(7.14)

Equation 7.14 provides the central catadioptric jacobian matrixJg as a func-

tion the image coordinatesxi and the point depthρ (Ξ =
√

1 + (x2
i + y2

i )(1 − ξ2)).

This representation is much more useful from an application point of view.

7.2.2 Additional Considerations

Making ξ = 0 in equation 7.13 yields

Jp =

[
XY
Z2 −(1 + X2

Z2 ) −Y 1
Z

0 − X
Z2

−(1 + Y 2

Z2 ) XY
Z2 X 0 − 1

Z
Y
Z2

]
(7.15)

Matrix Jp is the well known jacobian matrix for conventional perspective cam-

eras. MatrixJg, derived above, is a generalization of the interaction matrix intro-
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7.2. The Jacobian Matrix for General Central Catadioptric Projection

duced in [28].

The jacobianJi, provided in equation 7.12, can be decomposed in the matrix

product of equation 7.16. The2×2 matrixJc depends on point coordinatesX and

on the mirror parameterξ. Notice that ifξ = 0 then matrixJc becomes the2 × 2

identity matrix. The second matrix has dimension2× 3 and is the jacobian of the

conventional perspective mapping functionfi = (X/Z,−Y/Z)t obtained making

ξ null in equation 7.2. The eigenvalues of matrixJc are{Z/(Z + ρξ); (Z2(ρ +

ξZ))/(ρ(Z+ξρ)2)}. Notice thatJc is positive definite whenever theZ coordinate

is positive.

Ji =

[
Z(ρZ+ξ(Y 2+Z2))

ρ(Z+ξρ)2
ξXY Z

ρ(Z+ξρ)2

ξXY Z
ρ(Z+ξρ)2

Z(ρZ+ξ(X2+Z2))
ρ(Z+ξρ)2

]
︸ ︷︷ ︸

Jc

[
1
Z

0 − X
Z2

0 − 1
Z

Y
Z2

]
(7.16)

From the result of equation 7.16 arises that the general catadioptric matrixJg

can be written asJg = JcJp. Matrix Jp is the2 × 6 jacobian matrix for the

conventional perspective camera situation (equation 7.15).

The controller of equation 7.10 is realizable if, and only if,J is a full rank

matrix.J has dimension2N × 6 with N the number of points in the 3D model of

the object. Clearly the full rank constraint can not be verified with less than three

points. Equation 7.17 is derived from equation 7.7 knowing thatJj
g = Jj

cJ
j
p.

J =




J1
c 0 . . . 0

0 J2
c . . . 0

...
...

. . .
...

0 0 . . . JN
c




︸ ︷︷ ︸
C




J1
p

J2
p
...

JN
p




︸ ︷︷ ︸
P

(7.17)

Matrix J is the product of a2N × 2N square matrixC with a matrixP with

dimension2N × 6. AssumingZ > 0 then all matricesJj
c are positive definite and

matrix C is always full rank. MatrixJ is rank deficient if, and only if, matrixP

is also rank deficient. This proves that the general central catadioptric situation

presents the same singularities of the perspective case. These singularities have

been studied in detail in [49, 48].
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7. Pose Estimation Using Central Panoramic Imaging

Figure 7.3: A tracking sequence. The object translates along axis of camera

7.3 Model Based Tracking

Based on the tracking method described above we implemented an object tracker.

Since with catadioptric cameras straight lines map onto the image plane as conics,

we devised a contour-to-point tracker along the lines described in [48]. The figures

below show a rectangular object moving towards the camera and in a direction

perpendicular to the camera.

7.4 Closure

This chapter introduces for the first time the jacobian matrixJg for a general cen-

tral catadioptric system. It is shown that the conventional interaction matrixJp
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7.4. Closure

Figure 7.4: A tracking sequence. The object translates in front of camera..

for the perspective cameras [28] is a particular case of matrixJg. Moreover the

general jacobian matrixJg can be written as the product of matricesJc andJp

(Jg = Jc.Jp). SinceJc is a2 × 2 non singular matrix encoding the mirror infor-

mation, the general catadioptric jacobianJg has exactly the same singularities as

the standard perspective jacobianJp [23, 49].

The general jacobian matrix can be used to extend to central panoramic imag-

ing algorithms and techniques originally developed for perspective cameras. As

an example in [71] Vidal et al. propose a factorization approach for motion seg-

mentation and 3D motion estimation from paracatadioptric images which requires

the jacobian matrix. In this chapter we present some experiments in estimating the

pose of a rigid body imaged by a central catadioptric sensor. Given an initial pose

estimate, the error between the projected model and the actual image of the object
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7. Pose Estimation Using Central Panoramic Imaging

is measured. The pose parameters are updated by minimizing the image error.

Since the objective function is non-linear, the estimation must be performed using

a gradient descending method which requires the derived jacobian matrix. Instead

of studying the pose estimation in a conventional optimization framework we for-

mulated the problem in terms of model-based tracking. The model based tracking

can be interpreted as a regulation control problem in the image plane. The motion

of the rigid body acts as a disturbance that must be compensated.

The model based tracking of a rigid object can be exploited in many ways

for visual servoing applications. The proposed approach is being used in robot

navigation and cooperation [56]. The experimental setup consists in two mobile

platforms both equipped with central catadioptric cameras. A visual landmark,

similar to the one depicted in the figures, is positioned on the room ceiling. One

robot is the leader with independent motion and the other is the slave. The objec-

tive is to control slave motion such that the relative position between the two plat-

forms is kept constant. To achieve this goal both robots use the omnidirectional

vision to estimate their pose from the model based tracking of the landmark. A

method to control the position of a robotic arm using a static catadioptric system

is also being developed. Typically, in visual servoing using a conventional per-

spective camera, the available field of view is only enough to image the region

around the end-effector. The pose of the end-effector is estimated by visual feed-

back, and motion control is achieved using the manipulator jacobian known “‘a

priori”. The success of this approach is highly dependent on the arm calibration.

We use the wide field of view provided by the omnidirectional sensor to image the

entire arm. The different manipulator links are tracked in the catadioptric image

and the motion of each joint is estimated. This approach increases the robustness

and accuracy of the visual servoing.
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Chapter 8

Final Remarks

This work starts by introducing an image formation model for central catadioptric

systems. The model covers the conventional perspective camera, the paracata-

dioptric sensor and systems combining a perspective camera with an hyperbolic,

elliptical or planar mirrors as described in [5]. In [53] Nayar and Veri prove that

any folded system that uses conic mirrors has a geometrically equivalent system

using a single conic mirror. Thus the folded catadioptric camera with a single pro-

jection center can also be modelled using the proposed framework. Another way

to obtain central panoramic imaging is by using cameras equipped with fish-eye

lens [6]. It is not clear that our framework can be used to model these systems as

well. Such an extension would be an interesting direction of research.

Chapter 3 studies in detail central catadioptric line projection. Several in-

variant properties are derived that are useful both for calibration and reconstruc-

tion. It is proved that any catadioptric system can be fully calibrated from the

image of three lines, and that only two lines are required when the mirror is hy-

perbolic/elliptical and the pose between the camera and the mirror is known in

advance. It would be interesting to investigate the projection of quadric surfaces

by central catadioptric systems. Preliminary studies show that the image of a

sphere is a conic curve, but more research must be done on this topic.

General purpose algorithms to work with conic curves are proposed on chap-

ter 4. A closed form formula that computes the intersection between a line and

a conic is derived. A method to determine the intersections between two conics

is presented as well. The intersection points are computed by solving a third or-
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8. Final Remarks

der equation in a single variable. The implementation of the algorithm is simple

and numerically stable. We also review the most common used conic fitting tech-

niques. It is shown that the estimation results are poor in the presence of strong

occlusion. Since in general only a small arc of the line image is visible in the

catadioptric image plane, then the accurate estimation of the corresponding conic

locus using standard techniques is hard to accomplish.

In chapter 5 we overcome the problem of estimating lines images for the case

of parabolic systems. We derive for the first time the necessary and sufficient con-

ditions that must be verified by a set of conics to be the paracatadioptric projection

of a set of lines. This allows us to constrain the search space and improve the per-

formance of the conic fitting. A robust method to calibrate the sensor using line

images is proposed. Experimental results show that it works significantly better

than any other algorithm presented so far [74, 45, 35]. Additionally we propose a

computationally efficient algorithm to estimate lines in the paracatadioptric image

plane. The method uses the necessary and sufficient conditions for a conic to be

the paracatadioptric projection of a line. Prior knowledge of system calibration is

required. Experimental results show that the approach is very robust and the esti-

mation results are much better than the ones obtained by performing perspective

rectification. We intend to pursue the research to obtain similar algorithms for hy-

perbolic/elliptical sensors. The major difficulty is that the necessary and sufficient

conditions for a conic to be the image of a line are highly non-linear.

Chapter 6 dicusses the importance of chosing a suitable world coordinate sys-

tem when modelling a general central projection sensor. This is an original topic

which, as far as we know, has never been mentioned in the literature. The choice

of a certain reference frame does not imply that new information will be avail-

able in the images. Instead the geometric transformations can be represented in a

common and more compact way. A generic framework to select the most suitable

world coordinate system for a certain sensor/application is introduced. Examples

of active vision systems which benefit from an adequate choice of the reference

frame are provided. The jacobian matrix for general central projection systems is

studied in chapter 7. This matrix is a generalization of the conventional interaction

matrix for perspective cameras [28]. The derived results are applied to perform

model based tracking of a rigid body on the catadioptric image plane.

An important topic that is not covered at all in the present thesis is the mul-
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tiple view geometry of general central catadioptric systems. The first work that

we are aware on the epipolar geometry of general central projection systems has

been presented by Svoboda et al. [68]. Since then other authors have developed

efforts to derive a general fundamental matrix. In [36, 67] the 2D image plane

is embedded in a higher dimensional space as a way to linearize the relations for

the paracatdioptric image formation. Geyer and Daniilidis come up with a4 × 4

fundamental matrix for parabolic systems [36]. Nevertheless this result requires

the system to be skewless with unitary aspect ratio. In [67] Sturm derives a more

general fundamental relation which mixes parabolic systems with conventional

perspective cameras. More recently Micusik and Padjla explore the distortion

model proposed in [31] to calibrate a camera with fish-eye lens from epipolar ge-

ometry [50]. Despite of these works, the derivation of a fundamental matrix for

general central projection systems which generalize the well known results for

perspective cameras is still an open problem.
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