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Abstract —This article presents a new algorithm for the extrinsic calibration of a perspective camera and an invisible 2D laser-
rangefinder (LRF). The calibration is achieved by freely moving a checkerboard pattern in order to obtain plane poses in camera
coordinates and depth readings in the LRF reference frame. The problem of estimating the rigid displacement between the two sensors
is formulated as the one of registering a set of planes and lines in the 3D space. It is proved for the first time that the alignment of 3
plane-line correspondences has at most 8 solutions, that can be determined by solving a standard p3p problem and a linear system
of equations. This leads to a minimal closed-form solution for the extrinsic calibration that can be used as hypothesis generator in
a RANSAC paradigm. Our calibration approach is validated through simulation and real experiments, that show the superiority with
respect to the current state-of-the-art method requiring a minimum of 5 input planes.

Index Terms —Extrinsic Calibration, Laser-Rangefinder, Euclidean Registration, Minimal Problems, Sensor Fusion.
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1 INTRODUCTION

THERE are many systems and applications that com-
bine perspective cameras and invisible 2D Laser-

Rangefinder (LRF). A non-exhaustive list of examples
includes the acquisition of ground-based city models by
using an LRF for obtaining structure, and a camera for
rendering texture [1]; the fusion of laser shape features
with visual appearance for object classification [2] and
pedestrian detection [3]; or the joint use of camera and
laser for recognition and modeling of landmarks in out-
door self-localization and mapping [4]. In all these cases
the fusion of the two sensor modalities requires knowing
in advance the relative pose between camera and laser
for projecting the depth readings into the images. Our
article addresses this extrinsic calibration problem.
The number of published works in the extrinsic cali-

bration of a camera and a LRF is relatively small. The
most broadly used method was proposed by Zhang and
Pless in [5], and describes a practical procedure where a
checkerboard pattern is freely moved in front of the two
sensors as shown in Fig. 1. The poses of the checkerboard
are computed from plane-to-image homographies [6],
and the camera coordinates of the planes are related
with laser depth readings for establishing a set of linear
constraints in the extrinsic calibration parameters. The
solution of the system of equations provides an initial
estimate for the relative rotation and translation, that
is subsequently refined by iterative minimization of
the re-projection error (bundle adjustment [7]). Zhang’s
algorithm suffers from two major drawbacks: (i) the
system of linear equations does not directly enforce the
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Fig. 1. Input data for estimating the relative pose between
camera and LRF reference frames with origins in O and
O′. The checkerboard plane is represented in camera
coordinates Πi that are determined from the plane-image
homography. The LRF reads the depth of the points lying
on the line where the pattern intersects the scan plane Σ′.
The calibration problem is formulated as the registration
of planes Πi and co-planar lines L′

i that are fitted to the
depth readings.

rotation matrix to be in SO(3), which often leads to poor
initialization that cause the iterative estimation to run
into local minima; and (ii) the closed-form algorithm
requires at least 5 input planes being clearly a non-
minimal solution for the calibration problem.

This paper proposes a minimal solution for the de-
scribed extrinsic calibration that estimates the rigid dis-
placement between camera and LRF from 3 input planes.
We fit lines to the laser depth readings and carry the
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euclidean registration of 3 planes with 3 co-planar lines
in an optimal and closed-form manner. It is shown that,
by formulating the problem in the dual 3D space, the ro-
tation and translation can be estimated separately. Find-
ing the rotation is equivalent to determining the relative
orientation between two views with known baseline. As
proved in [8], this last problem can be cast as a standard
p3p problem [9] admitting at most 8 distinct solutions.
For each rotation solution there is a corresponding
translation that can be found by solving an additional
system of linear equations. Our main contribution is this
new registration algorithm that is used as an efficient
hypothesis generator in a RANSAC paradigm [10] for
robust camera-LRF calibration. The minimal solution is
tested in simulation and its singularities are discussed.
Experiments using both synthetic and real data show
that the proposed calibration method outperforms the
state-of-the-art [5] in terms of robustness, accuracy, and
required number of input planes. As a side result, we
provide a more intuitive proof that the problem of
estimating a relative rotation between two cameras with
known baseline can be formulated as a p3p problem [8].

1.1 Related Work
This article is closely related with Zhang’s work [5],
where the extrinsic camera-LRF calibration is achieved
by freely moving a checkerboard pattern. The procedure
is simple to execute, and the checkerboard images can
be used in parallel for calibrating the camera intrinsics
[11], [12]. Like in [5], it is possible to use our method to
jointly refine the intrinsic and extrinsic calibration during
the final global optimization step. However, we do not
discuss this feature and assume that the camera intrinsics
are accurately known at all time. The calibration method
presented in [13] is conceptually equivalent to [5], as is
acknowledged by its authors.
Alternatives to Zhang’s method can only be applied

to a limited set of situations. Some contributions assume
specific setups, like the LRF mounted on a calibrated
rotating platform [14], or prior information, like an initial
pose obtained through physical measurements [15], [16].
In other cases additional inertial data is used [17], [18]. A
minimal solution for the extrinsic calibration of a camera
and a LIght Detection And Ranging sensor (LIDAR) has
been recently proposed [19]. The method uses a planar
pattern for establishing correspondences between points
in the LIDAR and lines in the image. The calibration
problem is formulated as the 3D registration of co-
planar points with planes intersecting into a single point.
This leads to a system of polynomial equations that is
solved using Macaulay resultants, obtained from 6 input
images. Another minimal solution was proposed to cali-
brate both intrinsic and extrinsic parameters of a camera
and a visible range finder [20]. In this case it is easy to
make data associations between laser depth readings and
visible laser dots projected on the camera without using
a calibration target. This procedure requires the LRF-
camera system to acquire 3 dot associations in 5 different

positions. These last two approaches cannot be directly
extended to the invisible LRF because they also use
additional sensory information for the data association.
Since we formulate the camera-LRF calibration as the

problem of aligning planes with co-planar lines, the
article also relates with the literature in 3D euclidean reg-
istration and related topics. In particular we use previous
results in registering two clouds of 3 or more 3D points
[21]; in estimating the camera pose from the images
of 3 or more 3D points (the so called Perspective-n-
Pose (PnP) problem) [9], [22]; and in determining from 3
correspondences the relative rotation between two views
with known baseline [8]. Olsson et al. have recently
proposed in [23] a Branch-and-Bound framework to
solve different euclidean registration problems: point-to-
point, point-to-line, and point-to-plane. Within this topic,
the recent work of Ramalingam et al. [24] in minimal
solutions for the registration of points and planes is
specially relevant. It is possible to adapt their algorithm
for aligning 3 planes with 3 generic lines where each
line is parametrized as a pair of points. Although such
approach can eventually lead to a minimal solution
for camera-LRF calibration, we propose an alternative
registration algorithm that simplifies the problem by
conveniently exploring the fact that the lines are co-
planar.

1.2 Notation

Scalars are represented by plain letters, e.g. λ, vectors
are indicated by bold symbols, e.g. n, O, and matrices
are denoted by letters in sans serif font, e.g. T. We
do not distinguish between a linear transformation and
a matrix representing it. Planes are represented by an
homogeneous vector with dimension 4 that is indicated
by an uppercase greek letter, e.g. Π, and 3D lines are
expressed in homogeneous Plucker coordinates, e.g. the
6 × 1 vector L. The equality up to scale is denoted by
∼ in order to be distinguished from the strict equality
=. Vector cross product and L2 norm are indicated by ×
and || || respectively. We use a prime symbol to indicate
geometric entities represented in the laser coordinate
system, e.g. Π′.

2 THE CALIBRATION PROBLEM

Consider a camera and a LRF for which the local co-
ordinate systems have origin in O and O′ as shown in
Fig. 1. The extrinsic calibration aims to determine the
rigid transformation T such that:

(
Q′

1

)
=

(
R t

0T

3 1

)

︸ ︷︷ ︸
T

(
Q

1

)
, (1)

where Q and Q′ are respectively non-homogeneous
point coordinates in camera and LRF reference frames, R
denotes a rotation matrix, and t is the translation vector.
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In [5] the calibration is carried from N images of a
checkerboard pattern that is freely moved in front of the
two sensors. Let Πi be the homogeneous representation
of the calibration plane in camera coordinates, that is
estimated from plane-to-image point correspondences
[6]:

Πi ∼

(
ni

1

)
, i = 1, 2 ... N (2)

For each plane Πi, the LRF provides depth readings of
a set of 3D points Q′

ij that lie on the line where the
checkerboard intersects the scan plane Σ′. Let the non-
homogeneous coordinates in the laser reference frame
be

Q′

ik =



xik

yik

zik


 , k = 1, 2 ...Ki

Zhang and Pless assume, without loss of generality, that
Σ′ is coincident with the Y plane. By inverting equation
1 and taking into account that yik is always zero, it
follows that:

Qik = R
T



1 0

0 0 −t

0 1




︸ ︷︷ ︸
H

Q̊ik , (3)

with Qik being the point representation in camera coor-
dinates and

Q̊ik =



xik

zik

1


 .

Since the points detected by the laser are in the checker-
board pattern, then the following must hold

Πi
T Qik = 0 .

Replacing by the results of equations 2 and 3, it yields
that

nT

i H Q̊ik = −1 , ∀i,k (4)

In summary, the checkerboard planes Πi, expressed in
camera coordinates, and the points Q′

ik, represented in
LRF coordinates, define a set of linear constraints in the
entries of matrix H that encodes the rigid displacement
between the two sensors. In [5], Zhang and Pless propose
to compute H in a DLT-like manner, and factorize the
result into the rotation R and translation t. Unfortunately
the linear estimation of matrix H is carried without
enforcing the structure of equation 3. This means that
in general the direct factorization does not provide a
valid rotation matrix R, and a non-optimal projection
into SO(3) is required. Moreover, for each calibration
plane Πi there are only two constraints of the form of
equation 4 that are linearly independent. Since matrix
H has 9 entries, then the estimation requires N ≥ 5
calibration planes. The fact that the calibration algorithm
is non-minimal and sub-optimal often leads to erroneous
results as shown later in the paper.

3 REGISTRATION IN THE DUAL SPACE

While in [5] the extrinsic calibration is achieved by
finding the transformation T that aligns points Q′

ik with
planes Πi, in here we propose to fit lines to the laser
points and formulate the problem as the 3D registration
of a set of co-planar lines L′

i with a set of planes Πi.
In other words, we aim to find the rotation R and the
translation t such that the planes Π′

i, given by

Π′

i =

(
R 0

−tTR 1

)

︸ ︷︷ ︸
T−T

Πi , i = 1, 2 ... N (5)

go through the lines L′

i.
It is well known that points and planes are dual

entities in 3D, with a plane in the projective space P3

being represented as a point in the dual space P3∗ and
vice-versa. Thus, and as shown in Fig. 2(a), equation 5
can be understood as a projective transformation in P3∗

that maps points Πi into points Π′

i. Henceforth, and if
nothing is said, we will reason in terms of the dual space
for deriving the desired registration algorithm.
The dual of a line L′

i in P3 is a line L∗

i in P3∗ whose
representation in Plücker coordinates is

L∗

i ∼

(
v′

i

u′

i

)
, i = 1, 2 ... N (6)

where the 3-dimension vectors u′

i and v′

i denote the
direction and momentum of the original line L′

i [25].
A generic point Π′ on L∗

i is the dual representation of
a plane that contains the line L′

i. Moreover, and since
the lines L′

i that are detected by the LRF are necessarily
coplanar, it comes that the dual lines L∗

i must intersect
into a point Σ′ that represents the laser scan plane.
The extrinsic calibration consists in finding the trans-

formation T−T in the dual space that maps points Πi,
expressed in camera coordinates, into points Π′

i lying
in the lines L∗

i detected by the LRF (see Fig. 2(a)). The
latter points are obviously the dual representation of
the calibration planes expressed in laser coordinates.
The transformation T−T, provided in equation 5, can be
factorized in two distinct transformations:

1) A rotation transformation M, that maps points Πi

into points Π̂i as show in Fig. 2(a):

Π̂i ∼

(
R 0

0T 1

)
Πi (7)

This rotation must be such that each line Wi,
defined by Π̂i and the origin of the dual space O∗,
intersects the corresponding line L∗

i .
2) A transformation S that moves the points Π̂i along

the lines Wi in order to map them into points Π′

i:

Π′

i ∼

(
I3×3 03

−tT 1

)
Π̂i (8)

with I3×3 being the 3× 3 identity matrix.
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Fig. 2. Reasoning in the dual projective space P3∗ for estimating the transformation T
−T that aligns N = 3 planes Πi

with N = 3 co-planar lines L′

i: (a) T−T can be factorized into a rotation M, such that the rotated lines Wi intersect the
lines L∗

i , and a shift transformation S, that makes the rotated points Π̂i to be coincident with the intersection points Π′

i;
(b) Computing the rotation is equivalent to estimating the relative orientation between two views with known baseline
b (we think on the systems of coordinates with center in O∗ and Σ′ as being parallel to each other); (c) The estimation
of R is formulated as a p3p problem by observing that planes Γ, Γ′ and Λ are in the same pencil.

The next two subsections show how M and S can be
estimated from N = 3 correspondences between planes
and co-planar lines.

3.1 The Rotation Transformation

Since the lines L∗

i are the dual representation of co-planar
lines, then they define a pencil in P3∗ that goes through
Σ′. We assume, without loss of generality, that the origin
of the LRF reference frame never lies in the scan plane,
and that Σ′ has the following projective representation:

Σ′ ∼

(
b

1

)
. (9)

A second pencil of lines can be obtained by joining the
dual points Πi with the origin of the coordinate system
O∗ (see Fig. 2(a)). The objective is to find the rotation
around an axis passing by O∗ that makes the second
pencil to intersect the first.

3.1.1 R as the relative rotation between two virtual views

We can think on the two line pencils of Fig. 2(a) as
being two pin-hole cameras with projection centers in
Σ′ and O∗. By doing so the problem of finding the
rotation R such that lines Wi intersect lines L∗

i becomes
geometrically equivalent to determining the relative ori-
entation between two virtual views when the baseline
direction is known (Fig. 2(b)). Moriya and Takeda solved
this problem in [8] by showing how to compute R from
N = 3 point correspondences between images.
In our case the projective coordinates of the image

points in the virtual view O∗ are given by vectors ni.
These vectors are the normal directions of the calibration
planes Πi provided in equation 2. Likewise, the image

points in the virtual view Σ′ are given by vectors v′

i, that
correspond to the momenta of the lines L′

i detected by
the LRF (equation 6). The baseline direction is defined
by the projective coordinates of the laser scan plane that
are provided in equation 9. This geometric construction
is illustrated in Fig. 2(b), where the local reference frame
with center in Σ′ is parallel to the world system of
coordinates with origin in O∗.
The next section provides an alternative and more

intuitive derivation of the solution proposed in [8], and
shows how the relative orientation R can be determined
from N = 3 correspondences ni, v

′

i that are interpreted
as image points in two virtual views separated by a
baseline with direction b.

3.1.2 Determining R by solving a P3P problem

If the relative orientation R is known, then the back-
projection lines with directions v′

i and Rni intersect into
a 3D point Π′

i as shown in Fig. 2(b). Thus, if we consider
the N = 3 correspondences, we obtain 3 points that
uniquely define a plane. Let Λ be this plane that is
expressed in world coordinates by:

Λ ∼

(
m

1

)
. (10)

Consider now two of these points, Π′

i and Π′

j , that
define a 3D line Sij as shown in Fig. 2(c). Let Γij be the
plane containing both Sij and the origin O∗. It is easy to
see that the normal direction to Γij must be Rdij with

dij ∼ ni × nj . (11)

Taking into account that the plane contains the O∗,
it follows that its projective representation in world
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coordinates is

Γij ∼

(
Rdij

0

)
(12)

In a similar manner, the line Sij and point Σ′ define a
plane Γ′

ij with normal

d′

ij ∼ v′

i × v′

j (13)

From equation 9, it comes that the projective represen-
tation of Γ′

ij in world coordinates is :

Γ′

ij ∼

(
d′

ij

−bT d′

ij

)
(14)

The line Sij defines a 1-D pencil of planes that con-
tains, not only Γij and Γ′

ij , but also the plane Λ that
passes by the three reconstructed points. Thus, and since
Γij and Γ′

ij are always distinct planes that can be used as
a projective basis for the pencil, there is a pair of scalars
αij and βij such that the following holds:

Λ ∼ αij Γij + βij Γ
′

ij

Replacing Λ, Γij , and Γ′

ij by the results of equations 10,
12, and 14, yields:

(
m

1

)
∼

(
αij Rdij + βij d

′

ij

−βijb
T d′

ij

)
(15)

We can fixate the scale factor by making

βij = −
1

bT d′

ij

.

Replacing βij in equation 15 leads to the strict equality

m = −
1

bT d′

ij

d′

ij + αij Rdij ,

that can be re-written as

αij dij = R
T(

1

bT d′

ij

d′

ij +m) .

Since the N = 3 correspondences ni, v
′

i give rise to
three distinct equations, we can obtain the following
system: 




α12 d12 = RT(P′

12 +m)

α13 d13 = RT(P′

13 +m)

α23 d23 = RT(P′

23 +m)

(16)

with

P′

ij =
1

bT d′

ij

d′

ij . (17)

A careful analysis shows that the rotation R can
be found by considering two well known geometric
problems: the unknowns αij can be treated as scalar
depths to be determined as solutions of a perspective-3-
pose (p3p) problem [9]; and, given the non-homogeneous
representation of point correspondences αijdij , P

′

ij , the
rotation R and the shift m can be computed by solving
for the relative orientation between reference frames

P13

P12

P23

α23

α

α12

d13

d12

d23

'

'

'

Fig. 3. The classical p3p problem [9]: given the distances
between points P′

12, P′

13, and P′

23, and the angles be-
tween vectors d12, d13, and d23, determine the unknown
depths α12, α13, and α23.

[21]. Re-arranging the system of equation 16 in order
to eliminate R and m, it yields





||α12d12 − α13d13|| = ||P′

12 −P′

13||

||α12d12 − α23d23|| = ||P′

12 −P′

23||

||α13d13 − α23d23|| = ||P′

13 −P′

23||

. (18)

Consider, without loss of generality. that the vectors dij

have unitary norm (equation 11). By applying the law
of cosines, we arrive at the classic equations of the p3p
problem:





α2
12 + α2

13 − α12α12d12
Td13 = ||P′

12 −P′

13||
2

α2
12 + α2

23 − α12α12d12
Td23 = ||P′

12 −P′

23||
2

α2
13 + α2

23 − α12α12d13
Td23 = ||P′

13 −P′

23||
2

. (19)

As shown in Fig. 3, the scalars α12, α13, and α23 are
understood as unknown depth values that can be de-
termined by applying any of the algorithms described
in [9] (in our experiments we will consider Grunert’s
method [26]). By substituting the depth values back in
equation 16, it yields a system of equations relating the
non-homogeneous coordinates of 3 points expressed in
different reference frames. The euclidean transformation
R and m between these two frames can be computed
in a straightforward manner by applying the absolute
orientation algorithm proposed in [21].

3.1.3 Discussion

Let’s better understand how the system of equations 16
relates with the original problem of registering planes
with co-planar lines. From equation 11 it comes that
dij is the cross-product of the normals of Πi and Πj ,
meaning that dij is the direction in camera coordinates
of the line where the two planes meet. On the other
hand d′

ij is the cross-product of the momenta of lines
L′

i and L′

j , meaning that it corresponds to the direction
of the line that is defined by the origin O′ and the point
where L′

i and L′

j intersect. From equation 9 it comes in a
straightforward manner that the 3-vector P′

ij provided
in equation 17 is the non-homogeneous representation
in laser coordinates of the point intersection of lines L′

i



6

(a) Situation 1

O'

m

(b) Situation 2

Fig. 4. Singular configurations while determining the rel-
ative rotation R. Situation 1: The lines where the checker-
board planes intersect are parallel. Situation 2: The 3
checkerboard planes intersect into a point m that lies in
the danger cylinder [9] defined by the intersection points
of the lines detected by the LRF.

and L′

j . Finally, and as shown by Fig. 2(b), the vector m
denotes the normal to the plane that is defined by Π′

1,
Π′

2, and Π′

3 in the dual space. Translating to P3 it comes
that m is the non-homogeneous representation in the
LRF reference frame of the point where the 3 calibration
planes intersect.

From the above it follows that the p3p formulation
of equation 16 can be understood as the estimation of
the pose of a virtual pine-hole camera with projection
center in m, that observes the vertices of the triangle
defined by the lines L′

1, L′

2, and L′

3 (see Fig. 4(b)).
Remark that determining m is not relevant for our plane-
line registration problem. Thus, and after finding the
scalar depths using Grunert’s algorithm [26], the abso-
lute orientation is only solved for the rotation unknown,
meaning that the translation component m in equation
16 is not explicitly computed. It is well known that the
standard p3p problem has up to 4 distinct real solutions
[9]. Unfortunately the scalar unknowns αij in equation
16 do not have the physical meaning of depth and are
allowed to take negative values. Hence there can be up
to 8 distinct solutions for the p3p problem of equation
19 leading to the same number of relative rotations R.

It is well known that the p3p problem degenerates
whenever one of the following situations arise: (i) the
camera center is at the infinity or is in the same plane as
the 3 control points; and (ii) the camera center is in the
cylinder that contains the 3 control points and is orthogo-
nal to the plane defined by them (the danger cylinder) [9].
In the context of our problem the first situation occurs
whenever one of the checkerboard planes is parallel
to (or contains) the line where the two other planes
intersect (Fig. 4(a)). The second case arises whenever the
point where the 3 checkerboard planes meet lies in the
danger cylinder defined by the intersections of the lines
reconstructed by the LRF (Fig. 4(b)).

3.2 The Projective Scaling Transformation

From the previous section we obtain up to 8 solutions for
the rotation transformation M. For each possible M, the
dual pointsΠi are mapped into Π̂i according to equation

7, and the lines Wi are determined by joining Π̂i with
the origin O∗ as shown in Fig. 2(a). The representation
Π′

i of the calibration planes in the LRF reference frame
are determined by intersecting corresponding lines L∗

i

and Wi [27]. The next step is to compute the projective

scaling S that maps Π̂i into Π′

i, and defines in a unique
manner the relative translation t between the two sen-
sors. From the stated, we start by replacing Π′

i and Π̂i

in equation 8 yielding

µi

(
n′

i

1

)
=

(
I3×3 03

−tT 1

) (
Rni

1

)

where n′

i is the normal to the plane Π′

i and µi denotes
an unknown scale factor. Considering the top three
equations, it comes that

µi =
n′

i
T
Rni

n′

i
T
n′

i

and replacing µi in the bottom equation leads to

n′

i

T
n′

i ni
T
R
T t − n′

i

T
n′

i + n′

i

T
Rni = 0 .

Thus, each calibration plane gives rise to linear con-
straint in the entries of the vector t, which means that
the translation can be computed in a straightforward
manner by making

t = A
−1 b (20)

with

A =




n′

1
T
n′

1 n1
T

n′

2
T
n′

2 n2
T

n′

3
T
n′

3 n3
T


R

T ,

and

b =




n′

1
T
n′

1 − n1
TRn1

n′

2
T
n′

2 − n2
TRn2

n′

3
T
n′

3 − n3
TRn3


 .

In summary, for each possible rotation R satisfying
the system of equations 16, there is a corresponding
translation t that can be determined by equation 20.
Remark that the 3 × 3 matrix A is singular iff two
calibration planes are parallel to each other. This is the
only case for which it is not possible to find a solution
for the translation. However, and since this situation is
a particular instance of the degenerate configuration of
Fig. 4(a), the determination of t does not introduce new
singularities in the proposed registration algorithm.
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3.3 Outline of the registration algorithm

The algorithm for aligning N = 3 planes Πi with the
same number of co-planar lines L′

i can be summarized
as follows:

1) For each two planes Πi, Πj determine dij by cross-
multiplying their normals (equation 11).

2) For each two lines L′

i, L
′

j determine the vector d′

ij

by cross-multiplying their momenta (equation 13).
3) Determine the orthogonal direction b to the plane

Σ′ that contains the lines L′

i (equation 9).
4) Given b, dij , and d′

ij , with ij = 12, 13, 23, formulate
the p3p problem of equation 16.

5) Solve the p3p problem with respect to the rotation R

using any standard approach [9]. There are M ≤ 8
distinct solutions.

6) For each possible R, computeΠ′

i by intersecting the
the dual of the input line L′

i with the rotated line
Wi as is shown in Fig. 2(a) (for the intersection of
lines in 3D see section 3.3. in [28]).

7) Given R, Πi, and Π′

i, with i = 1, 2, 3, apply equa-
tion equation 20 for determining the translation t.

4 EXTRINSIC CALIBRATION ALGORITHM

Section 3 derives a closed-form algorithm for computing
the M ≤ 8 rigid transformations that align 3 planes with
3 co-planar lines. We now show how this new regis-
tration method can be used for obtaining the extrinsic
calibration between the camera and the laser.
Let’s recall that the inputs for calibration are the planes

Πi with i = 1, 2 . . .N , expressed in camera coordinates,
and the points Q′

ik with k = 1, 2 . . .Ki, represented
in non-homogeneous LRF coordinates. The application
of plane-line registration requires fitting lines L′

i to the
points Q′

ik using a standard regression method. If the
number of input planes is N = 3, then the registra-
tion algorithm provides M ≤ 8 solutions T(m) with
m = 1, 2 . . .M , but we cannot decide about the rigid
displacement between the two sensors without further
information. For the case of N > 3, each triplet of plane-
line correspondences gives rise to a set of solutions,
and the correct relative pose T can be found using an
hypothesize-and-test framework as detailed in section
4.1. In both situations the final calibration estimates
can be further refined by minimizing the re-projection
errors in the camera and LRF using iterative non-linear
optimization. This bundle adjustment step is discussed
in section 4.2.

4.1 Initial Estimation

Consider N > 3 correspondences between planes Πi

and lines L′

i. The initial estimate T for the extrinsic
calibration is obtained as follows:

1) Select 3 correspondences and apply the algorithm
of section 3.3 for finding the transformations T

(m)

that align lines and planes (m = 1, 2 . . .M ).

O

Li'

'

Fig. 5. The LRF reconstructs points Q′

ik (red) by measur-
ing depth along the radial directions r′k. The minimization
is carried over the distance between points Q′

ik and points
Q̃′

ik (blue). The latter are obtained by mapping the inlier
planes Πi into the LRF reference frame and intersecting
the result with the radial directions r′k.

2) For each solution T(m), compute the LRF coordi-

nates Π
′(m)
j of the remaining N − 3 planes, and

determine the euclidean distance d
(m)
j in the dual

space between Π
′(m)
j and the corresponding line

L′

j .

3) Rank each solution T(m) by assigning the score

rank(T(m)) =
∑

j

max(t, d
(m)
j ) ,

where t is a pre-defined threshold. This operator
is similar to the one used in the MSAC robust
estimator proposed in [29].

4) If rank(T) > rank(T(m)), then make T = T(m)

and consider as inliers the correspondences for

which d
(m)
j < t (the 3 correspondences that gener-

ated the solution have d
(m)
j = 0).

5) Return to step 1 for a new iteration.

Since the number of input correspondences is usually
small (N < 20), we run an exhaustive search where
all possible plane-line triplets are considered as solution
generators. For a large N the hypothesize-and-test can
be performed in a Random Sample Consensus manner
in order to keep the computation tractable [10].

4.2 Bundle Adjustment

The initialization procedure provides an extrinsic cali-
bration T and a set of plane-line correspondences that
are classified as inliers. The calibration accuracy can be
further improved by minimizing the re-projection errors
in the camera and/or LRF using bundle adjustment [7].
The LRF measures depth along a set of radial di-

rections r′k that are uniformly distributed in the scan
plane Σ′ around the projection center. Please note that
we assume that this projection center is not coincident
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with the origin O′ of the laser reference frame. The
depth readings enable to reconstruct the points Q′

ik

that give rise to the lines L′

i that are considered in
the 3D registration. After obtaining an initial calibration
estimate T, each inlier plane Πi is mapped into the LRF
reference frame using equation 5, and the resulting plane
Π′

i, expressed in laser coordinates, is intersected with the

radial lines r′k yielding a set of points Q̃′

ik (see Fig. 5). The
LRF residue to be minimized is the sum of the square

distances between the points Q̃′

ik and the points Q′

ik that
were originally reconstructed from the depth readings:

eLRF =
∑

i

∑

k

||Q′

ik − Q̃′

ik||
2

The iterative optimization considers the following ob-
jective function

min
T,Πi

e = eLRF + κ eCAM , (21)

where eCAM denotes the re-projection error of the plane-
to-image homographies, and κ is a weighting parameter
that should be adjusted to normalize the variance of
camera and LRF residue distributions. The minimization
is carried with respect to the extrinsic calibration T and
the pose of the inlier planes Πi expressed in camera co-
ordinates. The camera residue eCAM depends both of the
planes Πi and the camera intrinsics K. We will assume
that K is accurately known but, like in [5], this formula-
tion can be potentially used to refine simultaneously the
intrinsic and the extrinsic calibration, by considering the
independent parameters of K (focal length, skew, aspect
ratio and principal point) as variables to be refined.

5 EXPERIMENTS WITH SYNTHETIC DATA

A first set of experiments is conducted in a simulation
environment that considers a 0.25◦ resolution LRF and
a 1280 × 960 resolution pin-hole camera. The LRF is
assumed to be stationary and the pin-hole camera is
randomly placed in a pre-defined region according to a
uniform distribution. The camera placement is such that
there is always a significant overlap between the fields
of view of the two sensors. Given the camera and the
LRF, we simulate a set of N checkerboard planes with
random poses. Once again the plane placement is such
that guarantees intersection with the laser scan plane
and a minimum number of grid points visible in the
camera. We add gaussian noise to both the image grid
points and the laser depth readings. Please note that
the pose of the checkerboard plane affects the number
of points Q′

ik that are reconstructed by the LRF, and
hence the accuracy of the lines L′

i used for the plane-
line registration.
This simulation environment provides input data for

performing the extrinsic calibration. The estimations for
the relative rotation R and a translation t are compared
with the ground-truth RGT and tGT . The accuracy is
typically quantified by the angular magnitude of the
residual rotation RTRGT , and by the relative translation

error ||t − tGT || / ||tGT ||. The results are presented by
the Matlab function boxplot that shows the two middle
quartiles of the distribution (25th to 75th percentiles) as
a box with horizontal line at the median. The whisker
edges refer to the lowest and highest quartiles, and the
crosses show data beyond 1.5 times the interquartile
range (outliers in the distribution).

5.1 Extrinsic calibration with minimum data ( N = 3)

In this experiment the extrinsic calibration is carried
using N = 3 calibration planes. For each trial, we ran-
domly generate one camera pose and three checkerboard
planes. The simulated image points and laser depths are
used as calibration input after adding gaussian noise.
Since the noise affects both the estimation of planes Πi

and lines L′

i, the result of the plane-line registration is
in general different from the correct rigid displacement
between the two sensors 1. Fig. 6 shows the distribution
of these errors in 100 independent trials, for increasing
amounts of noise in the camera and/or laser. For visual-
ization purposes, we do not plot results without noise,
however, we also simulated this situation to perform a
sanity check, yelding to maximum errors of 0.0021% for
translation and 0.0012 degrees for rotation. The median
error is below 10−10% for translation, and below double
precision for rotation.
The figure shows compact error distributions with few

outliers, which suggests that the calibration algorithm is
numerically stable. For low noise levels we can still de-
tect some outliers, that mainly result from the degenerate
configuration depicted by situation 1 in figure 4. Input
data close to this configuration occur due to generating
input planes with bounded orientation variations, so that
both sensors can fully detect them. The extrinsic cali-
bration accuracy decreases with increasing amounts of
noise, but this degradation is relatively smooth. The ro-
tation estimation seems to be less sensitive to noise than
the translation. This is partially explained by the fact that
the rotation is computed first and its error propagates to
the translation component. In overall terms the results
are satisfactory and prove that, if the measurements are
not too noisy and the checkerboard orientations are care-
fully chosen, then the extrinsic camera-LRF calibration
can be achieved in practice using only N = 3 input
planes.

5.2 Comparison with Zhang’s method

The simulation framework is now used to compare our
algorithm against the calibration method proposed in
[5]. For the sake of fairness, Zhang’s method is imple-
mented in a hypothesize-and-test framework that is in
everything similar to the one described in section 4.1,

1. As stated in section 3, the plane-line registration has up to 8 ana-
lytical solutions and it is not possible to choose the one corresponding
to the extrinsic calibration without further information. In the synthetic
experiments we always consider the solution that is closest to the
ground-truth
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Fig. 6. Error distribution when the extrinsic calibration is
carried using N = 3 calibration planes (minimum solu-
tion). The labels in the horizontal axis refer to the standard
deviation of the added gaussian noise. We consider 1
pixel steps for the camera, and 15 mm steps for the LRF
(e.g. a magnitude of 0.25 corresponds to image noise of
0.25 pixels and laser noise of 3.75 mm).

except that it requires 5 plane-line correspondences to
generate an hypothesis. The experiment considers a
variable number N of calibration planes and, for each
case, it runs 100 calibration trials and compares the error
distributions. The noise is constant and set to 1 pixel
in the camera and 15 mm in the LRF. Fig. 7 shows the
results for the two methods before and after running the
non-linear optimization discussed in section 4.2.

A careful analysis of the graphics show that our
algorithm provides much better initial estimates both in
terms of the extrinsic calibration error and residue in the
laser. This fact significantly decreases the chances of di-
vergence during the iterative optimization step, specially
when the number N of calibration planes is small. It can
be observed that, for the case of N = 5 and N = 6,
while our calibration results never diverge significantly
from the ground-truth, the final calibration obtained
using Zhang’s method is often completely erroneous.
The stability and final accuracy of the two methods tends

to become similar for a large number of input planes
(N > 8).

6 EXPERIMENTS WITH REAL DATA

In this experiment we set up a SICK LMS 200 [30] and
a camera at fixed positions, and acquire 12 calibration
frames by moving a checkerboard pattern in front of the
two sensors. The camera intrinsic parameters and the
homogeneous coordinates Πi of the planes are estimated
using the intrinsic calibration software described in [12].
Since the re-projection error in the plane-to-image ho-
mographies is typically very low ( 0.2 pixels), there is
no advantage in considering the planes Πi in the final
iterative refinement described in section 4.2. Thus, we
decided to optimize the cost function of equation 21
only with respect to the relative pose T. Like in the
previous experiment, the extrinsic calibration is carried
for an increasing number of calibration planes using
both our method and the hypothesize-and-test version of
Zhang’s algorithm. We consider for each N all possible
combinations of the 12 frames, which means that the
number of trials is

#N =
12!

N ! (12−N)!

In the absence of reliable ground-truth, Fig. 8 shows
the distribution of the achieved calibration results. More
specifically Fig. 8(a) refers to the angle of the rotation
R, Fig. 8(b) concerns the magnitude of the translation
vector t, and Fig. 8(c) depicts the LRF residues.

From Fig. 8 it comes that our minimal solution out-
performs Zhang’s approach when the number of input
planes is small. While the former requires 4-to-5 planes
for providing accurate estimation results, the latter needs
7 or more planes for achieving a reliable calibration.
Fig. 9 confirms that, for the case of N = 5, Zhang’s
extrinsic calibration is in general non plausible. This
is justified by the noise in the input data and the
existence of frames with few laser readings that are
unable to fully constraint the estimation problem. As the
number of input planes increases, the hypothesize-and-
test procedure discards these frames as outliers, and the
output of the two methods converges to the same result.
Nevertheless, it is important to remark that this only
happens after the bundle adjustment step. While Zhang’s
initialization is often a coarse estimate of the correct
rigid displacement, our closed-form solution is always
very close to the global optimum, and the improvements
in accuracy achieved by the iterative refinement are
somewhat marginal. In addition our approach, being a
minimal solution, requires the testing of less hypothesis
which is an indisputable advantage in terms of computa-
tional complexity. For the case of N = 12, an exhaustive
search of the solution space requires 220 trials, while the
same search with Zhang’s method corresponds to 792
tests.
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Fig. 7. Calibration using synthetic data. We compare our algorithm against the method presented in [5] when the
number N of calibration planes increases. The additive gaussian noise has constant standard deviation of 1 pixel in
the camera and 15 mm in the LRF.

7 CONCLUSIONS

This article proposes the first minimal solution for the
extrinsic calibration between a camera and an invisible
laser-rangefinder. This solution is used as an efficient hy-
pothesis generator in a robust sample-consensus frame-
work. Extensive experiments using both synthetic and
real data prove the numerical stability of the minimal
formulation, and clearly show that the new calibration
algorithm outperforms the state-of-the-art in terms of ro-
bustness, accuracy, and required number of input planes.
The core of our calibration method is a new closed-

form solution for the registration of 3 planes with 3 co-
planar lines in the 3D euclidean space. This is a broad
result that is fully characterized and can be useful in
other application contexts. As a side result, we provide
a more intuitive proof that the problem of relative orien-
tation between two cameras can be formulated as a p3p
problem [8].
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