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ABSTRACT

In minimally invasive medical procedures the surgeon uses as guidance the video acquired by near-
lighting endoscopic cameras. Near-lighting endoscopes are small size self-illuminated cameras that
typically have a wide or very wide field of view (FOV), and hence their images are affected by high radial
distortion and small spatial resolution in the periphery of the image (an object of the same size at equal
distance gets smaller in the periphery). To help the interpretation of the images by the surgeon, the 3D
modeling of the observed cavities is highly interesting and shape-from-shading is a natural choice in the
3D shape reconstruction of bones and organs. However, the shape from shading technique has been
traditionally performed using the perspective projection model (perspective shape from shading — PSES)
which is barely appropriate for modeling endoscopes since it does not account for the high distortion
and reduced resolution in image periphery. Our aim is thus to adapt the shape from shading technique to
the particular case of near-lighting endoscopes. We propose in this paper two improvements to the state
of the art methods for PSFS in Near-Lighting Endoscopes. The first contribution is the introduction of the
radial distortion model directly in PSFS equations and the second contribution is the compensation of
the reduced resolution of the image in its periphery, due to wide FOV. Tests performed in real objects
and in a knee bone phantom show that by modeling these two effects our method highly improves the
accuracy of the estimation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last two decades, surgical medicine has suffered great
changes influenced by the growing of minimal invasive surgery
techniques [1,2]. In minimally invasive surgery (MIS) the doctor
executes the procedure guided by the images acquired by an
endoscopic camera. Typically the endoscopic camera consists in
autoclavable exchangeable optics that are mounted on a charge-
coupled device (CCD) camera head just before the procedure starts
(see Fig. 1). These optics can be forward-viewing, when they look
up-front, or oblique-viewing if the tubular lens has a cut of 30°,
70° or 90° to enable a periscope-like view. The viewing direction of
the oblique-viewing lenses can be changed without moving the
camera head by simply rotating the endoscope around its sym-
metry axis [3-6]. Oblique-viewing endoscopes are specially useful
in inspecting narrow cavities, such as the articulations (arthro-
scopy) or the sinus (rhinoscopy), where the space to maneuver the
probe is very limited.

Although being highly beneficial for the patient in terms of
recovery time and risk of infection, the stats show that MIS is used
only in 25% of the procedures eligible for this technique. The
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reason for this low penetration is the fact that MIS procedures are
much more difficult to execute than the equivalent open surgery
counterparts. The access to the organs is very limited and surgeons
must use intra-operative video as only guidance. This poses severe
problems in terms of hand-eye coordination and some surgeons
are simply unable to make the visual-spatial leap needed to
master this technique [7].

In this context, the use of systems for computer aided surgery
(CAS) can make a significant difference in the adoption and clinical
outcomes of MIS. We envision that such systems will receive as
input the intra-operative endoscopic video, eventually register the
image data with pre-operative models of targeted organs, and use
the information for assisting the doctor during the procedures.
Such assistance can take multiple forms, ranging from providing a
better visualization of the observed cavities to granting that the
surgery is executed according to a pre-plan, and passing by
helping the doctor to navigate inside the human-body.

Despite all the advantages referred, usually the images acquired
in endoscopy are of a small part of the environment, imaging a
partial view of bones and organs and are illuminated directly by
the endoscope probe, whose interpretation is not an easy task. To
overcome this issue, modeling the 3D shape of bones and organs is
naturally important and able to give an actual help to the surgeon
as usually reported by themselves. Since, however, few
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information about the scene is available and the illumination
conditions are not ideal, shape from shading (SFS) has been lately
used in the scenario of endoscopy, in order to provide the surgeon
shape reconstructions of bones and organs. Similar to the human
vision system SFS tries to infer shapes using only shading informa-
tion. This software-based solution only needs a standard endo-
scopic system composed by a boroscope, a CCD camera and a light
source. Due to the complexity of the problem many studies have
adopted assumptions like Lambertian reflectance, known light
source location and known surface albedo. Since the light source
is incorporated in the endoscope probe, the general orthographic
shape from shading model is, however, not adequate to this case.
Instead, the perspective shape from shading (PSFS) model is more
appropriate. To formulate a robust PSFS it is then necessary to
know the camera intrinsic parameters and the radiometric
response which are obtained through geometric and radiometric
calibration.

Another issue that arises from the use of endoscopes in PSFS is
the amount of radial distortion that affects the images. The existing
SFS methods correct the radial distortion in a previous step, by
computing an undistorted image by interpolation. While this step
presents no problems for images with small distortion, it can become
a big source of error for images with medium to high distortion,
hence for endoscopes. Actually, endoscopes are vision systems with
generally wide fields of view (FOV) and thus usually presenting high
radial distortion (RD). This is a persisting problem due to the very
small size of the lenses and it causes a non-linear deformation in the
image, increasing from the center to the periphery [8]. In Fig. 2 we

Fig. 1. Rigid oblique-viewing endoscope, used for image acquisition. The light
source is connected to the boroscope through a fibre optic cable.

Fig. 2. Effect of radial distortion in endoscopic images.

show an endoscopic image of a regular grid where it is visible the
effect caused by radial distortion, namely the fact that straight lines
become curves as the distance to the image center increases. The
visual perception becomes compromised and in some situations
even a trained surgeon has a hard time when inferring size and
depths of the object in study [9].

In this paper we then propose two modifications to the general
formulation of the PSFS problem using near-lighting endoscopes.
The first contribution is the modeling of the radial distortion
directly in the shape from shading reflectance equations. The new
reflectance equations allow us to use non-interpolated data
(original image) in the estimation and so it reduces the estimation
error. This new formulation also eliminates the burden of gen-
erating undistorted images reducing the computational time. The
second contribution is to compensate the effect of reduced
resolution in the periphery of the image, a problem that arises
for wide FOV cameras. This paper is an extended version of our
work published at the 6th Iberian Conference on Pattern Recogni-
tion and image Analysis [10], where the explicit equations of the
reflectance with the radial distortion correction are explicitly
formulated and new results with medical images are presented.
The algorithm is also presented and discussed in more detail.

1.1. Related work

Shape from shading has been introduced to computer vision since
the early works of Horn and Brooks [11] and Penna [12]. The majority
of related works are focused on Lambertian surfaces with ortho-
graphic projection and distant light sources [11,13], however some
authors have been considering more complex and realistic environ-
ments like non-Lambertian surfaces and perspective projection
[14,12]. There are some relevant works for near-lightning and taking
into account 1/r? attenuation factor (fall-off law of isotropic point
sources). Namely, [15,14] have among others considered the parti-
cular case of the endoscope. In the former case they assume that the
light source is coincident with the projection center and in the latter,
they assume two sources of light very close (and symmetric) to the
camera center of projection.

Other studies using shape from motion were introduced in this
scenario. By capturing image sequences while moving the endo-
scope it is possible to recover the shape information [16]. Applying
it to medical field, two authors [17,18] presented reconstructions
of different anatomical structures from motion cues like image
features and correspondences which is only possible in a limited
number of cases. Featureless organs like bones cannot be used in
this context. Photometric stereo can also be tested in order to
recover surface orientation [19], although it requires two light
sources switched on and off at different times while the major part
of the endoscopes were not designed considering this feature.

As mentioned in the Introduction section, typically the shapes
recovered from endoscopic images correspond to a tiny part of the
organ, which severally limits the reconstruction. Techniques such
as endoscopic mosaicing from images [ 16] can be useful in order to
visualize a larger shape of the object in observation and improve
the reconstruction.

As for the problem of radial distortion, this problem has already
been taken into consideration, and recently the manufacturer
Stryker™ presented an endoscopic system with reduced radial
distortion by combining a new optical design with a cropping of
the image periphery. However the images continue to present
incorrect perspectives with a reduced Field of View (FOV) and this
solution cannot be extended to small diameter lenses like the one
tested in this paper. At this moment, computer vision techniques
appear to be the only viable way to fully solve the RD issue. Using
image warping it is then possible to render geometrically correct
perspectives, modeling the camera intrinsic parameters. A fully
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functional software-based system for correcting radial distortion
running in real time on a standard computer has already been
proposed by [20].

Although it may be possible to solve the RD issue, the visualiza-
tion continues to be in 2D which means that the depth perception
depends on the surgeon ability to precise location and sizes of
anatomical structures. Sometimes to interpret the information sup-
plied by the images can be rather difficult, even with an improved
visualization, so several authors have already addressed improve-
ments such as 3D visualization or surgical navigation systems. The
most common approach has been the use of stereoscopic endoscopes
such as the da Vincias system (Intuitive Surgical Inc.) [21] which
supplies a true 3D visualization from the combination of two images
acquired simultaneously. It consists in the use of two optical
elements, corresponding to left and right eyes, and a 12 millimeter
diameter stereo endoscope. However it cannot provide depth and
sizes for use in computer analysis. An interesting approach was
preformed by [22]. Using a laser with a known pattern and two
different cameras, one sensitive to the laser, other for acquire the
texture map. A 3D map is then generated from the images of the first
camera and using a structured light technique it is thus possible to
render the acquired images in a 3D scene.

Recent developments suggest that software based solutions
using image processing techniques are a promising area to achieve
a true 3D visualization in endoscopy.

2. Perspective shape from shading for a near point light source

Due to the light source position on the tip of the endoscope, we
consider a perspective projection and formulate the shape from
shading problem for a near-point light source located at the
projection center, as seen in Fig. 3. Assuming a Lambertian
reflectance of the surface and the inverse square distance fall-off
for the light intensity, the scene radiance can be recovered by the
so-called reflectance equation:

R= Iop—. (1)

where Ip and p are the light source intensity and the surface albedo,
respectively. The Z—axis of the camera plane (XYZ) corresponds to
the depth. The unit vector [ represents the incident direction of a
light ray on the surface point P while r is the distance from the light
source to P. As proposed in [11], the surface normal 1 is obtained in
terms of the partial derivatives of the scene depth z:

R 0z oz oz\?  [oz\?
"= [‘ax"ay"l]/ () () @
When this problem is formulated assuming an orthographic

projection, these derivatives are applied directly in the image
coordinates (u,v). However under perspective projection it follows

Image Plane Lens/Light source Plane

P(u,v,F)

Z (optical axis)

v P(x,y,z)
(Scene Point)

F (focal length) Depth (Z)

Fig. 3. Perspective projection model for a near light source located at the
projection center O. The lens/light source plane XYZ is centered at O. A scene
point P is projected into an image point p.
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derivatives of z in terms of image coordinates:
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Using Egs. (2)—(5) the reflectance equation is then rewritten as
function of u,v,z,p,q:
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R(u,v,z,p,q) = lop (6)

R(u,v,z,p,q) = lop

2.1. Estimating the reflectance map

The mapping of the surface reflectance is done taking into
account that we have three unknown parameters to estimate: the
depth z and the corresponding partial derivatives p and q. From the
image irradiance equation (see [11]) we have R(u, v, z,p, q) = E(u,v),
where E represents irradiance transmitted by the surface and R the
reflectance map. In [11] the problem is regarded as the estimation of
a smooth surface in a specific image domain where some boundary
conditions apply. Different optimization methods have been pro-
posed [23,24,14]. In this paper we use the minimization method
proposed by [14] since it conjugates a local quality assessment
measure (integrability error constraint) with a regularization term
(smoothness constraint) that helps in achieving a global optimization
solution. The error function is thus computed as

e(z,p.q) = Aei(z,p, ) +(1 - Aes(z.p,q) ®
where e; is the integrability error and e; is the smoothness constraint:
ei(z.p, @) = [fimage(EW, V) —R(w,v,2,p,q))* du dv ©
es(Z,P, Q) = %magezﬁ+za +pﬁ +P5+Qﬁ+CI3 du dv (]O)

and A is a Lagrange multiplier used to control the smoothness
influence. The smoothness constraint is used to force the resulting
surface to be as smooth as possible by integrating the first and
second derivatives of the surface depth.

The unknowns z, p, q are then computed in an iterative process
where each one is defined by discretizing and minimizing the
error function. So for each pixel position, @ = [z, p, q] the update
equations are

—n+1 —n

IRTE )

where A is initialized with a small value (0.005), being increased
by a step of 0.02 as the error is reduced by 1% and w,, corresponds
to the p, g,z four-neighborhood average for each pixel.

_n 70R
[E@w.v)—Ra, v, wm)]g_w%’" 1n

m
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3. Estimating SFS in endoscopic images

We aim for an accurate reconstruction when using wide-view
lenses with a significant amount of radial distortion, so we
introduce two enhancements to the estimation model. First we
insert the Radial Distortion Correction directly in the reflectance
map equation, then we introduce the so-called Field of View
Compensation in order to improve the reconstruction results in
the image periphery.

3.1. Division model for radial distortion correction

The reflectance map equation (Eq. (7)) assumes that the image
used as data source is undistorted. However, as explained above,
the majority of endoscopes has medium to high radial distortion
and the correction of this effect is usually performed in a previous
step, by interpolating a new image. This new image, that is used as
data source for the shape from shading algorithm, is thus undis-
torted. In this section we claim that instead of interpolating the
original distorted image, as so introducing a severe source of error,
it is possible to directly integrate the distortion equations in the
reflectance map estimation.

According to [25] the image radial distortion (RD) can be
described using the first order division model where the level of
distortion is quantified by only one parameter & (typically & < 0).
Let ug = (u,v)" (the original image coordinates) and u, = (1, vy,)"
be the corresponding distorted and undistorted points, expressed
with respect to a reference frame with origin in the principal point
of the image [25]. f is a vector function that maps points from
distorted (I4) to undistorted (I,) image planes as

uy =f(ug) = (1+&ujuy) 'ug. (12)

The radius of ug is ry =, /ujuy, and the corresponding undis-
torted radius is ry = (1+&r3) ~ 'ry.

Instead of obtaining an undistorted image we then integrate
(12) directly in the reflectance equation which becomes a function
of ug,v4,z,p.q and &:

R(uy, vu,z,p,q) = R(uq, v4,2, 0.9, &)

s
l (ud’ Vd, 2, 5)
r(Ug, va. 2, §)*

=Iop T (ug,v4,2.p,q. &) (13)

Scene

ll,]

]

Camera Plane Optics

or, by expanding the final result:
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R(ug,vq,z,p.q.) =Iop

where A =1+&u3+v32).

By introducing the radial distortion directly in the reflectance
equation, and so eliminating the previous step of creating an
undistorted image, we eliminate an interpolation of the pixels
values, which is a major source of error. This is specially important
for medium to high radially distorted images as the ones obtained
from endoscopic lenses.

3.2. Field of view compensation

A typical camera presents a FOV of approximately 40°, which is
a rather low value when compared to the 140 ° of our endoscope.
We can thus observe in the images a gradual loss of quality from
the center to the periphery. Fig. 4 shows that for each 5° interval,
the distances between the light rays increase along the scene
plane. This means that for equal distances in the scene plane as the
viewing angle increases, the light rays spacing also increases, and
hence there is a loss of resolution which can be observed in the
image plane by backprojection of the light rays.

Regarding this we modified the smoothness constraint in the
estimation model to compensate the loss of resolution in the
reconstruction. By discretizing (10) we can represent the smooth-
ness constraint for each pixel (ug4,v4) as

~ 2 2
es(z,p,q)~ ) > {(Zud 1wy —Zugwvg)” + Zugwg +1—Zugvg)
image

+(pud+ 1.v4 _pud,vd)z +(pud,vd +1 _pud,vd)z
+ (Qud +1vy qud,vd)2 + (qud,vd +1— qud,vd)2 } (] 5)

This constraint is based in a pixel by pixel difference which
becomes larger in the image periphery due to loss of resolution.
We propose a new smoothness constraint where the differences in
the image resolution are compensated according to the viewing
angle. In Fig. 4 we can see that the rays concentration in the arc
tangent to the image plane is always the same for equal distances.
Considering u=(u,v)" as the image coordinates of a pixel, we

Distance in the Camera Plane
N
(o)
o

0 10 20 30 40 50 60
Angles(degrees)

Fig. 4. (a) Light rays projection from the surface to the camera (image) plane, showing the effect of equal spacing in angles and its effect on the resolution and (b) the scene
distance variation with respect to the angle. We can observe that for an isotropic variation in the angle between the optical axis and the light ray irradiated by the surface, the

distances in the image plane increase (d; > d,) while in the arc they are constant.
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Fig. 5. Attenuation factor used to compensate for the loss of resolution in the image periphery. Example for an image of 400 x 400 pixels and a focal length of 200 pixels.
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Fig. 6. Overview of the system framework.

propose to used the following scaled point:

F tanl<le_'_‘/2>
F 0
arc __ — .
u” = T u= tan @) u (16)

where u¢ = (uec, v@©)T are the coordinates in the arc tangent to
the image plane, and @ is the angle between the projective ray and
the principal axis.

In Fig. 5 we can see an example of the attenuation factor used
in u¥c so that when applied to the smoothness constraint the
differences at the periphery are attenuated as a function of the
angle that the projective ray makes with the principal axis and as a
function of the distance of the pixel to the principal point.

We thus redefine the smoothness constraint as

s @= % { (0, —E) Gusrv—zun)
(V51— v5) v —2m)
(3 =) a1~ D)
(A ) Py 1 —Pun)
() )
(451~ 1)} a7)

In this way the pixel differences are attenuated according to the
loss of resolution. This also implies new equations to the estima-
tion of the reflectance map update equation @ =[z,p,q]':

n+1 —un A _,n\710R
= ——|E(u,v —R(u,v,w ]— n 18
m+dlstarc-(l—l)[ v m) aa;'E))m (s
where
5 arc arc 2 arc arc 2 arc arc 2
distare = (uu+1,v_uu.v) + (uu—1,v_uu.v) + (Vu,v+1 _Vu,v>

2
arc arc
+ (- -v) (19)
and
" 1 arc arc 2 arc arc 2
@Om= distarc {wwrl,v <u“+ v uu,v) +Dy_1y (uu— 1v *uu)v>
arc
arc arc 2 arc arc 2
T Ouv+1 (VU’V+ T v”"’) F®Ouy-1 (vu,v -1 Vu,v) (20)

4. Calibration of the endoscopic system

To perform the shape from shading it is important to, before
applying the appropriate algorithms, calibrate the system. Endo-
scopes are optical systems that need some attention and care in
their calibration.

In Fig. 6 we present the proposed reconstruction framework
which consists in a geometric and radiometric calibration of
obtained images, followed by the SFS reconstruction algorithm.
The use of a perspective projection requires the computation of
the camera intrinsics respecting the assumptions made in the
computation of the reflectance function.

4.1. Geometric calibration

The aim of this step is to determine the intrinsic calibration
matrix Ko and the radial distortion . K, is defined by

aF  sF ¢
Ko~| 0 a’'F ¢ 21)
0 0 1

where the aspect ratio a is assumed to be equal to 1 and the skew s
is assumed to be zero. (cy, ¢y) represents the principal point where
the optical axis intersects the image plane.

Planar checker-board patterns are widely used in geometric
calibration because they are easily available and simplify greatly
the goal of establishing point correspondences. Several authors
addressed the specific problem of intrinsic calibration or RD correc-
tion in medical endoscopes [26-28]. Due to the usability and
accuracy needed by our system, we used the EasyCamCalib toolbox
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Fig. 7. (a) Planar checker-board used in geometric calibration and (b) MachBeth Color Chart for the radiometric calibration. The scope tip is positioned above the grid or the

color patch as shown in the image.

Fig. 8. Images of the color chart, each one corresponding to a different patch.
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Fig. 9. Response curves, corresponding to the three color channels: (a) red, (b) green, (c) blue. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)

[28], which only requires an image of a checker-board to fully
calibrate a camera with medium to high radial distortion. In [28] a
detailed explanation and evaluation of the algorithm can be found.

4.2. Radiometric calibration

The radiometric calibration is frequently addressed in literature
as an essential step to SFS [14]. As stated earlier, we must
guarantee a linear photometric response of the CCD and an
isotropic distribution of the light rays, by which means we define
the image irradiance perceived by the camera as

Ew,v)=T""(u,v)U ') (22)

where "~ corresponds to the photometric response function, I(u, v)
to the image brightness at each pixel and U~ !(u, v) to the anisotropy
of the light source. From Eqs. (1) and (22) and assuming that the
image irradiance equals the scene radiance we can rewrite Eq. (22) as

4
5o

I, v) =ploUu,v) | 7 -z (23)

In order to estimate I'~!, U~' and (ﬁ).?)/rz all the other
variables p, o, 77, [ and r must be known, so for calibration
purposes a MachBeth Color Chart composed by 24 patches with
known albedo is used (Fig. 7). As formulated in [14] by applying a
logarithm on both sides of Eq. (23) we can reformulate the
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Fig. 10. Reconstruction (up to scale factor) for one of the spheres used (in this case a ping-pong ball). We can see that the reconstruction is quite good, and the surface
obtained is very smooth. (a) Calibration ball image, (b) ball reconstruction - XY plot and (c) ball reconstruction - XYZ plot.

problem as

-

-

log(r’](l(u,v)))=log(p)+log(10)+log U(u,v) n.rl—2 (24)

Then we found separate solutions to the 3 unknown para-
meters by using several images of the Color Chart patches, as the
ones in Fig. 8 and knowing their position and orientation. For the
response function "~ ! we perform comparisons at the same pixel
position for different images while for the anisotropy, U™, we use
different pixel positions on the same image. The obtained response
functions are represented in Fig. 9.

5. Experimental evaluation

To evaluate the proposed method we used an oblique-viewing
endoscope with a single light source located at the end of the

scope tip which has a 4 mm diameter. The light source has a
crescent shape and a thickness smaller than 1 mm. The endoscope
distortion is close to 40% and the FOV near 140°. We compared our
estimation method with [14] using 3 geometric objects: 2 spheres
(Ball and YBall) and a cylinder (Roll) with a radius of 43, 18 and
26 mm, respectively. Fig. 10 shows an example of a reconstruction
using the YBall. 10 images per object were used in the evaluation.
Additionally, we also performed reconstructions for a knee
model in order to test our estimation with bone-like surfaces.

5.1. Results with geometric shaped images

In order to evaluate the accuracy of the reconstructed objects,
we performed the corresponding geometric approximations of a
sphere and a cylinder to the results obtained by the two methods
being compared: ours and [14]. These estimations were obtained
using RANdom SAmple Consensus (RANSAC) [29] to fit the
reconstructed points to the geometric model of each object as
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Fig. 11. Estimated geometric models for the reconstructed points of a sphere (a) and a cylinder (b) using RANSAC.

Table 1
Comparison of our method incorporating the radial distortion correction and the
FOV compensation against the original estimation method proposed by [14].

Algorithm Mean error Std. dev. Inliers (%) Object (N)

Ours 0.25 0.19 99 Ball (10)
0.26 0.25 99 YBall (10)
1.05 0.75 97 Roll (10)

Wu [14] 030 0.24 99 Ball (10)
0.31 0.25 98 YBall (10)
1.89 1.35 89 Roll (10)

seen in Fig. 11. The metrics used to test the approximations were
the Mean Error of each reconstructed point distance to the sphere
surface, the corresponding Standard Deviation and the percentage
of inliers of the fitted model.

In Table 1 we compare the performance of our algorithm with [14].
For all datasets used we obtained inferior values for mean error,
standard deviations and larger percentage of inliers. The results
improved 20% in both spheres and 80% in the cylinder. The

improvement for the cylinder is due to the FOV compensation, as
we can see in Fig. 12, where we compare the difference introduced in
the reconstruction by the FOV compensation. There is a noticeable
quality loss in the periphery of the cylinder reconstruction when not
using the FOV compensation.

5.2. Results from images of the knee model

In Fig. 13, despite the irregularities presented along the recon-
structed surface resulting from the non-smoothness of the bone
surface, its shape is inferred quite accurately. The images pre-
sented show a marker of one irregularity of the knee bone to ease
the visual inspection. The goal of this kind of reconstructions is to
assess the viability of using them in endoscopic interventions
where a surgeon could visualize in real time a robust 3D shape of
the surface being observed.

Additionally, we also performed the shape from shading recon-
structions of some knee joint images in an arthroscopic surgery. As
shown in Fig. 14, one can observe that the shape is correctly
recovered and that the 3D images can help the surgeon to under-
stand the shape of the bones.
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a b

Fig. 12. Influence of the FOV compensation in the reconstructions: (a) is the image acquired with the endoscope. (b) is the corresponding calibrated image, we can see the
difference in the radiometric response and in the anisotropy of the light source. (c) presents our reconstruction method integrating only the radial distortion correction. In
(d) the radial distortion correction and the FOV compensation were both used.

Fig. 13. Reconstructions of a knee model: (a) and (b) are the original images acquired with the endoscope. The corresponding reconstructions are shown in (c) and (d).
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Fig. 14. Reconstructions of the knee joint in an arthroscopic surgery: the first row shows the original images acquired with the endoscope, the second row shows the XY plot
of the recovered shape (the color represents the height) and the third row shows one view selected of the corresponding reconstruction. (For interpretation of the references

to color in this figure caption, the reader is referred to the web version of this paper.)

6. Conclusions

Different techniques to improve visualization in minimally
invasive surgeries have been proposed in the last years. Successful
3D reconstructions from endoscopic images have already been
seen using hardware based solutions by incorporating an extra
camera or a laser device. However it has been proved to be rather
difficult the development of software based solutions using
computer vision methods as shape from shading and shape from
motion due to the numerous variables that need to be considered.
We focused in solving the problems related directly with the
endoscopic system like light anisotropy, radial distortion, color
response and loss of resolution due to a wide FOV.

This paper presented an estimation method for near-lightning
perspective shape from shading for endoscopes and by taking into
account the effect of high radial distortion, typical in endoscopes, and
also the reduced resolution in the periphery of the image due to a
wide FOV. The improvements to the PSFS state of the art are the
integration of radial distortion estimation directly in the radiance
equation and a new smoothness constraint for wide angle lenses. The
framework used allowed us to reconstruct surfaces with good

accuracy, outperforming those obtained with state-of-the-art meth-
ods. The experimental results presented very small errors with our
algorithm, thus having a better behavior than the original proposed by
[14]. By visually inspecting the reconstruction results, our method
shows a more robust reconstruction in the image periphery as result
of the FOV compensation.

In terms of future directions, the reconstruction obtained by the
shape from shading is always partial, representing just a small part of
the object in study, for real scenarios. A shape from motion technique
should be considered in order to fuse partial reconstructions and
combining them with a navigation tracking system we could aim to a
computer guided surgery supplying 3D shape information during the
intervention [30]. Additionally, a complete study on performance and
computational time issues is important to identify possible improve-
ments to the algorithm in order to achieve real-time performance.
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