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Abstract Several applications in robotics require com-

plex sensor arrangements that must be carefully cal-

ibrated, both intrinsically and extrinsically, to allow

information fusion and enable the system to function

as a whole. These arrangements can combine differ-

ent sensing modalities - such as color cameras, Laser-

RangeFinders, and depth cameras - in an attempt to

obtain richer descriptions of the environment. Find-

ing the location of multi-modal sensors in a common

world reference frame is a difficult problem that is

largely unsolved whenever sensors observe distinct, dis-

joint parts of the scene. This article builds on recent

results in object pose estimation using mirror reflec-

tions to provide an accurate and practical solution for

the extrinsic calibration of mixtures of color cameras,

LRFs, and depth cameras with non-overlapping Field-
of-View. The method is able to calibrate any possible

sensor combination as far as the setup includes at least

one color camera. The technique is tested in challenging

situations not covered by the current state-of-the-art,

proving to be practical and effective. The calibration

software is made available to be freely used by the re-

search community.
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1 Introduction

Many applications in robotics and intelligent trans-

portation systems (ITS) require the use of multiple sen-

sors that can be of the same modality (homogeneous

sensor networks) [14,13,19] or of different modalities

(heterogeneous or hybrid sensor setups) [4,11,2]. These

setups must be calibrated both intrinsically and extrin-

sically. The intrinsic calibration consists in determining

the sensor parameters that enable to convert measure-

ment units into metric units (e.g. pixels into mm) [6].

The extrinsic calibration consists in locating the dif-

ferent sensors in a common coordinate frame, allowing

the platform to function as a whole. The literature in

extrinsic calibration is vast and includes methods for

finding the relative pose between sensors of different

modalities [21,7]. However, most of these solutions re-

quire the fields-of-view (FOVs) to overlap and cannot

cope with situations in which sensors are observing dif-

ferent, disjoint parts of the scene (see Figure 1). This is

not the case of the recent work by Bok et al. [2] where

the first solution to the calibration of a color camera

and a LRF with non-overlapping FOVs is proposed.

This article revisits the problem of the extrin-

sic calibration of multi-sensor arrangements that can

comprise color cameras1, Laser-Rangefinders (LRF),

and/or depth cameras. It builds on recent results for

estimating the pose of an object observed by a color

camera through planar mirror reflections [18] and pro-

poses a systematic, practical approach for calibrating

mixtures of color cameras, LRFs, and depth cameras

with non-overlapping FOV. The method uses a checker-

board pattern as calibration object and handles situa-

1 The term color camera is used when referring to regular
cameras, either RGB or grayscale, in order to better distin-
guish between depth cameras.
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Fig. 1: Example of a heterogeneous sensor network with

non-overlapping field-of-view placed in a moving plat-

form.

tions for which there is no simple, effective solution in

the state-of-the-art.

Since the estimation of the relative pose of an object

from mirror views requires N ≥ 3 reflections [18,12],

the calibration in the case of non-overlapping FOV must

be based in conventional extrinsic calibration methods

that use a small number M of object images, other-

wise the total number N × M of frames to be ac-

quired becomes prohibitive. While the extrinsic calibra-

tion of a color camera and a LRF can be accomplished

from M = 3 images of a moving checkerboard pattern

[21], the existing approaches for calibrating a color and

depth camera require 20 to 30 calibration frames to

deliver accurate estimation results [7]. In order to over-

come this difficulty we also describe a new method for
the joint calibration of color and depth cameras that

accomplishes the accuracies reported in [7] using one

sixth of the input frames. The method has been first

introduced in a prior conference publication [17] and is

herein extended to handle the situation of the color and

depth cameras having disjoint FOVs.

In summary, the article combines recent results

in estimating the pose of an object that is observed

through mirror reflections [18] with explicit methods

for calibrating color camera / LRF and color camera

/ depth camera arrangements [21,7], and presents for

the first time a solution for the extrinsic calibration of

mixtures of heterogeneous sensors with non-overlapping

FOVs. The contributions are as follows:

1. An accurate, easy to use method that combines

different modules for accomplishing the extrinsic

calibration of multi-modal sensor setups with non-

overlapping FOV such as the one depicted in Figure

1.

2. A new calibration method for mixtures of color and

depth cameras that outperforms the state-of-the-art

approach by Herrera et al. [7]. This new method

performs accurately when using a small number of

input frames [17], which is of paramount impor-

tance for accomplishing calibration in the case of

non-overlapping FOVs.

3. A thorough experimental assessment of the solution

that enables to decide about the number of mirror

reflections M and object views N that are needed

to reach a certain accuracy level.

4. An experiment of the calibration of a sensor plat-

form with an application in Structure-from-Motion

that evinces the usefulness of heterogeneous sensor

systems.

5. A complete MATLAB toolbox2 that implements the

described calibration methods and that will be made

publicly available to the robotics and ITS commu-

nities. It includes a calibration dataset to be used

as benchmark.

1.1 Related Work

There are many applications in robotics and ITS that

combine several sensing devices, either from the same

or different modalities. Stationary camera networks are

used in surveillance and object tracking [14], while

multi-camera rigs allow for the coverage in vehicles of

the whole surrounding environment [13]. In [1], Auvinet

et al. describe a system that uses multiple active cam-

eras for reconstructing the volumes of bodies in motion

from the acquired depth maps. Its main application is

in gait analysis which has become an increasingly inter-

esting area of research. LightSpace [22] combines depth

cameras and projectors to provide interactivity on and

between surfaces in everyday environments, allowing a

convincing simulation of the manipulation of physical

objects. The literature also reports heterogeneous sen-

sor setups comprising both combinations of color cam-

eras and LRF, and combinations of color and depth

cameras. Color camera and LRF networks have recently

been used in object classification for the construction

of maps of outdoor environments [4], by integrating vi-

sual and shape features. In [15], these features are com-

bined for pedestrian detection in urban environments.

In [11], multiple color and depth cameras are used for

generating high-quality multi-view depth, allowing for

the construction of 3D video.

For most of these applications the relative pose be-

tween sensor nodes must be known in advance in order

2 The toolbox that accompanies this article can be
accessed at http://arthronav.isr.uc.pt/~carolina/

toolbox_multimodal/.

http://arthronav.isr.uc.pt/~carolina/toolbox_multimodal/
http://arthronav.isr.uc.pt/~carolina/toolbox_multimodal/
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Table 1: Methods for calibrating multi-sensor systems.

Color Cam. LRF Depth Cam.

Bouguet [24] X

O
v
er

la
p

Vasconcelos [21] X X

Herrera [7] X X

Rodrigues [18] X

N
o
n

O
v
er

la
p

Bok [2] X X

Our X X

Contribution X X

for the acquired multi-modal information to be fused

and the platform to work as a whole. There are several

methods for performing both intrinsic and extrinsic cal-

ibration of color cameras, LRFs, and depth cameras. A

brief overview of current approaches to calibrate either

sensors of the same modality, or mixtures of two modal-

ities is now provided. Table 1 summarizes the results

of this overview clearly showing that the majority of

existing solutions are unable to handle the problem of

generic extrinsic calibration between sensors of different

modalities with non-overlapping Field-of-View (FOV).

1. Color Camera Calibration: The literature is vast

but explicit methods using a known checkerboard

pattern are specially popular because they are sta-

ble, accurate, and the calibration rig is easy to

build. Bouguet’s camera calibration toolbox [3] im-

plements Zhang’s method [24] that, given 3 or more

images, estimates the intrinsic parameters, as well

as the poses of the checkerboard with respect to the

camera. These poses can be used to find the rel-

ative rigid displacement between different camera

nodes (extrinsic calibration) by simply assuring that

some planes are simultaneously observed across dif-

ferent nodes. However, there are camera networks

for which the FOVs of the different nodes do not

overlap. This happens either in surveillance, where

many times a broad region must be covered with

a small number of cameras [14,10], or in robotics,

whenever cameras are placed to obtain an omni-

directional view of the scene around the vehicle [13].

A possible solution in these cases is to use mirrors

for computing the pose with respect to an object

that is outside the FOV [18,12,20,8]. The idea has

been first used in [12] to calibrate a camera net-

work with the pose of the object being estimated

from a minimum of 5 mirror reflections. Sturm et al.

[20] proved that such relative pose could be deter-

mined from a minimum of 3 images and Rodrigues et

al. [18] introduced a minimal, closed-form solution

for the problem that outperforms the methods sug-

gested in [12,20]. An exhaustive experimental eval-

uation showed that in practice 5 to 6 reflections are

more than enough to obtain very stable and accu-

rate results.

2. Color Camera / LRF Calibration: Zhang and Pless

[23] proposed a practical method for the extrin-

sic calibration of a color camera and a LRF that

uses at least 5 images of a known checkerboard pat-

tern. Later on, Vasconcelos et al. [21] described a

minimal solution for the problem leading to a ro-

bust algorithm that clearly outperforms the method

in [23]. These solutions only deal with the over-

lapping case. More recently, an algorithm for cal-

ibrating a color camera and a LRF whenever their

FOVs do not intersect was proposed [2]. The method

makes assumptions about the relative pose between

the checkerboard and the environment’s structure

that may be difficult to satisfy in small or clut-

tered spaces. Moreover, due to these assumptions,

the sensor platform must move in order to acquire

calibration data. In case of large platforms, such

as ground vehicles, this method is not appropriate

since it would be extremely difficult to acquire the

required calibration data in different positions and

orientations. In this article the method [21] is ex-

tended to the non-overlapping case, providing a sim-

ple solution that works for any color camera / LRF

configuration that can be attached to either a small

or a large platform.

3. Color Camera / Depth Camera Calibration: Scene

reconstruction from a color-depth camera pair mea-

surements requires the system to be calibrated, both

intrinsically and extrinsically. Kinect cameras have

a standard calibration from factory that is not ac-

curate enough for many situations. Herrera et al.

[7] have recently modeled the Kinect’s depth cam-

era distortion and proposed a method for calibrat-

ing a depth camera and additional color cameras

whose FOV overlap. Its main strength is in an ex-

plicit depth distortion term. Unfortunately it re-

quires many images (over 20) and it is not pre-

pared for handling non-overlapping situations. To

tackle the first issue, we propose a new calibration

method for color camera / depth camera pairs that

has proven to perform accurately with only 6 to 10

calibration images. Moreover, this new approach is

extended to the non-overlapping case, solving the

calibration problem for any possible sensor configu-

ration.
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Fig. 2: Object B is seen by camera Cr through N planar

mirror reflections Πi, originating N virtual cameras Ĉi.

Our goal is to find the pose M of the real camera Cr
with respect to object B.

1.2 Overview of the Article and Used Notation

The structure of the paper is as follows. Section 2 re-

visits the problem of determining the pose of an object

from planar mirror reflections and introduces the esti-

mation algorithm by Rodrigues et al. [18] that will be a

cornerstone of the proposed extrinsic calibration frame-

work. Section 3 starts by quickly reviewing the minimal

solution for calibrating a color camera and a LRF [21]

and shows how the method can be used in conjunc-

tion with mirror reflections to handle the case of cam-

era and LRF pointing towards different directions. The

section ends with a real experiment that validates the

approach and assesses how accuracy varies as a func-

tion of the number of mirror reflections N and object
poses M . Section 4 starts by quickly overviewing the

method of Herrera et al. [7] for calibrating mixtures of

color and depth cameras. It then proposes several mod-

ifications to [7] that dramatically improve the robust-

ness, the computational time, and the number of input

frames [17]. The new method is used to accomplish ex-

trinsic calibration in the case of non-overlapping FOV,

and the approach is validated through real experiments

with ground truth. Finally, Section 5 shows how these

contributions can be used to calibrate an heterogeneous

combination of color camera, LRF, and depth camera

facing different directions around a moving platform.

The notation used in this paper is as follows. Scalars

are represented by plain letters, e.g. t, vectors are in-

dicated by bold symbols, e.g. t, and vectors with unit

norm by
−→
t . Matrices are denoted by letters in sans

serif font, e.g. R. Planes are represented by a 4D homo-

geneous vector that is indicated by an uppercase Greek

letter, e.g. Π. Sets of intrinsic parameters are defined by

uppercase calligraphic letters, e.g. L. Entities in LRF

reference frame are represented using ′ and in depth

camera reference frame using ,̊ e.g. Φ′ and Φ̊.

Throughout the article most geometric entities, such

as points, lines, or planes will be represented in projec-

tive coordinates. The symbol = will be used to denote

strict equality and ∼ to represent equality up to scale

between projective representations. The rigid transfor-

mations between reference frames are represented by

4 × 4 matrices and, in the schemes, the direction of

the arrow indicates the mapping of coordinates, e.g. in

Figure 2 the coordinates in Cr are mapped to B by M.

2 Camera Pose Estimation from Mirror

Reflections

It can be shown that the image acquired by a camera

looking at a planar mirror is equivalent to the image

that would be acquired by a virtual camera placed be-

hind the mirror plane. In this case, the virtual and real

cameras have the exact same intrinsic parameters and

their local reference frames are related by a symme-

try transformation S with respect to the mirror plane.

Rodrigues et al. [18] propose to freely move a planar

mirror in front of a camera in order to obtain images

of an object that lies outside the FOV. It was shown

that, given N ≥ 3 images, it is possible to estimate

the rigid displacement M between camera and object

(Figure 2), as well as the plane coordinates of the N

mirrors. Since their algorithm will be extensively used

to accomplish the extrinsic calibration of sensors with

non-overlapping FOV, this section overviews its steps.

2.1 Review of the Algorithm presented in [18]

Figure 2 shows an object B being observed by camera

Cr through N planar mirror reflections. Each virtual

camera Ĉi is originated by the mirror plane Πi, which

is uniquely defined by its unitary normal vector −→n i, and

the scalar euclidean distance di, with i = 0, . . . , N−1.

The pose of the object Pi in each virtual camera ref-

erence frame is determined by either applying the PnP

algorithm [5], in case B is a known 3D object, or by

estimating and factorizing a planar homography [6], in

case B is a plane surface. For the sake of convenience

the article always uses a planar checkerboard pattern

as calibration object. With abuse of notation, the pose

and the homography will be denoted by the same sym-

bol, whenever it is convenient.

Given the N ≥ 3 object poses Pi, Rodrigues et al.

[18] choose a reference virtual view and determine the

position of the corresponding mirror plane. Let Ĉ0 be

the reference camera. The first step is to compute the
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relative pose Ti of the remaining virtual views, which

can be easily accomplished by applying the following

formula:

Ti = P−1
i P0, i = 1, 2, . . . , N − 1, (1)

with Ti being a 4× 4 matrix with format

Ti =

[
Ri ti
0 1

]
, (2)

where Ri is a rotation matrix with rotation axis di-

rection −→ω i and rotation angle θi, and ti is the transla-

tion vector. It can be shown that each rigid motion Ti
gives rise to two independent linear constraints on the

parameters of the mirror plane Π0 that can be stacked

for the N−1 motions, originating a system of linear

equations. The least squares solution can be found by

applying SVD, and Π0 is computed. The symmetry

transformation S0, that relates the reference frames of

virtual camera Ĉ0 and real camera Cr, is given by:

S0 =

[
I− 2−→n 0

−→n T
0 2d0

−→n 0

0 1

]
. (3)

This symmetry matrix is involutory, meaning that S0 =

S−1
0 . From P0 and S0, the pose M of the object B comes

in a straightforward manner as:

M = S0P0. (4)

Note that due to the mirror reflection, if the reference

frame Cr is right-handed, then the reference frame Ĉ0 is

left-handed, and vice-versa, making the multiplication

in Equation (4) to be defined this way. To improve ro-

bustness, this algorithm is performed N times indepen-
dently, each time considering a different virtual camera

as the reference frame. Then, the average of all estima-

tions of M is considered.

A singular configuration occurs whenever all the

mirror planes intersect into a single line in 3D. This

can be caused by either rotating the mirror around a

fixed-axis, or when the reflection planes are all parallel

(the intersection line is at infinity).

2.2 Calibration of Cameras with Non-Overlapping

FOV

As explained in [18], the fact that it is now possible

to determine the pose of an object M that is outside

the camera’s FOV enables the extrinsic calibration of

cameras that do not observe overlapping regions of the

scene.

Consider the situation of Figure 3 where cameras

CF and CB , mounted on a platform, observe object

B

........

Fig. 3: The extrinsic calibration D is accomplished by

showing the object directly to camera CF (checkerboard

image on the right) and showing it through mirror re-

flections to camera CB (checkerboard images on the

left).

B directly and through mirror reflections, respectively.

The extrinsic calibration D can be carried by computing

MF and MB , and then finding D = M−1
F MB . MF can

be computed as a planar homography using a standard

approach [24], while estimating MB is performed using

the algorithm from [18].

In practical terms, according to [18], for N = 6 mir-

ror views it is possible to achieve subpixel accuracy,

corresponding to a rotation error slightly below 1◦ and

a translation error of approximately 3.5%.

3 Extrinsic Calibration of a Color Camera and

a Laser-Rangefinder

Let us now consider the problem of finding the extrinsic

calibration T′ between a color camera C and a LRF O′

as illustrated in Figure 4.

Vasconcelos et al. [21] have recently shown that a

color camera and a LRF can be calibrated from a min-

imum of M = 3 images of a planar grid. The problem

of finding T′ is cast as the problem of registering a set

of planes Φi, i = 1, 2, 3, expressed in color camera co-

ordinates, with a set of 3D lines L′i, i = 1, 2, 3 in the

LRF coordinate system. They show that there are 8

solutions, with the correct one being selected by an ad-

ditional plane-line correspondence.

We start by reviewing the algorithm [21] and then

extend the method to the case of non-overlapping FOV

by using mirror reflections.

3.1 Review of the Algorithm presented in [21]

Consider M planes Φi ∼ [nT
i 1]T, i = 1, 2, . . . ,M ex-

pressed in color camera coordinates and the correspond-

ing lines L′i, expressed in LRF coordinates, where L′i is

the locus of intersection between Φi and the scan plane

Σ′, as shown in Figure 4b.
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Camera

LRF
LRF

Camera

(a) Camera and LRF mounted on a plat-
form

'

O'

b

Camera

LRF

(b) Relative pose T′ between camera
and LRF

(c) Line intersections in the scan plane Σ′

Fig. 4: (a) The extrinsic calibration in [21] is carried by moving a checkerboard pattern in front of both color

camera and LRF. (b) The color camera C that observes the plane Φi and LRF O′ that sees line L′i are related by

a transformation T′. (c) Lines L′i lie in the scan plane Σ′ and intersect in points P′ij , which define the directions

d′ij with the origin of the LRF reference frame O′.

Vasconcelos et al. [21] show that the relative rota-

tion R′ can be determined by solving the system of non-

linear equations
α12d12 = R′

T
(P′12 + m′)

α13d13 = R′
T

(P′13 + m′)

α23d23 = R′
T

(P′23 + m′)

, (5)

where dij is the direction of the line where planes Φi

and Φj intersect, P′ij is the point in plane Σ′ where

lines L′i and L′j meet, m′ is an unknown vector and

αij are unknown scalars that assure algebraic equality.

The authors observed that the system of equations (5)

corresponds to solving the P3P problem [5] for deter-

mining the relative pose between a color camera and

an object from 3 object-image point correspondences.

Figure 4c shows the nature of this P3P problem, where

the virtual perspective camera is centered in point m′

where planes Φ′i intersect, dij play the role of image

points and P′ij of object points. P3P enables to find

the relative orientations R′
T

and the position m′ of the

intersection of the 3 planes in LRF coordinates.

Finally, to find the translation t′, it is shown in [21]

that it suffices to compute t′ = A−1c with

A =

n′
T
1 n′1n

T
1

n′
T
2 n′2n

T
2

n′
T
3 n′3n

T
3

R′
T

and c =

n′
T
1 n′1 − n′

T
1R
′n1

n′
T
2 n′2 − n′

T
2R
′n2

n′
T
3 n′3 − n′

T
3R
′n3

 , (6)

where n′i refers to the normal to planes Φ′i, expressed

in LRF coordinates (n′i = R′ni).
A discussion about the singular configurations of

this method is given in [21]. In general terms, whenever

the lines where the checkerboard planes intersect are

parallel, or the checkerboard planes intersect in a point

that lies in the danger cylinder (refer to [21]) a singular

configuration occurs.

.... LR
F

....

LRF readings

Fig. 5: Calibration of a color camera / LRF setup in

case of non-overlapping FOV. It is shown how to de-

termine the pose Φi of the checkerboard in color cam-

era coordinates from N mirror reflections Πij . The line

segment between the red dots in the LRF readings plot

corresponds to the calibration plane.

The registration procedure originates a total of R ≤
8 rigid transformations T′i that align 3 planes with 3

coplanar lines. For sets with M > 3 plane-line corre-

spondences, the best solution is chosen in a RANSAC

framework to select inliers, which are then used in a

Bundle Adjustment step to refine the solution. This is

done by simultaneously minimizing reprojection error

and distance to LRF depth measurements.

According to [21], a total of M = 5 checkerboard

planes are sufficient for achieving good accuracy.

3.2 Calibration of a Color Camera / LRF Pair with

Non-Overlapping FOV

As shown in the scheme of Figure 5, the checkerboard

pattern is placed in front of the LRF and, for each pose

Φ′i, i = 1, . . . ,M , the color camera observes the pattern

through N mirror reflections Πij , j = 1, . . . , N . The

coordinates of the checkerboard plane Φi in the color
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'

O'

b

Camera

LRF

Fig. 6: Points Q′ik (red) are constructed by measur-

ing depth along the directions r′k in the scan plane Σ′.

Points Q̃′ik (blue) are obtained by mapping planes Φi

into the LRF reference frame and intersecting with r′k.

camera reference frame can be found using the method

described in section 2. By applying this algorithm for

retrieving each plane pose, the extrinsic calibration be-

tween the color camera and the LRF can be directly

obtained by using the method from [21]. Note that, in

order to be possible to perform such a calibration, a

minimum of 9 images are necessary, since the algorithm

presented in [18] (reviewed in Section 2) requires N ≥ 3

mirror reflections and the algorithm from [21] (reviewed

in Section 3.1) requires P ≥ 3 plane poses. However,

and as discussed before, in practice more images are

required to obtain robust, accurate results.

The first step for performing the extrinsic calibra-

tion is to find an initial estimation. In this case, it

is done similarly to the method from [21], having the

difference that planes Φi are determined from the al-

gorithm described in Section 2 and not directly from

plane-to-image homographies. A refinement step is then

applied to minimize the reprojection errors in the color

camera and LRF. The minimization is performed over

the parameters T′, inlier planes Φi and corresponding

mirror poses Πij , and the color camera’s intrinsic pa-

rameters K,

min
T′,Φi,Πij ,K

e = eLRF + keCAM , (7)

where k is a weighting parameter. The LRF residue

eLRF is the sum of the squared distances between the

points Q̃′ik and the points Q′ik that are reconstructed

from the depth readings (refer to Figure 6):

eLRF =
∑
i

∑
j

||Q′ik − Q̃′ik||2. (8)

In the present case of a non-overlapping configuration,

since the checkerboard images result from mirror re-

flections, the reprojection error of the color camera is

Algorithm 1: New Method for the Calibration of

a Color Camera / LRF Pair with Non-Overlapping

FOV
Inputs: Scan plane Σ′, lines L′i and object poses in
relation to the virtual cameras Pij , i = 1, . . . ,M,
j = 0, . . . , N − 1
Output: Extrinsic calibration T′, mirror poses Πij ,
and planes Φi

1. Compute each plane pose Φi using the method from
[18] (reviewed in Section 2).

2. Use the algorithm presented in [21] (reviewed in Section
3.1) for initializing the extrinsic calibration T′ from the
obtained planes Φi and the input lines L′i.

3. Refine the estimated transformation T′, planes Φi,
mirror poses Πij , and color camera intrinsics K in a
bundle adjustment step as defined in Equation (7).

(a) Rotation error (in degrees) (b) Translation error (in per-
centage)

Fig. 7: Extrinsic calibration errors obtained with the

LRF-color camera pair in a non-overlapping configu-

ration, for varying number of checkerboard poses and

virtual views.

computed differently, when compared to the algorithm

proposed in [21]. The virtual camera relative to the mir-

ror pose Πij is computed by using transformation S0 in

Figure 2, which is a reflection about a plane. Since the

virtual cameras “observe“ the checkerboard directly,

they are used for computing the reprojection errors of

the plane-to-image homographies, yielding eCAM . Note

that the computation of the color camera residue de-

pends on the intrinsic parameters K, so that this formu-

lation allows to refine both the intrinsic and the extrin-

sic calibrations. The main steps of the proposed method

are outlined in Algorithm 1.

3.3 Experimental Results for Non-Overlapping FOV

The method proposed by Vasconcelos et al. [21] is able

to achieve robust, accurate results for the LRF-color

camera pair calibration in an overlapping configura-
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tion from M ≥ 6 checkerboard images. In the case of

non-overlapping FOV, besides the rigid displacement T′

between the sensors, the pose of the checkerboard Φ,

which is observed through mirror reflections, in color

camera coordinates, must be estimated. Rodrigues et

al. [18] show that in practice N ≥ 6 virtual views are

required for the estimation to be reasonably accurate.

In this section a real experiment with ground truth

is carried, not only to validate the approach presented

in section 3.2, but also to assess the number of M ×N
images that are necessary in practice to obtain a certain

degree of accuracy.

A setup that has overlapping FOV was used in order

to enable calibration with the algorithm of section 3.1

that works as ground truth. A dataset of M = 12 direct

image-LRF cuts was collected for calibrating the sensor

pair. Without moving the color camera with respect

to the LRF, we collected a second dataset where the

checkerboard is observed by the color camera through

mirror reflections in order to mimic the non-overlapping

situation. A total of M = 12 checkerboard poses with

each pose being observed by N = 12 mirror reflections

was acquired.

In order to find the number of checkerboard poses

M and mirror reflections N required to obtain accurate

results, M = 4, . . . , 8 and N = 3, . . . , 8 were considered,

and for each of the 30 possible combinations of M and

N , 50 calibrations sets of M checkerboard poses and

N corresponding image reflections were randomly se-

lected. The average rotation and translation errors with

respect to the ground truth obtained with these calibra-

tion sets are shown in Figure 7. It can be seen that using

M < 6 checkerboard poses or N < 6 mirror reflections
frequently leads to translation errors over 4%. This can

be explained by the fact that, in average, not even the

original methods perform more accurately with less im-

ages. Note that, as observed in experiments performed

with the original methods, the rotation error is always

relatively low (below 2.4◦). Moreover, using the min-

imum number of mirror reflections (N = 3) provides

poor results, as reported in [18]. However, the method

was able to achieve very accurate results, with transla-

tion errors of approximately 1% and rotation errors up

to 1◦ with datasets of 7 or more checkerboard poses and

mirror reflections. A good compromise would be to use a

dataset of 36 images, consisting of M = 6 checkerboard

poses and N = 6 mirror reflections, as the obtained av-

erage errors are of about 3.5% in translation and 1.26◦

in rotation. Thus, in overall terms, the results are sat-

isfactory and prove that, for carefully chosen checker-

board and mirror orientations, the extrinsic color cam-

era / LRF calibration can be accurately achieved using

small datasets.

4 Extrinsic Calibration of a Color Camera and

a Depth Camera

In this section the calibration of a color camera / depth

camera pair when their FOVs do not overlap is consid-

ered. A similar approach to the one proposed in section

3 is considered: using mirror reflections for enabling the

color camera to observe a calibration target placed in

the FOV of the depth camera.

Recently, Herrera et al. [7] proposed a method for

solving this problem in the case of overlapping FOV,

using as depth camera the Kinect. They showed that

jointly calibrating both sensors improved accuracy, as

opposed to a separate calibration, and proposed a new

depth distortion model for the depth camera. Unfor-

tunately, their method requires K > 20 images of a

checkerboard to provide good results. The straightfor-

ward extension to the non-overlapping case would lead

to the need of collecting at least 120 images because of

the mirror reflections. Thus, a modified version of Her-

rera’s method is proposed, which is able to achieve com-

parably accurate calibration results using only about

6 images. This is accomplished by both initializing the

relative pose using a new minimal, optimal solution and

including a metric constraint during the iterative refine-

ment to avoid a drift in the disparity to depth conver-

sion. This contribution has been briefly presented in a

prior conference paper [17] and favors calibration both

in overlapping and non-overlapping situations. Finally,

the extension of our method [17] to the non-overlapping

case is presented.

4.1 Depth Camera Model

In this article, the Kinect’s depth sensor will be used

as the depth camera. It provides an image of disparity

values computed between the observed image and a pre-

recorded one. In order to obtain a depth value zd, a

model defined by

zd =
1

c1du + c0
(9)

is used, where c1 and c0 are two intrinsic parameters

of the depth camera, and du is the disparity obtained

after applying distortion correction. The Kinect’s depth

sensor presents distortion which has been modeled by

Herrera et al. [7]:

du = d+Dδ(u, v)· eα0−α1d, (10)

where d is the disparity returned by the depth sensor

in pixel (xd, yd), Dδ contains the spacial distortion pat-

tern, and α = [α0, α1] models the decay of the dis-

tortion effect. Although this distortion model might be
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Camera Pair

Depth sensor

Camera

(a) Calibration of the color-depth cam-
era pair

(b) Registration in the dual projective
space P3∗

(c) Scale drift in the relative pose estima-
tion

Fig. 8: (a) The color camera C, with intrinsic parameters I, and the depth camera O̊, with intrinsic parameters

I̊, are related by a rigid transformation T̊, which is initialized by registering planes Φi with planes Φ̊i, i = 1, 2, 3.

(b) This registration can be interpreted as a projective transformation in P3∗ that maps points Φi into points Φ̊i,

which can be factorized as T̊−T ∼ SB. (c) The relative pose estimation may be affected by a drift in scale: the

pose of the checkerboard in the color camera reference frame C is fixed, while the depth camera may observe the

calibration plane at different depths.

considered for better accuracy, it will not be used in

the experiments, and du is replaced by d in Equation

(9). The set of intrinsic parameters of the depth cam-

era is referred to as I̊ = {fd, cd,kd, c0, c1}, where fd
is the focal length, cd the principal point and kd the

distortion coefficients. These are initialized using pre-

set values, which are publicly available for the Kinect.

Remark that although Kinect’s depth sensor is being

considered, the method can be applied to any other

depth camera.

4.2 Fast, Robust Algorithm for Calibration in

Overlapping Configurations

Figure 8a depicts the calibration process that consists

in moving a checkerboard pattern in front of both color

and depth cameras for collecting K image-disparity

map pairs. The color camera’s intrinsic parameters and

initial plane poses Φi in color camera coordinates are

obtained using a standard calibration algorithm [24].

While Herrera et al. use this initialization step for both

the color and the depth cameras, we perform differently

for the latter.

In our case, the depth camera’s intrinsic parame-

ters are preset. Then, for each input disparity map i,

the plane is segmented and each point (xd, yd), with

disparity d, on the plane is reconstructed:

X = (xd − x0d)
zd
fdx

, Y = (yd − y0d)
zd
fdy

, Z = zd,

(11)

where the depth value zd is computed using (9), and

cd = [x0d, y0d] and fd = [fdx, fdy] are the intrinsic pa-

rameters. To each 3D point cloud, a plane Φ̊i is fitted

using a standard total least squares algorithm.

4.2.1 Initialization of extrinsic calibration

The extrinsic calibration is the problem of finding ro-

tation R̊ and translation t̊ such that

Φ̊i ∼

[
R̊ 0

−̊tTR̊ 1

]
︸ ︷︷ ︸

T̊−T

Φi, i = 1, 2, 3 (12)

verifies. While Herrera et al. [7] use a linear sub-optimal

algorithm to carry this estimation, a new solution is

herein proposed.

The idea is to find the relative pose T̊ between the

color and depth cameras through 3D registration of two

sets of planes Φ̊i = [̊nT
i 1]T and Φi = [nT

i 1]T. Know-

ing that points and planes are dual entities in 3D - a
plane in the projective space P3 is represented as a

point in the dual space P3∗, and vice-versa - Equation

(12) can be seen as a projective transformation in P3∗

that maps points Φi into points Φ̊i. As shown in Fig-

ure 8b, the transformation T̊−T can be factorized into

a rotation transformation B, mapping points Φi into

points Φ̂i, and a projective scaling S that maps points

Φ̂i into points Φ̊i:

B =

[
R̊ 0

0 1

]
, S =

[
I 0

−̊tT 1

]
, (13)

where I is the 3× 3 identity matrix. B and S can be es-

timated from K = 3 point-point correspondences by

firstly computing the rotation R̊ and afterwards the

translation t̊. This provides an easy two-step process

to perform the registration:

1. Since the length of a vector is not changed by ro-

tation, ni and n̊i are normalized, and an algorithm

derived from [9] for computing a transformation be-

tween two sets of unitary vectors is applied. From
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Equation (12), it is known that this transformation

is a pure rotation, and thus the translation compo-

nent is not computed.

2. The computation of the projective scaling S that

maps points Φ̂i into points Φ̊i, with Φ̂i = BΦi,

i = 1, 2, 3, is done similarly to [21]. We can write

Φ̊i ∼ SΦ̂i, yielding

λi

[
n̊i
1

]
=

[
I 0

−̊tT 1

] [
R̊ni

1

]
, (14)

where λi is an unknown scale factor. After some

algebraic manipulation, it comes that

n̊T
i n̊in

T
i R̊

T̊t− n̊T
i n̊i + n̊T

i R̊ni = 0. (15)

Each pair Φi, Φ̊i gives rise to a linear constraint in

the entries of the translation vector t̊, which can be

computed by t̊ = A−1c, with A and c defined as in

Equation (6), by substituting n′i with n̊i, i = 1, 2, 3.

This algorithm has a singular configuration if the

three normals do not span the entire 3D space, meaning

that planes have a configuration such that either two of

all of their normals are co-planar.

When the number of acquired image-disparity map

pairs is K > 3, the best solution is determined in a

RANSAC framework, similar to [21]:

1. For each possible triplet of pairs of planes Φi, Φ̊i, a

transformation T̊ is estimated.

2. For each solution T̊, the depth camera coordinates

Φ̊∗i for all Φi are computed using (12), and the eu-

clidean distance di in the dual space between the

computed Φ̊∗i and Φ̊i is determined.

3. Each solution is ranked by rank(T̊) =∑
j max(t, di), where t is a predefined thresh-

old. The correspondences for which di < t are

considered as inliers.

4. Find T̊ for which rank(T̊) is minimum.

After obtaining an initial estimation for the transfor-

mation T̊, and a set of inlier correspondences, a bundle

adjustment procedure is performed.

4.2.2 Bundle Adjustment

It was experimentally observed that under poor initial-

ization and a small number of images, Herrera’s method

tends to drift in depth. After careful analysis, we came

up with an hypothesis for this observation. From Equa-

tion (16), it can be seen that if c0 and c1 are affected

by a scale component, an error in the extrinsic calibra-

tion will occur, while the reprojection error does not

change. Figure 8c depicts the problem, where it can be

seen that a scale drift will cause the pose of the calibra-

tion plane w.r.t. the depth camera Φ̊∗ to be incorrectly

estimated, while its pose relative to the color camera

Φi is not affected. This automatically originates an er-

roneous estimation of the relative pose, represented by

T̊∗. In order to tackle this problem, a new cost func-

tion was presented that, unlike Herrera’s, not only takes

into account the reprojection error in the color camera

and the difference between measured d̂ and estimated

d disparities, but also the difference between Euclidean

distances between known points of an object λ and the

measured distances between those points λ̂:

min
I,I̊ ,̊T,Φi

e =
∑
||x− x̂||2 + k1

∑
(d− d̂)2 + k2(λ− λ̂)2,

(16)

where k1 and k2 are weighting parameters, x and x̂ are

the reprojected and measured pixel positions, and I are

the intrinsic parameters of the color camera.

As a final step of our approach, the whole depth

distortion function of Equation (10) is recovered using

the optimized intrinsic and extrinsic calibrations. Since

it is done in open-loop, significantly lower run times

were obtained, when compared to [7] that runs multiple

consecutive optimization steps. However, this distortion

correction will not be performed in the experiments.

4.3 Experimental Results for an Overlapping

Configuration

In order to assess the accuracy of our proposed calibra-

tion approach, and to compare it with the state-of-the-

art method [7], a small dataset of 8 image-disparity-

map pairs was acquired for estimating the relative pose

between color and depth cameras, and the correspond-

ing intrinsic parameters, using both methods.

Using the same sensor setup, images of a flight of

perpendicular stairs were acquired and used for assess-

ing the depth camera’s intrinsic calibration. This was

done by computing the angles between all possible pairs

of reconstructed planes, and comparing them either

with 90◦ or 0◦ depending whether they are orthogonal

or parallel, respectively. Results are shown in Figure 9a,

that report an average angular error of 0.495◦ with our

method and 0.743◦ with Herrera’s method. The figure

also shows the overlaid depth map with the RGB im-

ages, showing that there is a misalignment for Herrera’s

method. This suggests that its estimation of the extrin-

sic calibration is also worse. Figure 9b evinces these

observations. An image of an object with holes was ac-

quired for assessing the alignment between the depth

map and the intensity image when they are overlaid.

Results with our method show that the misalignment

is very slight, while for Herrera’s method it is signif-

icant, and is larger when using distortion correction
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Our method Herrera's method
(a) Reconstruction of a flight of stairs

Our method Herrera's method Herrera's method with DC
(b) Overlaid depth maps with the RGB images

Fig. 9: (a) A flight of stairs was reconstructed and the angles between all possible pairs of planes were computed,

originating an average angular error of 0.495◦ with our method and 0.743◦ with Herrera’s method. Note that a

slight misalignment is observed when the depth map is overlaid with the RGB image using Herrera’s solution,

confirming it is less accurate than ours. This inaccuracy is evident in (b), where the depth maps are overlaid with

the RGB image of an object with holes. While our method provides a good alignment, Herrera’s method does not,

and performs worse when distortion correction (DC) is applied.

....

Depth camera
measurements

....

Fig. 10: Calibration of a color-depth camera pair in a

non-overlapping configuration, similar to the color cam-

era / LRF situation of Figure 5.

(DC). This indicates that Herrera’s method is not able

to properly model the depth distortion with small data

sets. Note that none of the experiments was performed

with distortion correction, except for the last one in

Figure 9b.

The general conclusion is that Herrera’s method is

not able to provide accurate results with small datasets.

However, our method performs well under these condi-

tions, being favorable in non-overlapping configurations

where mirror reflections must be used.

4.4 Calibration in the case of Non-Overlapping FOV

Calibrating a depth and a color camera with non-

overlapping FOVs is done in an analogous manner as

for the LRF case (section 3.2). Figure 10 shows that

the checkerboard pattern is moved in front of the depth

camera and, for each plane pose Φi, the color camera

observes the pattern through N mirror reflections Πij .

Again, the checkerboard poses with respect to the color

camera are computed using the algorithm reviewed in

Section 2, and the extrinsic calibration between the

color camera and the depth camera is carried using the

new method described in the present section. However,

and as previously explained in section 3.2, since mirror

reflections are being used for estimating the checker-

board poses Φi, the first term of the error function in

Equation (16), which corresponds to the color camera

reprojection error, must be changed. The virtual cam-

era corresponding to mirror pose Πij is computed using

transformation S0 in Figure 2, and used for finding the

reprojected pixel positions x that appear in Equation

(16). Moreover, since the mirror positions Πij are be-

ing taken into account, these are also refined, along with

I, I̊, T̊ and Φi.

For a non-overlapping configuration, the extrinsic

calibration of a color camera and a depth camera re-

quires a minimum of 9 images since the algorithm

in Section 2 needs N ≥ 3 mirror reflections and the

present method requires K ≥ 3 checkerboard poses.

4.5 Experimental Results for Non-Overlapping FOV

The method presented in section 4.2, that works with

sensors whose FOVs overlap, reported accurate results

for datasets of 6 image-disparity maps pairs. As in sec-

tion 3.3, the purpose of this experiment is both to vali-

date the approach and to assess the number of checker-

board poses and mirror reflections required to produce a

certain accuracy, when working with a non-overlapping

configuration. We performed similarly as in section 3.3,

concerning the sensor setup and dataset acquisition.

Our ground truth is the result of the calibration per-

formed with the method of section 4.2.

A total of 50 calibration sets were randomly se-

lected for each combination of K = 3, . . . , 8 checker-

board poses and N = 3, . . . , 8 mirror reflections. These

sets were used as input to the method from section 4.4
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(a) Rotation error (in degrees).(b) Translation error (in per-
centage).

Fig. 11: Extrinsic calibration errors obtained with the

color camera / depth camera pair in a non-overlapping

configuration, for varying number of checkerboard poses

and virtual views.

and the average rotation and translation errors are pre-

sented in Figure 11. The overall conclusions are the

same as in section 3.3. For datasets using less than

6 checkerboard and mirror poses, the translation er-

rors tend to be higher than 4% and the rotation errors

slightly over 2◦. Increasing the number of acquired im-

ages to 36 (K = 6 and N = 6) leads to average errors of

3.6% and 1.9◦ in translation and rotation, respectively.

This is an acceptable result for many applications. How-

ever, when higher accuracy is required, increasing the

number of checkerboard poses and the number of mirror

reflections up to 8 originates results with errors smaller

than 1.5% in translation and 1.6◦ in rotation.

Remark that in general, the errors obtained with the

color camera / depth camera pair are slightly larger

than the ones obtained with the color camera / LRF

pair. This can be explained by the fact that in the first

there are more parameters to be optimized, requiring

more images to achieve the same accuracy. However,

this difference is not significant and good results can

be achieved with calibration sets comprising the same

number of images.

5 Application Scenario

In this section, the heterogeneous sensor setup shown

in Figure 1 is calibrated, having the fields-of-view of

all sensors non-overlapping. A first set of calibration

data was acquired by moving the checkerboard pattern

in front of the LRF, and moving a mirror in front of

the color camera so that it observes reflections of the

pattern. The checkerboard is placed in M = 8 positions

and, for each position, N = 5 mirror reflections are

acquired. An identical calibration set is acquired for

(a) Overlaid LRF readings (b) Overlaid depth map

Fig. 12: LRF readings (a) and depth map (b) overlaid

with the mirror reflections using the known mirror pose.

Different colors identify different measured depths.

the depth-color camera pair. The methods described in

sections 3.2 and 4.4 are used for calibrating each sensor

pair.

In order to assess the quality of the calibration, and

due to the absence of ground truth, the LRF readings

and the depth maps were overlaid with the RGB im-

age of a mirror reflection for which the mirror pose was

known. This is shown in Figure 12, where it can be

seen that a good alignment is obtained, indicating that

both the mirror poses and the extrinsic calibration are

well estimated. For the LRF case (Figure 12a), an ob-

ject with an hole was used so that it can be seen that

the depth variations between consecutive readings are

aligned with the locations that correspond to transi-

tions between the object and the plane behind it.

For the second part of the experiment (Figure 13),

the platform traveled a short path in a corridor with

parallel walls and 180 cm of width, so that the LRF and

the depth camera observed one of the walls. Using the

estimated depth camera intrinsic parameters, the wall

plane observed by the depth camera was reconstructed.

Moreover, the relative pose between the LRF and the

depth camera was used for representing the LRF mea-

surements in the depth camera coordinates. The angu-

lar and distance errors between the reconstructed plane

and line were then computed, in degrees and percent-

age, respectively, for each of the 5 acquisitions, showing

the results in the first two rows of Table 2. Due to noise

in the data, slightly different results were obtained for

different views. However, the accuracy of the calibra-

tion can be confirmed by the good results achieved in

all cases.

This configuration can be used for obtaining a tex-

tured piecewise planar reconstruction of the scene. The

procedure was the following:

1. Using the color camera, the homography of the floor

plane was estimated from points with known dis-

tances.
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Fig. 13: The setup of Figure 1 moved through a corridor with parallel walls, with the LRF and depth camera

pointing to each wall. 5 sets of measurements were acquired. By representing both planes in color camera coordi-

nates, it is possible to estimate the platform motion and obtain textured reconstructions of all scene planes. The

color camera positions corresponding to the first, third and fifth views are represented by red camera symbols.

Table 2: Angular (eα) and distance (ed) errors between

reconstructed lines and planes observed from 5 different

views. Angular errors between the floor plane and the

wall planes reconstructed by the depth camera (eg1)

and the LRF (eg2).

View 1 2 3 4 5
eα(◦) 0.11 0.33 0.34 0.16 0.47
ed(%) 0.97 1.72 1.24 1.33 1.50
eg1(◦) 0.1967 0.4512 0.2116 0.3769 0.1615
eg2(◦) 0.1951 0.4538 0.7642 0.4201 0.2053

2. Using the assumption that the two walls are parallel,

the plane that contains the line reconstructed by the

LRF and that is as parallel as possible to the plane

reconstructed by the depth camera was estimated.

3. All the planes were represented in the camera ref-

erence frame, and the areas corresponding to each

plane in the RGB image were manually segmented

and reconstructed.

This procedure enables to have a set of planes rep-

resented in the same reference frame for each of the 5

platform positions shown in Figure 13. Since the plane

correspondences between different views are known, the

minimal solution proposed in [16] was applied for com-

puting the platform motion. In this case there are only

two correspondences of non-parallel planes (the floor

and the walls), so it is necessary to extract one point

correspondence for computing all 6 degrees-of-freedom.

The extracted point correspondences are shown in Fig-

ure 13 with identifying colors. This example is particu-

larly interesting because the complete lack of texture in

the wall planes hampers the reconstruction using RGB

cameras, and thus sensors that provide depth measure-

ments are required. Figure 13 shows the segmented re-

gions corresponding to each plane (top row), and the

obtained 3D model after concatenating the individual

reconstructions using the estimated platform motion

(bottom row). Qualitatively, by observing the align-

ment between the individual 3D models, particularly in

the area surrounding the door entrance, it can be seen

that the registration was well performed. The green el-

lipse corresponds to the area of misalignment between

planes, which, as can be seen, is very slight. This in-

dicates that the platform motion estimation is accu-

rate, which could not have been possible if the surface

planes or the extrinsic calibration had been poorly re-

covered. In quantitative terms, this reconstruction was

assessed by computing the angular errors between the

floor plane and the reconstructed wall planes, shown in

the last two rows of Table 2. Errors bellow 0.8◦ were

always achieved, being another indicative that the re-

construction, and thus the extrinsic calibration, is ac-

curate. Note that each plane was recovered using one

of the sensors independently and only a good extrinsic

calibration would provide small errors. The results con-

firm that this kind of sensor setup can indeed be used

for obtaining accurate reconstructions of the scene, even

in situations of lack of texture.

In general, the good results obtained prove that the

proposed method is practical, effective and useful, solv-

ing a problem that so far did not have a simple solution.

6 Conclusion

A new and systematic approach for the extrinsic cali-

bration of setups with mixtures of color cameras, Laser-
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Rangefinders (LRF) and depth cameras with non-

overlapping FOV is presented. Our main contributions

are the extension of existing methods for calibrating

color camera / LRF and color camera / depth cam-

era pairs to work with non-overlapping fields-of-view.

Experimental validation for each case shows that the

proposed method provides accurate results. The pro-

posed method makes it possible to find the relative pose

between LRFs and depth cameras in non-overlapping

configurations, being the only requirement that a color

camera is involved in the setup. A final application sce-

nario for which there is no simple solution in the current

state-of-the-art is also presented, evincing the practical-

ity and effectiveness of the proposed method.
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