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Abstract. Many image-based systems for aiding the surgeon during
minimally invasive surgery require the endoscopic camera to be cali-
brated at all times. This article proposes a method for accomplishing
this goal whenever the camera has optical zoom and the focal length
changes during the procedure. Our solution for online calibration builds
on recent developments in tracking salient points using differential image
alignment, is well suited for continuous operation, and makes no assump-
tions about the camera motion or scene rigidity. Experimental validation
using both a phantom model and in vivo data shows that the method
enables accurate estimation of focal length when the zoom varies, avoid-
ing the need to explicitly recalibrate during surgery. To the best of our
knowledge this the first work proposing a practical solution for online
zoom calibration in the operation room.

1 Introduction

Minimally Invasive Surgery has a number of well documented benefits for the
patient, such as faster recovery time, and less trauma to surrounding tissues.
However, since the surgeon has limited access to the anatomical cavity and the
visualisation is carried indirectly through the video acquired by an endoscopic
camera, the execution of MIS is more difficult than the (equivalent) open-surgery.
In this context, systems for CAS that process the endoscopic video can be very
helpful in assisting the doctor during the procedure, either by improving the
visualisation [8], or by recovering the camera motion [2].

Most image-based CAS systems that use the endoscopic video as primary
sensory input require the intrinsic camera calibration to be known at all times
during the procedure [2,8]. Endoscopic camera calibration in the context of CAS
is challenging for three reasons [8, 12]: (i) since the optics are exchangeable and
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the camera cannot be pre-calibrated, the calibration procedure must be carried
in the operation room (OR) by a non-expert user [8], (ii) in the case of oblique-
viewing endoscopes the surgeon often rotates the lens scope with respect to the
camera head, which changes the calibration parameters [12], and (iii) high-end
endoscopy systems provide optical zoom, which means that camera focal length
changes during the intervention. Melo et al. [8] describe effective solutions for
overcoming challenges (i) and (ii). They improve usability by proposing a fully
automatic calibration method that uses as input a single image of a planar
checkerboard pattern and, in the case of oblique viewing endoscopes, they show
that it is possible to estimate the lens rotation and update the initial calibration
by tracking the image boundary contour. This paper addresses challenge (iii)
meaning that it is shown that under varying zoom the only parameter that
changes significantly is the focal length, and that it is possible to update the
initial calibration information without the need of re-calibrate the camera.

Zoom calibration is closely related to the problem of unknown/variable fo-
cal length estimation [10, 11]. Stoyanov et al. [11] propose a solution for stereo
endoscopy where the focal lengths are directly estimated from the fundamental
matrix [4]. Given the offline extrinsic stereo calibration, the focal lengths can be
determined using only two point matches across the stereo pair. Unfortunately,
the solution only generalizes for monocular endoscopy if the camera motion is
known. Stewenius et al. [10] propose a solution for computing the relative cam-
era pose and unknown focal length from 6 correspondences that is used within a
sample consensus framework. The method assumes a rigid scene and requires in
practice a considerable baseline between images, which makes its use problematic
in continuous video. Related to this article is the work of Lee et al. [5] that does
online estimation of focal length based on the image of the boundary contour of
the endoscope. This approach has the disadvantage of requiring explicit camera
calibration for multiple zoom positions and, more importantly, it does not work
whenever the boundary contour is not visible in the image.

This article reports a solution for efficient and accurate focal length estima-
tion in endoscopic video. We built on recent advances in tracking image features
between frames with radial distortion [6] to show that it is possible to recover
the focal length variation in sequences with zoom variation. Since we built on
tracking theory, our approach is well suited for processing continuous monocular
endoscopic video, does not make assumptions about camera motion [11] or scene
rigidity [10], and does not require the boundary contour of the lens to be visi-
ble [5]. Quantitative and qualitative validation in synthetic and in vivo scenarios
show that the proposed method enables accurate, online estimation of the focal
length when the camera zoom changes.

2 Methods

This section details the proposed method for online focal length calibration. We
start by introducing the adopted camera model before moving to the method
description.



Continuous Zoom Calibration in Endoscopic Video 3

Q

qu

qdΓξ-1(qu)

Γξ(qd)

^x

x

f,c

u

Γη(x)

Γη-1(u)

f-1

metric to pixel conversion

pixel to metric conversion

Fig. 1. Illustration of endoscopic camera modeling in the presence of radial distortion.

2.1 Endoscopic Camera Modeling

We assume that the radial distortion present in endoscopic cameras can be conve-
niently described using the so-called division model [3,8]. Let qd be a generic 2D
point with distortion. This point can be mapped in its undistorted counterpart
qu by the function Γξ(·)

qu = Γξ(qd) =
(

1 + ξqd
Tqd

)−1
· qd, (1)

with ξ quantifying the amount of distortion.

Direct Projection Model and Single Image Calibration: Let qu be the
perspective projection of a 3D point Q in the canonical projective plane (see
Fig.1). In the presence of distortion, and assuming the camera to be skewless
and having unitary aspect ratio, point qu is mapped into the point x̂ in the
image plane by

x̂ = f Γ−1ξ (qu) + c, (2)

with Γ−1(·) being the inverse of Eq. 1 that maps qu in its distorted counterpart

qd = Γ−1ξ (qu) = 2
(

1 +
√

1− 4ξquTqu

)−1
· qu, (3)

f is the camera focal length that converts metric units into pixel units, and
c = (cx, cy) is the principal point in pixels. With the single image calibration
of [8] we can easily estimate ξ, f and c at an initial reference zoom position.
Remark that ξ is the amount of distortion in metric units that is a characteristic
of the lens and therefore independent of the zoom variation.

Modeling Radial Distortion in the Image Plane: An alternative way of
modelling the projection is to consider that the radial distortion acts in the
image plane as opposed to act in the metric projective plane. From the inversion
of Eq. 2 it comes in a straightforward manner that

qu = Γξ(f
−1(x̂ − c)). (4)
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For simplicity, let’s assume that x = x̂ − c, which means that image points are
expressed in a coordinate frame centred in the principal point. Replacing Γξ by
the expression of Eq. 1 it comes that

f · qu = (1 +
ξ

f2
xTx)

−1
· x. (5)

Let u = f · qu be the undistorted image point in pixel units. From the equation
above it follows that u is related with its distorted version x by u = Γη(x) with

η = ξ · f−2 (6)

being the parameter that quantifies the distortion in pixel units. We conclude
that, if the radial distortion is expressed in metric units, i.e. before the intrinsics,
the corresponding parameter ξ does not depend of the camera focal length.
However, if we quantify this same distortion in pixel units using η, then there
is a dependence on the focal length which means that the distortion parameter
varies with the zoom. We will use the relation of Eq. 6 for recovering the focal
length f at each frame by combining offline calibration of the constant parameter
ξ using [8] with online estimation of η using the tracking framework of [6].

2.2 Estimating Image Distortion at every frame using uRD-KLT

Lourenço and Barreto show in [6] that it is possible to estimate the radial dis-
tortion in the image plane by tracking feature points between adjacent frames.
Their uncalibrated KLT algorithm for images with radial distortion (uRD-KLT)
starts by extracting reference templates T(x) around a set of salient points x
that are detected based on image derivatives [6]. Given an incoming image I(x),
the goal is to align the templates T(x) with the corresponding image regions
subject to the squared intensity difference and under the assumption of a 2D
deformation model v(x; p), with parameters p, that accounts for both the local
motion w and the global effect of distortion. The deformation model is given by:

v(x; p) =
(
Γ−1 ◦w ◦ Γ

)
(x; p), (7)

with p = (m, η) where m is the vector of motion parameters that describes the
local deformation undergone by each image patch in the absence of distortion [1],
and η is the global distortion parameter that is common to all image regions.

Given an initial estimate of p the goal is to iteratively compute the updates
δp of the warp parameters by minimizing the following cost function

ε =
∑
x∈N

[
I(v(x; p))− T(v(x; δp))

]2
(8)

This error function can linearised with respect to p by computing the first order
Taylor expansion, and the final updates δp can be computed in closed-form as:

δp = H−1
∑
x∈N

[
∇T∂v(x; 0)

∂p

]T(
I(v(x; p))− T(x)

)
, (9)
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Fig. 2. Intrinsic parameters for different zoom positions. Fig. 2(a) shows a calibration
image where the radius of the boundary is used to index the current zoom position. Fig.
2(b) shows the variation of the center of coordinates and Fig. 2(c) shows the variation
of the focal length (blue) and distortion in metric units (green) for increasing zoom.
The experiment confirms that the focal length increases, while the principal point c
and the distortion parameter ξ are virtually constant (−ξ = 1.1515 ± 0.007 ).

with H being a 1st order approximation of the Hessian matrix, and ∂v(x; 0)/∂p
being the Jacobian of the warp evaluated at the identity warp [1,6]. Since the η is
a global parameter common to every image point, the corresponding distortion
updates are computed using all tracked features, while the feature local motion
m is computed for each feature separately [6].

2.3 Calibrating zoom by image alignment

So far, we have derived the relation between distortion parameters in metric and
pixel units and showed that the distortion in pixels can be estimated at each
time instant using the uRD-KLT. While in [6] it is assumed that the camera
calibration is not known and that the principal point c is coincident with the
image center, we use the single image calibration [8] at an initial zoom position to
obtain the principal point c and the lens distortion ξ in metric units. The uRD-
KLT is applied during operation to continuously estimate the image distortion
parameter η and the focal length is estimated at each frame time instant using
the relation of Eq. 6. The approach works as far as c and ξ remain constant.

3 Results

In this section we evaluate the proposed solution for recovering the focal length in
continuous video. We start by conducting a set of experiments with ground truth
to validate the assumptions made for the derivation of our solution. Afterwards,
the method is validated in both a synthetic environment and in a in vivo sequence
acquired in a porcine uterus.

3.1 Variation of Intrinsic Camera Parameters with Zoom Changes

In this experiment we used a Storz H3-Z endoscopy system with a Dyonics’
arthroscopic lens with 4mm diameter. We placed the camera zoom in 15 distinct
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(b) Focal length estimation

Fig. 3. Simulation experiment with a zoom only sequence. Fig. 3(a) shows the two
phantom images with the corresponding boundary radius at different zoom positions.
Fig. 3(b) shows that the focal length estimation of the uRD-KLT is accurate.

positions and, for each position, we collected 5 images of a checkerboard pattern
that were used to obtain 5 independent intrinsic calibrations using the method
described in [8]. Figure 2(b) shows the principal point estimation for successive
zoom positions that are referenced using the radius of the boundary contour.
Fig. 2(c) does the same for the focal length f and the lens distortion parameters
ξ. The assumption that c and ξ are kept constant while the zoom varies holds
in practice.

3.2 Validation with a phantom model

This experiment uses the camera setup of section 3.1 for acquiring a video se-
quence of a phantom model of the knee. The endoscope is kept stationary, while
the zoom is increased. The focal length is estimated at each frame time instant
by using the uRD-KLT to track 20 automatically detected points. The focal
length estimates are related with the calibration results of section 3.1 using the
radius of the boundary contour like in [5]. Figure 3 compares the on-line estima-
tion results with the calibration ground truth. Please note that high-zoom values
have no ground truth because the boundary contour is not visible and there is
no manner of relating the f estimates with calibration results. Nevertheless, the
estimation seems to be plausible and consistent with the calibration obtained
for the end zoom position. The maximum relative estimation error was 2.5% for
the maximum zoom position when the image distortion η reaches its minimum.

3.3 Validation in in-vivo data

The data used in this experiment was recorded in a in-vivo porcine uterus during
a robotic assisted procedure. The sequence of 1000 frames with resolution 1920×
1080 was acquired at 30Hz with a Storz H3-Z camera system equipped with a
laparoscopic lens of 10 mm from Dyonics. We used the procedure of section 3.1
to obtain calibration ground truth. The surgeon was asked to vary the zoom
against the direction of motion of the endoscope in an attempt to keep the
size of the image structures constant and evaluate the robustness to changes
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Fig. 4. Results in in-vivo data. (a) shows some sample video frames, and the focal
length estimation. (b) and (c) show a visual odometry experiment without and with
focal length compensation, respectively. Compensating the focal length bring clear
benefits for visual odometry, as it can be seen in Fig. 4(d) where the reprojection error
of the reconstructed 3D points decreases from ≈ 3 pixels to less than 1 pixel.

in scale. Figures 4(a) shows the online estimation results for the focal length
by performing uRD-KLT tracking in the in-vivo sequence. These results were
obtained with a straightforward Matlab implementation that ran at 2fps on a
single core of an Intel i7-3630QM CPU @ 2.40GHz processor. It can be observed
that the uRD-KLT-based estimation is quite accurate with an average relative
error of 2.1927 ± 2.3959 % when compared with the calibration ground truth.
Please note that there are sequence segments for which there are no salient points
(frames 250 to 300) or the accuracy of the estimation decreases due to temporary
poor tracking (frames 475-525). However, and since the focal length measurement
is carried in a frame-by-frame basis, these errors do not accumulate. Finally Fig.
4(b) to 4(d) show comparative visual odometry results for a sub-sequence of 17
frames where the camera moves forward while the zoom decreases. Since most
of the scene is rigid the camera motion is computed by applying the five-point
algorithm [9] using image correspondences obtained with sRD-SIFT [7]. Fig.
4(b) and 4(d) depict the motion estimation results when the focal length is kept
constant and when the focal length is updated.
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4 Discussion and Conclusion

This article presents a practical solution for keeping the camera calibrated when
the camera zoom changes during operation. The method builds on recent devel-
opments in image alignment for tracking keypoints in video with radial distortion
and, since there are no distortion free endoscopic cameras, it can be virtually
used in any MIS. The approach was validated in both synthetic and in-vivo data,
showing that is possible to keep the camera calibrated under zoom variations
without the need to re-calibrate the camera during operation. To the best of
our knowledge, this is the first work proposing an effective solution for the zoom
calibration in continuous medical endoscopic video.
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