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Abstract

Background In this paper,we propose a non-linear calibrationmethod for hand–
eye system equipped with a camera undergoing radial distortion as the rigid endo-
scope. Whereas classic methods propose either a separated estimation of the cam-
era intrinsics and the hand–eye transform or a mixed non-linear estimation of both
hand–eye and camera intrinsics assuming a pin-holemodel, the proposed approach
enables a simultaneous refinement of the hand–eye and the camera parameters in-
cluding the distortion factor with only three frames of the calibrated pattern.

Methods Our approach relies on three steps: (i) linear initial estimates of
hand–eye and radial distortion with minimum number of frames: one single
image to estimate the radial distortion and three frames to estimate the initial
hand–eye transform, (ii) we propose to express the camera extrinsic with
respect to hand–eye and world–grid transforms and (iii) we run bundle adjust-
ment on the reprojection error with respect to the distortion parameters, the
camera intrinsics and the hand–eye transform.

Results Our method is quantitatively compared with state-of-the-art linear
and non-linear methods. We show that our method provides a 3D reconstruc-
tion error of approximately 5% of the size of the 3D shape.

Conclusions Our experimental results show the effectiveness of simulta-
neously estimating hand–eye and distortion parameters for 3D reconstruction.
Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

Developing a vision system for 3D registration and 3D scene reconstruction
requires precise calibration of the used camera. Besides knowing the intrinsics
(1), the problem is further constrained by tracking the poses of the camera
body using an external sensor (opto-tracker, kinematic readings etc). To
register pre-acquired scene model with current views, the 3D motion of the
camera reference frame needs to be recovered. Because the camera body
and the camera reference frame are not coincident, the rigid displacement
between them needs to be estimated.

Determining such displacement is known as the hand–eye calibration. This
problem initially arose in robotics when a camera was mounted on a robot to
measure 2D and 3D geometric relationships among different viewed objects
(2). It has been applied in several contexts: for instance, in sensor-based
motion planning (3) to automatically determine the optimal positions of the
sensor so that all the desired features can be viewed while taking care of
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problems of occlusion, depth of focus, field of view and so
on. During the past few years, rigid endoscopes have
raised much interest in the context of minimal invasive
surgery (4,5) and inspection of manufactured devices
in industry.1 An accurate estimate of such a rigid dis-
placement between the rigid endoscope body and the
camera frame is important to register the pre-operative
models of organs or computer-aided design models of
devices with current views. The hand–eye problem in the
case of a rigid endoscope is shown in Figure 1.

In a first glance, the hand–eye calibration consists on
solving for X2 SE(3) the following equation:

AX ¼ XB (1)

With A2 SE(3) represents themotion of the camera refer-
ence frame and B2 SE(3) encodes the motion of the rigid
body to which the camera is attached. It has been proven
by Tsai and Lenz (6) that at least two motions with different
rotation axes are needed to solve this equation. It can be
observed that the rotation involved by the camera motion
A is the same as the one involved by the effector motion B.
This intrinsic property of the problem is highly relevant to
balance the estimation of the rotation part of X in the
presence of noise. Since the end of the 1980s, the resolution
of such a linear equation has been addressed in a set of
extensive works. In contrast, in the work by Horaud (7), a
non-linear approach is proposed to solve this equation. It is
proven that the hand–eye estimation is not independent
from camera intrinsics and that estimating all parameters
together improve the hand–eye estimates within the camera
intrinsics. Moreover, in the presence of lens distortion
(such as in the case of a rigid endoscope), the resolution
of equation (1) is not sufficient for an accurate 3D registra-
tion and reconstruction as will be proven experimentally in
this paper.

The hand–eye calibration applied to the context of
endoscopy has specificities: (i) the translation components
of the motions A and B are usually small (below 10 cm)
because of the close range image characteristics of
the device and (ii) the calibration has to be performed
by a non-expert and several times when the boroscope
(the rigid tube) has to be changed, which requires the
method to be robust with a minimum number of motions.

A unifiedmethod for simultaneous calibration of hand–eye
and camera intrinsics undergoing radial distortion is pro-
posed. The problem is formulated as non-linear optimization
problem with minimum number of motions. Our approach
relies on three steps: (i) linear initial estimates of hand–eye
and radial distortion with minimum number of frames: one
single image to estimate the radial distortion and three frames
to estimate the initial hand–eye transform, (ii) to express the
camera extrinsic with respect to hand–eye and world–grid
transforms is proposed and (iii) bundle adjustment (8) on
the reprojection error is run with respect to the distortion
parameters, the camera intrinsics and the hand–eye transform.

Our former paper (9) is extended in this paper, where we
proposed a linear hand–eye calibration using dual quaternion

by separately estimating rotation and translation. This
version is self-contained and explains in detail this previous
contribution. The specific contributions of this paper include
(i) the non-linear formalization of the simultaneous
hand–eye and radial distortion calibration, (ii) experimental
results on synthetic data where we show the improvement
of our non-linear method above state-of-the-art methods
and (iii) real-world experimental results including 3D
reconstruction of 3D grid pattern, ex vivo organ and elec-
tronically manufactured device. These real experimental
results are compared with both state-of-the-art methods
for hand–eye calibration and stereo 3D reconstruction.

Paper organization

The related work and our contribution are presented in
the second section. The hand–eye problem is presented
in the third section. The classic linear solving methods
are presented in the fourth section. Our proposed linear
approach is presented in the fifth section. An overview
of classic non-linear solving methods is presented sixth
section. Our proposed non-linear unified approach is
presented in the seventh section. The effectiveness of
our unified non-linear method using synthetic data is
shown in the eighth section. Real experimental results
with comparison with ground truth and state-of-the-art
non-linear method are presented in the ninth section.

Notations

Quaternions are represented by lowercase bold font
(e.g. q). Matrices are denoted by uppercase sans serif
font (e.g. A). Vectors providing a direction in 3D are
represented using plain lowercase topped by an arrow

(e.g.
!
l ). For convenience, and given two 3�1 vectors

!
l

Figure 1. The hand–eye problem in the case of a rigid endoscope.
The linear formulation of the hand–eye problem gives rise to the
well-known conjugation equation in SE(3): AX=XB. A2SE(3) is
the motion of the camera reference frame computed, thanks to
the calibration of the camera with the help of a planar chess grid.
B2SE(3) encodes the motion of the endoscope’s body tracked by
an external sensor (here an opto-tracker)

1http://visionscope.moonfruit.com/
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and !m , the dot product is indicated either using h.,.i
or sing regular matrix/vector multiplication (e.g. h!l;!mi ¼
!
lT !m), and the cross-product is carried either using the

symbol � or using the skew symmetric matrix (e.g.
!
l�

!m ¼ ½!l � � !m). For the sake of simplicity, the vector norm
2 in either R3 or R4 is denoted by ||. ||2. In both cases,
the concerned space will be mentioned.

Related work

Several methods exist in the literature to solve the hand–
eye calibration problem. It is difficult to provide an
exhaustive list of all these works (22). In the focus of
our contribution, the different approaches are split into
two categories: linear and non-linear methods. The linear
methods include subsequently either separated or simul-
taneous estimation of the rotation and translation.

In the linear separated estimation (6,10–13), first the
rotation and then the translation are estimated. Quater-
nions to solve the rotation have been used by Chou and
Kamel (11,12), whereas the rotation in the rotation group
SO(3) is solved by Tsai and Lenz (6) and Park and
Martin (14). A linear method to separately estimate both
hand–eye and world–grid transforms has been proposed
by Zhuang et al. (15). In the linear simultaneous estimation,
the idea is to simultaneously solve for the translation and
rotation by using a screw representation of the problem.
The most famous method is proposed by Dannilidis (16),
where dual quaternions are used to encode the screw repre-
sentation of the hand–eye problem. A conformal algebra
formulation that is similar to dual quaternion formulation
is used by Rivera-Rovelo et al. (17). A method for data
and motion selection has been provided by Schmidt (18)
to improve the simultaneous estimation.

In the non-linear methods, the hand–eye transform is
estimated by minimizing the norm 2: ‖ AX�XB ‖ as was
proposed by Dornaika and Horaud (19) to estimate both
the hand–eye and the world–grid transforms. A robust
metric to minimize has been proposed by Strobl et al. (20)
and has been used for camera with narrow field of
view (21). It has been shown by Horaud and Dornaika (7)
that camera intrinsics are not independent from hand–eye
parameters. Both camera and hand–eye parameters were
simultaneously estimated in a global iterative optimization.
In the presence of lens distortion, nomethod for simultaneous
hand–eye and camera intrinsic estimation has been
proposed. Moreover, our new formulations allow us to
obtain accurate 3D reconstruction with less number of
motion than classic linear or non-linear approaches.

Contribution

The contribution of this paper is threefold: (i) a robust
linear method is proposed to estimate the hand–eye
transform by using a separated estimation of translation
and rotation with dual quaternions. The dual quaternion

formulation of the problem is used in our linear formulation
because it offers a stable representation of the translation
as a shift along the rotation axis. The rotation and the trans-
lation are estimated separately for mainly two reasons: (1)
the rotation part is fully self-described in SO(3) and (2) the
noise in translation badly affects the rotation in a joint es-
timation. (ii) A generic formulation of a unified optimiza-
tion criterion including hand–eye and camera intrinsics
with radial distortion is proposed. This generic formula-
tion uses a minimal number of parameters and can be
extended to any distortion model. It is embedded in the
reprojection error that is optimized using bundle adjust-
ment (8) and (iii) the application to endoscopy through
synthetic and real extensive experimental results: 3D
reconstruction of a 3D grid pattern, an ex vivo organ
and an electronic cardboard. The method, although
validated for hand–eye and distortion calibration for
rigid endoscopes, can be easily used in any other robotic
vision contexts.

Problem description

Let wTh(t) be the SE(3) transformation T linking the
hand frame to the world/opto-tracker frame at an instant
t, see Figure 2. wTh is a sensor measure information that
can result either from encoder readings if the camera is
mounted upon an articulated robot or from an external
opto-sensor tracking the camera body poses. Let again
eTg(t) be the SE(3) transformation relating the grid/
object frame to the camera frame at an instant t. eTg stems
from the absolute extrinsic parameters of the camera
calibration process realized beforehand. eTh and wTg are
two unknown constant transforms that stand, respec-
tively, for the hand-to-camera/eye and the grid-to-world
frames. At an instant pose t of the hand camera rigid
body, the loop of rigid transforms linking the different
system frames can be written as

Figure 2. The different transforms between frames. wTh(t) is
the SE(3) transformation linking the hand frame to the world/
opto-tracker frame. eTg(t) is the SE(3) transformation relating
the grid/object frame to the camera frame. X and Z are two
constant unknown transforms

Hand–eye and radial distortion calibration for rigid endoscopes

Copyright © 2013 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg (2013)
DOI: 10.1002/rcs



gTe tð Þð Þ eThð Þ hTw tð Þ� � wTg
� � ¼ I4 (2)

By using the fact that wTg is constant, the movement of
the hand from an instant t to an instant t0 gives rise to an
equality that depends on the hand–eye transform:

gTe tð Þð Þ eThð Þ hTw tð Þ� � ¼ gTe t0ð Þð Þ eThð Þ hTw t0ð Þ� �
(3)

and thus,

AX¼XB (4)

where X is the unknown hand–eye transform eTh,
A= eTg(t0)

gTe(t) stands for the camera motion and
B= hTw(t0)

wTh(t) represents the hand motion. Writing
equation (4) as A=XBX� 1 shows up that A and B are
the same rigid transformations assessed in different
frames of reference. In the same fashion the, second con-
stant transform Z= wTg can be expressed in a conjugation
equation independently of the hand–eye transform as

CZ ¼ ZD (5)

with C= wTh(t)
hTw(t0) and D= gTe(t)

eTg(t0). In the
classic solving approaches, the transform Z has received
few interest (19,20) because it has no direct influence in
the camera–hand–world system. In our formulation, this
transform is used to constrain the minimization criterion
as is described in the seventh section.

Classic linear solving of X

Separated solving

For one motion of the camera body, the hand–eye formu-
lation of equation (4) can be rewritten as

RA
!
tA

03�3 1

� �
RX

!
tX

03�3 1

� �
¼ RX

!
tX

03�3 1

� �
RB

!
tB

03�3 1

� �

(6)
and then,

RARX ¼ RXRB

RA � I3ð Þ!tX ¼ RX
!
tB � !

tA

�
(7)

Solving for rotation
Considering only the rotation part, it comes that

RARX ¼ RXRB (8)

Let a, b and q be the quaternions associated with RA, RB

and RX, respectively. By using the quaternion multiplica-
tion, it follows that

a:q ¼ q:b (9)

By using the result of equation (A.3) (cf. Appendix A)
and performing some algebraic operations on equation
(9), it is concluded that

a0 � b0 � !
a � !

b
� �T

!
a � !

b
!
a þ !

b
h i

�
þ a0 � b0ð ÞI3

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K a; bð Þ

q ¼ 0 (10)

with I3 being the 3� 3 identity matrix. The quaternion
equation can be written in matrix form as

K a;bð Þq ¼ 0 (11)

where K(a,b) is a 4� 4 matrix defined for each pair of
quaternions (a, b).

Equation (8) is a particular case of a similarity transfor-
mation. It is well known that it exists a solution X iff
the trace of RA is equal to the trace of RB (rotations with
the same angle θ but different axis). This means that the
scalar part of a and b are equal (a0= b0) and then, the
vector parts have the same modulus !ak k ¼ !

b


 

� �

.
In general, equation (11) only admits the trivial solu-

tion because K(.,.) is full rank. For the case of a and b
being two rotations with the same angle, matrix K(.,.)
becomes of rank 3, and there is a valid quaternion
solution q different from zero. The existence of a solu-
tion can be understood geometrically. Because (a0= b0)
and !ak k ¼ !

b


 

� �

, then
�!a þ !

b
�
is always orthogonal to�!a � !

b
�
. Thus, according to the first line of the matrix

K(.,.), it comes out that the vector component of the so-

lution q must be orthogonal to both !a and
!
b . It can be

verified that this information is already encoded in the
bottom three-line bloc of this matrix. Indeed, it states
that

�!a � !
b
�
and

��!a þ !
b
�� !q

�
must be collinear, which

is possible iff ! q is orthogonal to both vectors
�!a � !

b
�

and
�!a þ !

b
�
. These statements allow to discard redun-

dant terms in matrix K(.,.) that can be rewritten as

~K a;bð Þ ¼ !a � !
b !a þ !

b
h i

�

� �
(12)

where ~K a;bð Þ is a 3� 4 matrix defined for each pair of
quaternions (a,b).

In practice, the rotation RA and RB are measured, and
owing to the noise, they do not have the same trace.
Hence, the full formulation of equation (11) is important
to balance the scalar condition in presence of noise. The
solution q for the rotation is determined in the least
square sense by the Singular Value Decomposition (SVD) of

L ¼
K a1;b1ð Þ

⋮
K aN ;bNð Þ

0
@

1
A (13)

with K(ai,bi), i=1, 2 . . .,N, being the matrices of the N
considered motions {(A1,B1), . . .,(AN,BN)}. Theoretically,
only one motion is enough to solve the rotation part, which
is not the case for the translation.
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Solving for translation
The translation is determined after obtaining the rotation.
Considering the translation part of equation (6), it comes
that

RA � I3ð Þ!tX ¼ RX
!
tB � !

tA (14)

The matrix (RA� I3) is of rank 2 because

ðRA � I3ð Þ!lA ¼ 0Þ , with
!
lA being the rotation vector

associated to RA. Henceforth, at least N=2 motions
are needed to solve for the 3D translation vector. For

N≥ 2 motions, the solution for the translation
!
tX is

formulated as a non-constrained least square problem:

min
RA1 � I3

⋮
RAN � I3

0
@

1
A

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
D

!
tx �

RX
!
tB1 �

!
tA1

⋮
RX

!
tBN � !

tAN

0
@

1
A

����������

����������

����������

����������
2

(15)

with ‖. ‖2 stating for the vector norm 2 in R3.
The motions need to have at least two non-parallel

rotation vectors otherway the matrix D will remain of
rank 2. Indeed if ! lA is that common rotation vector,
then D! lA ¼ 0ð Þ. Remark that the hand–eye representa-
tion in SE(3) does not give any intrinsic constraint for the
3D translation like it gives for the rotation with the trace
condition. According to the experiments, the rotation RX

tends to be well estimated, whereas! tX is very noise sen-
sitive for a small number of motions with little amplitudes.

Simultaneous solving

General description of the dual quaternion formulation
The key idea of this approach is to simultaneously
estimate the rotation and the translation. Let us
consider equation (4) in SE(3). Let â, b̂ and q̂ be the
unit dual quaternions associated with A, B and X.
Equation (4) can be rewritten as

â :̂q ¼ q̂ :̂b (16)

Taking into account the multiplication of dual quater-
nion equation (A.11) (cf. Appendix A) and splitting
the equation in its real and dual parts, it follows that the
real part is

a:q ¼ q:b (17)

and the dual part is

a0:qþ a:q0 ¼ q:b0 þ q0:b (18)

Remark that the real part equation is similar to equa-
tion (9).

Specificity of the classic approach
In (16), it is stated that the scalar part of â is equal to the

scalar part of b̂ . According to the screw representation,

this means that the motions A and B have the same
rotation angle (equality of the real scalar parts) and the
same amplitude of pitch (equality of the dual scalar parts).
This property is taken into account in the classic solving
using dual quaternion to discard redundant equations.
Considering the quaternion multiplication of equation
(A.3) and the simplification for the redundant parts,
the final matrix equation for the classic dual quaternion
formulation is obtained as follows:

~K a;bð Þ 03�4
~K a0;b0ð Þ ~K a;bð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

q
q0

� �
¼ 0 (19)

with K(.,.) being defined previously for equation (11).
The matrix M is 6� 8 of rank 5 (cf. (16)). If we assume
N motions, then the global linear matrix is constructed as

P ¼
M1

⋮
MN

0
@

1
A (20)

P is a 6n� 8 matrix that has in general rank 6 in a
noise-free case. If all the rotation axes are mutually
parallel, then the rank falls to 5. In the general case, the
algorithm uses an SVD decomposition to deduce the two
dual quaternion bases that span the right null space of P.
The valid quaternion is computed as the intersection of
this null space with the subspace of unit dual quaternions
represented by equation (A.4) for the real part and
equation (A.13) for the dual part (cf. Appendix A).

Solving method for simultaneous estimation
Let us denote the two dual quaternions that generate the
right null space of P by û and v̂. The set of dual quaternion
solution of equation (20) is described as

q̂ ¼ a1̂u þ a2̂v; a1a2 2 R (21)

The two real parameters a1 and a2 are suboptimally
determined regarding to the constraints of equations
(A.4) and (A.13). Two second-order polynomials Γ̂u ;̂ v lð Þ
and Δ û ;̂ v lð Þ are, respectively, obtained from the unit
quaternion condition of equation (A.4) and the orthogo-
nality condition of equation (A.13).

Because a1 and a2 never vanish together, l ¼ a1
a2
can be

set. The algorithm solves the second-order equation
Δ̂u ;̂ v lð Þ ¼ 0ð Þ and from the two obtained solutions picks
up the one that maximizes the polynomial function
Γ̂u ;̂ v lð Þ. Let us consider this solution as being l0; then,
a1 and a2 are computed as

a2 ¼ 1
Γ̂u ; v̂ l0ð Þ and a1 ¼ l0a2 (22)

Discussion
By construction and according to the experiments, this
algorithm is not very stable to the noise perturbation.
Mainly for three reasons,
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• It does not use the scalar part in the estimation, and in
presence of noise, the scalar equality is no longer verified.

• Even if the translation is robustly represented through
the screw formalism, coupling the estimation makes
the rotation part suffer from the noise in the translation
estimation. Indeed, on the one hand, the rotation is
fully characterized by equation (17). On the other
hand, in the screw representation, the rotation is inde-
pendent of the translation, whereas the translation
depends on the rotation.

• The third reason concerns the constraints for a dual
quaternion being unitary. The estimation process
suggests to first estimate a 2D vector subspace in the
dual quaternion space and then compute the intersec-
tion of this subspace with the subspace that fulfils the
constraint of one-to-one correspondence with SE(3).
In a noise-free case or even under small disturbance,
this intersection is always one point that corresponds
to the solution we are looking for. However, under
average noise disturbance, there is no guarantee that
the intersection is one point. Moreover, there is no
guarantee that there is an intersection.

Our linear algorithm: improved dual
quaternion

Specificity of the proposed approach

Given the analysis we drew in the previous sections, the
strongest points of our algorithm are the following:

• It uses the dual quaternion formalization of the hand–
eye problem that gives a robust representation of the
rotation and the translation.

• Because the rotation is independent from the translation
in the screw representation and to avoid the influence of
the noise of the translation on the rotation, the rotation
is estimated separately from the translation.

• The calibration uses the scalar parts to balance the
estimate.

• The one-to-one conditions of correspondence with
SE(3), encoded in equations (A.4) and (A.13), are
optimally taken into account in the estimation.

Solving method for the proposed
approach

The real part of the dual quaternion formulation of equation
(17) follows exactly the formulation of equation (11), where
the scalar parts are included. The dual part of the dual
quaternion formulation of equation (18) can be written as

K a0;b0ð Þqþ K a;bð Þq0 ¼ 0 (23)

The expression of equation (23) contains only the
dual part q0 as unknown. Assuming the same set of

Nmotions used to estimate q, the following linear system
is obtained:

Lq0 ¼ �L0q (24)

where L is defined in equation (13) and L0 is defined as

L0 ¼
K a01;b0

1ð Þ
⋮

K a0N ;b0
Nð Þ

0
@

1
A (25)

Moreover, to represent a valid translation in SE(3), q
0

has to obey the constraint of equation (A.13). This can
be easily formulated as a least squares problem subject
to a linear constraint:

min
Eq: A:13ð Þ

Lq0 þ L
0
q



 


2 (26)

with ‖. ‖2 being the vector norm 2 in R4. Such a system
can be easily solved using classic methods (23). Table 1
summarizes the steps of the improved dual quaternion
approach I.D.Q for hand–eye calibration:

Overview of classic non-linear solving

In the previous formulation, the camera is assumed to be
calibrated beforehand at each instant t. The camera
extrinsics are the matrices eTg, and the camera intrinsics
are in the case of a pinhole model; the ratio a, the skew
s, the focal length f and the principal point (ppx,ppy) that
describe the affine transformation between the camera
frame and the image frame:

Table 1. Real data: reprojection error analysis with three
calibration images

x=10% x=20% x=30%

X linear
Mean 47.86 18.84 31.30
Std 13.38 12.70 16.41

(a,s,f,x,X,Z) refined
Mean 0.83 0.74 1.66
Std 0.32 0.41 0.77

Ground truth calibration
Mean 0.86 0.37 0.96
Std 0.43 0.10 0.70
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Г ¼
af sf ppx
0 a�1f ppy
0 0 1

0
@

1
A (27)

A new formulation of equation (4) that uses the
perspective projection from the grid frame to the image
frame has been proposed by Horaud and Dornaika (7,19) as

P tð ÞY ¼ P t0ð ÞYB (28)

With the perspective projection matrix,

P :ð Þ ¼ Γ
!
0

� �e
Tg :ð Þ ¼ N :ð Þ n :ð Þð Þ (29)

where ! 0 is a 3�1 vector of zeros and Y= gTe(t0)X is
the transformation matrix from the hand frame to the
grid frame. Owing to this formulation, all the movements
have to be computed from a reference pose t0 to keep
Y constant. It has been proven in (7,19) that the two
formulations are equivalent as it can be seen from the
decomposition of equation (28) in the same fashion as
equation (7):

!nN ¼ RY
!nB

N� I3ð Þ!tY ¼ RY
!tB � !tN

(30)

To estimate RY and
!
tY with n motions of the camera

body, the problem is cast into a minimization of two
positive weighed error functions:

J 1 ¼ l1 f1 RYð Þ þ l2 f2 RY;
!
tN

� �
(31)

l1 and l2 are two real positive values,

f1 RYð Þ ¼
Xn
i¼1

!nNi � RY
!nBi



 

2 (32)

and

f2 RY;
!
tN

� � ¼ Xn
i¼1

N� I3ð Þ!tY � RY
!
tB � !

tN


 

2 (33)

This minimization criterion has been implemented
using a quaternion representation of the rotation matrix
RY by adding a weighed unitary quaternion constraint.
The weight values have been set experimentally to one
for l1 and l2 and to 106 for the rotation quaternion
constraint. The minimization is assessed over the six
parameters of the Y transform.

This non-linear formulation offers the possibility to
enable a refinement of the perspective camera parameters
together with the hand–eye transform. However, it exhibits
some gaps that might be fulfilled:

• Minimizing a sum of norms can be problematic when
they do not represent the same measure. Indeed, a
distance over unit vectors is represented by f1, and a
norm over metric distances is represented by f2.

• Initially, it does not refine neither the intrinsics nor the
extrinsics, and if it does so, there will be too much

unconstrained parameters to refine: 6 * (n+1) for the
different poses and 5 for intrinsics in addition of six
of the required matrix Y.

• Matrix Y is computed within a reference to one camera
pose that can be the most noisy estimated matrix
stemmed from the camera calibration step.

Our proposed non-linear unified
approach

Camera with radial distortion

Let (x,y,z,1)T be the homogenous coordinates of a given
3D point expressed in the grid/object frame. Let again
(dx,dy)

T be the distorted pixel in the image plan defined as

dx; dy
� �T ¼ fcðeTg x; y; z;1ð ÞTÞ (34)

Several choices of fc have been proposed, and each one
of them can be used in our approach. In our implementa-
tion, the used model is the one that allows us to obtain
intrinsic and distortion calibration with minimum number
of solution (1).

For a set of finite pixels dix; d
i
y

� �n o
i¼1;...;N

corresponding

to a set of finite 3D points {(xi,yi,zi)}i=1,. . .,N, the camera
reprojection error is given by

J ¼
XN
i¼1

dix; d
i
y

� �T
� fc eTg xi; yi; zi;1

� �T� �









2

(35)

In a first glance, an intuitive way to improve the
reprojection error is to integrate it in the minimization
criterion proposed by (7,19). Unfortunately, adding
another norm that is not in the same scale as the two
other is not recommended and will not balance the
minimization among the three norms as it should be.
Now, if we express the camera extrinsic transform eTg with
respect to the hand–eye and the grid–base transforms
using loop constraint equation (2),

eTg tð Þ ¼ XhTw tð ÞZ (36)

this expression can then be used in the minimization
criterion to replace the extrinsics in the reprojection
error. This allows us to considerably reduce the number
of unknowns from 6� (n+1) for the extrinsic para-
meters down to 12 for both X and Z. In addition, the
five affine intrinsic parameters (a,s,f,ppx,ppy) and the
distortion parameter x that can be either a single
real value as in (24) or a vector as in (25) make the
number of unknowns constant and independent of the
number of motions. Thus, for n+1 camera poses
(which gives n motions) where for each we have Nj,
j=1, . . .,n+1, calibration points, the camera reprojection
error through all the views is written as
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J ¼
Xnþ1

j¼1

XNj

i¼1

dix; d
i
y

� �T

j
� fc XhTw jð ÞZ xi; yi; zi;1

� �T
j

� �









2

(37)

with hTw(j) being the hand-to-base transform from the
tracker sensor for each view j=1, . . .,n+1. The 3D grid

points xi; yi; zi1
� �T

j are mapped in the pixels ðdix; diyÞTj , i=1,

,Nj, by projection and distortion. This formulation implic-
itly introduces the conjugation constraint of equations (4)
and (5) to ensure that both X and Z are consistent with
the current system and the loop constraint of equation
(2). Unlike the classic non-linear methods (7,19,21),
the following advantages are presented by the pro-
posed approach:

1. It relies on a robust initial values of X and Z estimated
by a specifically designed Algorithm 1.

2. One homogeneous measure norm is used rather than
mixing different measures for rotation, translation
and image error as in (7,19,21).

3. The minimization is processed with respect to the
intrinsics (a,s,f,ppx,ppy,x), X and Z, which consider-
ably reduces the number of parameters to refine
when compared with classic non-linear method as
in (7).

4. It does not depend on one single camera pose as in
(7,19) and use an averaging estimation by introducing
Z in the formulation.

5. It allows us to refine distortion parameters in the
same process that was not used in any state-of-the-
art hand–eye estimation methods.

6. The minimization term of equation 37 can be intro-
duced directly in a bundle adjustment framework
that has been proved very efficient for projective and
Euclidean 3D reconstruction (26,27).

Choice of camera model

Several approaches have been proposed to model the
imaging function with distortion effect fc from the 3D
scene points to the distorted imaged pixels (1,28,25).
Even if our formulation is independent of this model
and works with any of them, the model proposed in (1)
is chosen to be used for our implementation with bundle
adjustment because it allows one to obtain calibration
parameters (a,s,f,ppx,ppy,x) with one single image. It can
be written as

dx; dy
� �T ¼ KfdðeTg x; y; z;1ð ÞTÞ (38)

where fd is the first-order division model of distortion
(24), which can be expressed as

1 2 3 4 5
0

50

100

150

200

250

300

Relative Error in Translation norm when ξ=5 %

noise [pixels]

[%
]

X Linear
(a,s,f,ξ,X,Z) Refined

1 2 3 4 5
0

10

20

30

40

50

60

70

80
Relative Error in Translation norm when ξ=10 %

noise [pixels]

[%
]

X Linear
(a,s,f,ξ,X,Z) Refined

1 2 3 4 5
0

5

10

15

20

25

30

35

40
Relative Error in Translation norm when ξ=20 %

noise [pixels]

[%
]

X Linear
(a,s,f,ξ,X,Z) Refined

1 2 3 4 5
0

10

20

30

40

50
Relative Error in Translation norm when ξ=30 %

noise [pixels]

[%
]

X Linear
(a,s,f,ξ,X,Z) Refined

Figure 3. Synthetic data. The relative error in translation. The repeatability of the linear hand–eye estimation is improved
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fdð x; y; z;1ð ÞTÞ ¼

2x

zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4x x2 þ y2ð Þp

2y

zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4x x2 þ y2ð Þp

1

0
BBBB@

1
CCCCA (39)

with x a negative value representing the distortion
factor. It represents how far the perspective projected
points are pushed toward the centre of the image.
To have meaningful representation, it will be referred
as being the percentage ratio of the shifted amount
distorted–undistorted above the undistorted radius for
the corner point of the image.

Evaluation of the proposed non-linear
method on synthetic data

Setup of the synthetic experiment

Simulations were conducted to show how far the method
is robust to noise and how does it behave for a couple of
distortion values. The simulation is conducted as follows:
Let us assume the following ground truth hand-to-eye and
grid-to-world transforms:

hTe ¼
0:433 �0:866 �0:250 25 mm
0:750 0:480 �0:433 25 mm
0:480 0 0:866 90 mm
0 0 0 1

0
BB@

1
CCA (40)

wTg ¼
0 0 1 �100 mm
1 0 0 1800 mm
0 1 0 2000 mm
0 0 0 1

0
BB@

1
CCA (41)

The simulated camera is assumed to have f=500mm
of focal length, a null skew and a unitary aspect ratio.
The resolution of the image is assumed to be of
640� 480 pixels, and the principal point is assumed to
be in the middle of the image. The used distortion factors
are, respectively, x%=5, 10, 20, 30. The calibration grid
is assumed to be planar with square patterns of 40mm
per side. n=5 images are generated and perturbed with
noise of zero mean Gaussian distribution with std= 1, 2,
3, 4, 5 pixels. They are calibrated with the method
proposed in (1) with an average of N=50 calibration
grid points for each image. The camera motions are
randomly generated with uniform distribution with a
mean of 240mm and a standard deviation of 100mm
in translation and a mean of 70 deg and a standard devi-
ation of 30 deg in rotation. The hand pose measurements
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Figure 4. Synthetic data. The absolute error in rotation. The repeatability of the linear hand–eye estimation is improved
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are perturbed with a zero mean Gaussian distribution of
0.1mm in translation and 0.2 deg in rotation. Each
experiment is typically repeated 20 times to obtain
statistically meaningful results. The reported graphics
exhibit the Root Mean Square (RMS) errors through
those runs for different noise and distortion factors.

Analysis of the synthetic results

The minimization of the reprojection error of equation (37)
is processed using bundle adjustment with levmar tool-
box (29). The camera intrinsics are initialized with the
method described in (1). The hand-to-eye and grid-to-base
transforms are initialized by linear solving as described in
the fifth section. It is shown in the results that a simulta-
neous refinement of the camera and the hand–eye para-
meters outperforms an independent camera calibration from
a hand–eye calibration. We can see in Figures 3–6 that the
hand–eye, focal length and distortion are estimated with
better accuracy. It can also be observed that our method
improves the repeatability when the noise in the detection
of the grid corners increases.

Real experimental results

The experimental setup consists of a Point Grey camerawith
a resolution of 960�1280pixels to which is mounted a
laparoscope lens with a c-mount adapter. A ring of Light
Emitting Diode (LED) markers is fixed around the body of
the camera. The poses of the markers (the hand pose) are
given by the Optotrak Certus manufactured by the NDI
Motion Capture. The ground truth intrinsics and extrinsics

Figure 7. Experimental setup to acquire datasets with ground
truth. (a) Two Point Grey cameras are synchronized to obtain
reference ground truth data using stereo views. The endoscope
with a planar marker is then moved around the object to recon-
struct. The marker is tracked with two Point Grey cameras, and
its pose is computed with triangulation. All the cameras of the
setup are synchronized with 15 fps and run at a resolution of
640�480 pixels. (b) The Point Grey camera is mounted with a
c-mount adapter to the laparoscope lens. (c) Left view of the
planar marker. (d) Right view of the planar marker

Figure 8. Real data. Qualitative results of 3D reconstructions using our proposed non-linear method. Top row: the checkerboard cube
with bounding box of 180�100�140mm3. Middle row: the electronic boardcard with bounding box of 80�60�30mm3. Bottom
row: the lung’s lamb with bounding box of 110�100�50mm3
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Figure 9. Real data. 3D errors of reconstructions: comparison between Horaud Dornaika method (7) and our method. Our method is
substantially more accurate than Horaud and Dornaika’s method with an average of 3.5mm
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of the camera are computed using Bouguet toolbox (30). A
checker board of 5mm per square side is used. An average
set of 40 corner points per image is used in the calibration.
Three different lenses with low (10%), medium (20%) and
high (30%) levels of distortions are used (these are
usually the distortion ranges in endoscopes). A set of
15 images is taken with each lens. According to the
opto-sensor measurements, the hand was moved with a
motion of about 200mm in average in translation and
an average of 20 deg in rotation. The hand-to-eye and
grid-to-base transforms are initialized as described in the
fifth section by using three images. In Table 1 is summa-
rized a statistical analysis of the reprojection errors
with the different ground truth distortion amounts. The
initialization of the reprojection error is computed with
the initial values of X and Z. We can observe that our
unified optimization method improves the mean and the
standard deviation (std) of the reprojection error.

3D reconstruction

To acquire real datasets with ground truth, an appropriate
framework (see Figure 7) is set up, where we use two
laparoscopes to acquire stereo views and two cameras to
track a planar marker mounted on one of the two laparo-
scopes. The two laparoscopes are mounted to two Point Grey
cameras with two c-mounts. The plane pose of themarker is
computed with triangulation after detection (31). The four
Point Grey Flea2 colour cameras are synchronized at 15 fps
with a resolution of 640� 480pixels. Thanks to this setup,
accurate ground truth 3D points of three different targets
can be built: (i) a checkerboard cube, (ii) an electronic
boardcard and (iii) an ex vivo organ (a lamb’s lung). Scale
Invariant Feature Transform (SIFT) (32) is used to compute
feature points and correspondences. Three calibration
images are used to compute the hand–eye transform and
the camera intrinsics (a,s,f,x) with our unified method.
Bouguet toolbox (30) is used to compute the hand–eye
transform with Horaud and Dornaika method (7) by using
the same three calibration images. The ground truth distor-
tion value is of 20% as was given by Bouguet toolbox. A set
of 50 image frames is taken for each target by moving the
laparoscope with marker around the target. Outliers were
removed using the hand–eye estimates, and the marker
(the hand) poses to compute the epipolar constraint. In
Figure 8, the obtained 3D reconstructions are shown using
our method. In the case of the cube dataset, 882 feature
points were gathered for the 3D reconstruction. In the case
of the electronic boardcard and the ex vivo organ, the
detection of feature points was hard because of the
repetitive textures, and then, many features were rejected
as outliers. Only 99 and 49 points were, respectively, used
for the 3D reconstruction of the electronic board and the
ex vivo organ. The 3D pointswere computed by triangulation
(33) using the hand–eye transform and the marker poses.
The reconstruction errors are computed as the difference
between the stereo 3D points and the reconstructed 3D
points of each target. Our method is substantially more

accurate than Horaud and Dornaika’s method with an
average of 3.5mm (see Figure 9). The electronic boardcard
and the ex vivo organ have bigger standard deviation
errors because of the slight variation in the feature
position among frames. This is mainly due to the repetitive
texture and a non-negligible specular reflection component
of these surfaces.

Conclusion

The main contribution of this paper is a robust and stable
estimation of both the hand–eye and camera intrinsics
with radial distortion. Our approach relies on three
steps: (i) linear initial estimates of hand–eye and radial
distortion with minimum number of frames: one single
image to estimate the radial distortion and three frames
to estimate the initial hand–eye transform, (ii) we propose
to express the camera extrinsic with respect to hand–eye
and world–grid transforms and (iii) we run bundle
adjustment on the reprojection error with respect to
the distortion parameters, the camera intrinsics and
the hand–eye transform. Our method is quantitatively
compared with state-of-the-art linear and non-linear
methods. We experimentally proved that embedding
the distortion factor and the hand–eye transform in the
minimization of a unified reprojection error improves
substantially the estimation and the usage of a hand–
eye-based 3D reconstruction.

Appendix A. Background in quaternion
and dual quaternion

Appendix A.1. Representation of rotations using quaternions
A quaternion q 2 Q is a quadruplet of real numbers (34)
that can be split in a scalar q0 and a 3D vector component
! q:

q ¼ q0!q

� �
(A:1)

The conjugate quaternion q* of q is defined as

q� ¼ q0
�!q

� �
(A:2)

The product of two quaternions a and b is defined as
follows:

a:b ¼ a0b0 � !aT :
!
b

a0
!
b þ b0

!a þ !a � !
b

� �
(A:3)

A quaternion q represents uniquely a rotation matrix R
SO(3) if and only if it is a unit quaternion:
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q�:q ¼ 1
0

� �
(A:4)

This condition encodes the orthogonal constraint ful-
filled by the SO(3) matrices. Because a rotation matrix
has three DoF, this constraint defines a 3D submanifold
in the 4D quaternion space. The one-to-one mapping from
SO(3) to this submanifold is given by

q ¼
sin

θ

2

� �

cos
θ

2

� �
!
l

0
BB@

1
CCA (A:5)

where
!
l 2 R3 (with !

lk k ¼ 1) is the rotation axis and
θ2 [�p,p] is the rotation angle. The composition product of
rotations is represented as a quaternion product, and the
inverse rotation is represented as the conjugate quaternion.

Appendix A.2 Representation of rigid motions using dual
quaternions
Consider a rigid motion in SE(3) represented by a 4� 4
matrix T with six DoF (three DoF for the rotation R and
three DoF for the translation

!
t ):

T ¼ R
!
t

0 1

� �
(A:6)

Any rigid motion T can be carried by assuming a
rotation of an angle θ around a 3D line s and a transla-
tion d along this same line (cf. Chasles theorem (35)).
This leads to the screw representation for rigid transfor-
mations consisting in a line in 3D space (represented by
a 6�1 vector s), a rotation angle θ and a pitch value d.
For a particular T2 SE(3), the screw axis is

s ¼
!
l!
m

� �
¼

!
l

1
2

!
t

 �
�
!
l þ 1

2
cot

θ

2

� �
!
l

h i
�

!
t

 �
�
!
l

0
@

1
A (A:7)

with
!
t being the translation component and

!
l and θ be-

ing, respectively, the axis and the angle of the rotation

R. Remark that
!
l and the momentum vector

!
m are always

orthogonal to each other. The pitch d is given by

d ¼ !
t;

!
l

D E
(A:8)

In the same manner that a rotation R can be repre-
sented by a quaternion q, a rigid displacement T can be
described using a dual quaternion q̂ . A dual quaternion
has the following form:

q̂ ¼ qþ eq0 ¼ q0!q

� �
þ e

q0!q0

� �
(A:9)

with q and q0 being quaternions and e being a scalar
constant such that e2=0. q and q

0
are usually referred

as the real and the dual components. The conjugate of a
dual quaternion q̂ is defined as

q̂� ¼ q � þeq0� (A:10)

The product of two dual quaternions â and b̂ is carried
as follows:

â :̂b ¼ a:bð Þ þ e a:b0 þ a0:bð Þ (A:11)

To represent an SE(3) element, q̂ has to be a unit dual
quaternion:

q̂ � :̂q ¼ 1
0

� �
(A:12)

In other terms, q has to be a unit quaternion and has to
verify an orthogonality condition with q

0
:

q0q
0
0 þ !

q;
!
q

0
D E

¼ 0; (A:13)

Consider the motion T and its screw representation
discussed earlier. T can be represented by a dual quater-
nion q̂ , where the real component q is the quaternion
corresponding to the rotation R and where the dual part
q

0
is

q0 ¼
� d
2
sin

θ

2

� �

sin
θ

2

� �
!
m þ d

2
cos

θ

2

� �
!
l

0
BB@

1
CCA (A:14)

Let A and B be two rigid transformations. The dual

quaternion representation of T=AB is q̂ ¼ â :̂b.
Let q̂ be a dual quaternion representing a rigid motion.

Because the real part q is the quaternion encoding the
rotation, recovering matrix R is trivial. To determine the
translational component of the motion, the following
relation involving the conjugate of q can be used:

0!
t

� �
¼ 2q0:q� (A:15)
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