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Piecewise-Planar Reconstruction using Two Views
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Abstract

The article describes a reconstruction pipeline that generates piecewise-planar models of man-made environments using two cali-
brated views. The 3D space is sampled by a set of virtual cut planes that intersect the baseline of the stereo rig and implicitly define
possible pixel correspondences across views. The likelihood of these correspondences being true matches is measured using signal
symmetry analysis [1], which enables to obtain profile contours of the 3D scene that become lines whenever the virtual cut planes
intersect planar surfaces. The detection and estimation of these lines cuts is formulated as a global optimization problem over
the symmetry matching cost, and pairs of reconstructed lines are used to generate plane hypotheses that serve as input to PEARL
clustering [2]. The PEARL algorithm alternates between a discrete optimization step, which merges planar surface hypotheses and
discards detections with poor support, and a continuous optimization step, which refines the plane poses taking into account surface
slant. The pipeline outputs an accurate semi-dense Piecewise-Planar Reconstruction of the 3D scene. In addition, the input images
can be segmented into piecewise-planar regions using a standard labeling formulation for assigning pixels to plane detections. Ex-
tensive experiments with both indoor and outdoor stereo pairs show significant improvements over state-of-the-art methods with

respect to accuracy and robustness.
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1. Introduction

Stereo cameras are becoming increasingly popular because
of the recent advent of 3D visualization and display. A few
years ago they were considered special purpose devices that
could only be found in research laboratories and high-end
equipments, but nowadays they are a consumer electronics
product being available either as standalone hand-held cameras
(e.g. Fujifilm Finepix 3D and Sony Bloggie 3D), or integrated
into smart-phones (e.g. HTC Evo 3D). Our work is motivated
by this proliferation of stereo cameras that is expected to create
an urge for robust algorithms able to render complete, photo-
realistic 3D models in an automatic manner.

Stereo reconstruction is a classical problem in computer and
robot vision that deserved the attention of thousands of authors
[3, 4]. Despite the many advances in the field, situations of
poor texture, variable illumination, severe surface slant or oc-
clusion are still challenging for most stereo matching methods,
making it difficult to find a tuning that provides good results
under a broad variety of acquisition circumstances [5]. Since
man-made environments are dominated by planar surfaces, sev-
eral authors suggested to overcome the above mentioned diffi-
culties by using the planarity assumption as a prior for stereo
reconstruction [6, 7, 8, 9, 10]. These approaches have the ad-
vantage of providing piecewise-planar 3D models of the scene
that are perceptually pleasing and geometrically simple, and,
thus, their rendering, storage and transmission is computation-
ally less complex. This article proposes a pipeline for two-view
Piecewise-Planar Reconstruction (PPR) understood as the de-
tection and reconstruction of dominant planar surfaces in the
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scene.!.

PPR is in a large extent a chicken-and-egg problem. If there
is accurate 3D evidence about the scene, such as points, lines,
vanishing directions, etc, then the problem of detecting, seg-
menting, and estimating the pose of dominant planes can be po-
tentially solved using standard model fitting techniques [13, 2].
On the other hand, if there is a prior knowledge about dominant
planar surfaces in the scene, then the matching process can be
constrained to improve the accuracy of the final 3D reconstruc-
tion, e.g. the known plane orientations can be used to guide the
stereo aggregation [11]. Existing methods for PPR typically
comprise three steps that are executed sequentially:

1. 3D Reconstruction: The objective is to collect 3D evi-
dence about the scene from multiple views. This evidence
can either be obtained from sparse stereo that matches a
sparse set of features across views (e.g. [8, 9]), or from
dense stereo that performs dense data association between
frames by assigning to each pixel a disparity value (e.g.

[10D).

2. Plane Hypotheses Generation: Given the 3D data, the ob-
jective is to detect and estimate the pose of planar surfaces
using some sort of multi-model fitting approach.

3. Plane Labeling: The goal is to assign to each pixel one of
the plane hypotheses generated in the previous step. This
is usually done using a Markov Random Field (MRF) for-
mulation with photo-consistency being used as data term.

'We mean by PPR something that is different from approximating surfaces
by small planes, as typically done in several dense stereo methods (e.g. [11, 12])
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While most methods were originally designed to receive mul-
tiple views [6, 14, 7, 8, 9, 10], we propose a pipeline that uses
only two views and makes no assumptions about the scene other
than the fact of being dominated by planar surfaces. The nov-
elty is mainly in the steps of 3D Reconstruction and Plane Hy-
pothesis Generation, and the contributions can be summarized
as follows:

o Reconstruction of line cuts using Stereo from Induced
Symmetry (SymStereo): Establishing dense stereo corre-
spondence is computationally expensive specially when
dealing with high-resolution images. On the other hand,
two-view sparse stereo tends to provide insufficient 3D
data for establishing accurate plane hypotheses. Thus,
we propose to carry a semi-dense reconstruction of the
scene by independently recovering depth along a set of
pre-defined virtual planes using SymStereo [1]. Since the
intersections of the virtual scan planes with the planar sur-
faces in the scene are lines, we extract line segments from
the profile cuts and use these line cuts to generate plane
hypotheses.

e Improving SymStereo accuracy in the case of surface
slant: In a similar manner to what happens in conventional
stereo, surface slant affects the depth estimation obtained
from SymStereo. In this case, the line cuts are poorly re-
constructed and the plane surface estimation is inaccurate.
We study the problem of surface slant in the context of the
SymStereo framework and devise a simple solution that
enables the reconstruction of highly slanted planes.

o Global plane fitting: Most methods for PPR treat stereo
matching and plane detection in a sequential manner
[6, 14, 7, 8, 9, 10]. This is problematic because the ac-
curacy of the plane hypotheses is inevitably limited by
the accuracy of the initial 3D reconstruction that does not
take into account the fact of the scene being dominated by
planar surfaces. We carry the 3D reconstruction and the
plane fitting in a simultaneous and integrated manner us-
ing the recent PEARL framework proposed in [2]. The al-
gorithm alternates between a global discrete optimization
step, which merges plane hypotheses and discards spuri-
ous detections, and a continuous optimization step over
the symmetry energy, which refines the plane pose estima-
tion taking into account surface slant. The output is a set of
plane hypotheses and a semi-dense PPR of the 3D scene,
where the reconstructed line cuts are labeled according to
the plane detections.

1.1. Related Work

Several works in PPR start by obtaining a sparse 3D recon-
struction of the scene (e.g. point clouds, lines, etc), then es-
tablish plane hypotheses by applying multi-model fitting to the
reconstructed data, and finally use these hypotheses to guide
the dense stereo process and/or perform a piecewise-planar seg-
mentation of the input images. In [6], Werner and Zisserman
rely in several cues and assumptions to find the dominant sur-
face orientations and use plane-sweeping along the detected

normal directions to reconstruct the scene. Bartoli [14] ob-
tains an initial sparse point reconstruction from multiple views
and applies a RANSAC-like algorithm for generating and scor-
ing the plane hypotheses. In a similar manner, Pollefeys et
al. [7] propose to detect planar surfaces in urban environments
from sparse 3D point features and use the estimated normals
for guiding plane-sweep stereo. Furukawa et al. [8] reconstruct
3D patches in textured image regions from multiple views using
[15], and use the normals of these patches to establish plane hy-
potheses assuming a Manhattan-world model. These hypothe-
ses are then used in a MRF formulation for pixel-wise plane la-
beling. In [9], Sinha et al. introduce a probabilistic framework
for assigning plane hypotheses to pixels with the evidences of
planar surfaces being provided by point cloud reconstruction,
matching of line segments, and estimation of vanishing points.
Gallup et al. [10] propose a stereo method capable of handling
both planar and non-planar objects contained in the scene. A
robust procedure based on RANSAC is used for fitting plane
hypotheses to dense depth maps, followed by a MRF formula-
tion for plane labeling of the input images.

These pipelines were originally designed to work with mul-
tiple images. Moreover, depth estimation and plane fitting are
carried in a sequential and decoupled manner that, as discussed
previously, has the drawback that errors in 3D evidence affect
the accuracy of plane pose estimation, and the inferred planar
surfaces are not used for refining the initial depth estimates

An alternative strategy is to over-segment the stereo images
based on color information and fit a 3D plane to each non-
overlapping region. The number of planes to be considered
is defined by the segmentation result, which acts as a smooth-
ness prior during the global optimization. This segmentation
information is either used as a hard minimization constraint
[16, 17, 18] or as a soft constraint [19]. The main weakness
of this type of strategy is the assumption that planar surfaces in
the scene have different colors, which is often not the case in
most man-made environments (e.g. walls, doors and windows).

There are a few approaches [20, 21, 22] that perform PPR by
carrying stereo matching and 3D plane fitting iteratively. The
strategy consists in alternating between segmenting the input
images into non-overlapping regions and estimating the plane
parameters for each region. However, and as stated by the au-
thors of [21], these type of algorithms can become easily stuck
in a local minimum whenever they face challenging surface
structures e.g. surfaces with low and/or repetitive texture.

1.2. Article Overview and Notation

Section 2 reviews three background concepts that are used
throughout the article, namely Stereo from Induced Symmetry
[1], energy-based multi-model fitting using PEARL [2], and a
global formulation for pixel-wise plane labeling. Section 3 pro-
vides an overview of the pipeline for PPR. Section 4 proposes
an algorithm for reconstructing line cuts along a single virtual
cut plane, while Section 5 shows how these line cuts can be re-
fined in case there is prior slant information available. Then,
we present in Section 6 an algorithm for semi-dense PPR that
uses the line cuts for posing plane hypotheses and combines
SymStereo and PEARL for the final label assignment. Finally,



Section 7 reports experiments in PPR, where the accuracy of the
plane estimation and pixel labeling is evaluated with respect to
ground truth data, and the performance of our pipeline is com-
pared with two different strategies.

We represent scalars in italic, e.g. s, vectors in bold charac-
ters, e.g. p, matrices in sans serif font, e.g. M, and image signals
in typewriter font, e.g. I. Unless stated otherwise, we use ho-
mogeneous coordinates for points and other geometric entities,
e.g. a point with non-homogeneous image coordinates (p;, p2)
is represented by p ~ (p1 p2 1)T, with ~ denoting equality up
to scale.

2. Background

This section briefly reviews background concepts that are
used throughout the article, namely Stereo-Rangefinding (SRF)
using SymStereo (Section 2.1), the energy-based multi-model
fitting framework called PEARL (Section 2.2), and a global
pixel-wise plane labeling formulation (Section 2.3).

2.1. Stereo-Rangefinding using SymStereo

The SymStereo framework [1] was proposed for matching
pixels across stereo views using symmetry analysis instead of
traditional photo-consistency. Let I and I’ be a pair of recti-
fied stereo images and consider a virtual cut plane IT (see Fig-
ure 1). The orientation of the virtual plane is arbitrary being the
only requirement that it intersects the baseline of the stereo rig.
Under such circumstances, the left and right back-projections
become reflected one with respect to the other at the locations
where the virtual plane intersects the scene. Thus, the sum of
both back-projections gives rise to an image signal that is lo-
cally symmetric around the profile cut, while the subtraction
results in a signal that is anti-symmetric. These symmetries are
usually not strict symmetries due to perspective distortion, sur-
face slant and occlusions, but can be used as cues to recover the
profile cut where the virtual plane meets the scene.

Assuming that the world coordinate system is coincident
with the reference frame of the left view, the virtual cut plane
IT can be represented by the homogeneous vector

T
M~ (n" —h), (D
where n indicates the direction orthogonal to the plane
T
n ~ (??.1 %) T?i;) .
The homogenous coordinates of the intersection point O of the

virtual cut plane with the baseline is given by [1]:
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Using 3 to denote the ratio between (7 and the baseline length
b comes that the plane IT passes between the cameras iff the
following condition holds

U<(ﬁ_7)<1. 2)

For efficiency purposes, the images do not need to be explicitly
back-projected onto the virtual plane IT, but instead the homog-
raphy H induced by IT can be used to map points from the right
view into the left view [1]:

1 + hbn] bn-z b-n:;

—bn, h—bn, h—bn,
H ~ 0 1 0 (3)
0 0 1

Assuming that T is the warping result of mapping I using H,
then it comes from the mirroring effect described in [1] that I
and T are reflected around the image of the profile cut (see Fig-
ure 1). Thus, the sum of I and T yields an image signal I° that
is symmetric around the locus where the profile cut is projected.
In a similar manner, the difference between I and I gives rise to
an image signal I# that is anti-symmetric at the exact same lo-
cation. SymStereo detects the image of the profile cut by jointly
evaluating symmetry and anti-symmetry in I° and I#. This
provides an implicit manner of recovering depth along the scan
plane IT that is called Stereo-Rangefinding (SRF), in analogy to
Laser-Rangefinding that provides depth readings along a scan
plane. From [1] it comes that the log/N matching cost is the
top-performing metric for the purpose of SRFE. This cost relies
on local frequency analysis for locating symmetric structures
by employing a bank of N log-Gabor wavelets (we set N =10
in this article). The output of log10 is the joint energy E, where
the image of the profile cut is highlighted (see Figure 1).

2.2. Energy-based multi-model fitting using PEARL

Isack and Boykov argued in [2] that methods that greedily
search for models with most inliers while ignoring the over-
all classification of data (e.g. Hough Transform or sequential
RANSAC) are a flawed approach to multi-model fitting, and
that formulating the fitting as an optimal labeling problem with
a global energy function is preferable. In the follow-up of this
conclusion, they described the PEARL algorithm that consists
in three main steps:

1. Propose an initial set of models (labels) £y from the ob-
servations

2. Expand the label set for estimating its spatial support (in-
lier classification)

3. Re-estimate the inlier models by minimizing some error
function.

Given the initial model set L, the multi-model fitting is cast as
a global optimization where each model in L is interpreted as
a particular label f. Consider that d € D is a data point and that
fa is a particular label in £ assigned to d. The objective is to
compute the labeling f = {f4|d € D} such that the following
energy is minimized:

B)=>"Da(fa) +As > Vaelfa. fo) + AL |Fl, @)

deD deeN label term

data term smoothness term
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Figure 1: The virtual cut plane IT (yellow) passes between the cameras and intersects the 3D scene in a non-continuous 3D curve (magenta). Let T be the result
of warping I’ by the homography induced by IT. The images IS and I4 are, respectively, symmetric and anti-symmetric around the image of the profile cut
(magenta). The output of the logN joint symmetry and anti-symmetry quantification method is the energy map E that highlights the image of the profile cut.

where N is the neighborhood system considered for d, Dy(f4)
is some error that measures the likelihood of point d belong-
ing to model fg, and V; . is the spatial smoothness term that
encourages piecewise smooth labeling by penalizing configura-
tions f that assign to neighboring nodes d and e different labels.
The label term is used for describing the data points using as
few unique models as possible, with F being the subset of dif-
ferent models assigned to the nodes d by the labeling f (see [2]
for further details). In order to handle outlier data points in D,
the outlier label fj is added to £y. Any point d to which is as-
signed the label fj is considered an outlier, and has usually a
constant likelihood measure D4(f; = fy) = 7. The energy of
Equation 4 is efficiently minimized using a-expansion [2].

The third step of PEARL consists in re-estimating the model
labels f in Ly given the non-empty set of inliers D(f) = {d €
D|fs = f}. Let my be the model associated to the label f.
Each model m is refined by minimizing the error cost over its
parameters:

mj = Igin Z Dy(f).
" deD(f)

The models with non-empty set in L are replaced with the re-
fined models m?%, and the labels with empty set are discarded.
The new set of labels £ is then used in a new expand step, and
we iterate between discrete labeling and plane refinement until
the c-expansion optimization does not decrease the energy of
Equation 4.

2.3. Pixel-wise Plane Labeling

Given a set of plane hypotheses in the scene, the objective is
to assign one of these planes to each pixel of the input images.
For this purpose, we use a standard MRF formulation that mini-
mizes an energy involving only data and smoothness terms (the
label term in Equation 4 is not considered). The nodes d € D
are the image pixels, and the labels f € P are the plane hy-
potheses. A 4 x4 neighborhood N is assumed for neighboring
pixels d and e, and the data term is defined as

itfeP
if f = fy

where pg(f) is the photo-consistency between the pixels in the
two views put into correspondence by the plane associated to la-
bel f. For measuring the photo-consistency we use Zero-mean
Normalized Cross-correlation, p,y, . is used for handling poorly

Dd(f) _ { min(pd(f)a pm(w) (5)

YPmax

matching surfaces and y is a constant parameter. The smooth-
ness term is defined as:

0 iffa=fe
Vd,e(fdafe):g' T if(fd\/fe):f@ s ©6)

D’ otherwise

where
D' =min(D,T) +t
and
_ 1
I=vry1

D is the 3D distance between neighboring points according to
their plane labels fy and f., respectively. The parameter ¢ is
used for preventing spurious transitions between planes, while
T makes the cost robust to depth discontinuities. The measure

VI = |I(d) — I(e)|.

is the image gradient.

Our formulation is largely standard with the data and the
smoothness terms being similar to the ones used in the graph-
cut labeling of Gallup et al. [10]. The global assignment herein
described will be used in Section 7 for obtaining a dense plane
labeling from a semi-dense PPR.

3. Overview of the PPR Pipeline

This section provides an overview of our pipeline for PPR,
each element is further described in more detail in the following
sections. The pipeline receives as input a rectified stereo pair
and comprises four parts (refer to Figure 2):

1. The use of SREF, briefly described in Section 2.1, along M
virtual cut planes II; for computing M joint energies E;.
Each E; contains the matching cost of pairs of pixels that
are reconstructed on a particular plane IT;.

2. Detection in each energy E; of line cuts, which are lines
likely to be the intersection between the virtual cut plane
and planar surfaces in the scene (refer to Section 4). This is
accomplished by first obtaining multiple hypotheses using
a very inclusive Hough Transform, followed by PEARL
optimization that aims at selecting and refining the posi-
tion of the most likely line cuts.
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Figure 2: Pipeline for PPR using a pair of calibrated images.

3. Detection and estimation of 3D planes from line cuts (see
Section 6). We start by establishing multiple planar hy-
potheses from pairwise combinations of line cuts. A
PEARL step is then employed to select the most likely
planes and refine their pose taking into account the way
slant influences the measurement of the SymStereo energy
E; (refer to Section 5).

4. Finally, the strongest plane hypotheses are used as input
in a standard MRF labeling step that assigns the detected
planes to image pixels (refer to Section 2.3). The explana-
tion for doing this is that from the previous step we obtain
a semi-dense PPR, and a dense 3D model is a much more
pleasant way for showing the reconstruction results. The
planes parameters are kept unchanged in this step.

First, it is important to refer that the main contributions of
this paper are in the second and third steps of the pipeline (de-
scribed in Sections 4, 5 and 6). There is no considerably nov-
elty in the first and last steps, and the readers can refer to Sec-
tion 2 for the background concepts. Both the second and third
step of the pipeline deal with multi-model fitting problems in
the sense that they establish model hypotheses, line cuts and
planes, respectively, from subsets of the input data. The objec-
tive is then to assign to each observation a particular model la-
bel such that the joint labeling minimizes some objective func-
tion. This is solved using the PEARL framework, described in
Section 2.2, that alternates between discrete labeling and con-
tinuous model refinement. These multi-model fitting problems
could have been solved using a standard Hough transform or se-
quential RANSAC as done in our previous work for PPR [23].
However, the recent developments (refer to Section 2.2) clearly
show that a global approach such as PEARL provide superior
results in multi-model fitting problems than greedy clustering
techniques.

As described in Section 2.2, the PEARL algorithm consists
in three main steps. In the first step, an initial set of model hy-
potheses is computed, then it involves a discrete labeling step
and a continues optimization step. The energy used for the dis-
crete labeling is shown in Equation 4 and consists of a data
cost and two regularizers, namely the smoothness and the label
costs. The smoothness term is a standard regularizer in com-
puter vision and encourages solutions that are spatially smooth.
The insertion of the label cost is explained by the fact that the
smoothness term prefers spatially coherent segments, but has no
encouragement to combine non-adjacent segments and, thus, to
avoid redundant labels in the final assignment. It is this label

term that allows to use discrete labeling for purposes of clus-
tering and multi-model fitting. Considering our pipeline de-
picted in Figure 2, if we would for example skip the third step
that involves the PEARL optimization, and directly feed mul-
tiple plane hypothesis from pairwise combinations of line cuts
into the MRF in step 4, then we would end up with an over-
segmented dense PPR and much less accurate plane detections.
This occurs because the MRF formulation by itself is unable to
change the input label space by either merging planes or refin-
ing their pose.

Regarding the continuous refinement of the PEARL algo-
rithm (see Section 2.2), it is necessary because the initial set of
model hypotheses is computed from a small set of random data
points, and using a larger set of inlier points in an optimization
step generally provides better solutions. While in Section 4 the
continuous optimization is mostly trivial (regular Levenberg-
Marguardt (LM) [24]), in Section 6 we use a new type of op-
timization that is explained in Section 5 and that complements
the work of [1].

4. Reconstruction of lines along a single cut plane

SymStereo Energy
.EM

o

E;

Line Cut Reconstruction

Figure 3: Reconstruction of line cuts. The input is the SymStereo energy along
M virtual cut planes (left), refer to Section 2.1, and the output is a sparse 3D
line reconstruction (right; top shows the labeling result along one virtual cut
plane, where each color identifies a different line cut, and at the bottom are the
reconstructed lines along the M cut planes).

There are several algorithms that reconstruct lines in the
scene by matching salient image edges across views [9]. In this
section, we go one step further and show how to use SRF to re-
construct lines that are not distinguishable in the input images.
Let IT be a virtual cut plane that intersects the planar surfaces
in the scene into different lines, henceforth referred as line cuts
(e.g. in Figure 4 the cut plane IT meets the floor plane in the
blue line cut). The 3D line cuts are projected onto the stereo
views into line segments that, in general, cannot be perceived
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Figure 4: Reconstruction of 3D line cuts from a stereo pair along a virtual cut plane IT. We use SymStereo and employ the log10 symmetry-based matching cost
for obtaining the joint energy E. The energy E is used as input to a weighted Hough transform for extracting line cuts (black lines), from which the most appropriate
hypotheses (in this example one line cut (blue) is detected) are selected using a global framework constituted by data, smoothness and label costs.

from the input images alone (no visible edges). However, and
as discussed in this section, these segments can be reliably de-
tected and estimated from the joint energy E (see Figure 4).

The algorithm for detection and estimating line cuts from the
energy images (refer to Figure 3) needs to be such that:

e there is at most one line cut detection per epipolar line
because of the visibility constraint

e long and short lines must be equally well detected to en-
able the 3D reconstruction of both large and small planes
(e.g. the vertical faces of the sidewalks in Figure 19)

e the accuracy in position must be high, otherwise none of
the generated plane hypotheses will be close enough to the
real 3D planes for step 3 of the pipeline presented in Sec-
tion 3 to converge correctly.

4.1. Line cut detection using Hough and PEARL

As shown in Figure 1, we use the SymStereo framework
along a virtual cut plane IT and employ the logl0 symmetry
metric for computing the joint energy E. Each pixel in E pro-
vides the matching likelihood of a particular pair of pixels in
the stereo views, being an indirect measurement of the occu-
pancy probability in 3D along II. Referring to Figure 4, the
energy E is then used as input to a weighted Hough transform
for extracting a set of line cut hypotheses £y. This is accom-
plished by selecting the N local maxima in the Hough voting
space. After obtaining £y, we formulate the line cut detection
as a global labeling problem in a PEARL framework where the
objective is to assign to each epipolar line (image row) a line
cut hypothesis in L. Following the notation of Section 2.2, the
data points d of the graph are the epipolar lines, with the size
of the set D being equal to the number of image rows, and the
goal is to assign a line segment label f to each epipolar line d.
The data term is defined as

min(1 —E(d,xz¢), 7) if

Dty ={ mr THE L

where E(r, ¢) is the joint energy value for row r and column
c. The coordinate x; corresponds to the intersection between
the epipolar line d and the line segment 1; associated to label
f. Remark that the truncation parameter 7 is used for handling
poorly matching surfaces e.g. containing low and/or repetitive
textures, while the discard label fj indicates that no satisfactory
line cut hypothesis can be assigned to d. In this case, the virtual

cut plane IT has high probability of not intersecting a planar sur-
face along the epipolar plane associated to d. The smoothness
term of neighboring nodes d and ¢ is given by

0 iffd - fe
Vde(fd:fe): )\ﬂ if(fdvfe) :f@
v1++1 otherwise

where
VI = II(d’ 'Ifd) - I(e,fﬂfe)l

is the image gray-scale gradient. No penalization is assigned to
neighboring image rows d and e receiving the same label, while
in the case one node receives the label fj, then a non-zero cost
Ap is added to f. The smoothness term V' prefers label transi-
tions at locations of larger image gradient (lower smoothness
cost), which usually occurs at the boundaries of two different
surfaces. We use a constant label term Ay in Equation 4 for
favoring line cut assignments f with fewer labels.

Finally, and after computing an initial labeling solution f for
nodes d, the line cuts 1 are refined by minimizing their parame-
ters over the energies E via LM:

Iy =min Y (1-E(d xy)), M

' aépip)

where D(f) is a subset of image rows d to which the label f
was assigned. Remark that at each solver iteration, the point z ¢
on d is recomputed according to the current line cut hypothesis
l7. The new set of line cuts 1% are then used in a new global line
cut assignment (expand) step, and we iterate between discrete
labeling and line cut refinement until the energy of Equation 4
stops decreasing.

4.2. Experiments in line cut detection

We performed experiments of our line cut detection ap-
proach? on indoor scenes acquired using a Bumblebee stereo
camera from PointGrey, which has a baseline of 24 cm and im-
age resolution of 1024x 768 pixels, and compared it against two
different strategies (refer to Figure 5).

In the first example of Figure 5, the proposed algorithm de-
tected for each virtual scan plane two distinct line cuts: one
corresponding to the intersection with the floor, and the other
to the intersection with the wall. Comparing these results with

2We used for all the experiments the same parameters: N g =200, Ag =1,
7= 0.8, ag = 0.7, Ay = 0.9 and A, = 20, which were empirically selected
without much effort.
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Figure 5: Comparison of three line cut detection algorithms: (b) ridge detection over the SymStereo energy E;, followed by Hough Transform (HT) voting (as
done in [23]); (c) weighted HT voting using E; as input, and then assigning to each epipolar line the line cut intersection with highest energy; and (d) proposed
algorithm that combines SymStereo and PEARL. Three examples are shown (rows), and each algorithm performs the detections along 5 different virtual cut planes
independently. For each example, we show the SymStereo energy computed from the middle virtual cut plane (blue), and the left and right views with the detected
line cuts overlaid. For comparing the matching accuracy, note that different colors indicate different cut planes, while different shades identify different line cuts.

(b) ay=0.8and A\;, =10

(a) ayp=0.7 and Ay, =20

Figure 6: Results for two different settings of ay and Ay. By varying these
parameters, we can control the algorithm to be more permissive with respect
to what is considered a line cut (b), while for lower values of « and higher
values of A, the algorithm only detects line segments with high probability of
belonging to planar surfaces (a).

the ones obtained using the approaches (b) and (c), we clearly
identify the advantages of using a global optimization strategy
such as PEARL. First, by formulating the problem as a epipolar
line labeling, we implicitly handle the visibility constraint and
only assign one detection per image row. Second, the smooth-
ness term of Equation 4 enforces spatial consistency such that
much less fragmented detections are obtained, while the label
term avoids redundant labels and only two different line cuts
are computed for each cut plane. Note that both the approaches
(b) and (c) have line cut estimations that are very close to each
other. This could be avoided by increasing the suppression
neighborhood of the hough peak selection, but this would in-
volve that close planes are discarded (e.g. chair back and wall
behind it in the last example). The label cost of PEARL takes
care of this issue, and merges models that do not show well
separated ridges in E;. These facts are further evidenced in
the next examples, where the combination of SymStereo and
PEARL shows improved accuracy and consistency in line seg-
ment matching when compared to the naive approaches (b) and
(c).

Besides some minor spurious detections, Figure 5 shows
some failures cases: one line cut segment is undetected in the

second example (blue cut plane), one line cut in the last exam-
ple (green cut plane), and two line cuts are computed from the
intersection of the same virtual cut plane with the wall in the last
example. This mainly occurs because the SymStereo energy
E; is unable to provide well defined energy ridges whenever
the cut plane intersects the scene in low-textured regions and
slanted surfaces. In these cases, and since there is a low con-
fidence about the location of the image of the profile contour,
the algorithm tends to assign the fp label or separate the energy
contributions. We will show in Section 6 that most of these
difficulties are easily handled by our semi-dense PPR pipeline
that estimates plane hypotheses from multiple virtual cut planes
simultaneously.

Finally, Figure 6 shows an example containing a non-planar
object on the top of the floor plane. The algorithm can be either
tuned to only detect the line cuts corresponding to the intersec-
tion with strict plane surfaces (example (a)), or to approximate
the intersection with non-planar surfaces by an appropriate set
of line cuts (example (b)). The different tunings are accom-
plished by manipulating the weighting factor ey and the label
cost Ay. Using low values of ay and high values of A;, im-
plies that only line cuts belonging to planar surfaces are recon-
structed, while higher values of ay and low values of A, enable
to approximate non-planar surfaces by various plausible line
cuts. This feature is useful to control the complexity of the final
3D model, by either being strict about the scene geometry, or
by enforcing non-planar objects to be reconstructed as a set of
planar surfaces.

5. Refinement of line cuts under surface slant

SymStereo was first introduced in [23], with the reader being
referred to [1] for a thorough geometric analysis of the frame-
work. This section extends this geometric analysis by study-
ing how surface slant affects the accuracy of symmetry-based



Figure 7: Geometric overview of SymStereo. The camera centers C and C’
are separated by a distance b (the baseline). The 3D point Q on d; ;- is de-
tected using the mirroring effect induced by the virtual cut plane IT; (yellow)
intersecting the baseline.

matching costs. It is shown that, in a similar manner to multi-
directional plane-sweeping [25] where the sweeping direction
can be aligned with the surface normal to handle slant [26, 6],
in SymStereo it is possible to use prior knowledge about surface
orientation to carefully choose the virtual cut planes that render
perfect signal symmetries and improve the overall accuracy and
robustness of the approach.

Consider the generic points P and Q that lie on the same
epipolar plane W, as depicted in Figure 7, and assume a virtual
cut plane IT that goes through Q. Let p, p/, and q, q’ be the
projections of P and Q in the left and right views. Since the
stereo pair is rectified, the signed distances between the images
of the two points are defined as follows:

g=pi—q, 9 =p—q. (®)

From the derivations in [1], it comes that, if p is the result of

mapping p’ into the left view using the homography H induced
by II, then the following relation holds

PN B /
= — = [ 9
g=n—q <ﬂ—1 g &)
with [ being the ratio of Equation 2. Consider now the stereo
disparities A, =p;—p} and A, =¢1—¢} of points P and Q and
define
A=A,—A,.

From Equation 8 it follows that ¢’ = g — A, which means that
Equation 9 can be re-written as

i=(327) 6 - & (10)

It is important to keep in mind that the symmetry around q
is perfect iff the distances g and g are equal with opposite signs
(g=—g) [1]. In general, this condition is not satisfied, and the
energy E tends to spread around the image of the profile cut
rather than defining a sharp ridge that enables accurate detec-
tion (see Figure 9). The result of Equation 9 suggests that it
is possible to enforce g to be equal to g by choosing a suitable
ratio 3 or, in other words, by controlling the location where the
virtual cut plane intersects the baseline as a function of the dif-
ference in stereo disparity. Assuming that P and Q are close
points, the difference A is directly related with the depth vari-
ation in the neighborhood of the 3D profile cut (the surface
slant).

5.1. Slant prior for enhancing SymStereo

Assume that the points P and Q also lie on the same scene

plane 2 ~ (m fl)T, which defines a homography M similar
to Equation 3. Using the inverse homography, it can be shown
that

Ay = blﬂ(h + b%(h + b%
Since p is also the projection of the same planar surface, a sim-
ilar expression can be obtain for A,. Given that g2 = p,, then
A, differs from A, by

A=oai(pr—aq),

where b

encodes the slant of the plane along the horizontal direction.
Replacing in Equation 10 comes that

7= (327) - e (12)

The virtual cut plane IT only affects the symmetry in terms of
the intersection point with the baseline. For similar conditions
of relative depth variation, any cut plane going through the same
point O generates symmetries with equivalent quality, regard-
less of its orientation. The conclusion that can be drawn is that
having prior knowledge about the position and orientation of
the surface to be reconstructed, we can determine the point of
intersection between the virtual plane II and the baseline that
grants perfect induced symmetry. The image signals are per-
fectly symmetric whenever g = —g, so that solving with respect
to £ in Equation 12 yields

a1 =

B = 13)
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Figure 8: Refinement using slant prior (top view of scene in Figure 7). Assume
that Q lies on the plane €2. Then, we can determine the position on the base-
line 0 (see Equation 13) that improves the induced symmetries. Using the
vertical virtual cut plane defined by 0™ and Q, it is possible to induce new
symmetries from which the refined point Q(1) is estimated.

From the analysis above, we propose a simple approach that
uses slant information to refine the SymStereo depth estimates
(see Figure 8). The first step consists in computing the line cuts
for a set of virtual scan planes II; that go through the midpoint
of the baseline (O; = 0.5b). The line reconstruction tends to
be inaccurate in the presence of surface slant, however, and as



(a) Initial line cut detection

(b) Refined line cut detection

Figure 9: SymStereo refinement. Example (a) shows the energy E (left) and the
line cut detection results overlaid in I (right), considering a virtual cut plane
that intersects the baseline ind its midpoint. Example (b) shows the same ex-
periment, but considering a different virtual cut plane, with 3 being given by
Equation 13 and using an approximate plane estimation of the intersected wall
surface. As can be seen, the refined E in (b) presents a much better defined
ridge of the image of the profile cut on the vertical wall.

discussed in the next section, it can be used to obtain a first es-
timate for the value of «v;. From this estimate, we determine
the point 01" = ()b in the baseline, with 3(Y) being given
by Equation 13. A new virtual cut plane Hgl) is defined by
joining the 3D line cut with O, the corresponding energy
E is computed, and finally the line cut is re-estimated. Since
the scan plane is chosen such that the induced symmetry is en-
hanced (see Figure 9), the accuracy of the reconstruction tends
to improve. The procedure is repeated till there is no significant
change in the positioning of the point in the baseline.

6. PPR using SymStereo and PEARL

Line Cut Reconstruction

Semi-Dense PPR

Figure 10: Semi-dense PPR. The input is a set of line cuts computed along
M virtual cut planes (left), refer to Section 4, and the output is a semi-dense
3D reconstruction, where each line cut belongs to a particular plane (right; top
shows the labeling result, where each color corresponds to a different plane,
and at the bottom is the semi-dense PPR).

This section describes the algorithm for semi-dense PPR that
uses the line cuts computed in the previous section for posing
plane hypotheses in the scene (refer to Figure 10). The output
is a discrete set of planar surfaces and a semi-dense 3D recon-
struction. The plane hypotheses can then be used as labels in a
global optimization step for obtaining a dense piecewise planar
model (Section 2.3).

6.1. Formulation of the global framework

Let’s consider that the midpoint of the baseline is the pro-
jection center of a virtual camera henceforth referred as the cy-
clopean eye (see Figure 11). The height of the image of the

cyclopean
eye

Figure 11: The scene is sampled by a discrete set of virtual cut planes IT;. This
can be thought as an image created by a virtual camera that is located between
the cameras (cyclopean eye), where each epipolar plane ¥, projects onto one
row and each II; projects onto one column of the image. Each pixel of the
cyclopean eye is originated from the back-projection ray d; - (red). The Ay
neighbors of d; ;- are d;+1 » (blue) and d;,+1 (green).

cyclopean eye is equal to the number of epipolar planes ¥,
with r =1, ..., R (one epipolar plane per image row), and the
width is given by the number of virtual cut planes IT; with
i =1,...,M (one cut plane for each column). Each pixel of
the cyclopean eye is associated with a back-projection ray d; ,
that corresponds to the intersection between II; and ¥,.. The
objective is to estimate the point on each d; , that is mostly like
to belong to a planar surface. The problem is casted as a la-
beling problem following the PEARL framework (Section 2.2).
The nodes of the graph are the back-projection rays d; , of the
cyclopean eye, and the objective is to assign to each d; ,- a plane
label f4. The set of possible labels is Lo = {Po, fy}. with fy
meaning that no point on d; ,- belongs to a planar surface. Note
that we use d instead of d; ,, whenever the virtual and epipo-
lar plane specifications are not strictly necessary. We assume
a Ny neighborhood for d; . that is defined by the four back-
projection rays d;+1 , and d; 41 (see Figure 11).

The action of PEARL is twofold in the case of semi-dense
PPR: first is applied to downsize the number of plane hypothe-
ses by either merging planes that are close to each other and
refer to the same 3D surface, or by discarding planes that have
little support from the data (discrete optimization with penalty
term), and second to refine the pose of the most likely planes
taking into account slant (continuous optimization).

6.2. Initial plane hypotheses

As discussed in Section 4, each line cut is a possible loca-
tion of intersection of a virtual cut plane with a planar surface
in the scene. The initial set of plane models Py to be used in
PEARL can eventually be generated by considering all possi-
ble hypotheses that can be obtained from two line cuts belong-
ing to different scan planes II, as was originally proposed in
[23]. However, and depending on the number of cut planes that
are used, the set Py can easily become very large. We noticed
that using only pairs of line cuts from neighboring cut planes
II;.(y o) drastically decreases the size of Py and it is typically
enough for initializing the piecewise-planar labeling approach.
Since it is unlikely that line cuts intersecting different epipolar



(a) Crease Edges

(b) Detected Line Segments

Figure 12: We show in (a) some crease edges obtained from intersections of two
different planes in Pg, while in (b) the result of the clustering of concurrent
lines is shown. Each group of lines (different groups have different colors)
provides a vanishing point location. The white line segments did not receive
any vanishing point label.

planes correspond to the same planar surface, we further reduce
Po, and only use pairs of line cuts that have a minimum of Ng
epipolar lines of overlap (Ng =10 in this article).

6.3. Data and smoothness term

The data term Dy, , for the back-projection ray d; ;. is de-
fined as

min(1 — E;(r,xy),7) if f€Py
T if f=1fy

where E; is the joint energy associated with the virtual cut plane
I1;, r is the row corresponding to the epipolar plane ¥, and 7
is a constant. The coordinate x 7 is the column defined by the
hypothesis f, corresponding to the intersection of d; , with the
plane indexed by f. Note that similarly to [10], the non-planar
fu label indicates that no satisfactory plane hypothesis can be
assigned to d; .

Inspired by the work of Sinha et al. [9], the smoothness term
for neighboring nodes d and e is given by

0 if fa=fe

Da..(N~{

Al if (d7eﬂfd1fe) 651

A f d’ ? sJe S
Vae(fa, fo) = { ) ! Ed,z)‘fé’s"; €S

A if(fd\/fd):fm

1 else

where 0 < A1 < A2 < A3 < 1, and the content of the sets
S1. S5 and Sy is described next. Remark that no penalization is
assigned to neighboring nodes receiving the same plane label,
while in the case of one node obtaining the discard label fy, a
non-zero cost A4 is added to the plane configuration f.

Following a reasoning similar to [9], plane transitions be-
tween neighboring nodes d and e are more likely to occur in
the presence of crease or occlusion edges. A crease edge corre-
sponds to the projection of the 3D line of intersection between
two different planes in the scene, while occlusion boundaries
arise from spatially separated objects in 3D whose image pro-
jections interfere with each other.

Let the point pq s, (Pe,s.) be the projection of the intersec-
tion between the back-projection ray d (e) and the plane as-
sociated to fy (fe). In order to encourage plane label transi-
tions at crease edges, we store in the set S, the quadruples
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(d,e, fa. fe) in which the points pq_r, and pe . are located on
different sides of the crease edge defined by f; and f.. When-
ever f contains assignments located in Sy, then it incurs a pe-
nalization A;. Figure 12(a) shows some crease edges that are
estimated from real imagery.

Occlusion edges usually coincide with visible 2D line seg-
ments in the input views and are often aligned with the vanish-
ing directions of scene planes (Figure 12(b)). In order to find
possible occlusion boundaries, we detect 2D line segments in
the left view I using the Line Segment Detector [27]. For clus-
tering concurrent lines, we use the global vanishing point de-
tection algorithm proposed by Antunes et al. [28]. The set S
contains the quadruples (d. e, fa. fe) Where the points pq f,
and p, s, are located on different sides of a line segment that
was clustered to a particular vanishing point, whose direction is
orthogonal either to the planes associated to fq or fe. Finally,
S; contains the remaining pairs (d, e) whose projections are
on different sides of a line segment to which no vanishing point
was assigned. Remark that in contrast to [9], we do not perform
any line matching between the views, substantially decreasing
the complexity of the algorithm.

6.4. Plane refinement

The third step of PEARL (Section 2.2) is to re-estimate the
plane model parameters using the inliers of the discrete label-
ing f. Let €24 be the plane associated to f to which has been
assigned a non-empty set of inliers D(f) = {d € D|fa = f}.
Each plane {2y is refined by minimizing its plane parameters
over the energies E via LM:

Q:} = %in Z

T d;.eD(f)

(1 -Ei(r,za)). (15)

where zq is the column defined by the intersection of d; ,

with £2. The new set of labels P; = ﬂ} is then used in a

new expand step, and we iterate between discrete labeling and
plane refinement until the a-expansion optimization does not
decrease the energy of Equation 4.

6.5. Plane refinement after PEARL

We have discussed in Section 5.1 that SymStereo can be en-
hanced in case there is slant information available. The output
of the global algorithm described previously, is the labeling f
that assigns to each back-projection ray d a plane 2. The inter-
section of d with £2 defines a 3D point Q, and £2 also defines
o that encodes the 3D slant in the neighborhood of QQ. Follow-
ing this, the position Q can be refined by iteratively optimizing
8.

Let € be the plane associated to label f to which
has been assigned a non-empty set of inliers D(Jf)
{d; € D|fa,, = f}. and consider that Q- is the intersec-
tion between the ray d; , and €2 (refer to Figure 8). For each
d; .., we compute the corresponding ideal 3; and obtain a new

i~ The new ray dg}r) is located on the
same epipolar plane, but on the virtual cut plane intersecting
the point Q") and the previously reconstructed point Qi

back-projection ray a.



Given the new plane 21, a new homography mapping (see

Equation 3) can be used for inducing improved symmetries,
(1)

and from which the joint energy E; . is re-calculated. The

new joint energies EEL) are used in a new refinement step us-
ing LM (Section 6.4). We iterate between re-computing new
back-projection rays dgﬁ.} and refining Q) for a pre-defined

number of times (4 in this article).

6.6. Experiments in semi-dense PPR

(b) RANSAC

(c) Proposed

Figure 13: Comparison between (a) independent line cut reconstruction, (b)
sparse PPR using RANSAC (as previously suggested in [23]), and (c) the pro-
posed semi-dense PPR using PEARL. For (a) we show the detection results
along 5 virtual cut planes, while for both (b) and (c) the reconstructions were
performed along 25 cut planes. Both approaches (b) and (c) receive the same
set of line cuts as input. As additional accuracy indicator, we manually identi-
fied for all examples the planes that are mutually orthogonal and parallel. The
mean angle of the orthogonal planes for (b) is 85.2° and for (c) is 89.1°, while
for the parallel planes it is for (b) 1.1° and for (c) 0.5°.

We show in Figure 13 a brief comparison between the line
cut reconstruction algorithm presented in Section 4, the sparse
PPR approach proposed in [23], and the semi-dense PPR strat-
egy described in this section. In contrast to the proposed PPR
approach that uses a PEARL formulation, the algorithm in [23]
uses a RANSAC procedure. The RANSAC search is carried
in the dual 3D space, and pairs of line cuts generate a plane
hypothesis. The inlier set is determined by calculating the Eu-
clidean distance between the line cuts and the plane hypothesis.

Also in this case, the multi-model fitting results obtained us-
ing PEARL are superior to the ones obtained using a greedy
approach such as RANSAC. First, RANSAC is only able to la-
bel the line cuts as being inliers or outliers, so that only a sparse
reconstruction composed by line cuts can be obtained (e.g. first
example of Figure 13). In our case, the objective is to label all
pixels of the cyclopean eye, which enables to estimate a more
complete semi-dense PPR. Second, the greedy model selection
with largest consensus using RANSAC, independently of the
global solution, generates in some cases random models (e.g.
second and third example of Figure 13). Third, the smoothness
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term of PEARL enforces spatial consistency, so that the pro-
posed approach is able to obtain much more coherence in the
labeling results, as well as the transitions between planes are
consistent and correctly over the image edges. Finally, the con-
tinuous optimization of PEARL improves dramatically the ac-
curacy of the plane poses when compared to the ones obtained
from pairs of line cuts.

As discussed previously, in cases where the virtual cut planes
intersect planar surfaces with some texture and far from object
discontinuities (e.g. first example of Figure 13), the indepen-
dent reconstruction along single virtual planes provides accu-
rate results. However, in scenarios containing multiple planes
and complicated textures, the independent line cut reconstruc-
tion has some difficulties. These problems are solved using our
semi-dense PPR pipeline that estimates planar surfaces in the
scene along different virtual cut planes simultaneously and in a
global manner.

7. Comparative Experiments in dense PPR

Dense PPR

>

Figure 14: Dense PPR. The input is a set of plane hypotheses (left), refer to
Section 6, and the output is a dense 3D reconstruction, where to each image
pixel is assigned a particular plane (right; top shows the labeling result, where
each color corresponds to a different plane, and at the bottom is the dense PPR).

Semi-Dense PPR
| |

<

In this section, we run a set of experiments in PPR with the
objective of assessing the performance of the proposed pipeline
and compare it against state-of-the-art methods [9, 10]. The
evaluation is carried using two datasets: five stereo pairs from
the Middlebury benchmark [3, 29, 30] and a new dataset com-
prising stereo pairs of both indoor and outdoor scenarios (see
Figures 16 to 19). These images were acquired using a Bum-
blebee stereo camera from PointGrey, with a baseline of 24 cm
and an image resolution of 1024 x 768 pixels. The scenes con-
tain mostly planar surfaces, and include a variety of situations
that are very challenging for traditional stereo methods e.g. low
and/or repetitive textures, surface slant.

7.1. Methods and metrics for benchmarking

The proposed pipeline, henceforth referred as SymS, pro-
vides as output a set of plane hypotheses P°¥™9 We com-
pare these plane hypotheses with the ones obtained using two
different approaches:

1. The method DS by Gallup et al. [10]: In this work, the
authors start by obtaining a dense depth map of the scene
using a local stereo approach. Initial plane hypotheses are
generated using a specific RANSAC procedure, which is



followed by a linking step that merges planes that are close
in distance and eliminates spurious estimates. The output
of this algorithm is the discrete set of plane hypotheses
PLS,

2. The method SS by Sinha et al. [9]: This approach starts
by obtaining a sparse reconstruction of the scene based on
point correspondences, matching line segments and van-
ishing points. The 3D data is used in successive histogram
voting schemes and RANSAC procedures to generate the
plane hypotheses. At the end the algorithm provides the
discrete set of plane hypotheses P°7.

The experiments compare the pixel labeling results obtained
with the MRF formulation described in Section 2.3 when the
plane hypotheses are provided by SS, SymS or DS (refer to
Figure 14 for a SymS example). Since this analysis is mostly
qualitative, we decided to complement it with quantitative mea-
surements of the accuracy of the plane pose estimation. Re-
garding the Middlebury experiments in Section 7.2, we com-
pute the disparity map for each stereo pair from the estimated
plane parameters and compare it with the provided ground truth
(GT). Regarding the experiments using the new dataset contain-
ing real indoor and outdoor scenarios (see Section 7.3 and Sec-
tion 7.4), it was difficult to obtain the GT model parameters for
each stereo pair in the dataset. Thus, we decided to proceed as
follows: First, for each stereo pair we manually select the im-
age regions R, corresponding to 3D planes €2, in the scene.
Second, given a particular set of plane hypotheses and the cor-
responding pixel-wise plane labeling f, the accuracy of the pose
estimations is evaluated using the following metric:

> pp(fp)

PERK

#Ry

where # R, is the number of pixels in the region.

It is important to note that the accuracy measurements ob-
tained with the above strategy must be interpreted with caution.
Given two planes £2;, and £;, the fact that P, < P; does not
necessarily mean that the former is better estimated than the lat-
ter. The proposed metric depends largely on the textures and il-
lumination of the surfaces e.g. planar surfaces with low-texture
and specularities will have a large Py, even if the corresponding
plane model is well estimated. However, we are in the opinion
that the metric Py, is well suited for comparing different estima-
tions of the same plane £2j,.

The parameters used in the different algorithms were manu-
ally tuned using the GT labeling on a subset of the dataset cap-
tured using the Bumblebee, whose results are not shown in the
experimental comparison. These values were kept constant for
all the remaining experiments (including for the experiments
in Middlebury). Concerning the SymS algorithm, we decided
to use M = 25 virtual cut planes to have a good trade-off be-
tween accuracy and runtime. The parameters of the final MRF
labeling (see Section 2.3) were the same for the three plane hy-
potheses generators, namely p,q. = 0.8, v = 0.6, t =1 and
T=2,

Py = (16)
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Table 1: Evaluation in Middlebury. The percentage of erroneous pixels in
non-occluded regions are presented. We compare SS, DS and the intermedi-
ate reconstruction results of SymS. Since the algorithms for line cut detection
(Section 4) and semi-dense PPR (Section 6) only recover depth along particular
virtual cut planes, we only evaluate the pixels corresponding to the ground truth
images of the profile cuts.

Algorithm
Data SymS
58 Line Cuts Semi-dense PPR | Dense PPR DS
Wood1 36.6% 8.2% 2.1% 1.6% 8.8%
Wood2 32.1% 16.1% 9.9% 9.6% 15.2%
Books 41.7% 25.8% 18.3% 21.4% 28.9%
Plastic 100% 57.8% 37.5% 39.2% 62.9%
Monopoly | 51.3% | 42.1% 30.6% 32.7% 39.8%

7.2. Middlebury Experiments

Figure 15 compares the performance of SS, SymS and DS in
generating plane hypotheses for five stereo pairs of Middlebury
[3, 29, 30]. We show for each case the left view, the ground
truth disparity map, and the estimated pixel-wise plane label-
ing result. Additionally, we show the disparity maps computed
from the estimated plane parameters, and evaluate the numeri-
cal accuracy of the dense disparity maps in Table 1. This initial
evaluation provides evidence that our PPR algorithm improves
the state-of-the-art in reconstructing planar surfaces from two
calibrated views. The next sections present the experimental
results on real indoor and outdoor man-made environments,
which are the scenes mainly targeted by our development.

7.3. Comparison Results on the Bumblebee images

Figure 16 compares the performance of SS, SymS and DS
in generating plane hypotheses for several challenging stereo
pairs. For each case, we show the left view, the pixel-wise plane
labeling result, and the Py, scores of the three approaches for
different planes in the scene.

In the two first examples, the scene is composed by two and
three planes, respectively, which are fronto-parallel to the cam-
eras. It can be observed that the three methods work quite well
and provide very similar results. SS shows some difficulty in
distinguishing the vertical planes of example (b), which can be
explained by the lack of features in the wall on the right.

The two examples in the second row present a highly slanted
surface (blue and green planes in examples (c) and (d), respec-
tively). Our algorithm is able to correctly detect and recon-
struct these surfaces, whereas DS and SS have clear difficulties
in handling such a large amount of slant. The two bottom rows
show examples of scenes with difficult textures, slant and vari-
able illumination conditions. SS and DS fail in some cases to
provide acceptable plane hypotheses for the MRF labeling, so
that no plane assignment is obtained. Our approach recovers all
the planes, and can even separate surfaces that are at very close
distance, as shown in example (g) where the floor and carpet
are distinguished.

For demonstrating the effectiveness of the refinement strat-
egy presented in Section 5, we shown in Figure 17 the im-
provements that can be achieved in plane pose estimation for
an increasing number of refinement iterations. It can be ob-
served that for fronto-parallel configurations the improvements



(a) Left View  (b) GT disparity (c) SS
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Figure 15: Middlebury results obtained from three different PPR algorithms: SS, SymS and DS. For each algorithm we show the plane labeling (left), where
different colors correspond to different planes; and the disparity map (right) computed from the estimated plane parameters.

are negligible, since the initial virtual cut planes already inter-
sect the baseline near the optimal point. However, in the case
of slanted surfaces, the iterative plane refinement strategy is ef-
fective and considerably improves the estimated surfaces.

Finally, and for the sake of completeness, we report the run-
times of each algorithm in these examples, without taking into
account the final MRF labeling step. SymS takes between 1—2
minutes, depending on the number of line cuts that are detected,
DS runs in about 2 minutes, and SS takes approximately 3 min-
utes. All these times refer to straightforward, non-optimized
Matlab implementations, with the exception of the c-expansion
optimization used by PEARL that was performed using the pub-
licly available C++ code [31, 32, 33, 34].

7.4. Two view piecewise planar models

Figure 18 and Figure 19 show additional piecewise-planar
3D models obtained using our pipeline. The stereo pairs show
natural indoor and outdoor scenes that are typically targeted by
PPR algorithms. While previous methods, such as the ones re-
ported in [14, 8, 9, 10], require multiple views to obtain satis-
factory models, our pipeline is able to reach competitive results
using the information of only two views. As discussed in [35],
the depth error in stereo relates to the image correspondence er-
ror by a multiplicative factor known as the geometric resolution
that depends on the baseline and camera focal length. Taking
into account our experimental setup, and assuming a maximum
allowed error in relative depth of 2%, the maximum reconstruc-
tion depth is estimated in 16 meters. Thus, we do not present
reconstruction results for surfaces and objects that are beyond
this range. It is also important to emphasize that the pixel-wise

labeling is exclusively performed based on photo-consistency
and image pixel proximity, which largely explains that in some
examples the region borders are poorly defined. This issue can
be easily solved using a more sophisticated MRF formulation
similar to the one used in Section 6 that incorporates crease and
occlusion edge information. We chose not to do so in order to
better assess the accuracy of our plane pose estimation.

8. Conclusion

The paper presents an automatic piecewise planar recon-
struction algorithm from two views. Unlike other existing ap-
proaches, the stereo depth estimation and the detection of pla-
nar surfaces are accomplished in a tight and coupled manner
by combining SymStereo with PEARL [2]. This enables to
take full advantage of the strong planarity prior, with the al-
gorithm being able to accurately segment and reconstruct the
planes contained in the scene. The effectiveness of the scheme
is proved by comparison with two different state-of-the-art ap-
proaches in several challenging indoor and outdoor scenarios.

As a final comment, it can be claimed that the energy-based
model fitting can either be applied to a dense stereo reconstruc-
tion or to a sparse point-cloud model. The former would sub-
stantially increase the computational complexity without bring-
ing obvious benefits, while the latter would avoid the use of the
smoothness term for regularizing the PEARL energy minimiza-
tion. Thus, the symmetry-based semi-dense stereo approaches
provides the best trade-off between the two, playing a key role
in the success of the overall approach.
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Figure 16: Comparison between DS, SymS and SS for PPR. For each example we show (top, left) I with GT labeling, different colors correspond to different
planes; (top, right) mean photo-consistency P in the GT region for each algorithm, each color identifies a particular plane; and (bottom) pixel-wise plane assignment
obtained using the different algorithms as plane hypotheses generators, different colors identify different planes. The black label refers to the discard label fj.
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view with the surface being analyzed, and the bottom plot presents the accuracy
of the estimation for different SymStereo refinement steps.
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(a) Stereo pair (b) Plane labeling (c) Textured 3D reconstruction

Figure 18: Indoor results produced by our PPR algorithm.



(a) Stereo pair (b) Plane labeling (c) Textured 3D reconstruction

Figure 19: Outdoor results produced by our PPR algorithm.
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