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Figure 1: The virtual cut plane ⇧ (yellow) passes between the cameras and intersects the 3D scene in a non-continuous 3D curve (magenta). Let bI be the result
of warping I0 by the homography induced by ⇧. The images IS and IA are, respectively, symmetric and anti-symmetric around the image of the profile cut
(magenta). The output of the logN joint symmetry and anti-symmetry quantification method is the energy map E that highlights the image of the profile cut.

where N is the neighborhood system considered for d, Dd(fd)
is some error that measures the likelihood of point d belong-
ing to model fd, and Vd,e is the spatial smoothness term that
encourages piecewise smooth labeling by penalizing configura-
tions f that assign to neighboring nodes d and e different labels.
The label term is used for describing the data points using as
few unique models as possible, with Ff being the subset of dif-
ferent models assigned to the nodes d by the labeling f (see [2]
for further details). In order to handle outlier data points in D,
the outlier label f; is added to L0. Any point d to which is as-
signed the label f; is considered an outlier, and has usually a
constant likelihood measure Dd(fd = f;) = ⌧ . The energy of
Equation 4 is efficiently minimized using ↵-expansion [2].

The third step of PEARL consists in re-estimating the model
labels f in L0 given the non-empty set of inliers D(f) = {d 2
D|fd = f}. Let mf be the model associated to the label f .
Each model mf is refined by minimizing the error cost over its
parameters:

m⇤
f = min

mf

X

d2D(f)

Dd(f).

The models with non-empty set in L0 are replaced with the re-
fined models m⇤

f , and the labels with empty set are discarded.
The new set of labels L1 is then used in a new expand step, and
we iterate between discrete labeling and plane refinement until
the ↵-expansion optimization does not decrease the energy of
Equation 4.

2.3. Pixel-wise Plane Labeling
Given a set of plane hypotheses in the scene, the objective is

to assign one of these planes to each pixel of the input images.
For this purpose, we use a standard MRF formulation that mini-
mizes an energy involving only data and smoothness terms (the
label term in Equation 4 is not considered). The nodes d 2 D
are the image pixels, and the labels f 2 P are the plane hy-
potheses. A 4⇥4 neighborhood N4 is assumed for neighboring
pixels d and e, and the data term is defined as

Dd(f) =

⇢

min(⇢d(f), ⇢max) if f 2 P
�⇢max if f = f;

(5)

where ⇢d(f) is the photo-consistency between the pixels in the
two views put into correspondence by the plane associated to la-
bel f . For measuring the photo-consistency we use Zero-mean
Normalized Cross-correlation, ⇢max is used for handling poorly

matching surfaces and � is a constant parameter. The smooth-
ness term is defined as:

Vd,e(fd, fe) = g ·

8

<

:

0 if fd = fe
T if (fd _ fe) = f;
D0 otherwise

, (6)

where
D0 = min(D,T ) + t

and
g =

1

rI2 + 1
.

D is the 3D distance between neighboring points according to
their plane labels fd and fe, respectively. The parameter t is
used for preventing spurious transitions between planes, while
T makes the cost robust to depth discontinuities. The measure

rI = |I(d)� I(e)|.

is the image gradient.
Our formulation is largely standard with the data and the

smoothness terms being similar to the ones used in the graph-
cut labeling of Gallup et al. [10]. The global assignment herein
described will be used in Section 7 for obtaining a dense plane
labeling from a semi-dense PPR.

3. Overview of the PPR Pipeline

This section provides an overview of our pipeline for PPR,
each element is further described in more detail in the following
sections. The pipeline receives as input a rectified stereo pair
and comprises four parts (refer to Figure 2):

1. The use of SRF, briefly described in Section 2.1, along M
virtual cut planes ⇧i for computing M joint energies Ei.
Each Ei contains the matching cost of pairs of pixels that
are reconstructed on a particular plane ⇧i.

2. Detection in each energy Ei of line cuts, which are lines
likely to be the intersection between the virtual cut plane
and planar surfaces in the scene (refer to Section 4). This is
accomplished by first obtaining multiple hypotheses using
a very inclusive Hough Transform, followed by PEARL
optimization that aims at selecting and refining the posi-
tion of the most likely line cuts.
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Figure 7: Geometric overview of SymStereo. The camera centers C and C0

are separated by a distance b (the baseline). The 3D point Q on di,r is de-
tected using the mirroring effect induced by the virtual cut plane ⇧i (yellow)
intersecting the baseline.

matching costs. It is shown that, in a similar manner to multi-
directional plane-sweeping [25] where the sweeping direction
can be aligned with the surface normal to handle slant [26, 6],
in SymStereo it is possible to use prior knowledge about surface
orientation to carefully choose the virtual cut planes that render
perfect signal symmetries and improve the overall accuracy and
robustness of the approach.

Consider the generic points P and Q that lie on the same
epipolar plane , as depicted in Figure 7, and assume a virtual
cut plane ⇧ that goes through Q. Let p, p0, and q, q0 be the
projections of P and Q in the left and right views. Since the
stereo pair is rectified, the signed distances between the images
of the two points are defined as follows:

g = p1�q1, g0 = p01�q01. (8)

From the derivations in [1], it comes that, if bp is the result of
mapping p0 into the left view using the homography H induced
by⇧, then the following relation holds

bg = bp1 � q1 =

✓

�

� � 1

◆

g0, (9)

with � being the ratio of Equation 2. Consider now the stereo
disparities �p=p1�p01 and �q=q1�q01 of points P and Q and
define

� = �p ��q .

From Equation 8 it follows that g0 = g � �, which means that
Equation 9 can be re-written as

bg =

✓

�

� � 1

◆

(g � �). (10)

It is important to keep in mind that the symmetry around q
is perfect iff the distances g and bg are equal with opposite signs
(bg=�g) [1]. In general, this condition is not satisfied, and the
energy E tends to spread around the image of the profile cut
rather than defining a sharp ridge that enables accurate detec-
tion (see Figure 9). The result of Equation 9 suggests that it
is possible to enforce bg to be equal to g by choosing a suitable
ratio � or, in other words, by controlling the location where the
virtual cut plane intersects the baseline as a function of the dif-
ference in stereo disparity. Assuming that P and Q are close
points, the difference � is directly related with the depth vari-
ation in the neighborhood of the 3D profile cut (the surface
slant).

5.1. Slant prior for enhancing SymStereo
Assume that the points P and Q also lie on the same scene

plane⌦ ⇠
�

m �l
�T, which defines a homography M similar

to Equation 3. Using the inverse homography, it can be shown
that

�q =
bm1

l
q1 +

bm2

l
q2 +

bm3

l
.

Since p is also the projection of the same planar surface, a sim-
ilar expression can be obtain for �p. Given that q2 = p2, then
�p differs from �q by

� = ↵1(p1 � q1),

where
↵1 =

bm1

l
(11)

encodes the slant of the plane along the horizontal direction.
Replacing in Equation 10 comes that

bg =

✓

�

� � 1

◆

(1� ↵1)g. (12)

The virtual cut plane ⇧ only affects the symmetry in terms of
the intersection point with the baseline. For similar conditions
of relative depth variation, any cut plane going through the same
point O generates symmetries with equivalent quality, regard-
less of its orientation. The conclusion that can be drawn is that
having prior knowledge about the position and orientation of
the surface to be reconstructed, we can determine the point of
intersection between the virtual plane ⇧ and the baseline that
grants perfect induced symmetry. The image signals are per-
fectly symmetric whenever bg=�g, so that solving with respect
to � in Equation 12 yields

� =
1

2� ↵1
. (13)

refinement 1

refinement 2

Figure 8: Refinement using slant prior (top view of scene in Figure 7). Assume
that Q lies on the plane ⌦. Then, we can determine the position on the base-
line 0(1) (see Equation 13) that improves the induced symmetries. Using the
vertical virtual cut plane defined by 0(1) and Q, it is possible to induce new
symmetries from which the refined point Q(1) is estimated.

From the analysis above, we propose a simple approach that
uses slant information to refine the SymStereo depth estimates
(see Figure 8). The first step consists in computing the line cuts
for a set of virtual scan planes⇧i that go through the midpoint
of the baseline (O1 = 0.5b). The line reconstruction tends to
be inaccurate in the presence of surface slant, however, and as
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