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Abstract

The performance of a binocular active vision sys-
tem depends mainly on two aspects: vision/image pro-
cessing and control. In this paper we characterize the
monocular performance of smooth pursuit. This sys-
tem is used to track binocularly targets in a surveil-
lance environment. One of the aspects of this char-
acterization was the inclusion of the vision process-
ing. To characterize the performance from the control
point of view four standard types of inputs were used:
step, ramp, parabola and sinusoid. The responses can
be used to identify which subsystems can be optimized.
We show that prediction and a velocity estimate are
essential for a good tracking performance.

1 Introduction

Visual servoing and active vision are important re-
search topics in robotics and computer vision. Many
aspects have been studied and several systems demon-
strated [1, 2]. One of these aspects is the issue of sys-
tem dynamics. System dynamics is essential to enable
the performance optimization of the system. Other
aspects are related to stability and the system laten-
cies [3, 4]. In [4] Corke shows that dynamic modeling
and control design are very important for the improved
performance of visual closed-loop systems. One of his
main conclusions is that a feedforward type of con-
trol strategy is necessary to achieve high-performance
visual servoing. Nonlinear aspects of system dynam-
ics have also been addressed [5, 6]. In [5] Kelly dis-

cusses the nonlinear aspects of system dynamics and
proves that the overall closed loop system composed
by the full nonlinear robot dynamics and the controller
is Lyapunov stable. In [6] Hong models the dynamics
of a two-axis camera gimbal and also proves that a
model reference adaptive controller is Lyapunov sta-
ble. In [7] Rizzi and Koditschek describe a system that
takes into account the dynamical model of the target
motion. They propose a novel triangulating state es-
timator and prove the convergence of the estimator.
In [8, 9] the control performance of the Yorick head
platform is also presented. In special it is considered
the problem of dealing with the inherent delays and in
particular with variable delays. Problems associated
with overcoming system latencies are also discussed
in [10, 11]. A performance characterization of an ac-
tive vision system was also performed in the GRASP
laboratory[?].

2 The MDOF System–Block Diagram
and Control Structure

The MDOF binocular system is a high-performance
active vision system with a high number of degrees of
freedom. Real-time complex visual behaviors were im-
plemented after careful kinematics modeling and ade-
quate selection of basic visual routines. This platform
is now integrated in a visual surveillance system that
enables the selection of the target to be pursued by
the MDOF head [12]. One of the features of this sys-
tem is its ability to track targets that can change their
shape (e.g. human intruders). This is possible because



Figure 1: The MDOF binocular system
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Figure 2: System block diagram

differential flow was chosen for velocity estimation.

The MDOF binocular tracking system can be con-
sidered as a servomechanism whose reference inputs
are the target coordinates in space and whose out-
puts are the motor velocities and/or positions [13, 14].
However in the case of this system, and as a result of
both its mechanical complexity and its goal (tracking
of targets with unknown dynamics), we decided to re-
late the system outputs with the data measured from
the images. Thus this system can be considered a reg-
ulator whose goal is to keep the target in a certain
position on the image (usually its center). As a re-
sult of this framework target motion is dealt with as
a perturbation. If the perturbation affects the target
position on the image it has to be compensated for.
Servoing is therefore a resource used by the system to
achieve its objectives.

Our goal is to characterize the control performance
of the several visual behaviors of the system namely

smooth pursuit, saccadic motion and vergence control.
However in this paper we will focus on the analysis of
the smooth pursuit performed by one of the cameras.
Each camera joint has two independent rotational de-
grees of freedom: pan and tilt. Even though pure ro-
tation can not be guaranteed we model these degrees
of freedom as purely rotational. A schematic for one of
the these degrees of freedom is depicted in Fig 2(both
degrees of freedom are similar and decoupled). No-
tice that 2 inputs and 2 outputs are considered. Both
position and velocity of the target in the image are
to be controlled or regulated . If it is true that the
two quantities are closely related, this formal distinc-
tion allows a better evaluation of some aspects such
as non-linearities and limitations in performance.

The dotted box encloses the analog components of
the structure. All the other elements are digital. Dig-
ital to analog, as well as analog to digital conversions
are omitted. Block N(i(k)) represents a non-linear
function described in equation 1.





i(k) = Vxt(k)− Vxind(k)
N(i(k)) = 1⇐= i(k) > 0
N(i(k)) = 0⇐= i(k) = 0

(1)

Vxf (k) is the command sent to the motor, obtained by
filtering u(k), the sum of the estimated velocity with
the position error multiplied by a gain K (2).

u(k) = Vx(k) +K.Cx(k) (2)

Notice that the Kalman filter predicting capability
is not being used. Instead the filter is used to achieve
smooth motion without oscillations. Considering that
the motion computed on the image is caused by tar-
get motion and by camera motion, the computation of
the target velocity requires that the effects of egomo-
tion are compensated for. The egomotion is estimated
based on the encoder readings and on the inverse kine-
matics. Once egomotion is estimated, target velocity
on the image plane is computed based on an affine
model of optical flow. Target position is estimated as
the average location of the set of points with non-zero
optical flow in two consecutive frames (after egomo-
tion having been compensated for). This way what
is actually computed is the center of motion instead
of target position. The estimated value will be zero
whenever the object stops, for it is computed by using
function N(i(k)).

3 System perturbation

The MDOF tracking system compensates for the
perturbations due to target motion. To study and



characterize its regulation/control performance usual
control test signals must be applied. Two problems
must be considered.

• The accurate generation of perturbation signals;

• The generation of perturbation signals function-
ally defined, such as steps, ramps, parabolas and
sinusoids;

Instead of using real targets, we decided to use
synthetic images so that the mathematical functions
corresponding to reference trajectories could be accu-
rately generated. These images are then used as inputs
in the binocular active vision system.

The captured frame at a given time instant de-
pends, not only on the target position, but also on
the camera orientation. Due to the change of the sys-
tem geometry as a result of its operation, synthetic
images have to be generated on line to take into ac-
count the specific geometry at each frame time instant.
Therefore both target position and camera orientation
have to be known in the same inertial coordinate sys-
tem. The former is calculated using a specific motion
equation that enables the computation of any kind of
motion in space. Camera orientation is computed by
taking into account the motor encoders readings and
the inverse kinematics. The inertial coordinate system
origin is placed at camera optical center.

cAi =




C(αp) S(αp)S(αt) −S(αp)C(αt) 0
0 C(αt) S(αt) 0

S(αp) −C(αp)S(αt) C(αp)C(αt) 0
0 0 0 1




(3)
Mathematic equations are used to accurately describe
the desired target motion in space. Motion coordi-
nates are converted into inertial cartesian coordinates
applying suitable transformation equations. Notice
that motion coordinates can be of any kind (carte-
sian, spherical or cylindrical). Inertial coordinates
are converted in camera coordinates using matrix
3. This transformation depends on motor positions
(αp, αt), that are known by reading the encoders. Per-
spective projection is assumed for image formation.
These computations are performed at each frame time
instant[?].

θ(t) = Const (4)

θ(t) = ω.t (5)

θ(t) =
γ

2
.t2 (6)

θ(t) = A sin(ω.t) (7)
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Figure 3: Motor angular position for perfect tracking
considering target spherical/circular motion

We decided to relate the system outputs with the
data measured from the images. Therefore target mo-
tion must generate the standard control test signals on
the image plane. For the MDOF system, where cam-
eras move along circular paths, it was demonstrated
that target trajectories of equations 4 to 7 (spheri-
cal coordinates) generate the desired perturbations if
perfect tracking is assumed [?]. Thus a step (in posi-
tion) is an abrupt change of target position in image
(equation 4). A ramp/parabola (in position) occurs
when the 3D target motion induces a constant veloc-
ity/acceleration in the image plane (equations 5 and
6). And a sinusoid is generated whenever the image
target position and velocity are described by sinusoidal
functions of time (with a phase difference of 90 de-
grees)(equation 7).

4 System response to motion

In this section we analyze the system ability to com-
pensate for perturbations due to target motion. Pan
and tilt control algorithms are equal except for some
of the parameters. As a result the behaviors of both
(including when they are combined) are identical and
due to lack of space we will only present results for
the pan control.

4.1 Step response

If the target moves instantaneously to a position 7
degrees ahead on a circumference centred in the pro-
jection center of the camera, we will have a step per-
turbation in position of amplitude 7. Fig. 4 shows the
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Figure 4: Regulation performance. Target position (-
-) and velocity (-) on the image

evolution of target position (Xt) in the image. The
system detects the motion and immediately moves the
camera on that direction. An overshoot of about 10%
occurs and stability is reached. The regulation is done
with a steady state error of about 1.5 pixels. In exper-
iments done with smaller amplitude steps the system
fully compensates for target motion. In these situa-
tions the regulation error is 0 and we have a type 1
system. The type of response depends on the step am-
plitude. This clearly indicates a non-linear behavior.
One of the main reasons for the non-linear behavior
is the way position feedback is implemented. After
compensating for egomotion, target position is esti-
mated as the average location of the set of points with
non-zero optical flow in two consecutive frames. Thus
the center of motion is calculated instead of target
position. If the target stops, any displacement de-
tected in the image is due camera motion. In that
case target velocity (Vxt(k)) is equal to induced veloc-
ity (Vxind(k))

i(k) = Vxt[k]− Vxind[k] = 0

and the position estimation Cx will be 0 (see Fig. 2).
Therefore target position would only be estimated at
the step transition time instant. Only if egomotion
is a pure rotation would this occur. In practice sam-
pling and misalignment errors between rotation axis
and center of projection introduce small errors. These
errors result in a i(k) different from 0 and target po-
sition is actually estimated. As a result of computing
the center of motion instead of the target position, er-
rors become significant when large displacements be-
tween consecutive frames occur. This can be consid-
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Figure 5: Regulation performance. Target position (-
-) and velocity (-) in the image

ered as a non-linearity in the system.
A step in position corresponds to an impulse per-

turbation in velocity. Fig 4 shows the ability of the
system to cancel the perturbation. Notice that only
the first peak velocity is due to real target motion.

4.2 Ramp response

Now consider the target moving around the camera
with a constant velocity of 10 deg /s. As can be seen in
Fig. 5 the target moves about 6 pixels from the image
center before the system starts to compensate for it.
It clearly presents an initial inertia where the action of
the Kalman filter plays a major role. The Kalman fil-
ters the commands (u(k)) to the motors, limiting the
effect of measurement errors and allowing for smooth
motion without oscillations. After the transition pe-
riod the system stabilizes following the motion of the
target with a steady state error in position of 2 pix-
els. Considering the motor performance we have a
type 1 position response to a ramp and a second or-
der type 1 velocity response to a step. The position
measurement error will be directly proportional to the
speed of motion. A more accurate position estimation
can lead to significant performance improvements and
can contribute to compensate for the non-linearities
mentioned in the step analysis. Another issue is the
value of the proportional gain K. Increasing its value
will reduce the effects of position error underestima-
tion. However oscillation and loss of stability can oc-
cur on low speed target movements. An adaptive pro-
portional control can be the solution. The use of an
integration is another option despite the fact that it
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Figure 6: Graph1:regulation performance (target po-
sition (- -) and velocity (-) in the image).

might lead to some unstable behavior. The algorithm
for velocity estimation using optical flow only performs
well for small velocities (up to 2 pixels). For higher
speeds the flow is clearly underestimated. This repre-
sents a severe limitation that is partially compensated
for by the proportional position error component on
the motor commands. Some experiments were per-
formed and we concluded that the system only follows
motions with constant velocities up to 20 deg /s.

The errors in velocity transduction, in particular
in high speed perturbations, generate another non-
linearity. The conclusions drawn on the type and or-
der of the responses are only valid for a strict range of
velocities.

4.3 Parabola response

The perturbation is generated by a target moving
around the camera with a constant angular acceler-
ation of 5 deg /s2 and an initial velocity of 1 deg /s.
When the velocity increases beyond certain values flow
underestimation bounds the global performance of the
system. Fig. 6 shows that the system is unable to fol-
low the object and compensate for its velocity. As a
consequence the object progressively leaves the image
center and the error in position increases. The time
until the target disappears from the field of view is a
function of the increasing acceleration.

4.4 Sinusoidal response

System reaction to a sinusoidal perturbation of an-
gular velocity 2rad/s is studied. Non linear distor-
tions, mainly caused by velocity underestimation, can
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Figure 7: Servo mechanic performance in position.
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be observed. Notice the phase lag and the gain in
position motor response in Fig. 7.

5 Additional control aspects

In the MDOF robot head actuation is done using
DC motors with harmonic drive controlled by Preci-
sion Microcontrol DCX boards. As shown in Fig. 2
the actuation input is the velocity Vxf [k] and the out-
put is the camera position read at the encoders. Fig.8
depicts a detailed schematic of the sub-system. Motor
position is controlled using a classic closed-loop con-
figuration with a digital PID controller. The reference
inputs (in position) are computed by a profile genera-
tor. This device is controlled by the velocity command
and a predefined acceleration.

M(z) = 0.09z−3.
1 + 0.38z−1

(1− z−1)(1− 0.61z−1 + 0.11z−2)
(8)

Using system identification techniques the mo-
tor/actuator discrete transfer function was obtained



(equation 8). Notice that M(z) represents not the mo-
tor but the low level loop of Fig.8. The pole in z = 1
is due to the integration needed for velocity-position
conversion. A pure delay of 3 frames was estimated.
This latency can be minimized by a new PID tuning.

6 Summary and Conclusions

In this paper we characterize the behavior of a
smooth pursuit visual behavior by using typical test
signal inputs. Smooth pursuit is based essentially on
the computation of the differential flow. By consid-
ering the time responses to step, ramp, parabola and
sinusoidal inputs specific performance limitations can
be identified. We not only characterize the control per-
formance of the servo-mechanical structure but also
and also the performance of the visual processing rou-
tines. The results enable the identification of specific
non-linearities of the system and show that prediction
is essential for a tracking behavior.
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