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Abstract

To achieve high performance visual tracking a well bal-
anced integration of vision and control is particularly impor-
tant. This paper describes an approach for the improvement
of tracking performance by a careful design and integration
of visual processing routines and control architecture and
algorithms. A layered architecture is described. In addition
a new approach for the characterization of the performance
of active vision systems is described. This approach com-
bines the online generation of test images with the real time
response of the mechanical system. Crucial for the perfor-
mance improvement was the consideration that the number
of mechanical degrees of freedom used to perform the track-
ing was smaller than the number of degrees of freedom of
rigid motion (6). The improvements on the global perfor-
mance are experimentally proved.

1 Introduction

The approach of controlling robot motion using visual in-
formation is referred to in the literature as visual servoing.
Vision provides non contact measurements of the world,
extending the robot ability to operate in unknown circum-
stances and environments. However the use of visual feed-
back can be a very challenging problem. Not only because
image processing is far from being a trivial subject, but also
because there are a lot of additional issues and trade-offs
that must be considered. The design of a visual servoing
system involves complex topics on computer vision, real
time computing, control theory and system architecture.

Control issues are particularly important. The visual pro-
cessing delay in the feedback loop is a major problem for
the global system dynamics. In general the visual latency
introduces a phase delay in the system frequency response.
In extreme situations the phase delay can lead to unstable
systems [1], and very often it is responsible for poor tran-
sitory behaviors [2]. As referred in [3, 4] there are several
reports of visual servoing systems with a slightly oscilla-

tory behavior or a very slow response. In the former the
closed loop system is near the stability limit. In the latter
the latency is not compensated by an adequate controller
design/tuning. This illustrates the importance of dynamics
to achieve high performance and robust visual control of
motion [4, 5, 6, 7].

Active visual tracking of moving targets consists in hav-
ing one or more cameras mounted on a moving platform
whose motion is controlled such that the target projection
is kept in a certain position in the image plane (usually the
center). The moving platform can be a mobile robot, a ma-
nipulator end-effector or a robot head as the ones described
in [8, 9, 10]. In [11, 12, 13] Batista et al. describe a system
to perform binocular tracking using the ISR-MDOF robot
head [8]. The proposed system is the starting point of this
work which aims to modify the original design to achieve
higher performances. Due to the high coupling between vi-
sion and control, optimizing visual servoing performance
is not a trivial problem. There are several trade-offs that
must be taken into account. For instance, more accurate and
robust visual measurements do not necessarily lead to im-
proved active tracking performances. If the modifications
in the visual feedback loop imply an increased latency then
the negative effects in system relative stability can overtake
the advantages provided by the visual algorithms. Improve-
ments in visual processing must be complemented by ad-
justments in the controller tuning and design. On the other
hand changes on the control architecture to increase closed
loop bandwidth affect the stability of image capture. This
can deteriorate the visual feedback and decrease the global
system performance.

The article starts by introducing the ISR-MDOF binocu-
lar tracking system. The system is modelled as a regulation
control problem with both input and output defined in the
image plane and target motion acting as a perturbation that
must be compensated [3, 4]. High performance visual track-
ing can only be achieved with a well balanced integration of
vision and controls. Good choices and decisions can only
be made if both aspects can be characterized in a common
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Figure 1: The ISR-MDOF robot head.

framework. A metric for global performance evaluation is
presented and discussed [14, 15]. The proposed evaluation
framework is applied to the ISR-MDOF tracking system.
The experimental measurements are used as guidelines in
successive iterations where system design is modified and
tracking performance is improved. Solutions for different
aspects of visual control of motion are proposed and trade-
offs between vision and control are illustrated by the ex-
periments. A method for real time position and velocity
estimation in the image is presented [16]. Kalman filter-
ing of visual measurements is discussed for both monocular
tracking and vergence control. A system architecture based
on three concurrent processes is proposed (visual process-
ing, gaze control and low-level servo control) [17]. Linear
interpolation is used to cope with the visual processing de-
lay [2, 18]. Model predictive control is applied in the gaze
control [19]. A final demo showing system performance for
both monocular and binocular tracking is provided in media
content.

2 The ISR-MDOF Binocular Track-
ing System

Fig. 1 depicts the ISR-MDOF Binocular Tracking System.
The MDOF robot head is a high performance 16 degrees
of freedom (DOF) mechanical system. Each degree of free-
dom is actuated by a DC motor with “harmonic drive” gears
which allows excellent positioning accuracy and repeata-
bility with zero backlash. Each MDOF joint can be con-
trolled both in position and in velocity. The position control
is performed by a local closed loop with a PID digital fil-
ter running at 1KHz. The feedback position information
is provided by an optical encoder mounted on motor back
shaft.The velocity control is achieved using a profile gener-

Figure 2: ISR-MDOF binocular fixation

ator that integrates the velocity command and generates the
position reference for the closed loop. The communication
with the servo control modules is synchronous at a rate of
166Hz. For further details about the MDOF robot head see
[8, 20]. In [11, 12], Batista et al. propose an active binocu-
lar tracking algorithm using the ISR-MDOF platform. The
algorithm is the starting point of our work.

Consider a target moving in 3D space. The goal of the
binocular tracking algorithm is to control platform motion
such that target image is kept in the fovea region of both
retinas. The smooth pursuit behavior proposed in [11, 12]
uses 4 DOF of the robotic head: neck pan and tilt and both
eyes pan motion. Neck pan and tilt angles are respectively
αp andαt. The pan motion of the eyes is known as vergence
motion. Angles βl and βr are respectively the left and right
vergence. The proposed binocular tracking strategy con-
strains the left and right vergence angles to be symmetric
(βl = −βr = β). Fig. 2 depicts the described fixation
geometry.

Assume a virtual eye, called cyclopean eye, positioned
in the middle of left and right camera. The neck rotation
angles αp and αt are controlled to align the cyclopean op-
tical axis with the target in 3D space. Whenever the axis is
aligned with the object the target image is projected in the
center of the virtual cyclopean retina. Neck rotation control
is similar to the control of the monocular active tracking
of the moving target with the cyclopean eye. The vergence
degree of freedom is used to adjust left and right camera po-
sition such that the target is projected in the center of both
images. By assuming a symmetric vergence configuration
the angle β only depends on the target 3D motion along cy-
clopean optical axis. Thus the vergence angle is a function
of target depth in the cyclopean referential frame. This sug-
gests that by assuming symmetric vergence the binocular
tracking can be decoupled in two sub-problems: pan and
tilt control of the cyclopean eye and vergence control.
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This section shows how the binocular tracking problem
can be split into monocular active tracking with the cyclo-
pean eye and vergence control. The next subsection focuses
on the visual processing of left and right images and the
conversion of the obtained measurements to the virtual cy-
clopean eye.

2.1 Converting Visual Information to the Cy-
clopean Eye

ẋi = ẋ + ẋego (1)

Consider the position xi of a moving target in the image
plane of a moving camera. The motion in the image de-
pends both on the target motion in space and on the camera
motion. The former is called target induced motion and the
latter self-induced motion or egomotion. Equation 1 shows
the target velocity in the image ẋi as sum of two veloc-
ity components: the velocity induced by object independent
motion ẋ, and the egomotion velocity ẋego. If the camera
undergoes pure rotation then ẋego depends only on the sen-
sor motion. In this case a pair of images of a static scene
are related by an homography [21]. If the camera describes
a motion with a translation component then ẋego depends
both on the sensor motion and on the distance between the
3D imaged points and the camera. Fig.2 shows that there
is an arm B between the cameras and neck joints which
introduces a translational component of motion whenever
neck rotates in pan. Nevertheless if the distance of the 3D
imaged points to the system is much larger than the base-
line length 2B then the egomotion image velocity due to
translation can be neglected [22]. The assumption of a dis-
tance between the scene and the system much larger than
the baseline holds in the remaining of the section.

The tracking algorithm presented in [11, 12, 13] inte-
grates simultaneously position and velocity information to
control platform motion. The target induced velocity ẋ is
measured after an explicit compensation of the egomotion
component. Consider two frames captured in successive
time instants. Relative camera motion is determined using
encoder information and self-induced image velocity is es-
timated. Given ẋego, the egomotion compensation is per-
formed by warping the first frame. The warped frame is
subtracted to the second frame and a difference image is ob-
tained. This last image contains the points where indepen-
dent motion occurred. Assuming that there is a single mov-
ing object in the scene then the independent motion points
must belong to the target. The target image is segmented
and the corresponding position is measured as the average
location of the difference points. Target induced velocity ẋ

is estimated by computing the optical flow in these points (a
constant velocity model is assumed).
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Figure 3: Camera mounted on a pan and tilt unit.
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2
(3)

The target position coordinates in the left and right im-
ages are respectively xl

i = (xli, y
l
i)
t and xr

i = (xri , y
r
i )
t (the

focal length f is made unitary). Consider that the target
would be projected in the virtual cyclopean camera at posi-
tion xi = (xi, yi)

t. Equation 2 computes cyclopean coordi-
nates xi as a function of xl

i and xr
i and the vergence angle β.

Notice that if the distance between the target and the robotic
head is much larger than the baseline then it is reasonable to
assume that the vergence angle is small. By making β ≈ 0
equation 2 becomes xi ≈ (xl

i + xr
i )/2. Moreover given

target induced velocities ẋl and ẋr in left and right retinas
it can be shown that the velocity induced in the cyclopean
image would be approximately given by equation 3. The
mathematical details and the analysis of the conditions for
the application of the approximations are provided in [22].

2.2 Control Equations

This subsection introduces the kinematic equations for both
monocular tracking and vergence control.

2.2.1 Monocular Tracking

xi =

[

f cos(αt) tan(δp)
f tan(δt)

]

(4)

Fig.3 depicts a perspective camera mounted on a plat-
form with two rotative degrees of freedom: pan and tilt. The
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Figure 4: Top view of the binocular system. Vergence control

goal of the monocular tracking algorithm is to control plat-
form pan and tilt angles (αp and αt) such that camera opti-
cal axis becomes aligned with the moving target. Consider
that Ω = (ρ, θ, φ) is target 3D position in spherical coordi-
nates. Pan and tilt angular control errors are δp = θ − αp
and δt = φ − αt. Equation 4 establishes the relationship
between the target position in the image xi = (xi, yi)

t and
the angular control errors. It assumes a perspective model
of image formation (f is the focal length) and is valid for
cameras with a small field of view [22]. Notice that the pan
and tilt control are decoupled. The angular pan error δp is
related to the target X coordinate in the image plane, and the
tilt error δt depends only on the target Y coordinate. With-
out loss of generality we will focus our study in the pan
control, knowing that all conclusions will be applicable to
the tilt control.

xi = f tan(δp) (5)

ẋi = f sec2(δp)θ̇ − f sec2(δp)α̇p (6)

Consider that the target φ coordinate is zero as well as
the camera tilt angle αt. The object is moving in the XOZ
plane of Fig.3 and its image is projected in theX axis of the
image. The goal is to control the camera pan motion such
that the target is projected in the origin of the image plane.
Equation 5 establishes the relation between the target image
X coordinate and the angular control error δp. Equation 6
computes the target image X velocity as a function of the
target angular velocity θ̇ and the camera pan velocity α̇p.
The first term on the right member is the velocity ẋ induced
by target motion. The second term is the egomotion velocity
component ẋego.

2.2.2 Vergence Control

Assume that the target is aligned with the cyclopean optical
axis. The goal of the vergence control is to correct the left

and right camera positions such that the target is projected
in the center of both image planes. The 3D point where the
left and right optical axes intersect is called vergence point.
Thus the goal is to make the vergence point coincident with
the target.

∆xi = 2f
B − ρ tan(β)

ρ+B tan(β)
(7)

∆xi = 2f tan(δv) (8)

Consider the disparity ∆xi = xli − xri in the target X
position between the left and right images. Equation 7 es-
tablishes the relation between the image disparity ∆xi, ver-
gence angle β and the target position in the cyclopean opti-
cal axis ρ. Its derivation is a mere calculus exercise consid-
ering the target position in each camera coordinate frame. If
the vergence angle is ψ = arctan(B/ρ) then the vergence
point coincides with the target and the disparity ∆xi is zero
(see Fig.4). The disparity ∆xi depends on the the angular
vergence error δv = ψ − β as shown in equation 8 directly
derived from 7.

∆ẋi = −
2f(1 + tan(β)2)

(ρ+B tan(β))2
(Bρ̇+ (ρ2 +B2)β̇) (9)

∆ẋi = −
2fB

ρ2 +B2
ρ̇− 2fβ̇ (10)

Equation 9 is derived by differentiating equation 7, with
∆ẋi = ẋli − ẋri the velocity disparity between left and right
image, β̇ the angular velocity of vergence motion and ρ̇ the
target velocity along the cyclopean axis. If the vergence
point is coincident with the target then δv = 0 and tan(β) =
B/ρ. Equation 9 becomes equation 10. Notice that once
again the first term is the target induced disparity velocity
and the second term the egomotion velocity.

2.3 Active Tracking as a Regulation Control
Problem

Active tracking of moving targets is a problem of vi-
sual control of motion. In this situation the system to
be controlled is the robotic platform supporting the cam-
eras. There are a wide variety of visual servoing applica-
tions in the literature. One typical application is to control
the position of a robotic manipulator using visual feedback
[23, 24, 25]. The proposed problem solutions can be classi-
fied into two major groups: position based and image based
visual servoing [26]. In the former the control input is de-
fined in the 3D space. Typically object pose is explicitly
estimated knowing camera calibration [24]. In the latter the
task function is defined in the image plane [25]. The image
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Figure 5: Block diagram for the monocular tracking pan degree
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and ẋi are target image position and velocity. ẋego is the image ve-
locity induced by camera motion (egomotion). x is the estimated
target position in image (ideally x = xi, and ẋ the image velocity
induced by target motion after egomotion compensation.

based approach is less sensitive to calibration errors, nev-
ertheless it can present singularities and convergence prob-
lems [27]

In a similar manner we can have a position or an im-
age based approach for active visual tracking. The former
is a servo control problem while the latter is a regulation
control problem. Consider the vergence control introduced
previously. In the position based approach the reference in-
put is the 3D target position and the controlled output the
3D position of the vergence point. The system is modelled
as a servo control loop where the goal is to make the output
converge to the input reference. In an image based approach
the task function is defined in the image plane. The control
goal is to keep a null target image disparity between the
left and right retinas. The system is modelled as a regulator
where the 3D target motion acts as a perturbation that must
be compensated.

In [3, 4] Corke and Good model the active visual track-
ing system as a regulation control problem. The reference
input is the desired target position in image (typically the
center) and the output the actual target position. The target
motion in 3D space is a perturbation that must be compen-
sated by the robot motion to keep the target projection in the
desired reference position. The performance of the system
is measured by its perturbation rejection ability. This image
based approach is not so dependent on the camera and sys-
tem mechanical calibration, and problems of convergence
and due to singularities do not arise due to the fact that the
target is modelled as a moving point.

2.3.1 Monocular Tracking

Fig. 5 depicts the monocular tracking pan control loop. The
input reference xref (k) is the desired target position in im-

age (typically xref = 0), and the control output the actual
target position xi(k). The target motion in the scene acts
as a perturbation that must be compensated for, such that
the target projection is kept in the image center. The reg-
ulation is achieved by moving the platform in a way that
δp = θ − αp converges to zero. For this purpose both the
target image position x(k) and velocity ẋ(k) are estimated
after egomotion compensation. Notice that ideally measure-
ment results x(k) = xi(k) and ẋ(k) = ẋi(k) − ẋego(k).
In this particular case the camera undergoes a pure rota-
tion motion. There is an homographic relation between two
successive frames [21]. The egomotion velocity ẋego is es-
timated from motor encoder readings.

The target position in the image is directly related to the
angular pan error. From equation 5 αp = arctan(x/f).
The estimated velocity ẋ corresponds to the first term of the
right member of equation 6. Camera pan velocity α̇p must
be such that the egomotion velocity cancels out the object
induced velocity and the target velocity in image converges
to zero (ẋi = ẋ + ẋego = 0). From equation 1, 5 and
6 it results that α̇p = θ̇ = fẋ/(f2 + x2) which can be
approximated to α̇p ≈ ẋ/f assuming x ≈ 0. The veloc-
ity command V (k) sent to the motor velocity control loop
is computed according to equation 11 where G is a con-
stant gain. A Kalman filter is used to limit the effects of
both noise and errors in the visual measurements allowing
a smooth tracking behavior.

V (k) =
1

f
(ẋ(k) +G.x(k)) (11)

2.3.2 Vergence Control

As discussed in section 2.2.2 symmetric vergence control is
achieved using the image disparity information. Both the
position disparity ∆x and the velocity disparity induced by
target motion ∆ẋ are estimated (see Fig.6). The angular po-
sition error δv can be determined knowing ∆x (equation 8).
The velocity disparity ∆ẋ after egomotion compensation
corresponds to the first term of the right member of equation
10. Angular vergence velocity β̇ must be such that image
velocity disparity ∆ẋi converges to zero and regulation is
achieved. Repeating the reasoning for the monocular track-
ing problem it results from equation 10 that β̇ = ∆ẋ/2f
[11, 13].

3 Defining the Test Signals

As discussed in 1 visual control of motion depends both on
vision and controls. To achieve high performance visual
servoing the integration of these two aspects must be taken
into account. Nevertheless a well balanced solution can be
difficult to establish. The characterization of vision and
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control aspects must be performed simultaneously within
a common framework. In linear control theory there are a
set of test signals used in performance evaluation. These
signals are the step, the ramp, the parabola and the sinusoid
which allow the characterization of the different system as-
pects. Our common evaluation framework is based on the
standard linear control test signals.

Consider the regulation control loops depicted in Fig. 5
and 6. The control test signals can be defined in the 3D
target motion space. A ramp perturbation input would cor-
respond to a constant velocity motion of the target in the
scene. However this definition of the perturbation test sig-
nals is not coherent with our image based approach to the
visual servoing problem. The input and output of the regu-
lation control loops are defined in the image plane and not
in the 3D space. Moreover both monocular tracking and the
vergence control are not linear systems. The visual process-
ing introduces non linearities in the feedback loop. In gen-
eral a ramp defined in the 3D target motion space does not
induce a constant velocity in image. The control test signals
defined in this way do not make sense in the evaluation of
the visual components (position and velocity estimation).

The test signals are defined in the image plane within
the framework of the image based approach. A step per-
turbation is an abrupt change of target image position. A
ramp/parabola occurs when the target motion in space in-
duces a constant velocity/acceleration in the image plane.
A sinusoid is generated whenever the image target velocity

and position are described by sinusoidal function of time.
The test signals are meaningful for the visual estimation al-
gorithms allowing an evaluation of both vision and controls
in a common framework.

Two problems remain:

• To accurately generate the perturbation test signals;

• To determine the target 3D trajectories that induce a
step, ramp, parabola and sinusoid in the image plane
for both monocular tracking and vergence control;

3.1 Accurate Generation of the Test Signals

To characterize the system ability to reject the perturbation
due to target motion, specific test signals have to be gen-
erated. Our methodology assumes a virtual target moving
along a specified 3D space trajectory. The virtual object
is projected in the image plane at each frame time instant.
Image generation depends both on 3D target position and
camera pose at that instant. The generated images are used
as inputs of the visual feedback loop. System behavior to
compensate for the perturbation is observed and the regula-
tion performance is measured.

Given a predefined target motion, captured frames will
depend, not only on the target position, but also on the cam-
era orientation. System geometry changes along time as a
result of the tracking behavior. Thus, images have to be
generated on line to take into account the specific geometry
at each time instant. Therefore at each frame time instant
both the target position and the camera orientation have to
be known in the same inertial coordinate frame. The for-
mer is calculated using the specific motion model of the
virtual target. Camera orientation is computed by taking
into account the motor encoders readings and head inverse
kinematics. The inertial coordinate frame origin is placed at
camera optical center (monocular tracking) or at the origin
of the cyclopean referential (vergence control).

The proposed emulation technique makes possible an
accurate generation of the test perturbation signals. The
trajectory of the virtual target is defined mathematically.
The knowledge of the input signal used to excite the sys-
tem is essential for a rigorous performance characterization.
Moreover the effort to perform experiments is minimized
and an excellent experimental repeatability is assured.

3.2 Reference Trajectories. Monocular
Tracking

A method for accurate generation of perturbation test sig-
nals has been derived. This section discusses the 3D target
trajectories that correspond to an image step, ramp, parabola
and sinusoid for the monocular tracking system.
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A step perturbation is an abrupt change of the target im-
age position xi (equation 5). If the camera is static, any
sudden change of the object 3D position generates the de-
sired effect in the image plane. The only exception occurs
if the target moves along the projection ray. In this case the
target image will remain the same. Consider that the target
3D position is given in spherical coordinates as shown in
Fig.7. From the equation 5 it results that a step ∆xi in the
image plane corresponds to a step ∆θ = arctan(∆xi/f) in
the target 3D angular position.

The target velocity in the image ẋi depends both on the
target induced velocity ẋ and the egomotion ẋego (equations
1 and 6). For a perfect tracking situation the former is com-
pensated by the latter and no motion is detected in the im-
age. Whenever perfect tracking does not happen there will
be image motion as a result of the tracking error. There-
fore, the objective of tracking is to move the camera in such
a way that the egomotion compensates for the motion in-
duced in the image by the target. From this point of view
the system perturbation will be the motion induced by the
target.

ωi = f θ̇ sec(δp)
2 (12)

A ramp perturbation occurs whenever the target motion
induces a constant velocity ωi in the image plane (ẋ = ωi).
This 3D motion can be computed by solving differential
equation 12, derived from 6, in order to θ. The difficulty is
that the reference trajectory θ(t) will depend on the system
response to the perturbation. To induce a constant velocity
in image during operation, the target 3D angular velocity
must be computed at each frame time instant as a function
of the the tracking position error δp. If perfect tracking oc-
curs then δp = 0 and an object motion along a circular path
with constant angular velocity θ̇ = ωi/f induces the de-
sired ramp perturbation (Fig.7). During smooth pursuit op-
eration the target image usually lies near the center and the
position tracking error is small. Thus, if the tracking is not
perfect then the uniform angular motion does not induce a
constant image velocity. However the variation on ẋ tends

to be negligible. We will assume a null tracking error to de-
rive a ramp reference trajectory that does not depend on the
system response to the perturbation.

γit = f θ̇ sec(δp)
2 (13)

Ai
2π

T
cos(

2π

T
t) = f θ̇ sec(δp)

2 (14)

The parabola perturbation occurs whenever target 3D
motion induces a constant acceleration γi in the image and
the velocity ẋ is given by ẋ(t) = γit. In a similar way the a
sinusoid perturbation with amplitude Ai and period T cor-
responds to a co-sinusoidal variation of ẋ with amplitude
(2πAi)/T and equal period. The reference trajectories that
generate parabola and sinusoid perturbations can be com-
puted by solving equations 13 and 14. The null tracking
error assumption is used to avoid that the derived test sig-
nals depend on the system response to the perturbation.

Fig. 7 summarizes the reference trajectories used for
monocular tracking characterization. The object moves in
a circular path centered in the camera optical center. An
abrupt change on the angular position generates a step input
in the image. A perturbation in ramp/parabola corresponds
to a motion with constant angular velocity/acceleration.
The sinusoid is induced by a sinusoidal motion of the ob-
ject on the circular path.

3.3 Reference Trajectories. Vergence Con-
trol

Fig. 4 depicts the vergence control scheme. It is assumed
that target moves along the cyclopean optical axis with po-
sition ρ. The vergence is symmetric with angle β. Vergence
control is achieved using the image disparity between left
and right retinas (equations 7 to 10). We want to derive the
reference trajectories ρ(t) that generate the desired pertur-
bation test signals in the image plane.

2fBρ̇+ viρ
2 = −viB

2 (15)

2fBρ̇+ aitρ
2 = −aitB

2 (16)

2fBρ̇+Ai
2π

T
cos(

2π

T
t)ρ2 = −Ai

2π

T
cos(

2π

T
t)B2 (17)

For the vergence control system a step perturbation is an
abrupt change on the position disparity which is induced by
a sudden change on target position along the cyclopean axis
(equations 7 and 8). A ramp input occurs whenever the dis-
parity of the target induced velocity in image ∆ẋ is constant
along time. Assuming that the vergence point is coincident
with the target (∆xi = 0), it is obtained from equation 10
that ∆ẋ = −(2fBρ̇)/(ρ2 + B2). The target 3D trajectory
ρ(t) such that ∆ẋ = vi can be computed by solving the
differential equation 15. Reasoning in a similar way to the
monocular tracking problem, the reference trajectories for
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Figure 8: Left: Ramp perturbation. Reference trajectory inducing
a constant velocity disparity vi = 1(pixel/frame) (ρ(0) = 5(m)).
Right: Sinusoidal Perturbation. Reference trajectory that gener-
ates a sinusoidal disparity with Ai = 2(pixel) and T = π(s).
(ρ(0) = 1(m))

0 1000 2000 3000 4000 5000 6000 7000
−10

−5

0

5

10

15

20

25

Time (ms)

P
os

iti
on

 (
pi

xe
l)

Target position in image (step response)

0 1000 2000 3000 4000 5000 6000 7000
−10

−5

0

5

10

15

20

25

Time (ms)

P
os

iti
on

 (
pi

xe
l)

Target position estimation in image (step response)

Figure 9: System response to a step perturbation of amplitude
∆xi = 24 pixels (the angular amplitude is ∆θ = 6◦). Left:
Regulation in image (xi [–]). Right: Image position estimation
(xi [- -]; x [–])

the parabola and sinusoid perturbations can be determined
from equations 16 and 17 (ai is the parabola constant accel-
eration and Ai and T the sinusoid amplitude and period).

Test signals obtained by solving the differential equa-
tions 15 and 17 are depicted in Fig.8. Notice that to induce
a constant velocity disparity in the images the 3D target ve-
locity increases with depth. This is due to the perspective
projection.

4 System Performance Evaluation

The reference trajectories derived in the section 3.2 are used
to evaluate the performance of the monocular tracking sys-
tem depicted in Fig. 5.

4.1 Step Response

A step in position is applied to the system. Fig. 9(L) shows
the evolution of the target position (xi) in the image. The
system regulation response presents an overshoot of about
5 pixels and a steady state error of 1 pixel. It is a typical
second order step response of a type 0 system. However in
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Figure 10: System response to a ramp perturbation of amplitude
ωi = −1.6 pixels/frame (the angular velocity is θ̇ = −10◦/s).
Left: Regulation in image (xi [–]). Right: Image position estima-
tion (xi [- -]; x [–])

experiments with smaller amplitude steps the system fully
compensates for the perturbation induced by target motion.
In these situations the regulation steady state error is 0 and
we have a type 1 system. The response type depends on the
step amplitude which clearly indicates a non-linear behav-
ior.

Fig. 9(R) shows the performance of the image position
estimator in the visual feedback loop. The target position is
estimated as the average location of the set of points with
non-zero optical flow in two consecutive frames after ego-
motion compensation. The estimated value x is the center
of motion instead of the target image position xi. Notice
in Fig. 9(R) that at the step transition instant xi changes
from 0 to 24 pixels and the corresponding estimation x is
about 10 pixels. For smaller step amplitudes the regulation
response improves because the center of motion in the tran-
sition instant is closer to the target image position xi and
the estimation x becomes more accurate.

If the object is stopped in the scene then the induced ve-
locity ẋ is zero and any image displacement is due to the
self induced component ẋego (equation 1). After egomo-
tion compensation, no motion is detected in the image and
the position estimation x is null. For a step perturbation
there is only independent motion on the transition instant.
Therefore target position would only be estimated at the
step transition time instant. However this is not the case as
shown in Fig. 9(R). Only with egomotion as a pure rotation
would this occur. In practice sampling and misalignment
errors between the rotation axis and the center of projection
introduce small errors. The egomotion compensation is not
perfect and a few points appear with non-zero optical flow.
The target position is estimated as the average location of
this set of points.

4.2 Ramp Response

Fig.10 exhibits the system response to a ramp perturbation.
The target moves about 5 pixels off the center of image be-
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Figure 11: System response to a parabola perturbation of am-
plitude γi = 0.032 pixels/frame2 (the angular acceleration is
θ̇ = 5◦/s2) Left: Regulation in image (xi [–]). Right: Estima-
tion of image velocity induced by target motion (ẋi − ẋego [...]; ẋ
[–])

fore the system starts to reject the perturbation. It clearly
presents an initial inertia due to the visual processing delay
and the Kalman filter action (see Fig. 5). The regulation
loop behaves like a type 1 system with a steady state er-
ror of −1 pixel. This is due to the deficient estimation x
that yields the center of motion instead of the target posi-
tion xi (Fig. 10(R)). For a ramp perturbation the estimation
error is about half of the induced velocity ẋ. In Fig. 10(R)
ẋ = −1.6 pixels/frame, thus the estimation error should be
around 0.8 pixels, which is in accordance with the observed
steady state error. Additional experiments showed that the
system presents a reasonable performance for ramp inputs
with angular amplitude up to 20◦/s.

4.3 Parabola Response

Fig. 11 shows the regulation performance in reject-
ing a parabola perturbation of amplitude γi = 0.032
pixels/frame2. After a certain point the system is clearly
unable to track the moving target. The algorithm for ve-
locity estimation using optical flow only performs well for
velocities up to 2 pixels/frame. When the velocity ẋ in-
creases beyond certain values, flow underestimation bounds
the global regulation performance. The system becomes un-
able to follow the object and compensate for its velocity. As
a consequence the object image is increasingly off the im-
age center. The limitations on velocity measurement are due
to the mask size used to compute the gradient brightness in
the flow estimation. We will overcome this difficulty using
a multi scalar approach.

4.4 Sinusoid Response

The system response for a sinusoid input shown in Fig. 4
confirms the previous conclusions. Velocities beyond 2 pix-
els/frame are underestimated and the global regulation per-
formance is clearly affected (Fig. 4(TL) and (BL)). How-
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Figure 12: System response to a sinusoid perturbation of ampli-
tude Ai = 40 pixels and period T = πs (the angular amplitude
is A = 10◦). Top Left: Regulation in image (xi [–]). Top Right:
Angular position response (αp [–]; θ [- -]). Bottom Left: Estima-
tion of image velocity induced by target motion (ẋi − ẋego [...]; ẋ
[–]). Bottom Right: Kalman filering of the command V(k) (input
[...]; output [–])

ever the errors in velocity measurement are partially com-
pensated for by the position component on the motor com-
mand V (k) (equation 11) and by the Kalman filter action
(Fig. 4(BR)). The Kalman filtering limits the effect of mea-
surement errors and allows smooth motion without oscil-
lations. The phase lag observable in the angular position
response (Fig. 4(TR)) is mainly caused by the inertia intro-
duced by Kalman filter smoothing action.

5 Improving Visual Feedback

The characterization of the monocular tracking system
(Fig. 5) showed that an accurate estimation of target im-
age position is fundamental to obtain zero steady state error
regulation. The actual algorithm is measuring the center
of motion instead of the target position xi and the position
estimation is made only when there is an induced velocity
in image (ẋ 6= 0). Moreover the velocity estimation algo-
rithm is only able to measure velocities up to 2 pixels/frame.
Whenever ẋ goes beyond this limit the flow is underesti-
mated and the global tracking performance is seriously af-
fected. System transient response is higly dependent on the
velocity estimation performance.

The present section discusses improvements in the visual
feedback loop to overcome the detected problems. Several
methods to measure position and velocity in image have
been proposed [28, 29, 30, 31]. Many of these techniques
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Figure 13: Image sequence acquired during monocular tracking.
First row: Original images. Second row: Images after egomotion
compensation. Third row: Set of image points with non zero ve-
locity ẋ. Fourth row: Points used for target position estimation

are accurate and robust but also computationally expen-
sives. The chosen algorithms must present a good balance
between accurancy and computational efficiency [32].

5.1 Position Estimation

Consider the image sequence acquired during the monocu-
lar tracking of a person Fig. 13(FR). A static backgound (a
door and some shelves) is visible behind the person. Ve-
locity ẋego is computed for each pair of consecutive frames
from the motor encoder readings assuming camera pure ro-
tation. The first image of the pair is warped to compensate
for the egomotion component (Fig 13(SR)). The MDOF
cameras have a narrow field of view (about 15◦) thus the
egomotion vector is nearly equal in all image points. The
obtained warped image is subtracted to the second frame
of the pair to segment the points where independent motion
occur. The difference frames in the third row of Fig 13 con-
tain the points where ẋ 6= 0. The points corresponding to
the static background have been removed.

Velocity estimation is performed using differential flow.
The gradient of the brightness function ∇I = (Ix, Iy, Iz)

t

is computed in the image points where independent motion
occurs. The original position estimation algorithm com-
putes target position as the average location of this set of
points. The measured value x gives the center of motion
which is a very rough approximation of xi specially if tar-
get induced velocity ẋ is high. Restrict the set to the image
points of the most recently acquired frame that have non-
zero spatial derivatives Ix and Iy (Fig 13(FR)). The average

Figure 14: Improvement of position estimation performance. Po-
sition estimation x using the original algorithm [x] and the new
method [o]
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Figure 15: Improvement on position estimation. System response
to a step perturbation of amplitude ∆xi = 24 pixels (the angular
amplitude is ∆θ = 6◦). Left: Regulation in image (xi [–]). Right:
Image position estimation (xi [- -]; x [–])

location gives a much better approximation of actual xi as
observed in Fig. 14. Moreover the proposed modification
do not introduce aditional computational effort.

x(k) = x(k − 1) + ẋego(k) (18)

The monocular tracking characterization verified that
target position is only estimated when target induced ve-
locity ẋ is not null. If no target motion is detected after
egomotion compensation then the target did not move. The
new position estimate should be equal to the previous es-
timate compensated for the induced displacement due to
camera motion (equation 18). Compare the step perturba-
tion response of Fig. 15 with the one of Fig. 9. The modi-
fications in the position estimation algorithm improved the
global regulation performance leading to a zero steady error
step response.

5.2 Velocity Estimation

To estimate the image velocity induced by target motion,
the brightness function gradient is calculated in all pixels
where independent motion occur. Only the points that ap-
pear in the difference images are taken into account for the
flow estimation ((Fig. 13(TR)). Given the flow constraint,
and assuming that all points belong to the target and move
with the same velocity, the velocity vector ẋ = (u, v)t is
estimated using a least squares method [33].

10



Ix.u+ Iy.v + It = 0 (19)

The flow constraint of equation 19 is valid for a contin-
uous brightness function (under the assumption of bright-
ness constancy). However the actual function I(x, y, t) is
discrete in time and space. Aliasing problems in partial
derivatives computation can compromise a correct velocity
estimation. When the target image moves very slowly high
spatial resolution is needed in order to correctly compute
the derivatives Ix and Iy and to estimate the velocity. On
the other hand, if the target image moves fast, there are high
frequencies in time and It must be computed with shorter
sampling periods. However the sampling frequency is lim-
ited to 25Hz. One solution to estimate high target velocities
is to decrease the spatial resolution. The drawback of this
approach is that high spatial frequencies are lost, and small
target movements will no longer be detected.

The original velocity estimation algorithm uses a 2×2
mask to compute brightness partial derivatives in 64×64
images [34]. The upper limit of the measurable velocity
range depends on the mask dimension. Thus the system is
unable to estimate velocities beyond 2 pixels/frame. Con-
sider a lower resolution 32×32 image, obtained by sub-
sampling the original 64×64 image. Using the same 2×2
mask we are able to measure velocities up to 2 pixels/frame
at 32×32 resolution, which corresponds to 4 pixels/frame
at 64×64 resolution. The problem of decreasing the image
spacial resolution is that the lower bound of the measurable
velocity range is also increased. To perform accurate mea-
surement of a wide range of image velocities the bright-
ness gradient must be computed using a multi scalar ap-
proach. Different possible solutions have been tested [16].
The method presenting best results is introduced in the next
paragraph.

A pyramid with three levels of image resolution is built.
The lower, middle and higher levels have a resolution of
64×64, 32×32 and 16×16 respectively. Target image ve-
locity is estimated at the higher level. A 2×2 mask is used to
determine the partial derivatives of the brightness function.
The estimated velocity controls the mask dimension at the
next resolution level. The brightness gradient in the 32×32
image can be computed using a mask with a size of 2,3 or
4 pixels. The process is repeated for the middle and lower
level of the pyramid. Target velocity measured in the 32×32
image controls the lower level mask size. For the 64×64
image the mask dimension can be between 2 and 8 pixels.
The optical flow estimated at the lower pyramid level is the
final velocity measurement used in system control. The de-
cision about mask dimension for gradient computation is
taken based on intervals between predefined threshold val-
ues. These threshold values were empirically determined
from the experiments results. The three level pyramid al-
lows the accurate measurement of target velocities between
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Figure 16: Improvement on velocity estimation. System response
to a parabola perturbation of amplitude γi = 0.032 pixels/frame2

(the angular acceleration is θ̇ = 5◦/s2) Left: Regulation in image
(xi [–]). Right: Estimation of image velocity induced by target
motion (ẋi − ẋego [...]; ẋ [–])
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Figure 17: Improvement on velocity estimation. System response
to a sinusoid perturbation of amplitude Ai = 40 pixels and period
T = πs (the angular amplitude is A = 10◦). Left: Regulation in
image (xi [–]). Right: Estimation of image velocity induced by
target motion (ẋi − ẋego [...]; ẋ [–]).

0 and 8 pixels/frame. The range of velocity estimation can
be increased by using more levels in the pyramid.

Fig. 16 shows the system response to the parabola per-
turbation using the multi scalar velocity algorithm. The im-
age velocity ẋ is correctly estimated and the global regula-
tion performance is much better than the one exhibited in
Fig. 11. Fig. 17 shows the response for the sinusoid pertur-
bation. Comparing with the results of Fig. 12 the velocity
estimation is perfect but the regulation performance does
not significantly improve. As refered in the previous sec-
tion, the Kalman filter introduces a smoothing effect that
compensates for image position and velocity mismeasure-
ments (Fig. 12(BR)). However the filter inertia also limits
the impact of the improved velocity estimation in the global
system performance. The latency is more noticeable for
a sinusoid perturbation, with constant changes of acceler-
ation, than for a ramp or parabola input. The improved vi-
sual processing must be complemented by a changes in the
control design to achieve better global performances. Next
section will discuss Kalman filter tunning and design.
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Figure 18: Highly non linear perturbation test signal. Left: Target
position θ. Right: Target velocity θ̇

5.3 Kalman Filter for Monocular Tracking

u(n) =





1 Ti
T 2

i

2
0 1 Ti
0 0 1



 u(n− 1) −





∆αp
0
0



 (20)

Q =





σ2
p 0 0
0 σ2

v 0
0 0 σ2

a



 (21)

The monocular tracking system uses Kalman filtering
[42] to estimate target motion in the scene from the visual
measurements. Assume that target angular position , veloc-
ity and acceleration are respectively θ, θ̇ and θ̈. Consider-
ing that a new frame is grabbed each 40ms, it is reasonable
to assume that target angular acceleration is constant be-
tween two frames. Thus the filter uses a constant angular
acceleration model to describe object motion. Equation 20
is the Kalman state transition equation. The state vector
is u = (δp, θ̇, θ̈)

t with δp = θ − αp the tracking angular
position error and θ̇ and θ̈ target angular velocity and accel-
eration. Ti is the frame acquisition period (usually 40ms)
and ∆αp is the change on pan angular position between
two successive iterations ∆αp = αp(n) − αp(n − 1). Q

is the covariance matrix of the error vector of the model q.
We will assume that Q is a diagonal matrix (equation 21)
which means that δp, θ̇ and θ̈ are considered statistically
independent.

v(n) =

[

f 0 0
0 f 0

]

u(n) (22)

R =

[

σ2
pi 0
0 σ2

vi

]

(23)

Consider vector v = (x, ẋ)t with x and ẋ target position
and velocity measured in the image plane. From the first
order Taylor expansion of equations 5 and 6 it comes that
x ≈ fδp and ẋ ≈ f θ̇. Equation 22 is the Kalman filter
measurement equation. r is the error vector of the measure-
ment equation and R the corresponding covariance matrix
(equation 23). Target position and velocity measurements
in the image are assumed statistically decoupled.

T1 T2 T3

σp 0.5 1 1 (◦)
σv 0.5 1.5 2 (◦/ms)
σa 1.5 2 0 (◦/ms2)
σpi 2 1.5 1.5 (pix)
σvi 2 1.5 1.5 (pix/frame)

Figure 19: Different tunnings of the Kalman filter

Consider the initial state vector u(0) = (0, 0, 0)t (target
stopped and aligned with the camera optical axis). The tun-
ning of the Kalman filter consists in an adequate choice of
the covariance matrices Q and R.

The choice of σpi and σvi depend on the confidance on
the visual measurements. If the position and velocity mea-
surements are accurate then the corresponding standard de-
viations must be low, if not then σpi and σvi must be high.
In a similar way σp, σv and σa reflect the confidance in the
model of motion to describe tracking behavior. If the sys-
tem is used in tracking a target without sudden acceleration
changes then the model fits well the motion and low stan-
dard deviations must be chosen. But if the object motion is
far from constant acceleration then the trust on the model
must be decreased by increasing the standard deviations.

Tab. 19 summarizes three different tunnings to be com-
pared. T1 is the original tunning that showed good per-
formances in the experiments of section 4. In Fig. 12 the
Kalman filter compensates the errors in the velocity esti-
mation allowing a smooth tracking behavior. However this
same Kalman filter also avoids that improvements in the vi-
sual processing have a positive impact in the system global
regulation performance (Fig. 17). Tunning T2 increases
the confidance in the measurements and decreases the con-
fidance in the model. The idea is to reduce the inertia in-
troduced by imposing a pre-defined model of motion. The
resultant smoothing effect is useful to avoid unstable track-
ing behaviors when the visual measurements are unaccu-
rate. The drawback is that it also decreases system respon-
siveness. In tunning T3 the standard deviation σa of the an-
gular acceleration is set to zero. By doing this the Kalman
filter assumes a constant velocity model of motion (θ̈ is zero
all the time).

Fig. 20 compares the regulation performance of the
monocular tracking system for the different filter tunnings
of Tab. 19. Consider the system response to a parabola per-
turbation. At the initial instants T2 and T3 present better
results than T1. However this situation suffers an abrupt in-
version when the target induces a velocity ẋ that is beyond
the range of measurable velocities. The velocity measure-
ment becomes unaccurate and the more conservative tun-
ning presents the best performance. Fig. 20(M) shows the
regulation performance for the sinusoid perturbation. Sys-
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Figure 20: Comparing the different Kalman filter tunnings. Reg-
ulation in image (target position xi. Up: System response to
parabola perturbation (T1[-.-];T2[- -]; T3[–]). Midlle: System re-
sponse to sinusoid perturbation (T1[-.-];T2[- -]; T3[–]). Down:
System response to non-linear perturbation of Fig. 18 (T1[-.-];T2[-
-]; T3[–]).

tem performance with tunnings T2 and T3 is clearly better
than with T1. Now the improvements in the position and
velocity estimation have a positive impact in the global sys-
tem performance. The results for the non-linear input con-
firm the the increased responsiveness of the system. No-
tice that the performance with T2 and T3 is quite similar.
However T3 is slightly better when the target suffers abrupt
acceleration changes. If nothing is said we will assume tun-
ning T3

5.4 Kalman Filter for Vergence Control

A scheme of the vergence control is presented in Fig. 4.
The target moves along the cyclopean axis and the goal is
to make camera angular position β to converge for the ver-
gence angle ψ.

{

ρ(n) = ρ(n− 1) + ρ̇(n− 1)Ti
ρ̇(n) = ρ̇(n− 1)

(24)

Qρ =

[

σ2
p 0
0 σ2

v

]

(25)

The Kalman filter for the vergence control assumes that
the target has a constant velocity motion along the cyclo-
pean axis. The model of motion is given by equation 24
where ρ is the target depth in cyclopean coordinates, ρ̇ the
corresponding velocity and Ti the time between two frames.
Qρ is the covariance matrix of the error vector of the model.
Target position and velocity are considered statistically de-
coupled.

{

ψ(n) = arctan( B
ρ(n) ) ≈

B
ρ(n)

ψ̇(n) ≈ − B
ρ2(n) ρ̇(n)

(26)

Equation 26 establishes the relation between target depth
ρ and the vergence angle ψ (2B corresponds to the baseline
lengths). If β = ψ the vergence point coincides with the tar-
get and the object is projected in the center of both retinas.
In the model of equation 24 target motion is not parame-
terized in the same space as the controlled variables. The
relations presented in equation 26 are used to rewrite the
model of motion in term of the vergence angular position
and velocity.

u(n) =





(δv(n−1)+β(n−1))2

δv(n−1)+β(n−1)−ψ̇(n−1)Ti

− β(n)

(δv(n−1)+β(n−1))2

(δ(n−1)+β(n−1)−ψ̇(n−1)Ti)2
ψ̇(n− 1)



 (27)

Q(n) =
B2

m4
p(n)

[

σ2
p − 2mv(n)

mp(n) σ
2
p

− 2mv(n)
mp(n) σ

2
p

4m2

v(n)
m2

p(n) σ
2
p + σ2

v

]

(28)

mp(n) = B(δv(n−1)+β(n−1)−ψ̇(n−1)Ti)
(δv(n−1)+β(n−1))2

mv(n) = − Bψ̇(n−1)
(δv(n−1)+β(n−1))2

(29)
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Figure 21: Kalman filter estimation performance for a sinusoidal
perturbation (A = 5(m),T = 1.3π(s)). Left: Estimation of the
vergence position angular error δv (correct δv [...]; estimated δv [–
]). Right: Estimation of the vergence angular velocity ψ̇ (correct
ψ̇ [...]; estimated ψ̇ [–])

The resultant state transition equation is showed in 27.
The state vector is u = (δv , ψ̇)t with δv = ψ − β the ver-
gence angular position error and ψ̇ the vergence angular ve-
locity. The dynamic equation is non linear and an Extended
Kalman Filter (EKF) must be used [43]. The EKF is a non
optimal estimation algorithm that uses the Jacobian matrix
of the non-linear function to compute the covariance infor-
mation. The model covariance matrix Q is derived from
Qρ using the function of equation 26 to propagate the co-
variances [40].

v(n) =

[

2f 0
0 2f

]

u(n) (30)

R =

[

σ2
pi 0
0 σ2

vi

]

(31)

The kalman filter measurement equation is given in 30
and the corresponding covariance matrix R in 31. The mea-
surement vector is v = (∆x,∆ẋ)t with ∆x the target po-
sition disparity and ∆ẋ the target velocity disparity. The
linear relation between v and the state vector u is derived
from the first order Taylor expansion of equations 8 and 10.
The Kalman filter is tunned by the procedings used for the
monocular tracking situation.

K =

[

k11 k12

0 k22

]

(32)

Fig. 21 shows the state estimation for a sinusoidal vari-
ation of target depth. While in the monocular tracking sys-
tem the Kalman gain matrix converges for constant values,
for the vergence control K changes during operation. Its
dynamic behavior can be observed in Fig. 22. Notice that
when target depth diminishes the gains tend to increase. If
the target is close to the system any small depth variation in-
duces a significant disparity in image. However if the target
is far away the same motion can become visually impercep-
tible. The Kalman filter estimation copes with this situation
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Figure 22: Dynamic behavior of the Kalman gain matrix K. Re-
sponse for a sinusoidal perturbation. (virtual target depth ρ [...];
k11 [- -]; k12 [-.-]; k22 [–]).

by increasing the confidance on the visual measurements
when the object is near and transfering the trust to the mo-
tion model when the target is far away.

Fig. 23 shows the vergence regulation performance for
the different perturbation signals derived in section 3.3

6 System Architecture and Gaze
Control

The present section discusses the architecture and control
of active tracking systems. We will focus on the monoc-
ular tracking however most of the concepts and ideas can
be extended to vergence control and general visual servoing
applications. For real-time visual control of motion three
distinct concurrent processes can be identified: the visual
processing of images, low-level servo control and high-level
gaze control 24.

The visual feedback loop is discussed in previous sec-
tions. The image processing must be fast, accurate and ro-
bust to achieve high performance behaviors. Kalman fil-
tering is used to estimate the 3D parameters of motion of
the target and limit the effects of measurement errors in the
image, allowing smooth tracking behaviors. The sampling
rate of the visual loop is equal to the frame rate (typically
25Hz).

The low-level servo controller commands the active
plataform actuators. The choice of these actuators and the
corresponding control strategie are discussed in [35]. A
local-servo loop with a PID controller is implemented to
achieve high-performance motor control.

The gaze controller establishes the link between the vi-
sual processing and the active plataform actuators. It uses
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Figure 23: Performance evaluation of the vergence control sys-
tem. First row: Step perturbation. Second row: Ramp perturba-
tion. Third row: Sinusoid perturbation. Left Column: Regulation
in image (target position disparity ∆xi [–]). Right Column: Re-
sponse in position along the cyclopean axis (vergence point depth
[–], target depth ρ [- -])
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Figure 24: Visual tracking system architecture. Three concurrent
processes can be identified: image processing, low-level servo-
control and gaze control
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Figure 25: Actuator frequency response for different control
strategies (open loop [-.-]; closed loop - position mode [- -]; closed
loop - velocity mode/velocity output [–])

the information extracted from the images to compute the
commands to be sent to the mechanical actuators. Delays in
both feedforward and feedback paths of a dynamic system
affect substantially the overall performance. This subject
is exhaustively discussed in [18, 32, 2]. The latency intro-
duced by visual feedback is one of the reasons that make
vision-based control so difficult. Mechanical/ communica-
tion delays also decrease the global performance. The gaze
controller is designed to compensate these delays and in-
crease system bandwidth.

6.1 Low-Level Servo Control Loop

Stepper motor drives have been used in several active vision
systems. In general it is easier to interface and control step-
per motors than DC motors. However stepper motors have
poor characteristics in terms of acceleration and smooth ve-
locity tracking, which are major requirements for real-time
active tracking. Therefore DC direct drives or DC geared
drives are well suited to this kind of applications. The
geared drives have the advantage that small units can pro-
vide high accelerations and attenuate disturbance torques.
The DC drives of the MDOF head are equipped with low
backlash harmonic gearheads. Position feedback is given
by optical digital encoders mounted on the back shaft of the
DC motor.

The motor position can be directly controlled using vi-
sual feedback. In this case the sampling rate is equal to
the frame rate (25Hz). Fig. 25 shows the motor open loop
frequency response. The extra phase-lag introduced by the
visual processing will tend to worsen the stability of the sys-
tem. System unstability can be avoided by decreasing the

15



PID
z

z-1

Kt

s(Js+B)

1

Ng

A/D

PWMZOH
z 6

1 +,α p (s)

-.
α p (z)

/0
α p (z)

+

-

I(s)Vel Mode

Low-Level Servo Loop Running at 1KHz

Pos Mode

V(z)

V(z)
M(z)=

Figure 26: Low-level servo control loop. The loop runs at 1KHz
and can operate both on position and velocity mode. The commu-
nication is syncronous at a rate of 166Hz

loop gain. However the low sample rate associated to the
small gains will lead to sluggish system responses.

Encoder information can be used to implement a local
servo loop running at a high sample rate. This servo loop
will improve the frequency response of the mechanical actu-
ator. The MDOF system comprises a commercial multi-axis
PC controller card with a dedicated servo control module
for each degree of freedom of the platform [20]. Each axis
is controlled in position by a local closed loop with a digital
PID filter running at 1KHz (Fig. 26). The use of commer-
cial multi-axis control boards frees host PC processing time
for running the high level visual algorithms. This is a cost
effective and well balanced solution to build real time ac-
tive vision systems. Communication between the host PC
and the multi-axis board is synchronous at a frequency of
166Hz. This means that the user process can only send
commands to the servo-loop and read the encoders in every
6 ms interval. The communication delay introduces unde-
sired phase-lag in the loop. Despite of that Fig. 25 shows
that by using a high gain, high sample rate local position
controller, the motor frequency response improves.

Additionally each servo loop can be commanded in ve-
locity by adding a profile generator that integrates the veloc-
ities sent by the user process (Fig. 26). This feature is useful
on an active tracking vision system. In this type of system
position control is used to implement saccadic behaviors,
whereas velocity control is more suitable to perform smooth
pursuit. Fig. 25 displays the frequency response when the
motor is controlled in velocity mode. The improvements are
due to the fact that the profile generator is running at 1KHz,
updating the reference to the position loop every 1ms.

Motor control will be performed using the velocity
mode. The servo system input is the velocity command
V (k) and the output the motor velocity α̇p(k) measured us-
ing the optical encoder. The loop runs at 1KHz but the max-
imum communication rate is 166Hz. M(z) is the servo-
loop transfer function considered from the point of view of
the host PC (see Fig 26). The PID filter was tuned such
that M(z) presents a critically damped response without
overshoot. The final closed loop transfer function was de-
termined using standard linear system identification tech-
niques.
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Figure 27: Using interpolation to cope with visual latency.
Left: Motor command V (k) without interpolation (V (k)[–]; ideal
V (k)[...]; frame acquisition time instant [.]). Right: Motor com-
mand V (k) with interpolation (V (k)[–]; ideal V (k)[...]; frame
acquisition time instant [.])

6.2 Interpolation to Cope with Visual La-
tency

When a frame is acquired it is not immediately available to
be processed. The image acquisition process presents a cer-
tain inertia. The time interval going between the acquisiton
and the availability for processing is called the image acqui-
sition delay. The image acquisition delay in the MDOF sys-
tem is about 30ms. The visual processing delay is the time
the system needs to process the images. For the monocu-
lar tracking the delay is 6ms and for the vergence control,
where two frames must be processed, is 11ms. The sum
of these two delays is called the system visual latency. This
section discusses the visual latency for the monocular track-
ing system. The presented concepts can be generalized to
the vergence control.

In the monocular tracking system target motion parame-
ters are available at Kalman filter output 36ms after image
acquisition (30ms of acquisition delay and 6ms of process-
ing delay). The results presented in Fig. 27 were obtained
for the non-linear system perturbation of Fig. 18. Assume
no errors on visual measurements and perfect estimation of
target angular motion parameters. The target motion infor-
mation is sent to the gaze controller every 40ms, with a de-
lay of 36ms. Fig. 27(L) compares the ideal velocity com-
mand with the actual motion command V (k). The visual
latency introduces a phase-lag that is going to deteriorate
system global performance. Interpolation can be used to
cope with the visual latency.

Fig. 28 shows the block diagram of the monocular track-
ing system. The visual loop sends the target motion esti-
mation u = (δp, θ̇, θ̈)

t to the gaze controller. The commu-
nication rate with the low level servo loop is 166Hz. This
means that the gaze controller can send commands and read
motor encoders every 6ms. However the visual control loop
runs at 25Hz and state vector u is updated with a 40ms in-
terval. Without interpolation command V (k) sent to the
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ing interpolation and a proportional-derivative gaze controller.

servo control is constant during visual update interval (see
Fig. 27(L)). Interpolation, assuming a constant acceleration
model for target motion, is used to cope both with visual
latency and the low sampling rate of the visual loop. The
interpolator updates the velocity command V (k) every 6ms
taking the maximum advantage of the communication rate
with the servo loop.

Fig. 27(R) shows that by using interpolation the velocity
command V (k) converges to the ideal command. The inter-
polation performance highly depends on the assumed model
of motion and on the accuracy of the visual estimations.
Considering the rate of the visual loop, the constant accel-
eration motion between frames is a reasonable assumption.
In Fig. 27(R) the ripple at the top of the sinusoid is due to
the highly non-linear variation of the target velocity that is
not described by the constant acceleration model. The ob-
served ripple has almost no effect on system performance.
However it is important to remark that the results of Fig. 27
assume perfect estimation of target motion. If the results
of visual estimation are very noisy or unaccurate then us-
ing intepolation can have a negative impact on the global
system performance. Basically interpolation amplifies the
performance of the visual loop, both in positive and nega-
tive direction.

Fig. 29 shows the improvements introduced by interpo-
lation in the system regulation global performance.

6.3 Gaze Control

Fig. 28 shows the monocular tracking control loop. The
gaze controller establishes the interface between the visual
control loop, running at 25Hz, and the low level servo loop,
running at 1KHz. The sampling rate of the gaze controller
must be equal to the communication rate with the servo loop
in order to maximize system performance [36].

V (z) = θ̇(z) + PD(z).δp(z) (33)

The gaze controller used in the previous experiments is
given by equation 33. PD(z) is a proportional derivative
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controller that filters the angular position error δp. Notice
that to achieve a zero steady state error the transfer func-
tion PD(z).M(z) must have one unitary pole (type 1 sys-
tem). This unitary pole is introduced by the velocity mode
profile generator of the servo-loop. The velocity compo-
nent θ̇ improves global system transient response (velocity
feedforward).

6.3.1 Model Predictive Gaze Controller

Fig. 25 shows the frequency response of the low level servo
control loop (velocity mode). The observable phase-lag is
introduced the communication delays and motor mechani-
cal inertia. The transfer function M(z), determined using
standard system identification techniques, has a deadbeat
of 2 sampling periods. It means that actuator/plant delay, as
seen by the gaze controller, is nearly 12ms. This section dis-
cusses the use of model predictive controllers to cope with
this delay [17, 19].
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J =

N2
∑

i=N1

(y(n+ i|n) − w(n + i))2+

Nu
∑

j=N1

λ∆u(n+ j − 1)2

(34)
There is a wide variety of MPC algorithms, but they al-

ways have three elements in common: a prediction model,
an objective function and a minimization process to obtain
the control law. The prediction model is used to estimate
the system output y(n+ k|n) at future time instants know-
ing previous inputs and outputs. The general aim is to make
future system outputs to converge for a desired reference
w(n). For that an objective function J is established. The
general expression for such a function is given by equation
34. N1 and N2 bound the cost horizon, Nu is the control
horizon, u(n) is the control signal, ∆u(n) is the control
increment (∆u(n) = u(n) − u(n − 1)) and λ is relative
weight used to achieve a more or less smooth control. In or-
der to obtain present and future values of control law u(n)
the functional J is minimized.

The cost horizon is the future time interval where it is
desirable for the output to follow the reference. Our pro-
cess has a dead time of 2, thus we are going to consider
N1 = 2 (the output can not be forced before that). Assum-
ing a frame rate of 25Hz, the middle level controller sends
at most 7 velocity commands to the low-level loop with-
out new visual information. Thus we are going to consider
N2 = 8.

Consider the step response g(n) of a stable linear process
without integrators. If g(n) = 1 for n > N the system is
completely described by the N first instants of g(n). This
is the cornerstone for a simple, robust and intuitive model
predictive controller: the dynamic matrix control algorithm.

∆u = (GGt + λI)−1Gt(w − f) (35)

DMC uses the N first instants from the step response to
predict the system output (in our case N = 7). It assumes
a constant disturbance along the cost horizon. The distur-
bance is given by the difference between the actual system
output and the predicted output (d(n) = y(n) − y(n|n)).
The goal of our controller is to drive the output as close
as possible to the reference in the least-squares sense. The
control action for that is computed by equation 35. G is the
dynamic matrix of the system, ∆u is the control vector and
w is the reference vector. f is called the free response vector
because it does not depend on the future control actions. λ
is the penalty for the control effort, by increasing this value
the system becomes less responsive and smoother. Notice
that only the first element of ∆u is really sent to the mo-
tor. The vector is computed at each iteration to increase the
robustness of the control to disturbances in the model. For
more details on DMC controllers see [37].

0 1 2 3 4 5 6 7

V(0)

V  (0)t

∆

∆

∆

∆

∆

∆

v

v

v

v

∆ v

p

p V(5)=V  (5)t

Figure 31: Reference w

Interpolation can be used, not only to compensate for the
visual processing delay, but also to estimate target parame-
ters of motion for future time instants. Visual information
at the Kalman filter output is used to compute current and
future target angular position and velocity assuming a con-
stant acceleration model of motion. The goal of the DMC
controller is to force the motor to have the same motion as
the target in a near future.

∆p =
1

6
(
Ep
T

−MV (0)) −
∆v

3
(
M2

4
+ 2) (36)

Whenever a new image is grabbed, visual processing is
used to compute target velocity and tracking position error.
Perfect tracking is achieved if, at the next frame time in-
stant, the system compensates for the error in position and
moves at the estimated velocity. This is the goal considered
to establish the reference w whose profile is depicted in Fig.
31. Consider P (0) and V (0) are the current motor position
and velocity and Pt(i) and Vt(i) are the target position and
velocity at instant i. Then ∆v = (Vt(M) − V (0))/M and
∆p is computed by equation 36 whereEp = Pt(M)−P (0).
M is the instant of convergence, making M = 5 motor ve-
locity converge to target velocity in 5 samples (30ms). In
this time interval the motor accelerates and then slightly de-
celerates to compensate for the position error (see Fig.31).

The increase in performance introduced by the DMC
controller can be observed in Fig32. The error in position is
immediately compensated and the target is kept in the cen-
ter of the image during its non linear motion. However the
performance of the DMC controller is highly dependent on
the ability to predict the target motion. If the visual mea-
surements are too noisy or the interpolation model is not
accurate the use of model ptrdictive control techiques can
deteriorate the tracking system global performance [38].
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Figure 32: Using DMC controller to cope with motor mechanical
inertia. System response to the non-linear perturbation of Fig. 18.
Regulation in image (xi for DMC gaze control [–], xi for the PD
gaze control [- -]).

7 Conclusions

The starting point this work is the ISR-MDOF binocular ac-
tive tracking system [12, 11, 13]. Visual control of motion
depends both in vision and controls. An approach to char-
acterize these both aspects in a common framework is intro-
duced. System performance is evaluated. The high coupling
between visual and control is illustrated by extensive exper-
imental results. Performance evaluation is used as guideline
to develop a high performance active vision system. Real
time algorithms for position and velocity image measure-
ment are proposed. Specific Kalman filters are designed
for both monocular tracking and vergence control and the
corresponding tunning is exhaustively discussed. An archi-
tecture, based on three concurrent processes, is suggested.
Interpolation to cope with visual latency is proposed. A
gaze controller based on a model predivtive approach is de-
signed. A demo of the high performance visual tracking is
presented.
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