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Abstract Stereo methods always require a matching func-
tion for assessing the likelihood of two pixels being in corre-
spondence. Such functions, commonly referred as match-
ing costs, measure the photo-similarity (or dissimilarity)
between image regions centered in putative matches. This
article proposes a new family of stereo cost functions that
measure symmetry instead of photo-similarity for associat-
ing pixels across views. We start by observing that, given
two stereo views and an arbitrary virtual plane passing in-
between the cameras, it is possible to render image signals
that are either symmetric or anti-symmetric with respect to
the contour where the virtual plane meets the scene. The fact
is investigated in detail and used as cornerstone to develop
a new stereo framework that relies in symmetry cues for
solving the data association problem. Extensive experiments
in dense stereo show that our symmetry-based cost func-
tions compare favorably against the best performing photo-
similarity matching costs. In addition, we investigate the pos-
sibility of accomplishing Stereo Rangefinding that consists
in using passive stereo to exclusively recover depth along a
pre-defined scan plane. Thorough experiments provide evi-
dence that stereo from induced symmetry is specially well
suited for this purpose.
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1 Introduction

Passive methods for stereo correspondence invariably require
a metric for assessing the likelihood of two image locations
being a match. Typically, the first step of a dense stereo algo-
rithm is the evaluation of this matching function across all
possible disparities and pixel locations. The result is the so-
called disparity space image (DSI) (Szeliski and Scharstein
2004), over which is carried either local aggregation or global
optimization with the objective of finding the correct depth
map (Scharstein and Szeliski 2002). Local stereo methods
aggregate the matching function over a support region for
obtaining a spatially coherent DSI (Gong et al. 2007; Tombari
et al. 2008). This is usually followed by a Winner-Takes-All
(WTA) procedure along the disparity dimension that leads to
the final depth assignment. In global stereo methods, the pixel
correspondence between views is formulated as a global opti-
mization problem over the DSI that is solved using an energy
minimization framework for obtaining the final disparity map
(Szeliski et al. 2008). There is still a third strategy called DSI
(SGM) that minimizes a 2D energy function defined over the
DSI by performing path-wise optimization along multiple
1D directions (Hirschmüller 2005).

The present article revisits the construction of the DSI
using a suitable matching function. We focus exclusively
in this initial step that is common to any stereo algorithm
independently of using local or global optimization. A new
family of matching costs is proposed, studied, and evalu-
ated for the first time. The functions described so far in the
stereo literature rely, in one way or the other, in measur-
ing the photo-consistency between two image locations. We
show in this paper that, given a calibrated stereo pair, it is
possible to render image signals that are either symmetric or
anti-symmetric around the projection of the contour where
an arbitrary virtual cut plane intersects the scene. This allows
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using symmetry instead of photo-consistency for quantify-
ing the likelihood of two pixels being a match. We show
through extensive comparative experiments that symmetry-
based metrics outperform photo-similarity for the purpose
of data association in dense stereo. Moreover, and since the
symmetries are induced using virtual cut planes, these new
matching functions are particularly well suited for recovering
depth along pre-defined scan planes. As discussed in Antunes
and Barreto (2011), this is an effective way of probing into the
3D structure resulting in profile cuts of the scene that resem-
ble the ones obtained with a 2D Laser Rangefinder (LRF)
(Antunes et al. 2012). The independent estimation of depth
along a scan plane will be referred as Stereo Rangefinder
(SRF) in order to be distinguished from conventional dense
stereo. To the best of our knowledge this is also the first work
that discusses and benchmarks the concept of SRF.

1.1 Related Work

Dense stereo matching is a mature research topic and the
literature reports a large number of matching functions. We
provide below a non-exhaustive account of representative
cost functions organized according to the taxonomy used in
Hirschmüller and Scharstein (2009):

– Pixel-wise matching cost, like absolute differences (AD),
measure the dissimilarity between single pixels, being
popular because of their simplicity and fast computa-
tion. However, pixel-wise metrics tend to be ambigu-
ous even when used in conjunction with local aggrega-
tion methods, e.g. sum of absolute differences (SAD).
Since pixel-wise matching functions do not make implicit
assumptions about the image neighborhood surrounding
the pixel, they are broadly used for evaluating the DSI
in global stereo approaches. In this case, the sampling-
insensitive metric proposed by Birchfield-Tomasi (BT)
is usually preferred to a straightforward AD implemen-
tation. BT computes the absolute difference between the
pixel of interest in one view and a linear interpolation of
the neighborhood of the hypothesized match in the other
view (Birchfield and Tomasi 1998). A pre-processing step
that significantly improves the stereo matching perfor-
mance of BT is bilateral background subtraction (BBS)
that smoothes the images without blurring the depth dis-
continuities (Ansar et al. 2004).

– Window-based matching cost evaluate the similarity (or
dissimilarity) between 2D regions in the stereo images.
normalized cross-correlation (NCC) is an example of
this type of matching functions that is widely used
because of its good trade-off between accuracy and
computational efficiency. Zero-mean normalized cross-
correlation (ZNCC) is a variant of NCC that compen-
sates for gains and offsets across stereo images in order

to achieve more accurate and robust matching results
(Scharstein and Szeliski 2002).

– Non-parametric matching costs use the ordering of image
intensities in a local neighborhood around the pixels of
interest. The most popular metric of this type is probably
the Census filter introduced in Zabih and Woodfill (1994).
The approach consist in constructing a bit string where
each bit corresponds to a pixel in a local neighborhood
around the pixel of interest q. The bit is set iff the pixel
intensity value is lower than the intensity of q. The fil-
tered images are compared by computing the Hamming
distance between corresponding bit strings.

– Mutual Information computed from the entropy of the
input images can also be used as a stereo matching cost,
as discussed in Hirschmüller (2005). The idea is to trans-
form views according to the disparity assignment such
that the mutual information between the transformed
stereo images is maximized.

Several works in stereo have benchmarked not only com-
peting matching costs (Gautama et al. 1999; Scharstein and
Szeliski 2002; Banks and Corke 2001; Brown et al. 2003;
Fookes et al. 2004; Hirschmüller and Scharstein 2009), but
also cost aggregation methods (Scharstein and Szeliski 2002;
Brown et al. 2003; Wang et al. 2006; Gong et al. 2007; Sarkar
and Bansal 2007; Tombari et al. 2008) and global optimiza-
tion schemes (Scharstein and Szeliski 2002; Brown et al.
2003; Szeliski et al. 2008). In this article, we are only inter-
ested in the formers, among which the work of Hirschmüller
and Scharstein Hirschmüller and Scharstein (2009) is of spe-
cial relevance because of its systematic methodology and
thorough evaluation using images of the Middlebury dataset
(Scharstein and Szeliski 2002; Scharstein and Pal 2007). In
their evaluation each cost function gives rise to a DSI that
leads to a final disparity map after using local aggregation,
SGM, or a straightforward Markov Random Field formula-
tion with Graph-Cut (GC) optimization. The results show
that BT with BBS, ZNCC, and Census are, respectively, the
top-performers among pixel-wise, window-based, and non-
parametric matching costs. In absolute terms, Census proved
to have the best matching performance throughout the eval-
uation. In Sects. 5 to 7 we use the exact same methodol-
ogy of Hirschmüller and Scharstein (2009) for comparing
our symmetry-based matching costs against BT with BBS,
ZNCC, and Census, in an effort to show that symmetry can
be more effective than photo-similarity for solving the stereo
data association problem.

To the best of our knowledge the usage of induced sym-
metries for the purpose of stereo matching has never been
reported in the literature 1. The only exceptions are our pre-

1 In Sun et al. (2005), the term symmetry is employed with a completely
different meaning, referring to the equal treatment of left and right
views.
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liminary conference papers that use symmetry-based SRF for
the detection and reconstruction of planar surfaces (Antunes
et al. 2011; Antunes and Barreto 2012), for robotic appli-
cations with strict time requirements (Antunes and Barreto
2011), and for mimic a LRF (Antunes et al. 2012). How-
ever, these prior works focus more in showing that stereo
from symmetry can be helpful for solving specific problems
rather than in providing a thorough discussion and evaluation
of the framework.

1.2 Article Overview

Section 2 provides an intuitive description of the mirroring
effect that is induced by a virtual plane intersecting the base-
line. The mirroring effect is the cornerstone of our SymStereo
framework because it enables the rendering of image signals
that are either symmetric or anti-symmetric with respect to
the contour where the virtual plane cuts the scene. The stereo
matching is achieved by finding the image of this contour in
the two views using symmetry cues. Section 3 refers to the
geometric analysis of the framework. We provide a rigorous
formal proof of the mirroring effect, discuss singular con-
figurations, and show how to select the virtual cut planes
for generating a complete DSI. Section 4 derives suitable
symmetry metrics for quantifying the likelihood of a certain
image pixel being locally symmetric and/or anti-symmetric.
We propose three different symmetry-based matching costs:
(i) SymBT that is a modification of BT for measuring sym-
metry instead of similarity (Birchfield and Tomasi 1998); (ii)
SymCen that is a non-parametric symmetry metric inspired
in the Census transform (Zabih and Woodfill 1994); and (iii)
logN that uses a bank of log-Gabor wavelets for quantifying
symmetry, inspired by the work of Kovesi in (Kovesi 1997).

Sections 5, 6, and 7 describe several experiments that
validate the SymStereo framework and compare the accu-
racy of symmetry-based matching costs against state-of-the-
art photo-similarity cost functions. Section 5 reports experi-
ments in dense stereo using 15 images of the Middlebury data
set (Scharstein and Szeliski 2002; Scharstein and Pal 2007)
and the Oxford Corridor stereo pair. We follow the method-
ology described in Hirschmüller and Scharstein (2009), with
the parameters of competing methods being tuned using the
four standard Middlebury images (Scharstein and Szeliski
2002) that are not considered for the final evaluation. The
results show that symmetry-based costs outperform the cor-
responding photo-similarity counterparts, with SymBT and
SymCen systematically beating BT and Census (Birchfield
and Tomasi 1998; Zabih and Woodfill 1994). Section 6
repeats the tests of Sect. 5 for the case of SRF (Antunes et al.
2011; Antunes and Barreto 2011). While dense stereo esti-
mates the depth of the entire viewed scene, SRF recovers the
depth exclusively along a pre-defined virtual plane, giving
rise to a so-called profile cut of the scene. Since SRF does

not evaluate the entire DSI, neither local 2D aggregation,
nor standard stereo optimization methods can be employed.
The experiments show that, under such circumstances, the
symmetry-based cost logN is clearly the top-performer with
4 % less errors than the second ranked. Finally, Sect. 7 runs
tests in the images of the Fountain-p11 dataset (Strecha et al.
2008) providing evidence that the conclusions above gener-
alize for the case of wide-baseline stereo.

1.3 Notation and Terminology

We represent scalars in italic, e.g. s, vectors in bold char-
acters, e.g. p, �, matrices in sans serif font, e.g. M, image
signals in typewriter font, e.g. I, and curves in calligraphic
symbols, e.g. C. Unless stated otherwise, we use homoge-
neous coordinates for points and other geometric entities, e.g.
a point with non-homogeneous image coordinates (p1, p2)

is represented by p∼(p1 p2 1)T, with ∼ denoting equality up
to a scale. Finally, [v]× denotes the skew symmetric matrix
defined by the 3-vector v, and I3×3 refers to the 3×3 identity
matrix.

Although SymStereo can be used with any stereo pair,
the article assumes rectified stereo for most derivations and
experiments. Thus, a generic 1-D line of the image signalI is
denoted byI(p1), with p1 being the free coordinate along the
horizontal axis. The 1-D signal I(p1) has a local symmetry
about a point q1 in its domain iff the following holds:

I(q1 + δ) = I(q1 − δ), ∀δ ∈N
withN being an interval centered in zero. In a similar manner,
I(p1) is said to be anti-symmetric in a local neighborhood
around q1 iff

I(q1) − I(q1 + δ) = −(I(q1) − I(q1 − δ)), ∀δ ∈N
The stereo matching will be carried by quantifying 1-D signal
symmetry and anti-symmetry in successive pixel locations
along epipolar lines.

We will often refer to a matching function as being
a “matching cost” or a “cost function” without distin-
guishing if the function measures photo-similarity, photo-
dissimilarity, local symmetry, or lack of local symmetry. We
will also employ the term “similarity-based matching cost”
to designate matching functions that use conventional photo-
consistency metrics, as opposed to the new stereo functions
that exploit induced symmetry cues.

2 Mirroring Effect and Stereo from Induced Symmetry

Let I and I′ be a pair of rectified stereo images acquired by
two cameras with projection centers C and C′. The scheme of
Fig. 1a is a top-view of this situation, where the two cameras
observe a concave surface S with five regions of different
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Fig. 1 Plane sweeping versus SymStereo. (a) and (b) Conventional
stereo matching can be understood as a particular instance of plane
sweeping Collins (1996). The disparity space image (DSI) is evalu-
ated for increasing values of disparity di . Each disparity hypothesis di
is associated with a virtual plane �i that is fronto-parallel. The cho-
sen matching cost implicitly measures the photo-similarity between IB
and I′

B , that are the results of back-projecting I and I′ onto �i ; (c) and
(d)—In SymStereo the virtual planes �i pass between the cameras, and

the back-projection images are reflected with respect to the curve where
�i intersects the scene structure (mirroring effect). This enables to per-
form stereo matching using symmetry instead of photo-similarity. In
the same manner that each plane �i in (a) is associated with a constant
disparity plane in (b), each plane �i in (c) corresponds to an oblique
plane �i in (d). Thus, the entire DSI domain can be fully covered by
carefully choosing the set of virtual cut planes �i (Color figure online)

colors. The 3D volume of Fig. 1b is the corresponding DSI,
with each point (p, d) representing the disparity hypothesis
d for the pixel location p = (x, y) (Szeliski and Scharstein
2004). We can understand the stereo matching cost as a scalar
function with domain (p, d), and the DSI as the result of eval-
uating this function across the entire domain. Ideally, the cost
function should be such that, for each image point p there is
one, and only one, extremum along the disparity axis that sig-
nals the correct disparity value d. In this case, the set of all
extrema define a surface in the DSI that enables the accurate
3D reconstruction of the scene. In practice, several ambigu-
ities arise, and the evaluation of the matching cost usually
leads to multiple incorrect extrema. The steps of local aggre-
gation and/or global optimization over the DSI aim to over-
come this problem by refining the matching surface taking
into account spatial consistency criteria.

It is well known that, for the case of rectified stereo, the
image pairs of points lying in a fronto-parallel plane �0 are
related by the same disparity amount d0. Thus, the dispar-
ity plane d0 in the DSI can be evaluated by back-projecting
the two input views, I and I′, onto the virtual plane �0,
followed by comparing the results IB and I′

B using some
type of photo-similarity metric. As shown in the scheme
of Fig. 1a, the back-projected images IB and I′

B overlap
in the points where �0 intersects the scene surface and,
consequently, the quantification of photo-similarity tends to
highlight these image locations enabling a correct disparity
assignment. This way of addressing the problem was first
introduced by Collins that suggested to find matches across
multiple views by sweeping the 3D space with a pre-defined
set of parallel virtual planes Collins (1996). The computation
of the DSI in rectified stereo can be understood as a particu-
lar instance of plane sweeping, with the sweeping direction

being parallel to the camera axis, and each plane �i corre-
sponding to a constant disparity di (see Fig. 1a, b).

SymStereo relates with plane sweeping in the sense that
it also samples the 3D space by a set of virtual planes. How-
ever, there are two major differences: (i) the virtual planes
must pass in between the cameras, which is considered to
be a degenerate configuration in plane sweeping (Gallup et
al. 2007); and (ii) the pixel association between views is
achieved using symmetry cues instead of photo-similarity
metrics.

Consider the scheme of Fig. 1c, with �0 being a plane
that passes between the cameras, and IB and I′

B being the
result of back-projecting views I and I′ onto �0. Remark
that, while in Fig. 1a the back-projection images correlate
in the pixel locations where the virtual plane meets the 3D
surface, in Fig. 1c the images IB and I′

B are mirrored with
respect to the curve C where �0 intersects the scene struc-
ture. SymStereo explores this mirroring effect for accurately
reconstructing the contour C (the profile cut) using image
symmetry analysis. The strategy is effective, not only for
recovering depth along a pre-defined virtual cut plane (SRF),
but also for achieving dense stereo reconstruction. It can be
proved that the mirroring effect holds for any plane �i inter-
secting the baseline, corresponding an oblique plane �i in the
DSI domain. Thus, and in a similar manner to plane sweep-
ing, it is possible to carefully select the virtual cut planes
such that the DSI is fully evaluated and the correct disparity
surface is recovered (Fig. 1d).

Figure 2 aims to illustrate the evaluation of the dispar-
ity hypothesis d0 using a conventional stereo matching cost
such as SAD, ZNCC, or Census. The plane d = d0 in the
DSI domain (Fig. 1b) corresponds to a fronto-parallel vir-
tual plane �0 that is marked in yellow in the 3D model of
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Fig. 2 Conventional stereo matching costs based in photo-similarity.
I and I′ are stereo views of the 3D scene shown in (b). The virtual
plane �0 (yellow) corresponds to a constant disparity d0 in the disparity
space image (DSI) domain. Let ̂I be the result of mapping I′ into I
using the plane-homography. The disparity hypothesis d0 is evaluated by
measuring the photo-similarity between I and̂I, such that the image of
the regions where �0 intersects the scene structure becomes highlighted
(d)–(f) (Color figure online)

Fig. 2b. Let̂I be the warping result of mapping the right view
I′ into the left reference view using the plane-homography
induced by �0. For the particular case of rectified stereo,
the warping is a simple image shift by d0 pixels along the
horizontal axis. The DSI values of the points lying in the
plane d = d0 is determined by measuring the similarity
between images I and ̂I using a specific metric. As shown
by the results of Fig. 2d–f, this enables depth recovery by
highlighting the pixel locations corresponding to the regions
where �0 intersects the scene structure (magenta marks in
Fig. 2a–c)

In this paper, the DSI is evaluated using a radically differ-
ent strategy. Consider the virtual cut plane �0 that intersects
the scene surfaces in the profile cut C marked with magenta
in the model of Fig. 3b. Let H be the plane-homography
associated with �0 that maps the right image into the ref-
erence view. If ̂I is the warping result of mapping I′ by H
then, it comes from the mirroring effect, that I and ̂I are
reflected around the image of the profile cut. Thus, the sum
ofI and̂I yields an image signalIS that is symmetric around
the locus where C is projected (Fig. 3d). In a similar man-
ner, the difference between I and ̂I gives rise to an image
signal IA that is anti-symmetric at the exact same location
(Fig. 3e). SymStereo detects the image of the profile cut by
jointly evaluating the symmetry and anti-symmetry ofIS and
IA at every image pixel location (Fig. 3f). This provides an
implicit manner of recovering depth along �0 and achieving
data association across views. Since �0 is mapped into an
oblique plane �0 in the DSI domain, the joint symmetry and
anti-symmetry metric assigns a matching cost to every point
(p, d) lying on �0. Thus, and as stated above, the DSI can be

(a) (b) (c)

(d) (e) (f)

Fig. 3 SymStereo: The virtual cut plane �0 in yellow intersects the
scene structure in a non-continuous 3D curve C marked in magenta (the
profile cut). Let ̂I be the result of warping I′ by the plane-homography
induced by �0. The image signals IS and IA, obtained by adding and
subtracting I with ̂I, are respectively symmetric and anti-symmetric
around the image of the profile cut C (d)–(e). In (f) we show the pixel
intensities of IS and IA along three distinct epipolar lines (green, cyan
and blue). Remark that the intersections with the locus where C is pro-
jected can be identified with almost no ambiguity by searching common
pixel locations for which the top and bottom 1D-signals are respectively
locally symmetric and anti-symmetric (Color figure online)

fully evaluated by stacking the results of a set of planes �i ,
such that the corresponding planes �i cover the entire (p, d)

domain (Fig. 1d).

3 Geometric Analysis of SymStereo

This section derives the conditions for a generic 3D plane �

to intersect the baseline, proves that the mirroring effect holds
for any virtual plane passing between the cameras iff corre-
sponding image pixels have the same order in both views,
and discusses the mapping of planes �i in 3D space into
planes �i in the DSI domain.

3.1 Necessary and Sufficient Condition for a Virtual Plane
� to Intersect the Baseline

Consider a rectified stereo pair that is acquired by two
cameras with centers in C and C′ as shown in Fig. 4. Since
the camera reference frames are aligned, the transformation
T, that maps right view coordinates into left view coordinates,
is

T =
(

I3×3 t
0T 1

)

, (1)
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Fig. 4 Geometric analysis of SymStereo. The analysis is carried in an
arbitrary epipolar plane � assuming that the images are rectified. The
camera centers C and C′ are separated by a distance b > 0 (the stereo
baseline), and the world frame is coincident with the coordinate system
of the left view (the reference view). For the sake of graphical clarity
the image points are projected behind the optical centers

with

t =
⎛

⎝

b
0
0

⎞

⎠ .

We assume, without loss of generality, that the world coordi-
nate system is coincident with the reference frame centered in
C. The virtual cut plane �, that passes between the cameras,
is represented by the following homogeneous vector

� ∼
(

n
−h

)

, (2)

where n indicates the direction orthogonal to the plane

n ∼
⎛

⎝

n1

n2

n3

⎞

⎠ .

In addition, the centers C and C′ define a line L that contains
the baseline and has Plücker coordinates Ma et al. (2003)

L ∼
(

t
0

)

.

The intersection of the virtual cut plane with the baseline
can be efficiently computed by multiplying the 4-vector �

with the Plücker matrix of the dual of L (Ponce et al. 2005). It
follows that the homogeneous coordinates of the intersection
point O are

O ∼
(−[0]× t

−tT 0

)

� ∼

⎛

⎜

⎜

⎝

h
n1

0
0
1

⎞

⎟

⎟

⎠

.

Using β to denote the ratio between the signed distances
CO and CC′, it comes that the plane � passes between the
cameras iff the following condition holds

0 <
(

β = O1

b

)

< 1 ⇐⇒ b n1

h
> 1. (3)

3.2 Proof of the Mirroring Effect

Consider a generic 3D point P that is projected into points p
and p′ in the stereo views as shown in Fig. 4. Since we are
assuming rectified stereo, then the non-homogeneous coor-
dinates p2 and p′

2 must have the same value y. In a similar
manner, consider a point Q that lies in the intersection of
the same epipolar plane � with the virtual plane �. Since
the image points p, q in the left view, and p′, q′ in the right
view, only differ in terms of the first coordinates, then we can
define the following pair of signed distances:

g = p1 − q1

g′ = p′
1 − q ′

1
(4)

Remark that g and g′ have the same sign iff the points P
and Q are imaged with the same order in the two views. We
assume henceforth that this condition holds.

The plane � defines a homography H that can be used to
map points from the right view into the left view. Given the
relative camera pose of Eq. 1 and the homogeneous plane
representation of Eq. 2, it comes that Ma et al. (2003)

H ∼
(

I3×3 + t nT

h

)−1

∼
⎛

⎝

1 + bn1
h−bn1

bn2
h−bn1

bn3
h−bn1

0 1 0
0 0 1

⎞

⎠

(5)

Using H to map p′ in the right view onto p̂ in the left view
yields

p̂1 =
(

1 + bn1

h − bn1

)

p′
1 + ky,

with ky depending on the second coordinate y and being a
constant for points sharing the same epipolar line. From Eq. 4
it comes that p′

1 = g′ + q ′
1 and the expression above can be

re-written as

p̂1 =
(

1 + bn1

h − bn1

)

q ′
1 + ky +

(

1 + bn1

h − bn1

)

g′. (6)

In a similar manner let q̂ be the mapping result of q′ such
that q̂ ∼ H q′. Since Q lies in the cut plane � that defines
the homography, then point q̂ must be coincident with q and
the following holds

q1 =
(

1 + bn1

h − bn1

)

q ′
1 + ky .

Replacing the result above in Eq. 6 comes that the signed
image distance between q and p̂ is
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(a) (b) (c)

Fig. 5 (a) In the case the virtual cut plane � intersects the scene in
a continuous surface, most of the back-projected image regions con-
tribute for the mirroring effect. (b) In the presence of occlusions (the
yellow region is occluded in the left view and the red region is occluded
in the right view), the symmetry extend is reduced and limited by the

depth occlusion boundaries. (c) In the presence of double nail illusion,
the virtual cut plane intersects two surfaces, in which case the mirroring
effect occurs in two distinct regions—one corresponding to the surface
in front (grey) and one corresponding to the surface in the back (blue)
(Color figure online)

ĝ = p̂1 − q1 =
(

1 − bn1

h

)−1

g′. (7)

For the case of the virtual plane � passing between the
cameras, the condition of Eq. 3 holds, which means that g′
and ĝ have opposite signs. Thus, and assuming that distances
g and g′ have always the same sign, we have just proved that
points p and p̂ must be on opposite sides of q, and that the
mirroring effect holds for any plane � that intersects the
baseline. Nothing is said about the modulus of the distances
g and ĝ that must be equal in order for the image symmetry
of Fig. 3d to be geometrically accurate. It can be analytically
shown that in general |g| �= |̂g|, leading to a deviation in
the rendered symmetry that depends both on the point where
� intersects the baseline, and on the position and slant of
the imaged 3D surface. The present paper does not pursue
the topic further, however we can advance that this deviation
has limited practical impact, as proved by the experimental
results of Sects. 5 to 7 (further information about the relation
between surface slant and quality of the symmetries can be
found in the author’s PhD thesis).

3.3 Singular Configuration

We have proved that the homography associated with a cut
plane causes a reflection iff the scene points are projected in
the two views in the same order. For most stereo applications,
the spatial order of corresponding points in the two views is
the same, and the mirroring effect is verified (refer to Fig. 5a
and b). However, there is a singular configuration for which
the ordering constraint is not verified. This configuration,
known as double nail illusion, typically arises in scenes with
foreground objects that are finer than the baseline, or narrow
holes (Sun et al. 2005). Consider the scheme of Fig. 5 c, in
which case the thin foreground object (grey) causes a double

nail illusion—the grey region is projected to the right of the
blue region in the left view, while to the left in the right view.
In this case, the virtual cut plane � intersects the scene in
two distinct regions (grey and blue) visible by both cameras.
The mirroring effect occurs in both regions and two different
symmetries are induced using SymStereo, each one preclud-
ing the detection of the other. Since the double nail illusion
arises seldom in practice, we will ignore it for the rest of the
paper, and consider that the mirroring effect is always veri-
fied, with the cut plane intersecting the scene in a single point
per epipolar line.

3.4 Mapping � into a Plane � in the Disparity Space Image
(DSI) Domain

In the same manner that a fronto-parallel plane � induces
a constant disparity d, a virtual cut plane � defines a pixel
association between views that corresponds to a particular
surface � in the DSI domain (see Fig. 1). Let’s consider
the inverse of the plane homography given by Eq. 5. The
transformation H−1 enables to map points q in the left image
into points q′ in the right image, such that

q ′
1 =

(

1 − bn1

h

)

q1 − bn2

h
q2 − bn3

h
. (8)

It can be verified that the cut plane � defines for each point q
in the reference view a putative stereo disparity d = q1 −q ′

1
given by

d = bn1

h
q1 + bn2

h
q2 + bn3

h

The equation above specifies a plane surface in the 3D space
parametrized by (q1, q2, d). Thus, the matching hypothesis
implicitly defined by � (Eq. 2) correspond to a plane � in
the DSI domain, with homogeneous representation
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� ∼

⎛

⎜

⎜

⎝

bn1
h

bn2
h−1

bn3
h

⎞

⎟

⎟

⎠

. (9)

3.5 Sweeping the Scene by a Pencil of Vertical Virtual
Planes Bisecting the Baseline

As stated previously, dense stereo matching with SymStereo
requires using multiple virtual cut planes �i such that the
corresponding planes �i completely sweep the DSI domain.
Let’s assume that the planes �i belong to a vertical pencil
with the axis intersecting the baseline in its middle point. In
this case, the homogeneous representation of each plane is
given by

�i ∼

⎛

⎜

⎜

⎝

1
0

− tan(θi )
b
2

⎞

⎟

⎟

⎠

,

with θi denoting the rotation angle around the vertical axis,
and the plane homography of Equation 2 becomes

Hi ∼
⎛

⎝

−1 0 2 tan(θi )

0 1 0
0 0 1

⎞

⎠ .

Consider now that the image points q and q′ are expressed
in pixel coordinates, and that both cameras have the same
intrinsic parameters

K ∼
⎛

⎝

f 0 c1

0 f c2

0 0 1

⎞

⎠ .

The homography mapping q ∼ K Hi K−1 q′ defines a pos-
sible pixel association between images that can be written as

q1 = 2 c1 − q ′
1

︸ ︷︷ ︸

f li p

+λi , (10)

with

λi = 2 f tan(θi ).

Moreover, and from the discussion of Sect. 3.4, each virtual
cut plane �i corresponds to a plane �i in the DSI domain
with homogeneous coordinates

�i ∼

⎛

⎜

⎜

⎝

2
0

−1
−2 c1 − λi

⎞

⎟

⎟

⎠

(11)

Two important conclusions can be drawn from the analy-
sis above. The first is that the range of disparities in the DSI

domain is fully covered by a set of planes �i such that the
parameters λi take successive integer values. This enables to
choose the angles θi that define a suitable set of virtual planes
�i in the 3D scene space. The second is that the homogra-
phy mapping of Eq. 10 considerably simplifies the render-
ing of images ̂Ii required for generating the symmetries and
anti-symmetries (see Fig. 3). The warping can be efficiently
achieved by flipping the original image I′ around the vertical
axis passing through the principal point, followed by shifting
the result by an integer amount λi along the horizontal image
direction. Henceforth, and since the use of a vertical pencil
of planes �i is specially convenient for sweeping the scene
in rectified stereo, the article will only address this particular
configuration.

4 Measuring Local Symmetry and Anti-Symmetry

As shown in Fig. 3, the objective of SymStereo is to asso-
ciate pixels across views by jointly using symmetry and anti-
symmetry measurements. This section discusses techniques
for quantifying local signal symmetry and anti-symmetry at
every image pixel location of IS and IA. We describe three
alternative metrics: the SymBT that adapts the famous BT
matching cost for measuring signal asymmetry instead of
dissimilarity (Birchfield and Tomasi 1998); the SymCen that
is a non-parametric symmetry metric inspired in the Census
transform (Zabih and Woodfill 1994); and the logN that has
been originally proposed by Kovesi in Kovesi (1997) and
uses a bank of N log-Gabor wavelets for evaluating local
symmetry. Please note that the detection of symmetry in
images has been extensively studied in the past, with Liu et
al. (2010) constituting an excellent survey of existing tech-
niques. However, these methods typically concern perceptual
symmetry and target tasks like detecting symmetric objects
in images, which is substantially different from our objective
of quantifying low-level signal symmetry in different pixel
locations.

4.1 The SymBT Metric

Consider a pair of corresponding epipolar lines in the stereo
images I and I′, and let d be a putative disparity value that
associates pixel q1 in I with pixel q1 − d in I′. The match-
ing likelihood can be inferred by measuring the dissimilarity
between I(q1) and I′(q1 − d). In order to avoid sampling
issues, Birchfield and Tomasi (BT) suggest to compare the
intensity value I(q1) in the reference view against a bright-
ness interval [m′, M ′] around the putative image correspon-
dence I′(q1 − d) in the second view (Birchfield and Tomasi
1998). This is illustrated in Fig. 6a, where the boundaries of
the intensity range are
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(a) (b) (c)

Fig. 6 The SymBT metric: In (a) the standard BT cost compares value
of pixel q1 in the reference view against the intensity range [m′, M ′]
around the putative match q1−d. The scheme (b) illustrates how SymBT
quantifies the symmetry and anti-symmetry along the epipolar lines of
IS and IA. Given a particular pixel location q1, the idea is to use the BT

metric to compare the interpolated intensity value on one side against the
intensity interval on the other side. Finally (c) shows how the SymBT
metric can be efficiently implemented without requiring the explicit
rendering of the image signals IS and IA

m′ = min
(

I′(q1 − d); I′−; I′+
)

M ′ = max
(

I′(q1 − d); I′−; I′+
)

,

with I′− and I′+ being interpolated brightness values at the
sub-pixel locations around q1 −d. The dissimilarity between
I(q1) and I′(q1 − d) is quantified by

C = max
(

0; I(q1) − M ′; m′ − I(q1)
)

.

Considering now that I′ is the reference view, it comes in a
similar manner that

C′ = max
(

0; I′(q1 − d) − M; m − I′(q1 − d)
)

,

where

m = min
(

I(q1); I−; I+
)

M = max
(

I(q1); I−; I+
)

,

The final BT score handles the two views symmetrically and
is given by

CBT (q1, d) = min
(

C; C′)

4.1.1 Modifying BT to Measure Asymmetry

Inspired by the BT cost function, we can define a metric for
measuring asymmetry along the epipolar lines of the image
signal IS that is invariant to sampling issues. Let IS− and
IS+ be interpolated image values in the neighborhood of a
particular pixel location q1 inIS (see Fig. 6b). The 1-D image
signal symmetry can be evaluated by verifying if the sub-
pixel image value in one side of q1 is within the brightness
interval in the opposite side. Thus, we propose to quantify the
asymmetry of the image signal IS about the pixel location
q1 by

DS
BT = max

(

0,IS−−M S+; mS+−IS−; IS+−M S−; mS−−IS+
)

,

with

mS± = min
(

IS(q1); IS(q1 ± 1)
)

M S± = max
(

IS(q1); IS(q1 ± 1)
)

.

A similar approach can be used for scoring the anti-
symmetry of the image signalIA at particular pixel locations.
Consider the scheme in the bottom of Fig. 6b, where IA−, IA+
are the interpolated image values at sub-pixel locations, and
[m A−, M A−], [m A+, M A+] are the brightness intervals defined
above. It is easy to understand that, if the image signal is
anti-symmetric about q1, then the following must hold:

IA(q1) + (IA(q1) − IA−) ∈ [m A+, M A+]
IA(q1) + (IA(q1) − IA+) ∈ [m A−, M A−].
Thus, we can modify the asymmetry score defined above for
quantifying lack of signal anti-symmetry about q1

DA
BT = max

(

0; 2IA(q1) − IA− − M A+; m A+ − 2IA(q1) + IA−;
. . . 2IA(q1) − IA+ − M A−; m A− − 2IA(q1) + IA+

)

.

Finally, the SymBT score for finding pixel locations that
are simultaneously symmetric in IS and anti-symmetric in
IA is defined as:

DBT (q1) = max
(

DS
BT ; DA

BT

)

. (12)

4.1.2 Efficient Implementation

The SymBT metric described in the previous section has
the inconvenient of requiring the explicit rendering of the
image signals IS and IA for each considered virtual cut
plane. As discussed in Sect. 3.5, a particular choice of cut
plane implicitly assigns points q1 in the reference view I,
to points q1 − d in the secondary view I′. It is now shown
how to compute the SymBT score for a particular match-
ing hypothesis (q1, d) without having to explicitly render
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the image signals IS and IA. Let’s consider the scheme of
Fig. 6c where I−, I+ are interpolated image values in the
neighborhood of the pixel location q1 in the reference view
I, and [m′−, M ′−], [m′+, M ′+] are the brightness intervals
on the sides of the putative correspondence q1 − d in the
secondary view I′. The metric S evaluates till which extent
I− and I+ are within the ranges [m′−, M ′−] and [m′+, M ′+],
respectively.

S− = max
(

0,I− − M ′−; m′− − I−)

S+ = max
(

0,I+ − M ′+; m′+ − I+
)

S = S− + S+.

Considering now that I′ is the reference view, it comes in a
similar manner that

S′− = max
(

0,I′− − M−; m− − I′−)

S′+ = max
(

0,I′+ − M+; m+ − I′+
)

S′ = S′− + S′+.

Finally, the SymBT score is given by

SBT (q1, d) = max(S, S′). (13)

It is important to note that Equation 12 and Eq. 13 are not
strictly equivalent. However, we verified experimentally that
the metric of Equation 12 provides similar results than the
metric of Eq. 13, while avoiding the rendering of IS and IA.

4.2 The SymCen Metric

The Census transform is a non-parametric filter that analyzes
the differences between image intensity values in a m × n
neighborhood around the pixel of interest. For illustration
purposes consider a 5 × 5 patch centered in a pixel location
denoted by q1, and letI j be the image intensity values for the
entries j in this patch ( j = 1, . . . , 24) as shown in Fig. 7).

The output of the Census transform is a string b, with 24 bits,
where each bit b j is set as follows:

b j =
{

1 if I(q1) > I j

0 if I(q1) ≤ I j
. (14)

Considering that the pixel q1 in image I corresponds to pixel
q1 − d in image I′, we build a second bit string b′ encoding
the intensity values around q1 − d and compute the Census
dissimilarity as

CC (q1, d) = H(b; b′) ,

with H denoting the Hamming distance.

4.2.1 Modifying Census to measure dissymmetry

Figure 7b shows how the Census transform can be used to
quantify image symmetry instead of image dissimilarity. In
this case the 5 × 5 neighborhood is divided into two 5 × 2
regions, W S− and W S+, that are respectively in the left and
right sides of the pixel of interest. The intensity values of the
two patches are encoded in the bit strings bS− and bS+ using
Eq. 14, and a new bit string is computed which describes the
symmetry of the image signal IS about the pixel location q1

bS = (bS− == bS+),

where == is the bitwise equality operator. The anti-
symmetry in image IA can be encoded in a similar manner
by

bA = (bA− == b̄A+),

where bA− is the bit string of the left side region W A− , and b̄A+ is
the binary complement of the bitstring of the right side patch

(a) (b) (c)

Fig. 7 The SymCensus transform. In (a) the standard Census trans-
form defines a bit string (b) for each image point q1, with each bit b j
corresponding to a particular pixel in a local patch centered in q1. In
(b) SymCen is used to quantify the signal symmetry in IS by compar-

ing the regions W S− and W S+ on both sides of q1. In (c) the SymCen
is implemented without requiring the explicit rendering of IS and IA.
The bit strings bS−, bS+, bA− and bA+ are computed by performing simple
operations over W−, W+, W ′− and W ′+
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W A+ . The final SymCen score for the pixel q1 is obtained by
comparing corresponding symmetry and anti-symmetry bits
bS

j and bA
j , and then summing all the bit responses:

SC (q1) =
∑

j

bS
j &bA

j , (15)

where & is the bitwise and operator. Remark that different
from the Census metric, larger values of the SymCen cost
correspond to higher matching likelihood.

4.2.2 Efficient Implementation

The bit strings bS−, bS+, bA−, and bA+, that are required for
evaluating the SymCensus cost of Eq. 15, can be directly
computed from the stereo pair I and I′ as shown in Fig. 7.
Let W− and W+ be the patches on both sides of pixel q1 in
the reference view I, and W ′− and W ′+ be the patches around
the putative correspondence q1 −d in the secondary view I′.
Subtract I(q1) to the intensity values in regions W− and W+.
Repeat the procedure in the secondary view using I′(q1 −d).
It can be proved that the bit strings for evaluating the score
SC can be determined as follows:

bS− = T(W−; −W ′−)

bS+ = T(W+; −W ′+)

bA− = T(W−; W ′+)

bA+ = T(W+; W ′−)

with T being an operator that compares the intensity values
of corresponding pixels in two patches W and W ′, generating
a bit string with the j th bit being given by

T j (W ; W ′) =
{

1 if I j > I′
j

0 if I j ≤ I′
j

.

This alternative scheme for computing the SymCensus
score has the obvious advantage of avoiding the explicit
rendering of image signals IS and IA, which substantially
decreases the computational complexity.

4.3 The logN Metric

Kovesi shows that an intensity distribution that is sym-
metric about a particular pixel location gives rise to spe-
cific phase patterns in the Fourier series of the image sig-
nal (Kovesi 1997). Thus, he proposes to detect symmetry
and anti-symmetry based on frequency information obtained
using a bank of log-Gabor filters. This section describes the
joint application of Kovesi’s algorithms with the SymStereo
framework, leading to a new stereo matching cost that is
referred as logN, with N standing for the number of wavelet
scales that is considered for the signal analysis.

Since the log-Gabor wavelets are analytical signals, the
image filtering must be carried in the spectral domain. Let
Gk , with k = 1, . . . N , be the frequency response of the pre-
selected wavelet scales, and IS be the spectrum of a generic
epipolar line IS(q1) in the symmetry image (see Fig. 3d).
The filtering result is the following 1D complex signal

sS
k (q1) + i aS

k (q1) = F−1(IS · Gk) , (16)

with F denoting the Fourier transform and i2 = −1. It can
be shown that, if the image is symmetric about the pixel
location q1, then the real component sS

k typically takes high
values, while the imaginary component aS

k takes small val-
ues (Kovesi 1997). Therefore, and given the N wavelet scale
responses, we can establish the following energy of symme-
try:

ES(q1) =

N
∑

k=1

| sS
k (q1) | − | aS

k (q1) |
∑

k

√

(

sS
k (q1)

)2 + (

aS
k (q1)

)2
, (17)

where the normalization by the sum of the magnitudes pro-
vides invariance to changes in illumination (Kovesi 1997).
Fig. 8a shows the result of stacking the lines ES(q1) arising
from each row of image IS of Fig. 3d. It can be observed that
the highlights correspond to pixel locations where the image
signals is symmetric along the horizontal direction.

Considering now the anti-symmetric image IA of Fig. 3e,
we can use the different wavelet scales and compute

s A
k (q1) + i a A

k (q1) = F−1(I A · Gk). (18)

Apply a similar approach for deriving an energy of anti-
symmetry yields

Fig. 8 The logN metric: (a) is the symmetry energy ES of the image
signal IS , while (b) is the anti-symmetry energy EA of image IA. The
final joint energy E in (c) is obtained by pixel-wise multiplication of
ES and EA
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EA(q1) =

N
∑

k=1

| a A
k (q1) | − | s A

k (q1) |
∑

k

√

(

s A
k (q1)

)2 + (

a A
k (q1)

)2
. (19)

The resulting energy EA is depicted in Fig. 8b, with the loca-
tions of image anti-symmetry being clearly emphasized.

Both ES and EA have several local maxima along the hor-
izontal lines, which preclude a straightforward detection of
the image of the profile cut C, that is overlaid in Fig. 3d and
e. Since points in C must be simultaneously local maxima
in ES and EA, the pixel-wise multiplication of the two ener-
gies enables to discard most spurious detections. Thus, we
consider the following joint energy E

E = ES · EA (20)

where the image of the contour C is clearly distinguishable
as shown in Fig. 8c

4.3.1 Efficient Implementation

The joint energy E is computed from the images IS and IA,
which are rendered for a particular virtual cut plane �. As
discussed in Sect. 3.5, each plane �i in the scene gives rise to
a plane �i in the DSI that is function of an integer parameter
λi (see Eq. 11). As discussed in this section, the energy E can
be computed without explicitly rendering the image signals
IS and IA, and the evaluation of logN across the entire DSI
domain can be carried in a very efficient manner.

LetIS(q1) be the 1D signal arising from a generic epipolar
line in the symmetry image IS . If I(q1) and I′(q1) are the
corresponding lines in the rectified stereo pair, then it follows
from Eq. 10 that:

IS(q1) = I(q1) + ̂I(q1)

= I(q1) + I′
f (q1 − λ) ,

where λ is a shift amount depending on the choice of the
virtual plane �, and I′

f is a horizontally flipped version of
the right side image

I′
f (q1) = I′(2c1 − q1).

From the reasoning above, and exploring the linear properties
of the Fourier transform, it comes that Eq. 16 can be re-
written as:

sS
k (q1) + i aS

k (q1) = (

sk(q1) + s′
k(q1 − λ)

)

+i
(

ak(q1) + a′
k(q1 − λ)

)

,

with

{

sk(q1) + i ak(q1) = F−1(I · Gk)

s′
k(q1) + i a′

k(q1) = F−1(I ′
f · Gk)

,

where I and I ′
f stand for the Fourier transform of I(q1) and

I′
f (q1), respectively. The response of Eq. 18 for the anti-

symmetric image signal IA(q1) can be computed in a similar
manner by

s A
k (q1) + i a A

k (q1) = (

sk(q1) − s′
k(q1 − λ)

)

+i
(

ak(q1) − a′
k(q1 − λ)

)

.

Figure 9 is a schematic of the computation pipeline for
obtaining the energy Ei for a particular choice �i of virtual
cut plane. The new formulation not only avoids the explicit
rendering of the symmetric and anti-symmetric image sig-
nals, but also enables to efficiently evaluate the entire DSI by
simply varying the shifting amount λi with i = 1, 2 . . . M .
Moreover, and despite of not done in this article, the compu-
tations can be easily parallelized using GPGPU techniques.

4.3.2 Selection of Wavelet Scales

The choice of the log-Gabor wavelets for filtering the input
images has a strong influence in the final stereo results.
Despite of the fact that log-Gabor filters are analytical sig-
nals with no real representation in the space domain, the
scheme of Fig. 10 tries to provide an intuition about how the
wavelet parameters relate with the space-frequency response
of the filter. The horizontal axis refers to the space extent or
support of the filter kernel, while the vertical axis concerns
the frequency components of the image signal to which Gk

responds. If the image region is very textured, then it is advis-
able to operate in the top-left corner of the (ω, σ ) plane, and

Fig. 9 Efficient implementation of the logN stereo matching cost.
In a first step the rectified stereo pair is filtered by the considered
wavelet scales Gk in order to obtain the left and right complex sig-
nals sk(q1) + i ak(q1) and s′

k(q1) + i a′
k(q1) with k = 1, 2 . . . N . In a

second stage, and for each scale k, the right-side signal is shifted by an

amount λi , which depends on the virtual cut plane �i , and the result
is added and subtracted to the left-side signal. The operation provides
the input coefficients for computing the symmetry and anti-symmetry
energies of Eqs. 17 and 19, ultimately leading to the energy Ei
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Fig. 10 (Qualitative) space-frequency behavior of the log-Gabor
wavelets Gk . The horizontal axis refers to the spatial support σ of the
filter kernel, while the vertical axis concerns the response frequency ω.

choose filters with high-frequency response and small space
extent. On the other hand, if the image region is texture-
less, then we must consider wavelets that respond to low-
frequency components, but that have a larger support which
tends to diminish the pixel accuracy of the analysis.

As discussed in Kovesi (1995), the bank of log-Gabor
wavelets Gk is usually parametrized by the shape-factor �,
the center frequency of the mother wavelet ω1, the scaling
step s, and the total number N of wavelets. The shape-factor
� can be related with the filter bandwidth, and defines a
contour in the (ω, σ )domain containing the wavelets that can
be selected (see Fig. 10). The center frequency ω1, together
with the shape factor �, defines uniquely the first wavelet
scale G1. The scaling step s sets the distance between the
center frequencies of successive wavelet scales k and k +
1 along the contour. In this article we have manually set
� = 0.55, ω1 = 0.25, and s = 1.05, and kept these values
constant throughout the entire set of experiments. The only
parameter that is allowed to vary is the number of scales N
that controls the ability of obtaining response in low textured
image regions by using filters with a larger spatial support.

5 Experiments in Dense Stereo Reconstruction

Until now we proposed three matching costs—SymBT,
SymCen, and logN - that use symmetry instead of photo-
consistency for accomplishing pixel data association. The
described approach is new and original, but an important
question remains: what are the effective advantages with
respect to existing stereo cost functions? This section tries
to answer the question by running an extensive set of exper-
iments in dense stereo reconstruction. The results enable to
characterize the performance of symmetry-based stereo and
empirically show the advantages with respect to state-of-the-

art matching costs. The conclusions are further confirmed in
Sects. 6 and 7 that run additional tests in SRF and wide-
baseline stereo.

5.1 Methodology and Tuning of Parameters

Since the stereo literature is vast, it is virtually impossi-
ble to compare SymStereo against every possible method
and approach. Thus, and in order to assure a rigorous
and conclusive study, the evaluation herein presented fol-
lows the methodology and takes into account the results of
the recent benchmark work of Hirschmüller and Scharstein
(Hirschmüller and Scharstein 2009). We compare the three
symmetry-based matching costs against the cost functions
that, for one reason or the other, were considered to be top-
performers in (Hirschmüller and Scharstein 2009). These
stereo cost functions are:

1. Birchfield-Tomasi(BT): It quantifies pixel dissimilarity
by comparing (1D) neighborhoods defined along the
epipolar lines (Birchfield and Tomasi 1998). According
to Hirschmüller and Scharstein (2009), the BT metric
combined with BBS (Ansar et al. 2004), provides the best
matching results among pixel-wise parametric costs.

2. Zero-mean Normalized Cross-Correlation (ZNCC): It is
a broadly used cost function, that considers a 2D sup-
port region for quantifying photo-similarity, and proved
to be the a top-performer among window-based paramet-
ric matching costs.

3. Census Filter: It is a window-based non-parametric cost
function (Zabih and Woodfill 1994), that consistently
proved to be the top similarity measure for dense dis-
parity estimation.

The evaluation is carried using stereo pairs with ground
truth disparity that include challenging situations, e.g. slanted
surfaces, low and repetitive textures, depth discontinuities.
Like in Hirschmüller and Scharstein (2009), most experi-
ments in this section are performed using the Middlebury
dataset (Scharstein and Szeliski 2002; Scharstein and Pal
2007; Hirschmüller and Scharstein 2009) but, while they run
the benchmarking in 6 image pairs, we consider a set of 15
examples that covers a wider range of situations (see Fig. 13).
For each cost function under analysis, we build the DSI of
the different image pairs, estimate the corresponding dis-
parity maps using a particular stereo method, and score the
estimation result by counting the number of pixel locations in
non-occluded regions with a disparity error greater than one.
The matching costs under benchmark are ranked by averag-
ing the error score across all stereo pairs in the test set. Since
the focus is in evaluating the performance of matching costs,
the disparity estimation must be carried by the exact same
stereo method for all costs in order to assure fair compari-
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son. As in Hirschmüller and Scharstein (2009), we present
results using three distinct possibilities:

1. Local Aggregation : The DSI is aggregated by summing
the costs over a window and each image pixel is assigned
with the disparity value that has the lowest cost.

2. Semi-Global Matching (SGM): It is an approach in-
between local and global matching that minimizes a 2D
energy by solving multiple 1D minimization problems
Hirschmüller (2005).

3. Graph-Cut (GC): The disparity map is estimated by
global minimization of an energy function defined in the
DSI using graph-cuts (Boykov et al. 2001; Kolmogorov
and Zabih 2002; Boykov and Kolmogorov 2004).

GC and SGM are formulated in the standard manner, and
post-processing steps, e.g. left-right consistency check or
sub-pixel interpolation, are not considered.

It can be argued that using local aggregation is better
suited for comparing different matching costs than using
SGM or GC. It is a fact that global and semi-global methods,
being more sophisticated minimization techniques, can even-
tually hide issues and weaknesses in the stereo cost function.
Although we agree that local aggregation provides the most
relevant benchmarking information, this section also presents
the scores obtained with SGM and GCl for the sake of com-
pleteness and to assure full compliance with the methodology
and results described in Hirschmüller and Scharstein (2009).

It can also be argued that choosing adaptive-weight aggre-
gation (Yoon et al. 2006), instead of basic window aggrega-
tion, is likely to improve the disparity estimation in image
regions that are close to discontinuities or lack strong tex-
ture. This is true but it is important to keep in mind that such
improvements are transverse to all matching costs and do
not necessarily change the relative disparity scores. More-
over, and as stated above, advanced stereo methods are more
likely to overcome issues that are inherent to the considered
cost function, which can bias the results of the benchmark.

Finally, for every matching cost under study, the computa-
tion of the DSI is carried in C++ assuming input images with
size 460 × 370 and disparity range of 64 pixels. The C++
implementations are straightforward, do not involve paral-
lel processing, and only use the standard code optimizations
described in stereo literature. This is proved by the fact that
BT, ZNCC, and Census, present execution times that are con-
sistent with what has been reported by other authors. All the
runtimes presented in this article were measured on the same
machine in order to assure a fair comparison between com-
peting matching costs.

5.1.1 Tuning of Parameters

Like in Hirschmüller and Scharstein (2009), all parameters
are manually tuned using the standard Middlebury dataset

(Scharstein and Szeliski 2002), that comprises the images
Tsukuba, Venus, Teddy, and Cones. These pairs are not
considered latter in the benchmark to avoid bias effects.
Whenever applicable, we use the optimal values reported
in Hirschmüller and Scharstein (2009), meaning that for the
dense stereo experiments the local aggregation window is
9 × 9, the ZNCC window is 9 × 9, and the Census win-
dow is 9 × 7. In order to allow a direct comparison between
Census and SymCen we also consider a window of 9 × 7
for the second. As shown in Fig. 11, the number of wavelet
scales to be used with logN is set to N = 20. As expected,
increasing N does not necessarily improve the performance
because low frequency wavelets have wider space support
that decreases the accuracy of the disparity estimation (see
Fig. 10 in Sect. 4.3.2). For the case of BT and SymBT, we
always apply bilateral filtering and consider a 3 pixel neigh-
borhood. Table 1 summarizes the choice of parameters for
this and the following sections. For the latter experiments in
SRF and wide-baseline stereo, we will re-tune the window-
size of ZNCC, the horizontal window-size of Census and
SymCen, and the number of scales of logN.

After tuning the cost functions assuming local aggrega-
tion, we move to the setting of the parameters of SGM and
GC that will be used with each matching cost. The tuning
is carried by selecting the parameter values that provide the

Fig. 11 Tuning the number of wavelets scales N for dense stereo using
the standard Middlebury dataset. The figure plots the average error in
disparity estimation using local aggregation when N increases

Table 1 Summary of the parameters used in experiments throughout
the article in dense stereo (DS), stereo rangefinder (SRF), and wide-
baseline (WB) images

DS SRF DS–WB SRF–WB
(Sect. 5) (Sect. 6) (Sect. 7) (Sect. 7)

BT 1 × 3 1 × 3 1 × 3 1 × 3

SymBT 1 × 3 1 × 3 1 × 3 1 × 3

logN 20 40 50 70

ZNCCM 9 × 9 15 × 15 7 × 7 9 × 9

CensusH 9 × 7 9 × 19 9 × 19 9 × 23

SymCenH 9 × 7 9 × 19 9 × 9 9 × 23
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(a) (b) (c)

Fig. 12 Result after tuning the parameters: the figure plots the percentage of errors in dense disparity estimation across the images of the standard
Middlebury dataset

Fig. 13 The stereo pairs that are used as input for the experiments of
Sects. 5 and 6. The benchmark is carried in 15 images of the Middlebury
dataset (Scharstein and Pal 2007; Hirschmüller and Scharstein 2009).
The top row shows the Set I comprising frames with several objects and
depth discontinuities. The bottom row exhibits the Set II consisting in

scenes dominated by continuous surfaces with low or repetitive texture.
The image in the bottom right corner refers to the Oxford Corridor that
is used in Sect. 5.3 for evaluating the performance in case of strong
surface slant

(b)(a) (c)

Fig. 14 Average percentage of disparity errors in the dense disparity maps of the 15 images of the Middlebury dataset (Set I + Set II)

smallest percentage of disparity errors in the images of the
standard dataset. These errors are plotted in Fig. 12 where it
can be observed that the results for BT, ZNCC, and Census
are close to the ones reported in Hirschmüller and Scharstein
(2009)2. This indicates that the choice of parameters is opti-
mal, and that our symmetry-based matching costs will be
effectively compared against top-performing metrics. We do
not provide scores for the case of ZNCC combined with SGM
or GC because ZNCC is by definition a local method and,
as also referred in Hirschmüller and Scharstein (2009), the
experiments showed that the global and semi-global mini-
mizations often lead to poorer results that the ones obtained
with simple aggregation.

2 We obtain slightly worse results with SGM but, on the other hand,
the results accomplished with GC are slightly better.

5.2 Tests in Middlebury Images

The 6 matching costs are now compared by analyzing the
errors in dense disparity estimation in the Middlebury images
of Fig. 13. Figure 14 shows the mean of the percentage of pix-
els with incorrect disparity label for a particular combination
of matching cost and stereo method. The first observation
is that pixel-based 1D metrics tend to perform worse than
window-based 2D costs. This is to expect because most sur-
faces in the Middlebury dataset have moderate or no slant.
More important is the fact that the symmetry-based met-
rics, SymBT and SymCen, consistently beat their similarity-
based counterparts, BT and Census. Thus, the experimental
evidence clearly suggests that the symmetry cues are more
effective than the standard photo-consistency measurements
for matching pixels across views.
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It can also be observed that log20 has an erratic behavior
ranking differently according to the stereo method that is
considered. For the case of local aggregation it is the most
inaccurate metric among the 1D matching costs, although
it performs significantly better than ZNCC. Apparently the
use of global minimization changes the ranking of relative
performances, with log20 becoming respectively the best and
second best pixel-based cost function when combined with
SGM and GC. The reasons for this behavior require a more
detailed analysis of the experimental data. For this purpose
the input set is divided into two subsets:

1. Set I: It comprises the images with many objects and
surface discontinuities (marked with yellow in Fig. 13).

2. Set II: It contains the images that are dominated by large
sized surfaces that often present poor or repetitive texture
(marked with green in Fig. 13).

The estimation in the two sets is analyzed using the crite-
rion introduced in Mordohai (2009) that tests the ability of
a matching cost to rank the matches according to their reli-
ability. After using local aggregation for the dense disparity
labeling, the pixel locations are sorted in ascending order of
cost, and a semi-dense disparity map is obtained by select-
ing the first L% pixels for which the matching confidence
is higher. Figure 15 shows the mean percentage of errors in
the semi-dense disparity estimation for increasing values of
L . Looking to the scores for L = 100, that correspond to

the errors in the dense disparity map, it can be seen that all
matching costs perform worse in Set II than in Set I, sug-
gesting that the former dataset is a more challenging than
the latter. It can also be observed that SymBT and SymCen
behave equal or better than BT and Census, respectively, for
all levels of completeness L . The most striking difference
between the two plots is the fact that log20 has the second
worse reliability performance in the images of Set I, but it
is clearly the most accurate matching cost for a complete-
ness up to L = 85 % in Set II, only loosing the advantage in
the disparity labeling of the last 15 % of pixels with highest
cost scores. It happens that these pixels are usually located
close to discontinuities and/or occlusion regions, suggesting
that log20 is very effective in estimating the disparity along
the continuous surfaces with low or repetitive texture, but
has more difficulty than other matching costs in handling
the depth discontinuities. This can also explain the improve-
ments of log20 in the ranking of relative performances that
were observed in Fig. 14. Since the pixels in the continuous
surfaces have lower cost values at the correct disparities, they
have a stronger regularization effect during the SGM and GC
minimizations that leverages the depth estimation close to the
discontinuities.

Figure 16 shows, for each stereo pair and matching cost,
the error normalized by the mean error over all matching
functions (Hirschmüller and Scharstein 2009). The objec-
tive of the plots is to provide a perspective about the relative
performance of the different matching cost in a particular

(a) (b)

Fig. 15 Average percentage of disparity errors in the semi-dense disparity maps of Set I (a) and Set II (b) obtained by selecting the first L%
matches with lowest cost Mordohai (2009)

(a) (b) (c)

Fig. 16 The number of disparity errors for each input image normalized by the average number of errors across all matching costs Hirschmüller
and Scharstein (2009)
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Fig. 17 Overlay of the disparity errors (left) and disparity map (right) in the Laundry example for every possible combination of matching cost
(rows) and stereo method (columns). Remark that there is no post-processing step after local stereo aggregation

input image. The results show that log20 always compares
well for the images of Set II confirming the hypothesis that,
despite of being a 1D matching cost, it is specially effective
in scenes dominated by large surfaces with low and/or repet-
itive texture. It can also be seen that SGM and GC boost the
relative accuracy of log20 in Set II but not in Set I, which is
in accordance with the interpretation that the improvements
in the ranking of Fig. 14 are because of the low cost values
at correct pixel disparities observed in Fig. 15b.

Figure 17 shows the disparity errors in the Laundry exam-
ple. It is interesting to observe that SymBT and SymCen tend
to outperform BT and Census in the continuous regions,
while presenting similar performance close to discontinu-
ities. In general the log20 is very accurate in the continuous
surfaces, providing to be resilient to low and repetitive tex-
tures, but the error regions are considerably larger close to
depth discontinuities and occlusions.

Table 2 summarizes the runtimes for evaluating the DSI
of the Teddy stereo pair using the different matching func-
tions, while Table 3 analyzes the computational complexity
(Big O notation) and the principal operations required dur-

Table 2 Runtime for evaluating the disparity space image (DSI) assum-
ing 375×450 images and a disparity range of 64 pixels

Match. cost Time (ms) Match. cost Time (ms)

BT (+BBS) 120 (+296) SymBT (+BBS) 170 (+296)

Census7 160 SymCen7 185

ZNCC9 3,200 log20 3,900

ing the evaluation. As stated previously, BT and SymBT are
always evaluated in a 1×3 region, while for the case of Cen-
sus, SymCen and ZNCC we generalize the computational
complexity analysis for a window of size l ×w. In general,
the symmetry-based matching functions require more opera-
tions, but the magnitude of additional effort does not preclude
the possibility of real-time dense disparity estimation, largely
justifying the observed improvements in accuracy.

As a final remark, we experimentally evaluated the match-
ing costs in the Middlebury stereo pairs containing radio-
metric differences Hirschmüller and Scharstein (2009). We
observed that our symmetry-based matching costs are as
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Table 3 The left column shows how complexity scales with respect to
image size L ×W , disparity range D, window size l×w or number of
wavelet scales N

Match.
Cost

Big O Operations

BT O(LWD) LWD × (8B+11C)

SymBT O(LWD) LWD × (14B+15C)

Census O(LWDlw) LWlw×(2C) + LWDlw×(1C)

SymCen O(LWDlw) LWl(w−1)/2×(2B) + LWDl
(w−1)/2×(2B+4C)

logN O(LW(log(W)N +D))

ZNCC O(LWDlw)

The right column reports the number of addition or subtraction (B), and
comparison (C) operations required for evaluating each matching cost.
We do not provide the last information for the case of logN and ZNCC
because the analysis is difficult to carry and the result cannot be directly
compared.

Fig. 18 Percentage of disparity errors in the dense disparity map of
the Oxford Corridor. The estimation was carried after local aggregation
with a 9 × 9 window.

sensitive as their photo-consistency counterparts, so that we
decided not to report these results.

5.3 Tests in Oxford Corridor

Figure 18 shows the percentage of disparity errors for the
Oxford Corridor that is exhibited in the bottom-right corner
of Fig. 13, while Fig. 19 displays the disparity maps obtained
using the different matching costs. The disparity estimation is

carried by a WTA strategy after local aggregation of the DSI
using a 9×9 window. The relative performance of the match-
ing functions differs from the one observed in the equivalent
experiment using the Middlebury dataset (see Fig. 14a). First,
for the Oxford Corridor the 1D matching costs outperform
the 2D functions because now the scene is dominated by
highly slanted surfaces. Second, the differences in accuracy
between symmetry and similarity-based matching functions
are more striking in Fig. 18 than in Fig. 14a. with the log20
being the top-performing metric. This is explained by the
fact that most textures in the Oxford Corridor are either flat,
e.g. the walls, or repetitive, e.g. the checkerboard pattern of
the floor. Thus, the results of this experiment seem to con-
firm that the symmetry-based costs in general, and the logN
metric in particular, are specially well suited for estimating
the disparity in continuous regions with low or repetitive
texture and high slant, clearly beating the similarity-based
counterparts.

6 Experiments in Stereo Rangefinder (SRF)

SRF consists in using passive stereo for estimating depth
along a virtual cut plane in order to reconstruct the con-
tour C where the plane meets the scene. As discussed in
Antunes and Barreto (2011), SRF enables a trade-off between
runtime and 3D model resolution that does not interfere
with depth accuracy, providing an effective way of prob-
ing into the 3D structure of the scene for applications like
reconstruction of man-made environments (Antunes et al.
2011; Antunes and Barreto 2012) and robot range-finding
(Antunes et al. 2012). This section evaluates the perfor-
mance of the 6 matching functions for the purpose of SRF.
Henceforth, and due to space constraints, we will only
present the disparity estimation results obtained using local
aggregation.

6.1 Methodology and Tuning of Parameters

From Sect. 3.5 it follows that a virtual cut plane �i going
in-between the cameras corresponds to a plane �i in the DSI
domain. While dense stereo evaluates the matching function
for the entire DSI, SRF only considers the disparity hypothe-

Fig. 19 Disparity maps obtained for each matching cost on the Oxford Corridor. Remark that there is no post-processing step after local stereo
aggregation
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(a) (b) (c)

Fig. 20 Benchmark of the cost functions for SRF: (a) average percent-
age of errors in the standard Middlebury dataset for logN and ZNNC
when the spatial support increases; (b) average percentage of dispar-
ity errors in the 15 Middlebury images of Fig. 13 for the 6 matching
costs; (c) disparity errors in the Wood1 example when using log40 and
ZNCC15. The disparity labeling is independently carried for each vir-

tual cut plane by a WTA approach after local aggregation using a 9 × 1
window. The overlay refers to the image of the mirroring contour where
green is correct estimation of both (log40 and ZNCC15), black is wrong
detection of both, magenta and blue means log40 is correct and ZNCC15
is wrong, respectively, whereas red and cyan means log40 is wrong and
ZNCC15 is correct, respectively

sis corresponding to 3D points lying in �i , meaning that the
cost is exclusively evaluated along the plane �i in the DSI.
In our experiments, the scores in �i are locally aggregated
using a vertical 9 × 1 window (no horizontal aggregation),
and a disparity label is assigned to each epipolar line using a
WTA strategy. Since the winning labels must always occur
in the pixel locations where the profile cut C is projected, the
number of errors in SRF is determined by counting the win-
ners that are more than 1 pixel apart from the ground truth
image contour (see Fig. 3).

The performance of the 6 matching functions is bench-
marked by averaging the results obtained in the 15 Middle-
bury images of Fig. 13. In each case the scene depth is inde-
pendently estimated along 201 vertical cut planes �i with
uniformly distributed rotation angles θi (see Sect. 3.5). The
objective of using such a large number of cut planes is to cover
a broad range of possible SRF situations, with �i either inter-
secting the scene in a continuous surfaces or passing nearby
a depth discontinuity. As in the dense stereo experiments,
the parameters of the matching functions are manually tuned
using the standard Middlebury dataset as input. Figure 20a
plots the average percentage of errors for logN and ZNCC in
case of increasing number of scales and window-size, respec-
tively. The choice of parameters is summarized in the second
column of Table 1, where a comparison with dense stereo
shows that SRF benefits from computing the matching costs
across a wider pixel neighborhood. This is not surprising if
we take into account that the larger image patches tend to
compensate the fact that the aggregation is only carried in
the 1D-vertical direction.

6.2 Tests in Middlebury Images

Figure 20b shows the percentage of disparity errors aver-
aged across the 15 image pairs of Fig. 13. Comparing with

the dense stereo results of Fig. 14, it comes that the disparity
estimation in SRF is less accurate for all matching functions.
The higher percentage of errors is justified by the fact that
SRF uses less information than dense stereo for the disparity
labeling, because it only evaluates and aggregates the cost
along a plane �i in the DSI domain. The second observation
is that symmetry-based matching costs still outperform their
similarity-based counterparts, with SymBT and SymCen19
having less 20 and 1 % of errors than BT and Census, respec-
tively. The relative lower performance of the BT family is
largely due to the fact that the scores are computed across
a small 3-pixel neighborhood, which seems to be an insuffi-
cient image support for handling the lack of horizontal aggre-
gation. Finally, ZNCC15 is the most accurate metric among
the similarity-based matching functions, but it is beaten by
log40 that presents 4 % less errors. The figure also shows
the accuracy of log40 when the local aggregation is replaced
by global optimization using a standard GC formulation that
enforces continuity in the mirroring contour. The error per-
centage becomes 13 % which is about 5.8 % more than the
best result observed for dense stereo (SymCen7 with GC),
and just 2 % more than the best result accomplished with
log20 (log20 with SGM).

Figure 20c compares the performance of logN and ZNCC
in the Wood1 stereo pair by overlaying the results in detect-
ing the mirroring contours for the 201 virtual cut planes.
It can be observed that the latter, being a 2D metric with
a large window support, has difficulties in handling depth
discontinuities (e.g. errors in the horizontal depth transition
at the top of the image, and in the occlusion region at the
image center) and surface slant (e.g. errors in the boards
lying on the floor). On the other hand, logN seems to com-
bine the benefits of being a pixel-based matching cost, with
a good discriminative power for pairing pixels in low tex-
tured regions. This is illustrated in Fig. 21a that shows the
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Fig. 21 Pros and cons of the logN symmetry-based matching function.
Figures (a) and (b) show the symmetry images IS for particular choices
of �i . The overlay refers to the image of the mirroring contour where
blue is the ground truth, green is correct estimation, and red wrong
detection. The logN matching function performs well in low textured,
slanted surfaces (a) but fails in flat regions close to depth discontinuities
(b). In b the edge of the foreground object induces an apparent symmetry
that misleads the logN estimation (Color figure online)

symmetry image IS for a virtual cut plane that meets the
scene in the vertical wooden board with significant slant.
Since the pixel matching is accomplished using symmetry,
the lack of local texture is partially compensated by nearby
structures, such as edges and wood nodes, that contribute
to successfully detect the image of the mirroring contour.
Thus, the good performance in the presence of low texture is
explained by the global character of the induced symmetry
cue. However, and as exemplified by the situation of Fig. 21b,
such global character can become an issue whenever the con-
tour passes in a flat region close to a depth discontinuity.
In this case, the edge of the foreground object gives raise
to an apparent image symmetry in the wrong location that,
together with the absence of background texture, completely
misleads the logN detection. It is also this phenomena that
explains the poor performance of log20 close to discontinu-
ities and occlusion regions during the dense stereo experi-
ments (e.g. see the third column of Fig. 17). The problem
can eventually be solved by using local texture information
for selecting the wavelet scales at each pixel location, how-
ever the development of such a strategy is beyond the scope
of this article.

As a final remark, we also evaluated the different matching
costs in the two image subsets described in Sect. 5.2 for the
case of SRF. The relative performances of the matching costs
was very similar, but in the case of SRF, log40 is the top-
performer in both sets.

Table 4 provides the average runtime for estimating the
depth along a single virtual cut plane using SRF. Since the
BBS filtering in BT and SymBT, and the spectral convo-
lution in logN are executed only once independently of the
number K of profile cuts, the workload required by these one
time operations is accounted as an initialization overhead toh .

Table 4 Runtime of SRF measured in the Teddy stereo pair

Match. cost toh (ms) t� (ms) Match. cost toh (ms) t� (ms)

BT 98 0.42 SymBT 98 0.60

Census19 32 SymCen19 33

ZNCC15 39 log40 378 13

The column toh refers to the initialization overhead whenever applica-
ble, and the column t� reports the time for estimating disparity along
a single virtual cut plane. The total time for processing K independent
profile cuts is given by t = toh + K .t�.

The table shows that for K = 1 logN is about 10× slower
than Census, SymCen, and ZNCC, but a quick calculation
shows that for K ≥ 20 the former becomes faster than the
laters. Remark that there is no linear relationship between
the runtimes of Tables 2 and 4 based on the number of image
columns. The reasons are that the matching costs in SRF have
larger window support and the scoring along a single plane
in the DSI domain does not benefit from an efficient memory
management.

7 Experiments in wide-baseline stereo

This section evaluates the performance of the 6 matching
functions when the input image pairs have a wide-baseline.
We consider the 8 frames of the fountain-P11 dataset Strecha
et al. (2008) that are exhibited in the top row of Fig. 22.
The sequence gives raise to 7 medium-baseline examples,
corresponding to pairwise consecutive frames, and 6 wide-
baseline examples obtained by pairing the frames with one
image interval. We randomly select one of the stereo pairs for
tuning the matching functions, and later discard the exam-
ple for preventing bias effects during the benchmark. The
selected parameters for dense stereo and SRF are shown in 3th

and 4th columns of Table 1, respectively. The disparity range
r is set by the minimum and maximum of the groundtruth dis-
parity maps for images with size 440×640, and the threshold
e for deciding about the correctness of the disparity labeling
is chosen such that the ratio e/r is the same as in Section 5.
Since the images are a bit larger than the dataset used in Sec-
tion 6, for SRF the scene depth is independently estimated
along 401 vertical cut planes.

The two plots at the bottom of Fig. 22 show the percentage
of errors for dense disparity labeling (left) and SRF (right)
in both medium and wide-baseline stereo pairs. The relative
performance of the matching functions is in perfect accor-
dance with the observed in Figs. 14a and 20b, suggesting
that all the conclusions drawn in Sects. 5 and 6 hold for the
case of wide-baseline imagery. It is interesting to see that in
case of dense stereo, the window of SymCen is narrower than
the window of Census, meaning that SymCen beats Census
both in terms of accuracy and runtime.
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(a) (b)

Fig. 22 Mean errors on the fountain-P11 dataset Strecha et al. (2008).
The top row shows the 8 input images, while the bottom row shows the
results of the different matching costs for dense stereo and SRF across

the different stereo combinations (i) middle-baseline (blue), and (ii)
wide-baseline (green) (Color figure online)

8 Conclusions

The paper is the first work in the literature proposing to use
symmetry instead of photo-similarity for assessing the like-
lihood of two image locations being a match. Stereo from
symmetry is possible because of the mirroring effect that
arises whenever one view is mapped into the other using
the homography induced by a virtual cut plane that inter-
sects the baseline. We provided a formal proof of this effect,
studied the singularities, and investigated its usage for solv-
ing the data association problem in stereo. In the follow up
of this effort we proposed three symmetry-based matching
costs: SymBT, SymCen, and logN. The first two are closely
related with the top-performing cost function BT (Birchfield
and Tomasi 1998) and Census (Zabih and Woodfill 1994),
being in a large extent mere modifications for measuring
symmetry instead of photo-similarity, while the later relies
in wavelet transforms for detecting local signal symmetry.
The new matching costs were benchmarked against the state-
of-the-art metrics for accomplishing dense disparity labeling
in both short and wide-baseline images. The results showed
that the symmetry-based functions, SymBT and SymCen,
consistently outperform their similarity-based counterparts,
BT and Census, suggesting that symmetry is superior to stan-
dard photo-consistency as a stereo metric.

The logN cost proved to be particularly effective in scenes
with slanted surfaces and difficult textures, being the top-
performer matching function in the Oxford Corridor dataset.
The major weakness is its relative poor performance close to
discontinuities and occlusion regions.We also investigated
the use of passive stereo for estimating depth along a pre-

defined scan plane. The technique, named Stereo Range-
finder (SRF), provides profile cuts of the scene similar to
the ones that would be obtained by a LRF, enabling a trade-
off between runtime and 3D model resolution that does not
interfere with depth accuracy (Antunes and Barreto 2011).
The article described the first benchmark of SRF that showed
that logN is undoubtedly the best performing matching
cost.

As future work, we intend to develop local and global
optimization techniques that take into account the specifici-
ties of symmetry-based cost functions, and solve the problem
of lack of accuracy close to depth discontinuities and occlu-
sion regions. We also want to investigate the joint use of
symmetry and photo-similarity for improving stereo match-
ing performance and extend the SymStereo framework to the
case of multi-view stereo.
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