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Abstract. Tracking in 3D with an active vision system depends on the
performance of both motor control and vision algorithms. Tracking is
performed based on different visual behaviors, namely smooth pursuit
and vergence control. A major issue in a system performing tracking is
its robustness to partial occlusion of the target as well as its robustness
to sudden changes of target trajectory. Another important issue is the
reconstruction of the 3D trajectory of the target. These issues can only
be dealt with if the performance of the algorithms is evaluated. The
evaluation of such performances enable the identification of the limits and
weaknesses in the system behavior. In this paper we describe the results
of the analysis of a binocular tracking system. To perform the evaluation
a control framework was used both for the vision algorithms and for the
servo-mechanical system. Due to the geometry changes in an active vision
system, the problem of defining and generating system reference inputs
has specific features. In this paper we analyze this problem, proposing
and justifying a methodology for the definition and generation of such
reference inputs. As a result several algorithms were improved and the
global performance of the system was also enhanced. This paper proposes
a methodology for such an analysis (and resulting enhancements) based
on techniques from control theory.

1 Introduction

Tracking of moving 3D targets using vision can be performed either with passive
or active systems. Active systems facilitate tracking and the reconstruction of
3D trajectories if specific geometric configurations of the system are used [1,2].
In the case of active systems robust 3D tracking depends on issues related both
to vision processing and control[3, 4]. Robustness of a specific visual behavior is a
function of the performance of vision and control algorithms as well as the over-
all architecture[5]. The evaluation of the global performance of both vision and
control aspects should be done within a common framework. For example, when
dealing with the problem of uncertainties and coping with varying environments
(which are difficult or impossible to model) one can, in principle, choose to use
more complex vision algorithms and/or more robust control algorithms. Good
decisions and choices can only be made if all the aspects can be characterized



in a common framework [6].Improvements in performance as well as the identi-
fication of less robust elements in the system strongly benefit from a common
approach|[7].

Many aspects related to visual servoing and tracking have been studied and
several systems demonstrated [8,9]. One of these aspects is the issue of sys-
tem dynamics. The study of system dynamics is essential to enable performance
optimization [10,11]. Other aspects are related to stability and the system la-
tencies [12,13]. In [13] Corke shows that dynamic modeling and control design
are very important for the improved performance of visual closed-loop systems.
One of his main conclusions is that a feedforward type of control strategy is nec-
essary to achieve high-performance visual servoing. Nonlinear aspects of system
dynamics have also been addressed [14,15]. In [14] Kelly discusses the nonlin-
ear aspects of system dynamics and proves that the overall closed loop system
composed by the full nonlinear robot dynamics and the controller is Lyapunov
stable. In [15] Hong models the dynamics of a two-axis camera gimbal and also
proves that a model reference adaptive controller is Lyapunov stable. In [16]
Rizzi and Koditschek describe a system that takes into account the dynamical
model of the target motion. They propose a novel triangulating state estimator
and prove the convergence of the estimator. In [17, 18] the control performance
of the Yorick head platform is also presented. They pay careful attention to the
problem of dealing with image processing inherent delays and in particular with
variable delays. Problems associated with overcoming system latencies are also
discussed in [19, 20]. Optimality in visual servoing was studied by Rivlin in [21].
Recently, in the GRASP laboratory, the performance of an active vision system
has also been studied [22].

Fig. 1. The MDOF binocular system



2 Control of the MDOF Binocular Tracking System

In most cases visual servoing systems are analyzed as servo systems that use
vision as a sensor [23,24]. Therefore the binocular tracking system should be
considered as a servomechanism whose reference inputs are the target coordi-
nates in space and whose outputs are the motor velocities and/or positions.
However in the case of this system, and as a result of both its mechanical com-
plexity and its goal (tracking of targets with unknown dynamics), we decided to
relate the system outputs with the data measured from the images. Thus this
system can be considered as a regulator whose goal is to keep the target in a
certain position in the image (usually its center). As a result of this framework
target motion is dealt with as a perturbation. If the perturbation affects the
target position and/or velocity in the image it has to be compensated for.

2.1 Monocular Smooth Pursuit
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Fig. 2. Monocular smooth pursuit block diagram. The dotted box encloses the analog
components of the structure. Block N (i(k)) represents a non-linear function. V¢ (k) is
the command sent to the motor, obtained by filtering u(k), the sum of the estimated
velocity with the position error multiplied by a gain K.Vgnq(k) is the velocity induced
in image by camera motion

Each camera joint has two independent rotational degrees of freedom: pan and
tilt. Even though pure rotation can not be guaranteed we model these degrees
of freedom as purely rotational. A schematic for one of the these degrees of
freedom is depicted in Fig 2 (both degrees of freedom are similar and decoupled).
Notice that 2 inputs and 2 outputs are considered. Both position and velocity of
the target in the image are to be controlled or regulated. Even though the two
quantities are closely related, this formal distinction allows for a better evaluation
of some aspects such as non-linearities and limitations in performance.
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Considering that the motion computed in the image is caused by target
motion and by camera motion, the computation of the target velocity requires
that the effects of egomotion are compensated for. The egomotion is estimated
based on the encoder readings and on the inverse kinematics. Once egomotion
velocity (Vzina(k)) is compensated for, target velocity in the image plane is
computed based on an affine model of optical flow. Target position is estimated
as the average location of the set of points with non-zero optical flow in two
consecutive frames (after egomotion having been compensated for). This way
what is actually computed is the center of motion instead of target position.
The estimated value will be zero whenever the object stops, for it is computed
by using function N(i(k)) (equation 1) .

2.2 Vergence Block Diagram

In this binocular system, pan and tilt control align the cyclopean Z (forward-
looking) axis with the target. Vergence control adjusts both camera positions
so that both target images are projected in the corresponding image centers.
Retinal flow disparity is used to achieve vergence control. Vergence angles for
both cameras are equal and angular vergence velocity is computed in equation 2
where Avgy is the horizontal retinal motion disparity and f the focal length.[25]

o= o @

A schematic for vergence control is depicted in Fig.3. Horizontal target mo-
tion disparity is regulated by controlling the vergence angle.

Both in smooth pursuit and vergence control, target motion acts as a per-
turbation that has to be compensated for. To study and characterize system
regulation/control performance usual control test signals must be applied. Two
problems have to be considered:

— The accurate generation of perturbation signals;
— The generation of perturbation signals functionally defined, such as steps,
ramps, parabolas and sinusoids;

3 Reference Trajectories Generation Using Synthetic
Images

To characterize the system ability to compensate for the perturbations due to
target motion, specific signals have to be generated. Instead of using real targets,
we decided to use synthetic images so that the mathematical functions corre-
sponding to reference trajectories could be accurately generated. These images
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Fig. 3. Vergence block diagram. Egomotion is estimated for each camera. After that
target velocities in both left and right images are computed using differential flow. Es-
timated horizontal disparity (Avss) is obtained by filtering the difference of measured
velocities in both images

are then used as inputs in the binocular active vision system. Given a predefined
motion, captured frames will depend, not only on the target position, but also on
the camera orientation. Due to the change on the system geometry as a result of
its operation, images have to be generated on line to take into account the spe-
cific geometry at each time instant. Therefore at each time instant both target
position and camera orientation have to be known in the same inertial coordinate
system. The former is calculated using a specific motion model that enables the
computation of any kind of motion in space. Camera orientation is computed by
taking into account the motor encoders readings and the inverse kinematics. The
inertial coordinate system origin is placed at optical center (monocular case) or
at the origin of the cyclopean referential (binocular case).

To accurately describe the desired target motion in space the correspond-
ing equations are used. Motion coordinates are converted into inertial cartesian
coordinates by applying the suitable transformation equations[26]. Target coor-
dinates in the inertial system are converted in camera coordinates. This trans-
formation depends on motor positions that are known by reading the encoders.
Perspective projection is assumed for image formation. These computations are
performed at each frame time instant.

4 Perturbation Signals. The Reference Trajectories
Equations.

To characterize control performance, target motion correspondent to a step, a
ramp, a parabola and a sinusoid should be used to perturb the system.



4.1 The Monocular Tracking System

Reference Trajectories Defined for the Actuators Consider the pertur-
bation at actuator/motor output. The reference trajectories are studied for both
a rotary and a linear actuator.

In the former the actuator is a rotary motor and the camera undergoes a pure
rotation around the Y (pan) and X (tilt) axis. Consider target motion equations
defined in spherical coordinates (p, @, 6), where p is the radius or depth, ¢ the
elevation angle and 6 the horizontal angular displacement. The target angular
position 6(¢) at time t is given by one of:

o(t):{Const<:t>O 3)

0<=t=0
0(t) =w.t (4)
7,2
0(t) = 5t (5)
0(t) = Asin(w.t) (6)

Equations 3, 4, 5 and 6 describe a step, a ramp, a parabola and a sinusoid for
the pan motor. For instance, if the target moves according to equation 4, the
motor has to rotate with constant angular velocity w to track the target. These
definitions can be extended to the tilt motor by making § = 0 and varying ¢
according to equations 3 to 6.

Assume now a linear actuator and camera moving along the X axis. Cartesian
equations 7 to 10 are the equivalent to spherical equations 3 to 6. In all cases
the depth z; is made constant.

sl = {075 (7
xi(t) = vt (8)

zi(t) = %.tz (9)

x;(t) = Asin(v.t) (10)

Reference Test Signals Defined in Image To relate the system outputs
with the data measured from the images, control test signals must be generated
in the image plane. Thus a step (in position) is an abrupt change of target
position in image. A ramp/parabola (in position) occurs when the 3D target
motion generates motion with constant velocity/acceleration in the image plane.
And a sinusoid is generated whenever the image target position and velocity are
described by sinusoidal functions of time (with a phase difference of 90 degrees).

Assume the camera is static. Target motion described by equations 7 to 10
generates the standard control test signals in image. This result is still true if
camera moves along a linear path.
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Fig. 4. Monocular tracking. a,(t) is motor angular position and 6(t) the target angular
position

do 1
Wi f.E.COSQ(e —ap) (11)
do 1
"}/i.t = f.£.40082(9 — ap) (12)
Aw; cos(w;.t) = f d0 ! (13)

“dt " cos?(0 — ay)

However MDOF system eye cameras perform rotations. For this situation
the reference trajectories that generate a perturbation in ramp, parabola and
sinusoid are derived by solving the differential equations 11, 12 and 13 in order
to 0(t) (ws, v; and A are the desired induced velocity, acceleration and amplitude
in image plane).[27] The difficulty is that the reference trajectories (6(t)) will
depend on the system reaction to the perturbation (a,(¢)). Thus to induce a
constant velocity in image during operation, target angular velocity must be
computed at each frame time instant in function of the the tracking error.

Consider the case of perfect tracking. The tracking error will be null and
ap(t) = 6(t). With this assumption the solutions of differential equations 11 to
13 are given by equations 4 to 6 (making w = % and v = 3). These are the
reference trajectories that we use to characterize the system. While is true that,
for instance, trajectory of eq.4 (the ramp) only induces a constant velocity in
image if tracking error is null (small velocity variation will occur otherwise),
the test signal becomes independent of the system reaction and the generated
perturbation allows the evaluation of system ability to recover from tracking
errors.

4.2 The Vergence Control System

Taking into account the considerations of last section, the reference trajectories
for vergence control characterization of the binocular system depicted in Fig. 5
are presented.

d
2fb.d—/t) +v.p% = —v.b? (14)
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Fig. 5. Top view of binocular system. The distance between the cameras is 2b and
symmetric vergence is assumed. p(t) is the target Z coordinate.

2fb  d%p 4fb dp .o
S el L 1
=g Y e (15)
Zfb.% + Aw cos(wt).p? = —Aw cos(wt).b? (16)

Assume perfect tracking. The target motion equation p(t) that generates a mo-
tion corresponding to a ramp in image target position (constant velocity dispar-
ity v) is determined solving equation 14. For a parabola (constant acceleration
disparity a) equation 15 must be solved. In the case of a sinusoidal stimulus, the
relevant target motion equation p(t) can be computed by solving equation 16.[27]
Test signals obtained solving diferential equations 14 and 16 are depicted in
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Fig. 6. Left: Ramp perturbation. Target motion to generate a constant disparity
of 1 pixel/frame (p(0) = 5(m)).Right: Sinusoidal Perturbation. Target motion that
generates a sinusoidal velocity disparity in images(A = 2(pixel), w = 2(rad/s) and
p(0) = 1(m))

Fig.6. Notice that to induce a constant velocity disparity in images the 3D tar-
get velocity increases with depth. This is due to the perspective projection.



5 System Response to Motion

In this section we analyze the system ability to compensate for perturbations
due to target motion. As demonstrated spherical /circular target motion must be
used to generate the standard control test signals. Pan and tilt control algorithms
are identical except for some parameter values. Because that we only consider

the pan axis.

25

=
o
T

(pixel)
(degree)
5

-151 1 Ao -
i =
i
! sp
-20[ | 1 i
| '
| '
' 0 =/
a5 . ]
I

_30 H ; ; ; ; ; ; ; _ i i ; ; ; ; ; ;
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time(ms) time(ms)

Fig. 7. Left: Regulation performance. Target position (- -) and velocity (-) in image.
Right: Servo-mechanical performance. Target angular position (.), motor position (- -)

and velocity (-)

Step Response A step in position is applied to the system. Fig. 7 shows the
evolution of the target position (X;) in the image. An overshoot of about 10%
occurs. The regulation is done with a steady state error of about 1.5 pixels. These
observations are in agreement with the observed positional servo-mechanical
performance. This is a typical second order step response of a type 0 system.
In experiments done with smaller amplitude steps the system fully compensates
for target motion. In these situations the regulation error is 0 and we have
a type 1 system. The type of response depends on the step amplitude which
clearly indicates a non-linear behavior. One of the main reasons for the non-
linear behavior is the way position feedback is performed. After compensating for
egomotion, target position is estimated as the average location of the set of points
with non-zero optical flow in two consecutive frames. Thus the center of motion
is calculated instead of the target position. If the target stops, any displacement
detected in the image is due camera motion. In that case target velocity (V¢(k))
is equal to induced velocity (Viinq4(k)) and the position estimate C, will be 0.
Therefore target position would only be estimated at the step transition time
instant. Only with egomotion as a pure rotation would this occur.In practice
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sampling and misalignment errors between the rotation axis and the center of

projection introduce small errors.

A step in position corresponds to an impulse perturbation in velocity. Fig 7
shows the ability of the system to cancel the perturbation. Note that only the
first peak velocity is due to real target motion.

(pixel)

'
'
!
'
'
'
|
'
1
i
1
i
i
i

Pl

il
N

Il

L ; H ; ; ; H H H H H H
-3
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
time(ms) time(ms)

Fig. 8. Left:Regulation performance.Target position (- -) and velocity (-) in the image.
Right: Kalman filtering. Kalman input w(k) (.) and output V¢ (k)(-)

Ramp Response Fig.8 exhibits the ramp response for a velocity of 10 deg/s
(1.5 pixel/frame). The target moves about 6 pixels off the center of image before
the system starts to compensate for it. It clearly presents an initial inertia where
the action of the Kalman filter plays a major role. The Kalman filtering limits
the effect of measurement errors and allows smooth motion without oscillations.

Considering the motor performance we have a type 1 position response to
a ramp and a second order type 1 velocity response to a step. The position
measurement error

(k) = Xi(k) — Cu(k) (17)

will be directly proportional to the speed of motion.

The algorithm for velocity estimation using optical flow only performs well
for small velocities (up to 2 pixels/frame). For higher speeds of motion the flow
is clearly underestimated. This represents a severe limitation that is partially
compensated for by the proportional position error component on the motor
commands. Experiments were performed that enabled us to conclude that the
system only follows motions with constant velocities of up to 20 deg /s.

Parabola Response The perturbation is generated by a target moving around
the camera with a constant angular acceleration of 5deg /s? and an initial ve-
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Fig. 9. Left: Regulation performance. Target position (- -) and velocity (-) on image).
Right: Velocity estimation. Target velocity (.) and flow (-)

locity of 1deg /s. When the velocity increases beyond certain values flow under-
estimation bounds the global performance of the system. The system becomes
unable to follow the object and compensate for its velocity. As a consequence
the object image is increasingly off center of the image and the error in position
increases.
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Fig. 10. Left: Regulation Performance-Target position(- -) and velocity (-) in the im-
age. Right: Servo-mechanical performance in position. Motor position (- -) and velocity
(-). Target position (:) and velocity (.)

Sinusoidal Response System reaction to a sinusoidal perturbation of angular
velocity 2rad/s is studied. Fig. 10 shows target position X; and velocity V, in
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the image. Non-linear distortions, mainly caused by velocity underestimation,
can be observed. Notice the phase lag and the gain in position motor response
in Fig. 10.

6 Motor Performance and Its Implication in Global
System Behavior

During system response analysis non-linear behaviors were observed. Despite
that, linear approximations can be considered for certain ranges of operation.
Therefore we have estimated the transfer functions of some of the sub-systems
depicted in Fig. 2 using system identification techniques. [26].

1+40.38271
(1—2"1)(1-0.61z"1+0.11272)

M(z) =0.0927°. (18)
Equation 18 gives the obtained motor transfer function. M (z) relates the com-
puted velocity command (V,f(k)) in pizel/sec, with motor angular position in
degrees. The pole in z = 1 is due to the integration needed for velocity-position
conversion. A pure delay of 3 frames (120ms) was observed. There is a consid-

Velocity (degls)

0 i i i i i i
0 1000 2000 3000 4000 5000 6000 7000
time(ms)

Fig. 11. Motor input and output for a ramp perturbation of 1.5pixel/frame (10deg/s).
Velocity command sent to DCX board controler (—) and motor velocity measured by
reading the encoders (-). Sampling period of 40ms (each frame time instant)

erable inertia from motor input to output (see Fig.11). Such a delay certainly
interferes with global system performance. In the MDOF robot head actuation
is done using DC motors with harmonic drive controlled by Precision Microcon-
trol DCX boards. The implemented control loop is depicted in Fig.12. Motor
position is controlled using a classic closed-loop configuration with a digital PID
controller running at 1KHz. For velocity control the reference inputs (in posi-
tion) are computed by a profile generator. This device integrates the velocity
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Fig. 12. Motor control loop. A PID is used to control motor position. The sampling
frequency in the closed-loop is 1KHz. A profile generator allows to control the motor
in velocity

commands sent by the user process. Acceleration and deacceleration values can
be configured to assure more or less smoothness in velocity changes. Due to the
fact that each board controls up to six axis, the user process can only read the
encoders and send commands for 6ms time intervals.

Velocity (encoder/ms)
Velocity (encoder/ms)

H ; i ; ;
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Fig. 13. Left: Step response for the velocity controlled motor. The velocity command
(-) and the motor velocity output for a sampling interval of 6ms (-) and 40ms (:).
Right: Motor response to sudden changes in velocity. The velocity command () and
the motor velocity response measured for a sampling interval of 6ms (-). In both figures,
the dashes along zero axis mark the frame time instants (40ms)

Va[kT] = & /( :_Tl)T valt).dt (19)

As shown in Fig.2, at each frame time instant (40ms), the velocity command
Vzr[k] is sent to motor and camera position is read at the encoders. These read-
ings are used to estimate motor velocity. Assuming that v, (t) is the continuous
time motor velocity, the measured value V,[kT] will be given by equation 19,
where T is the sampling period. Therefore, at each sampling instant, we are
estimating the average velocity along the period instead of the velocity at that
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instant. Fig.13 shows the same step response measured for two different sam-
pling rates. we can therefore conclude that T = 40ms is too large to correctly
estimate instantaneous velocity. We can also conclude that the delay of 3 frames
as well as the ripple observed in Fig.11 results from different sampling rates. As
a matter of fact such delay as well as ripple do not occur.

Notice that the delay observed in transfer function M (z) is correct (velocity
input and position output). It means that the motor takes about 3 frame time
instants to get to the same position that it would reach in 1 frame time instant
for an ideal velocity response. from the standpoint of position regulation this
value is important. It interferes with the tracking steady state error. However,
to achieve high performance visual tracking the system must perform velocity
regulation. The rise time of motor velocity response is the crucial parameter to
achieve responsive behaviors.

The DCX board turns a position controlled axis in a velocity controlled axis
using an additional integrator (the profile generator). The PID of the inner posi-
tion loop must be “tight” in order to minimize the position error and guarantee
small velocity rise times. Fig.13 exhibits the motor response for successive veloc-
ity commands. The rise time is about 1 frame time instant. The overshoot is not
constant (non-linear behavior) and the global performance decreases for abrupt
changes in input. So, during operation, abrupt changes in velocity commands
must be avoided to maximize motor performance. A decrease in processing time

i
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0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
time(ms) time(ms)

Fig. 14. Response for a ramp perturbation of 1.5pixel/frame (10deg/s).Left: Regula-
tion performance. Processing time of 38ms (—) and 8ms(-).Right: Velocity command
sent to DCX board controller (—) and motor velocity measured by reading the encoders
(-)- In both figures the sampling interval is 40ms

from 38ms to 9ms was achieved by improving the used hardware ( processor up-
grade). The effects in global performance can be observed in Fig.14. In the first
implementation, the frame was captured and the actuating command was sent
just before the following frame grabbing. Considering a rise time of 1 frame time



15

instant, the motor only reached the velocity reference 80ms after the capture of
the corresponding frame. By decreasing the image processing time the reaction
delay is reduced to almost half the value and the system becomes more respon-
sive. When the second frame is grabbed, the camera is approximately moving
with the target velocity estimated in the previous iteration.

7 Improvements in the Visual Processing

The characterization of the active vision system allows the identification of sev-
eral aspects that limit the global performance. In this section improvements in
visual processing are discussed as a way to overcome some of the problems.

7.1 Target Position Estimation in Image

The input velocity sent to the motor is obtained by filtering the sum of the
estimated target velocity with the estimated target position multiplied by a
gain K(equation 20). This is a simple control law that will probably be changed
in future developments. However, the position component is always fundamental
to keep the position regulation error small and to reduce the effects of occasional
velocity misprediction.

u(k) = Vi (k) + K.Cy(k) (20)

Cylk] = Culk — 1] + Vainalk] (21)

Some problems in position estimation, that interfere with global system perfor-
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Fig. 15. Response for a ramp perturbation of 1.5pixel/frame (10deg/s). Left: Posi-
tion estimation using the original method. Target position (:) and target position
estimation(-). Right: Position estimation using the improved method. Target position
(:) and target position estimation (-)

mance, were detected. The center of motion is estimated only when the target
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induces motion in image. When no target motion is detected (after egomotion
compensation) it can be assumed that the target did not move. Thus the new
position estimate should be equal to the previous estimate compensated for the
induced velocity due to camera motion(equation 21). Another problem is that
the center of motion is computed instead of the target position. The position
estimate is computed as the average location of the set of points with non-zero
optical flow in two consecutive frames. If this set is restricted to the points of the
last grabbed frame that have non-zero brightness partial derivatives with respect
to X and Y, the average location will be near the target position. The improve-
ments in position estimation can be observed in Fig.15. The improvements on

LALLM LA AL

i r T
! T (R O B A
[ R I B L
e 1, oy (L (L
[ I S TR A !

", '
el | [
S e e e !

i
(pixel)

i i i i i i " i i i i i i
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
time(ms) time(ms)

Fig. 16. Response for a ramp perturbation of 1.5pixel/frame (10deg/s). Left: Regu-
lation performance. Original (-) and improved (-) position estimation method. Right:
Regulation performance. Improved position estimation method for a K=0.2 (:), 0.3 (-)
and 0.4 (-)

global system performance can be observed in Fig.16. The selected value for the
gain K was 0.3. This value decreases the time of reaction and the position error
without leading to oscillatory behaviors.

7.2 Target Velocity Estimation in Image

To estimate target velocity in image, the brightness gradient (gradr(Iy, Iy, I;)
is calculated in all pixels of the grabbed frame. Considering the flow constraint
and assuming that all points in image move with the same velocity, the velocity
vector (u,v) is estimated using a least squares method.

Iyu+Iyv+ 1 =0 (22)

The flow constraint 22 is true for a continuous brightness function. However our
brightness function I(z,y,t) is discrete in time and space. Aliasing problems in
partial derivatives computation can compromise a correct velocity estimation.
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When the target image moves very slowly high spatial resolution is needed in or-
der to correctly compute the derivatives Ix and [y and estimate the velocity. On
the other hand, if the the target image moves fast, there are high frequencies in
time and I; must be computed for small sampling periods. However the sampling
frequency is limited to 25Hz. One solution to estimate high target velocities is
to decrease the spatial resolution. The drawback of this approach is that high
frequencies are lost, and small target movements will no longer be detected. We
tried two methods to increase the range of target velocities in image that the
systems is able to estimate.

Method 1 Consider that the image is grabbed by the system with half resolu-
tion. Computation of flow with a 222 mask would allow the estimation of veloc-
ities up to 4 pixels/frame. Notice that an estimated velocity of 2 pixels/frame
corresponds to a velocity of 4 pixels/frame in the original image. Thus, by lower-
ing image resolution, the system is able to compute higher target displacements
using the same flow algorithm. Lower resolution frames can be obtained by sub-
sampling original images after a low-pass filtering.

This method starts by building a pyramid of images with different resolutions.
For now only two levels are considered: the lower with a 64264 image, and the
higher with a 32232 resolution. Flow is simultaneously computed in both levels
using the same 2x2 mask. Theoretically, velocities below the 2 pixel/frame are
well estimated in the low pyramid level (Vj,,). Higher displacements (between
2 to 4 pixels/frame) are better evaluated at the higher pyramid level (Viign).
At each frame time instant the algorithm must decide which estimated velocity
(View or Vhigh) is nearest to real target velocity in image.

N
(Iiu+Iv+1I7)* =0 (23)
i=1

Consider N data points where brightness gradient is evaluated. The velocity
(u,v) is computed as the vector that minimizes the quadratic error of 23. Most
of times the “fitting” is not perfect and each data point has a residue associated
with it. The mean residue of the N points can be used as a measurement of the
estimation process performance. Our algorithm chooses the velocity estimation
with the smaller mean residue.

Method 2 As in method 1 a similar two-level pyramid is computed. The flow
is computed at the high level using a 2x2 mask. The result of this operation
(Vhign) controls the size of the mask that is used to estimate target velocity in
the 64x64 level (V). The mask can have the size of 2,3 or 4 pixels depending
on the value of Vj;45 at each time instant. Notice that in this approach the final
velocity is always given by V... The decision is not about which level has the
best velocity estimation, but about changing the mask size for flow computation
in the low level frame.
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The law that controls mask size is based on intervals between predefined
threshold values. To each interval corresponds a certain mask size that it is
chosen if the value of V};45 belongs to that interval. For a two level pyramid two
threshold values are needed. The threshold values are determined experimentally.

. . . . i _ 1 ; ; ; 1 1 1
[ 2000 4000 6000 8000 10000 12000 0 1000 2000 3000 4000 5000 6000 7000 8000
time(ms) time(ms)

Fig.17. Response for a sinusoidal perturbation. Right: Velocity estimation using
method 1. Left: Velocity estimation using method 2. The target velocity in image
(=) and the estimated value(-). Both methods perform a correct estimation of velocity

Experimental Results The original implementation is unable to estimate ve-
locities above 2pixel/frame (see Figl8). With the new methods the system be-
comes able to estimate velocities up to 4pixel/frame.

The improvements in system performance can be observed in Figl8. In both
methods the range of estimated velocities can be increased by using more levels
in the pyramid. In method 2 the choice of the threshold values is critical for
a good performance. Method 2 has the advantage of decoupling the velocity
estimation in X and Y. For instance, consider that target velocity in the image
is very high in X direction (horizontal) and small in Y direction (vertical). With
method 1 it is not possible to have a good velocity estimate in both directions.
If Viign is chosen then vertical velocity estimation will be affected by a great
error; if Vi, is chosen the horizontal velocity will be underestimated. Method 2
deals with this case by computing the flow in the 64264 image with a rectangular
mask 2z4.

8 Summary and Conclusions

In this paper we address the problem of improving the performance of tracking
performed by a binocular active vision system. In order to enable the evaluation
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Fig. 18. Response for a sinusoidal perturbation. Left:Velocity estimation using the
original method. The target velocity in image (—) and the estimated value(-). The
systems only estimates velocities up to 2pixel/frame. Right: Regulation Performance.
The target position in image for the original method (.), method 1(-) and method 2(-)

of the robustness of both vision and control algorithms in a common framework,
we decided to use a methodology inspired by control techniques. The different
subsystems were characterized by their responses to test inputs. Due to the spe-
cific features of an active vision system several questions related to the definition
of system reference inputs had to be addressed. As a result we propose and justify
a methodology for the definition and generation of such reference inputs.

System identification of some modules of the system, including the visual
processing routines (which required their linearization), was also done. The re-
sults enabled us to identify elements that should be improved. Specifically, in
this paper, we described the improvements in the visual processing algorithms.
These improvements enable the system to track targets in a much larger range
of depths.
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