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Abstract— This article addresses the problem of image-
based localization in indoor environments. The localization is
achieved by querying a database of omnidirectional images that
constitutes a detailed visual map of the building where the
robot operates. Omnidirectional cameras have the advantage,
when compared to standard perspectives, of capturing in a
single frame the entire visual content of a room. This, not only
speeds up the process of acquiring data for creating the map,
but also favors scalability by significantly decreasing the size
of the database. The problem is that omnidirectional images
have strong non-linear distortion, which leads to poor retrieval
results when the query images are standard perspectives. This
paper reports for the first time thorough experiments in using
perspectives to index a database of para-catadioptric images for
the purpose of robot localization. We propose modifications to
the SIFT algorithm that significantly improve point matching
between the two types of images with positive impact in the
recognition based in visual words. We also compare the classical
bags-of-words against the recent framework of visual-phrases,
showing that the latter outperforms the former.

I. INTRODUCTION

One valuable competence for a robot is the ability to
localize itself with respect to the environment for performing
autonomous navigation [1] and obstacle avoidance [2]. Vi-
sual recognition has been used for localization purposes by
establishing correspondences between a query image and a
database of geo-referenced images constituting a topological
visual map [3]. However, this approach has several difficul-
ties: (i) The query image and the corresponding image in
the database, although representing the same visual contents,
can substantially differ in appearance (e.g. different light-
ning, substantial change in viewpoint, etc); (ii) Environments
containing symmetric and/or repetitive structures, e.g. doors,
walls or corridors, suffer from substantial perceptual aliasing
[4]; and (iii) Building a database of large scale environments
can be troublesome, specially if we want an exhaustive visual
coverage of the environment [3].

Omnidirectional images became widespread in the last
years and are often used in many robotics applications,
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including vSLAM [5], visual servoing [6], and surveillance
systems [7]. Panoramic cameras enable a more thorough
visual coverage of the environments when compared to
traditional imaging modalities due the wider field-of-view.

Indoor localization based on distinguishable scene land-
marks is closely related to image retrieval [8], object recog-
nition [9], and location recognition [3] problems. A com-
monly adopted scheme extracts local image features [8],
quantizes their descriptors to visual words, and applies meth-
ods adapted from text search engines to accomplish visual
recognition [9], [10]. Many authors take advantage of these
techniques, primarily designed for perspective images, for
performing image-based localization using omnidirectional
images [11]. Typically the image description is accomplished
by the extraction of local [8] or global [11] features for
topological and metric localization using omnidirectional
images in a hierarchical recognition framework [9]. In these
prior works, the recognition concerns images acquired using
the same type of imaging system, i.e. perspective [9], [10],
or omnidirectional cameras [11].

Fig. 1. Indoor localization scheme using omnidirectional visual maps.

In this paper our goal is to perform image-based local-
ization when the query and database images are acquired
using different imaging systems (hybrid imaging systems).
Taking advantage of the omnidirectional images to perform



a complete coverage of the environment, we want to retrieve
the location of a query image taken from a conventional
camera, e.g. a mobile robot equipped with a perspective
camera, or a cell-phone image taken from a person who
wants to retrieve its location. While the omnidirectional
images permit to speedup the acquisition of thorough visual
maps, they also introduce non-linear image distortion that
increases the appearance difference between the images.

A closely related work to ours is the one of Chen et al.
[12], where the authors perform the coverage of a city-scale
outdoor environment using a panoramic camera. The authors
discuss that performing matching between a perspective
query and a database of omnidirectional panoramas leads
to poor performance, and propose a rectification process to
solve this problem. Instead of using signal reconstruction
techniques, which are often subject to interpolation artifacts,
we solve the problem by accounting with the distortion
during keypoint detection and description. For retrieving the
location of the query images we compare two approaches:
the classic bags-of-words and the recent concept of visual
phrases [13]. The main difference is that the visual phrases
introduce weak spatial constraints during the recognition
process, while in the standard bags-of-words framework the
spatial layout of the features is lost.

The article outline is as follows: section II briefly reviews
the SIFT algorithm, the paracatadioptric image formation
process [14], [15], and strategies for matching in hybrid
imaging systems [16], [17]; Section III proposes a new
framework for feature detection and matching between per-
spectives and paracatadioptric images, and compares its
performance against commonly used strategies for matching
in hybrid imaging systems; section IV evaluates the proposed
method in image-based indoor localization with a database
of more than 100 images indexed by 450 perspective queries
images. Finally, in section V, we draw conclusions and
discuss future research directions.

Notation: Convolution kernels and matrices are repre-
sented by symbols in sans serif font, e.g. G, and image
signals are denoted by symbols in typewriter font , e.g. I.
Vectors and vector functions are typically represented by
bold symbols, and scalars are indicated by plain letters, e.g
x = (x, y)

T and f(x) = (fx(x), fy(x))
T. We will use

U(i,j) to denote the entry of the ith row and the jth column
of a matrix.

II. BACKGROUND

In this section we briefly review the SIFT algorithm and
the image formation model assumed along this article. We
also explain how a cylindrical panorama can be built using
a paracatadioptric image and discuss some strategies for
matching in hybrid imaging systems.

A. Scale Invariant Feature Transform (SIFT)

Visual image location often relies on distinguishable scene
landmarks (image keypoints) that can be reliable matched
across views [3]. In this paper we adopt the SIFT features
[8] due to its robustness to scale, rotation and small viewpoint

changes [18], [19]. The keypoint detection uses a scale-space
representation of the image where the Laplacian-of-Gaussian
(LoG) is approximated by Difference-of-Gaussian (DoG) [8].
Let I(x, y) and Gσ(x, y) be respectively an image signal and
2D Gaussian function with standard deviation σ. The blurred
version of I(x, y) is obtained by its convolution with the
Gaussian kernel

Lσ(x, y) = I(x, y) ∗ Gσ(x, y) , (1)

and the DoG pyramid is computed as the difference of con-
secutive filtered images with the standard deviation differing
by a constant multiplicative factor:

DoGkn+1σ(x, y) = Lkn+1σ(x, y)− Lknσ(x, y) . (2)

Each pixel in the DoG pyramid is compared with its
neighbors in order to find local extrema in scale and space
dimensions. These extrema are subsequently filtered and
refined to obtain keypoints. The next step concerns the
computation of the descriptor vectors using the image gra-
dients of a local patch around each detected keypoint. Scale
invariance is achieved by performing all the computations
at the scale of selection in the Gaussian pyramid. The
method starts by finding the dominant orientation of the local
gradients, and uses it for rotating the image patch towards a
normalized position. Finally, the SIFT descriptor is computed
by performing a Gaussian weighting of gradient contribu-
tions, quantizing the orientations, and building histograms
that accumulate magnitudes. For further details see [8].

B. Image Formation Model
Barreto and Araujo [14], [15] show that the mapping

between points in the 3D world and points in the paracata-
dioptric image plane can be divided in three steps:

1) Visible points in the scene Xh are mapped into projec-
tive rays/points x̂ in the catadioptric system reference
frame that is centered in the effective view point. The
transformation is linear and can be described by a 3 x
4 matrix P such that

x̂ = PXh = Rc [ I | − C ]Xh (3)

where C represents the world origin coordinates in the
catadioptric system reference frame, Rc is the rotation
matrix between the two coordinate systems, and I is a
3 x 3 identity matrix.

2) A non-linear function h maps points x̂ into points x̄
in a second oriented projective plane.

x̄ = h(x̂) =
(
x̂ ŷ ẑ +

√
x̂2 + ŷ2 + ẑ2

)T
(4)

3) Projective points x in the catadioptric image plane are
obtained after the projective transformation

x = Kc

 2p 0 0
0 2p 0
0 0 1


︸ ︷︷ ︸

Hc

x̄ (5)

where Hc depends on the mirror parameters (lactus
rectum of the parabolic mirror p) and camera intrinsic
parameters Kc



C. Cylindrical Coordinates

It is possible to obtain virtual perspectives by back-
projecting the omnidirectional images into planes. However,
we aim at using panoramic images for recognition purposes,
making use of the thorough coverage of the environment
captured by a single image. For further considerations on
how to obtain virtual camera perspectives we point the
readers to [15]. It is also possible to map the original image
into a cylinder and unfold it to obtain a panorama. Let x̂ be
the backprojection of the image point x :

x̂ = (x̂, ŷ, ẑ)T = h−1(H−1
c x) (6)

The representation of x̂ in cylindrical coordinates is:
θ = s · arctan

( x̂
ŷ

)
h = s · ẑ√

x̂2 + ŷ2

(7)

with s being a scaling factor (the radius of the cylinder).
We consider s = f , where f is the focal length, in order to
minimize the deformation near the center of the image [20].
Figure 2(b) is the result of rectifying the paracatadioptric
image of Fig. 2(a). The transformation of the catadioptric
image to the cylindrical panorama requires the calibration
matrix Hc that we obtain using the CatPack toolbox made
available by Barreto [21].

(a) Original image (b) Cylinder

Fig. 2. Cylindrical panorama obtained from the warping of paracatadioptric
image of Figure 2(a).

D. Matching in Hybrid Imaging Systems

One possible approach to obtain matches between images
coming from central catadioptric systems and conventional
cameras was proposed by Luis Puig et al. [16]. The om-
nidirectional images are warped using a transformation to
polar coordinates using (8). SIFT features are computed on
the warped and perspective images for establishing putative
matches.

θ = arctan
(y
x

)
ρ =

√
x2 + y2 (8)

The generated polar images are very similar to the ones
obtained using the mapping to cylindrical coordinates of
section II-C. However, the transformation from cartesian to
polar coordinates has the advantage of not requiring camera
calibration.

Recently, Hansen et al. [17] proposed an extension of the
SIFT algorithm for wide angle images. The method assumes
that camera calibration is known and they suggest to back-
project the image onto an unitary sphere and build a scale-

space representation that is the solution of the diffusion
equation over the sphere. Such representation minors the
problems inherent to planar perspective projection, enabling
RD invariance and extra invariance to rotation. However,
the approach requires perfect camera calibration for both
perspective and catadioptric images. In this work we assume
that the perspective camera is not calibrated such that the
query images can be acquired by a hand-held device, e.g.
cell-phone camera.

III. FEATURE EXTRACTION AND MATCHING IN HYBRID
IMAGING SYSTEMS

In this section we propose a new method for extracting
image features from omnidirectional images that can be
reliable matched with perspective image features. Instead of
rectifying the omnidirectional image to perspective images
[22], we implicitly compensate the distortion effect based
on the rectification to cylindrical coordinates, which enables
the use of the wide field-of-view of the omnidirectional
images. Finally, we evaluate the proposed method using
standard repeatability and precision-recall tests, and compare
it against some approaches for matching between mixtures
of perspectives and paracatadioptrics images.

A. Implicit cylindrical rectification - cylSIFT

1) Keypoint Detection: The objective here is to generate
a scale-space representation equivalent to the one that would
be obtained by filtering the cylindrical panorama. Instead of
explicitly computing a new image using signal reconstruction
techniques, which are often subject to interpolation artifacts
[22], we adapt the convolution kernels to directly process the
paracatadioptric image samples.

Through the manipulation of (6) and (7), we can re-write
the mapping from paracatadioptric coordinates to cylindrical
coordinates as

u = f−1(x) =

(
f−1
u (x, y)
f−1
v (x, y)

)
=

f · arctan(x/y)
f2 − r2

2r

 . (9)

The inverse of (9) provides the mapping between cylindrical
and paracatadioptric coordinates:

x = f(u) =

(
fx(u, v)
fy(u, v)

)
=

 y tan(
u

f
)

cos
(
u
f

) (√
f2 + v2 − v

)
 .

(10)
Consider the convolution of the cylindrical image Icyl with
a Gaussian kernel with standard deviation σ. By writing
the convolution operation of (1) explicitly, it comes that the
blurred image is

Lcylσ (s, t) =
∑
u

∑
v

Icyl(u, v)Gσ(s− u, t− v) . (11)

If I is the paracatadioptric image, then from the mapping
relation (10) it follows that Icyl(u) = I(x), with x = f(u).
Replacing Icyl by I and switching the variables (u, v) by
(x, y) using (9), we obtain the result of (12). This equation



Lcylσ (s, t) =
∑
x

∑
y

I(x, y)Gσ(s− f−1
u (x, y), t− f−1

v (x, y)) (12)

Lσ(h, k) =
∑
x

∑
y

I(x, y)Gσ
(
f ·
(

arctan
(h
k

)
− arctan

(x
y

))
,
f2(δ − 1) + δr2(δ − 1)

2δr

)
(13)

computes the blurred image Lcylσ directly from the original
distorted frame I.

Let’s now apply distortion to the blurred image Lcylσ in or-
der to obtain Lσ . This can be achieved in an implicit manner
using the previous mapping functions. After replacing the
cylindrical image coordinates (s, t) by their paracatadioptric
counterpart (h, k) and performing some algebraic simplifi-
cations, we obtain the adaptive filtering of (13) with r being
the distance between the center and the image location where
the filter is applied

r =
√
h2 + k2 , (14)

and δ being the ratio between the radius d of each pixel
contribution and r

δ =
d

r
=

√
x2 + y2√
h2 + k2

.

Note that now the smoothing convolution is an operation of
R2 × R4 → R+ due to its dependence in (h, k) and (x, y).
For each radius, the adaptive blurring kernel has the same
shape, but with different orientations (see Fig.3(a)).

It is well known that the standard Gaussian filter is a rank
1 matrix that can be written as the outer product of two 1D
gaussian filters of the same standard deviation. This permits
to implement the convolution process separately in X- and
Y-directions, which permits to considerably speedup the
smoothing process [23]. Instead of computing the cylindrical
Gaussian for each image pixel position, we approximate (13)
by the closest rank 1 Gaussian filter estimated using Singular
Value Decomposition[

U S V
]

= SVD(Gσ). (15)

Thus, the rank 1 Gaussian kernel that better approximates
Gσ is

Gσ,rank=1 = U(:,1)S(1,1)V(:,1)
T (16)

with the filter being accordingly normalized to have unit sum
(see Fig.3(a)). We have observed that this decomposition
has two significant advantages: (i) For every image radius
the same Gσ,rank=1 can be used, which enables separable
convolution for each radius in a similar way to [22]; and (ii)
a filter bank can be computed offline and loaded into memory
when required. We consider the same filter bank for all the
paracatadioptric images used throughout this paper.

2) Keypoint Description: Concerning the SIFT descriptor
computation we can explicitly correct the image gradients,
by warping the image to the cylinder and computing the
gradients in this reconstructed signal, or implicitly correct
them by measuring the gradients in the original image and

correct the result using the derivative chain rule. The implicit
approach avoids the propagation of interpolation artifacts
inherent to the image re-sampling [22].

Let I be the catadioptric image and Icyl be the cylindrical
panorama. The mapping relation between the two images is
the following:

Icyl(u) = I(f(u)) .

Applying the derivative chain rule it yields

∇Icyl = Jf .∇I (17)

with ∇Icyl and ∇I being respectively the gradient vectors
in Icyl and I, and Jf being the 2× 2 Jacobian matrix of the
mapping relation given in (10). The Jacobian matrix can be
written in terms of paracatadioptric image coordinate x =
(x, y)

T:

Jf =

 r2

fy 0

− x

fr

(
τ +

√
τ2 + f2

) y

r

(
τ+
√
f2+τ2√

f2+τ2


with r denoting the radius of x and τ = r2−f2

2r .
In summary, we propose to measure the gradients directly

in the original distorted image I, evaluate the jacobian matrix
Jf at every relevant pixel location, and correct the gradient
vectors ∇I using the differential chain rule of (17). The final
descriptor is generated from the undistorted gradients ∇Icyl
following the procedure described in section II.

B. Performance evaluation

1) Methods under evaluation: In this hybrid matching
comparison, SIFT [8] is always used to extract features in
the perspective images and the test only differ in terms
of the method used to extract features in the paracata-
dioptric/rectified views. We compare the proposed cylSIFT
method against the following approaches: Application of
SIFT over (i) paracatadioptric images (SIFT); (ii) recti-
fication to polar coordinates (Polar); (iii) rectification to
cylindrical coordinates (Cylinder); and (iv) virtual image
perspectives (VCP). To generate the VCP we manually select
the region in the omnidirectional images that correspond to
the visual contents of the perspectives. Without this prior
knowledge we would need to render 4 or more perspectives
for each omnidirectional image, and still be subject to view-
point changes arising in the synthetical generated perspective
images. Although the VCP is not a direct competitor of our
method because it does not capsulate the same wide field-of-
view in one image, it is the theoretical top performer since
matching is accomplished between images with no distortion,
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Fig. 3. Example of the data sets used for detection and description evaluation.

being included in the performance evaluation study for a sake
of completeness of the study.

2) Metrics for evaluation: In terms of detection evalua-
tion, the repeatability of keypoint detection is unarguably the
most important property of a reliable detector [18]. Let’s con-
sider Scata and Spers as being the set of keypoints detected
in the paracatadioptric image (or rectifications obtained from
it) and perspective images, respectively. Given two images
of the same scene, the repeatability measures the percentage
of the features detected on the scene part visible in both
images:

%Repeatability =
#(Scata ∩ Spers)

#Spers
∗ 100 (18)

where # denote the cardinality of the sets. For match-
ing evaluation we use the traditional 1-precision vs recall
curves [19]. The recall indicates the percentage of correct
matches M true obtained over the entire set of possible
correct matches Strue = Scata ∩ Spers. This metric must be
complemented by the precision that measures the percentage
of correct matches over the entire set of matches M , i.e.
the precision measures how well the algorithm discards key-
points that have no correspondence. The curves are obtained
by varying the threshold λ of the similarity distance between
the descriptors [8], [19].

recall(λ) =
#M true

#Strue
precision(λ) =

#M true

#M
(19)

3) Datasets: We collected 13 paracatadioptric images
taken in different places using a camera with a resolution
of 2272 × 1704. On the perspective side we collect 4
different perspective image sets (Fig. 3): set (A) was acquired
fronto-parallel to the scene, at the same location of the
paracatadioptric system; set (B) was acquired from the same
position as the paracatadioptric image and with an angle of
approximately 45 degrees between the optical axis and the
vertical plane; set (C) presents strong scale changes while
preserving the fronto-parallel viewpoint; and set (D) was
taken from different positions and viewpoints relatively to
the paracatadioptric images, to test strong viewpoint changes.
The resolution of the perspective images is 1600x1200. It
is important to notice that, at this stage, we only consider
images of planar scenes that enables to find a ground truth
homography1 for verification of detection and matching
results.

1The ground truth homography is computed after rectifying the paracata-
dioptric coordinates to perspective coordinates.
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Panoramic Image Persp.
SIFT Polar Cylinder cylSIFT VCP

Detections 1328 1482 1613 1433 401
Time (sec) 4.4 7.78 8.05 5.6 2.4+

No . Matches 94.6 96.2 112.1 120.8 126.9

Fig. 4. Detection and description evaluation in planar image pairs. Fig. 4(a)
compares the repeatability scores of the several methods evaluated, while
Fig. 4(b) concerns description evaluation. We can observe that using the
cylSIFT approach permits to have similar scores to the rectification for a
perspective view. Additionally, we provide the average running time of every
method, number of detection and number of matches established using the
similarity distance thresholded at 0.9. The computation differences between
the SIFT and the cylSIFT rely on the offline computation of the filter bank,
which in our Matlab implementation takes in average 1 second, and in the
gradient correction technique. In VCP, Polar and Cylinder the rectification
process using our Matlab routines is included. (·)+ denotes that for the VCP
we only show the running the time for the correct perspective. In practice
at least 4 perspective images must be rendered for each omnidirectional to
cover its wide field of view.

4) Results and discussion: The repeatability of detection
and precision-recall curves for description can be observed in
Fig. 4. We can observe that the cylSIFT performs better than
most competing methods over the panoramic images. The
image re-sampling for distortion compensation requires the
reconstruction of the discrete image signal. This reconstruc-
tion process can either remove high frequency components
and/or introduce new spurious frequencies [23], being highly
prejudicial in the detection step [22]. The Polar and the
Cylinder generate similar images and it is expected that
both provide similar results. However, as the rectification
to cylindrical coordinates uses the calibration matrix and the
non-linear function characteristic of the mirror, the mapping
of the latter is more accurate than the former, which ex-
plains the observed better performance. The cylSIFT method
performs very closely to the VCP approach, showing that,
even dealing with the distortion on the cylinder, the cylSIFT
is capable of performing close the perspectives generated
through interpolation.

In terms of description, we can observe that performing
implicit gradient correction provides gains in terms of match-
ing performance, when compared with the other descriptors



computed in the panoramic images. Once more it is verified
that the VCP provides the best matching scores, which
is expected since the description space, although subject
to interpolation artifacts, does not present any non-linear
distortion.

In summary, we can conclude that the cylSIFT outper-
forms SIFT applied directly over the omnidirectional image,
as well as polar and cylindrical panoramas. The VCP ap-
proach outperforms the cylSIFT algorithm due to the correct
alignment between the perspective image and generated VCP
(see results of set D in Fig. 4(a)). In a real application
scenario, this correct alignment is not known in advance,
precluding a good performance for this method.

IV. IMAGE-BASED LOCALIZATION USING HYBRID
IMAGING SYSTEMS

In this section we evaluate the proposed cylSIFT method
for image-based localization. Given a query image, acquired
with a standard camera (e.g. robot or a person with a
conventional camera), the localization is obtained by search-
ing and retrieving the most similar view in a database of
omnidirectional visual maps.

A. Retrieval schemes

In our retrieval application, we compare two different
searching approaches. The first method uses the standard
bags-of-visual words (BoV) approach. A vocabulary tree is
built using hierarchical k-means clustering, with k defining
the branch factor of the tree. Each branch is recursively
split into k new groups along L-levels of the tree, which
totalizes kL visual words. The correspondence between im-
ages is given by measuring the similarity between the visual
words in a query image and in the database images [9].
Although this scheme provides good performance in several
recognition scenarios [9], [11], it discards the spatial relation
of the visual words during retrieval that can be relevant
to disambiguate situations of perceptual aliasing [3]. The
second method uses the new concept of visual phrases (GVP)
[13]. The objective of using GVP is to take into account the
spatial relations between visual words. For each pair of the
same word in the query and database images, the offset is
computed by subtracting their corresponding locations. A set
of n visual words in a certain spatial layout define a GVP of
length n. The image space is quantized into cells to tolerate
shape deformation and to build an efficient voting scheme.
After computing the offset, a vote is generated on the offset
space. n votes in the same offset cell correspond to a co-
occurring GVP of length n. For further details see [9], [13].

B. Feature Extraction Methods and Database considerations

The extraction of features in the query images is al-
ways performed using the standard SIFT algorithm. On the
database side, we consider the following features extraction
and description schemes: SIFT applied over (i) the paracata-
dioptric images; (ii) the cylindrical rectification Cylinder and
(iii) virtual image perspectives VCP; and (iv) the cylSIFT
features computed in the paracatadioptric images.

The feature extraction techniques and searching schemes
are tested by performing queries on a database of 118
paracatadioptric images that provide a detailed visual map of
the building where the robot operates. Concerning the VCP
database, we render 4 perspectives for each omnidirectional
image. Each generated perspective image has a field of
view of 108◦ and resolution of 1600 × 1200. Unlike in
the tests of section III, the VCP images are generated in
an unsupervised manner, meaning that each omnidirectional
image gives raise to 4 VCP without assurance that one of the
VCP is aligned with the perspective query image. We use 451
query images for evaluating which combination of retrieval
scheme, vocabulary size and feature extraction method (at
the database side) performs better for the task.

The performance of retrieval is given by the percentage
of correctly retrieved locations in first place (Top 1), and in
the sets of 3 and 5 images with highest scores (Top 3 and
Top 5). Finally, the best retrieval method for each feature
extraction technique is selected and the top 5 images are re-
ranked through geometrical verification within a RANSAC
framework [24].

C. Results and Discussion

Figure 5 presents the retrieval results. The cylSIFT ap-
proach is the one providing the highest retrieval scores,
independently of the searching scheme and vocabulary size.
Increasing the number of words in the vocabulary increases
the performance of the BoV approach. In this case, the
recognition is performed in a word-by-word basis and more
discriminative words tend to provide better retrieval results.
We also observed that using a lower vocabulary size tends
to favor the performance of the GVP. Since vocabularies
of small sizes are less discriminative more common words
between the query and the database image can be established
and more visual phrases exist.

For each feature extraction method, we selected the best
retrieval scheme (GVP with a vocabulary size of 160k)
and performed re-ranking on the top 5 images using strong
geometric constraints within a RANSAC framework (Fig.
5(d)). In addition to the average correct retrieval scores, we
also provide the results for each perspective sets. The higher
quality of matching provided by our method can be clearly
seen for all the 4 sets, but with particular emphasis in the
most difficult ones (set C and D). It is also important to
notice that in set D the VCP tends to be outperformed by
all other methods. This is due to the fact that in general
the perspective image is misaligned with the generated VCP,
meaning that such schemes is only effective if we known in
advance which region of the omnidirectional image is being
viewed in order to ensure small changes in viewpoint.

One important observation is that the interpolation used
in the explicit cylindrical and VCP images has a negative
impact in the visual words discriminability. Using the BoV
with descriptors extracted in cylindrical images does not lead
to an increase in performance when comparing with SIFT,
showing that the visual words computed on these descriptors
are less discriminative. While in the section III, two descrip-
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(d) RANSAC re-ranking

Fig. 5. Retrieval results. We have tested several combinations regarding feature extraction techniques, vocabulary size and searching scheme. The cylSIFT
method proved to be superior to the other feature extraction approaches, regardless of the type of retrieval scheme and vocabulary size. For each feature
extraction method, we selected the best retrieval scheme and performed re-ranking on the top 5 images using strong geometric constraints within a RANSAC
framework (Fig. 5(d)).The darker colors represent the improvement obtained over the GVP framework, with a vocabulary size of 160k. We additionally
include the scores of a naive approach to the problem where SIFT features and standard BOV are used for localization recognition.

tors were considered a match by using similarity distance
(nearest neighbor distance ratio) [19], in the vocabulary tree,
two descriptors belong to the same visual word if they
are close to the same centroid. Therefore, the smaller the
euclidean distance between two descriptors, the greater the
probability of belonging to the same visual word. Although
the interpolation artifacts do not have a large influence in the
nearest neighbor ratio, they seem to be particularly relevant
for the computation of the image visual words. The implicit
filtering approach seems to be immune to this phenomena
and takes full advantage of its higher matching performance.

V. CONCLUSIONS

This paper focus on indoor image-based localization by
querying omnidirectional maps using perspectives. We take
advantage of the wide field-of-view of the images, which
enable a complete description of the environment with min-
imum effort. To successfully retrieve the omnidirectional
image using a perspective, we develop a new algorithm for
feature detection and description based on the rectification
to cylindrical images. Extensive experiments prove that our
method outperforms explicit image rectification methods,
proving to be beneficial for image-based localization by
improving the rate success rate in 10−15%. We also compare
the classic bags-of-words against the recent visual phrases,
showing that the latter significant improves the recognition
scores. In the future we will extend our omnidirectional
visual map, and make it available for the community to
stimulate further research on the topic.
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