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Abstract

When deploying a heterogeneous camera network or
when we use cheap zoom cameras like in cell-phones, it is
not practical, if not impossible to off-line calibrate the ra-
dial distortion of each camera using reference objects. It
is rather desirable to have an automatic procedure with-
out strong assumptions about the scene. In this paper, we
present a new algorithm for estimating the epipolar geom-
etry of two views where the two views can be radially dis-
torted with different distortion factors. It is the first algo-
rithm in the literature solving the case of different distor-
tion in the left and right view linearly and without assuming
the existence of lines in the scene. Points in the projective
plane are lifted to a quadric in three-dimensional projective
space. A radial distortion of the projective plane results to
a matrix transformation in the space of lifted coordinates.
The new epipolar constraint depends linearly on a 4x4 ra-
dial fundamental matrix which has 9 degrees of freedom. A
complete algorithm is presented and tested on real imagery.

1 Introduction

The multiple view geometry on the context of camera
self- calibration and structure from motion has been deeply
studied and nowadays is subject for textbooks [5, 8]. How-
ever most of the work on the topic assumes that the camera
follows the pin-hole model. This is not the case of many vi-
sion sensors that are broadly used in everyday applications.
Some examples are the cameras with wide-angle lenses or
motorized zoom where the lens radial distortion, caused by
the bending of the light rays when crossing the optics, in-
troduces a non-linearity in the image formation model.

Since these cameras deviate from the pin-hole model, the
application of uncalibrated stereo usually requires a partial
calibration to determine the non-linear relation between the
image and the space coordinates. There are several tech-

niques to recover the lens distortion. The first class of meth-
ods rely on calibration targets (e.g. [13]). The second type
of algorithms use images of lines in order to explore the
property that in a pin-hole lines in the scene must project
onto straight lines in the image (e.g. [3]). Both categories
require imagery with specific features (lines or calibration
targets) and are not suitable to deal with generic images and
video sequences of random scenes.

In an effort to extend the applicability of uncalibrated
vision to cameras with radial distortion, some authors pro-
posed methods that just rely on the rigidity assumptions
that allow the computation of the fundamental matrix. In
[15, 11] the rigidity constraint is extended to include the
distortion parameters. The radial distortion is estimated us-
ing nothing more than image correspondences. The major
drawback of these techniques is that the estimation relies
on iterative non-linear methods. Such techniques require
good initial estimates in order to guarantee a correct conver-
gence. Moreover they are computationally too expensive to
be included in a RANSAC strategy that automatically de-
tects outliers in the correspondences.

Closer to the approach herein presented are the works of
Fitzgibbon [6] and Micusik et al. [10]. Fitzgibbon proposes
a linear method that simultaneously estimates the funda-
mental matrix and the radial distortion from corresponding
points between two views. This is achieved by formulat-
ing the estimation problem as a quadratic-eigenvalue prob-
lem (QEP). In [10] the framework is extended for cameras
equipped with fish-eye lenses. The problem of these algo-
rithms is that they require the distortion to be the same on
both views. Such requirement considerably limits the range
of applications that can benefit from the approach. One of
the examples that is presented in [6] is the 3D reconstruc-
tion from a video sequence acquired by a commercial hand-
held camera. In general these cameras are equipped with
a motorized lens and, during normal operation, the amount
of radial distortion varies. This is a situation for which the
method proposed in [6] is not applicable. Another example
is the automatic calibration of wide area camera networks
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Figure 1. Image formation model on dioptric
cameras with radial distortion

from natural features. Typically the cameras employed in
this infrastructures are equipped with wide-angle lenses.
The presence of significant radial distortion avoids the use
of conventional techniques to estimate the fundamental ma-
trix. Since the radial distortion is different for each camera,
the QEP approach does not solve the problem either.

The present work overcomes these limitations by intro-
ducing the radial fundamental matrix (RFM). We establish
for the first time a bilinear relation between two views ac-
quired by cameras with different lens distortion. This is
achieved by embedding the projective plane into the 3D
projective space. The RFM is a 4 × 4 matrix that relates
the lifted coordinates of corresponding image points and en-
codes both the standard fundamental matrix (SFM) and the
distortion parameters of the two views. Like the SFM, the
RFM is a projective correlation that maps lifted points in
one view into epipolar curves in the other view. The main
contributions can be summarized as follows:

• The Radial Fundamental Matrix that relates views with
equal or different radial distortion.

• A linear technique to estimate the RFM using a mini-
mum of 15 image correspondences.

• A RANSAC strategy, based on the linear estimator,
that is able to automatically detect outliers on the cor-
respondences between views.

2 Modeling Lens Radial Distortion

Fig. 1 is a scheme of the assumed image formation
model. In the pin-hole model to each 3D point X corre-
sponds an image point x′ = PX. The projection matrix
P encodes the relative pose between the world and camera
coordinate systems as well as the matrix of intrinsic param-
eters. Points in the scene are mapped into points in the im-
age by a linear transformation. In perspective cameras with
lens distortion this mapping can no longer be described in
a linear way. In this paper the radial distortion is modeled
using the so called division model. Point X is projected
into x in the image plane, which is related with x′ by a non-
linear transformation modeling the radial distortion. This
transformation, originally introduced in [2, 6], is provided

in equation 1 where ξ is a parameter quantifying the amount
of distortion. If ξ = 0 then x = x′ and the camera follows
the conventional pin-hole model.

ð
−1(x) = (xz, yz, z2 + ξ(x2 + y2))t (1)

The model of equation 1 requires that points x′ and x′′

are referenced in a coordinate system with origin in the im-
age distortion center. If the distortion center is not known
in advance, we can place it at the image center without sig-
nificantly affecting the correction [14].

2.1 Lines Projected into Circles

Consider a 3D line lying on a plane Π that goes through
the camera center O. According to the pin-hole model the
3D line is projected into a line n′ = (n′

x, n′

y, n′

z)
t such that

Π = Ptn′ [8]. In the presence of lens distortion the points
x′ on n′ are mapped into points x = ð(x′) (Fig. 1), and the
straight line n′ is imaged into a curve. Since n′tx′ = 0 and
x′ = ð

−1(x), then the curve equation is n′tð
−1(x) = 0.

Replacing ð
−1(x) by the result of equation 1 yields

ξn′

z(x
2 + y2) + n′

xxz + n′

yyz + n′

zz
2 = 0. (2)

The curve of equation 2 is a circle. Thus, we can state
that in general a line in the scene is imaged into a circle
when the radial distortion is modeled by the transformation
of equation 1. The circle degenerates into a line whenever
ξ = 0 or n′

z = 0. In the former situation the camera fol-
lows the pin-hole model. In the latter the line is not bent by
the lens distortion because it goes through the image center.
The formulas for the circle center and radius are provided
in equation 3.
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The general equation of a circle is a(x2 + y2) + dxz +
eyz + fz2 = 0 where a, d, e and f are 4 homogeneous
parameters. The circle is uniquely represented, up to a scale
factor, by a point ω̃ = (a, d, e, f)t in the dual 3D projective
space ℘

3∗. From equation 2 follows that if ω̃ is the distorted
image of a line n′ then
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
 (4)

The representation of circles by points in ℘
3∗ allows us

to establish a linear correspondence between the line images
before distortion (n′) and after distortion (ω̃)
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︸ ︷︷ ︸
∆ξ

n′ (5)

We proved that in a camera with radial distortion ξ 6= 0
the image of a line is in general a circle. However not all cir-
cles are the projection of a line. The circle ω̃ = (a, d, e, f)t

is a line image iff a = ξf . Considering the representation
in ℘

3∗, the points ω̃ which correspond to line projections
must lie on a 2 dimensional linear subspace.

2.2 Embedding the Projective Plane into ℘
3

The goal of this work is to establish a bilinear relation be-
tween corresponding points on two views captured by cam-
eras with lens distortion. If both cameras follow the pin-
hole model then the 3D point X is respectively projected
on points x′ and y′. The corresponding image points sat-
isfy the relation y′tF′x′ = 0 where F′ is the fundamental
matrix between the two views. However, in the presence
of radial distortion, the image points become x and y (see
Fig. 1), and the previous bilinear equation gives place to the
non-linear relation (ð−1(y))tF′(ð−1(x)) = 0.

A standard technique used in algebra to render a non-
linear problem into a linear one is to find an embedding
that lifts the problem into a higher dimensional space. Such
technique is applied in [1] to derive the necessary and suf-
ficient conditions for a conic to be the central catadioptric
projection of a line, and in [7, 12] to establish fundamental
matrices between views taken by any mixture of paracata-
dioptric, perspective or affine cameras. In order to estab-
lish a radial fundamental matrix we propose the embedding
of the projective plane ℘

2 into the 3D projective space ℘
3.

Our polynomial embedding preserves homogeneity and cre-
ates a natural duality between the lifted image points and the
circles where the lines are projected.

Consider the image point x which is the distorted projec-
tion of x′ (x = ð(x′). Each point x in ℘

2 is mapped into a
point x̃ = (x0, x1, x2, x3)

t in ℘
3 such that

x =




x

y

z


 −→ x̃ =




x2 + y2

xz

yz

z2


 . (6)

Remark that the projective plane is mapped into a second
order surface in ℘

3. This surface is defined by equation
x0x3 − x2

1 − x2
2 = 0. Therefore not all points in ℘

3 have a
correspondence in the projective plane.

If point x lies on circle ω̃ then its lifted representation x̃

satisfies the relation ω̃
tx̃ = 0. The embedding of equation

6 creates an algebraic duality between points and lines in
the distorted image plane. Moreover since circle ω̃ is the
distorted projection of line n′, then ω̃ = ∆ξn

′ (equation 5)
and ω̃

tx̃ = 0 gives rise to

n′t ∆t
ξx̃︸︷︷︸

x′

= 0.

Taking into account that in the pin-hole image n′tx′ = 0
it follows that

x′ = ∆t
ξx̃ (7)

The proposed embedding linearizes the division model
for radial distortion (equation 1). The non-linear mapping
x′ = ð−1(x) in ℘

2 gives place to the linear transformation
of equation 7.

3 Radial Fundamental Matrix

Consider two images acquired by two cameras with pro-
jection centers Ox and Oy. If x′ ↔ y′ are corresponding
points on the two views then, in the absence of radial dis-
tortion, there is a 3 × 3 fundamental matrix F′ such that

y′tF′x′ = 0.

Assume that both lenses have significant radial distortion
which is described by parameters ξx and ξy. In this case the
pair of corresponding points becomes x ↔ y (equation 1),
and is represented in the lifted space by x̃ ↔ ỹ (equation 6).
Since x̃ and ỹ are linearly related with x′ and y′ (equation
7) then the fundamental relation can be rewritten as follows

ỹt ∆y

F′

︷ ︸︸ ︷


f ′

11 f ′

12 f ′

13

f ′
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23

f ′

31 f ′

32 f ′

33


∆t

x

︸ ︷︷ ︸
F

x̃ = 0 (8)

By considering the lifted representation of section 2.2 we
established a bilinear relation between corresponding points
on two distorted views. This bilinear relation is described
by a 4 × 4 matrix which we will refer as the radial funda-
mental matrix (RFM). Matrix F encodes the conventional
fundamental matrix F′ and the distortion parameters ξx and
ξy.

F =




ξxξyf ′
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
 (9)

Matrix F has similarities with the conventional funda-
mental matrix F′. While F′ is a correlation that maps points
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Figure 2. Line µ represents the left/right null
space of F. The line goes through points E

and D. The former encodes the epipole on
the undistorted image plane and the latter en-
codes the distortion parameter

on one view into epipolar lines on the other view, the ra-
dial fundamental matrix transforms lifted points into epipo-
lar circles (ω̃y = Fx̃ and ω̃x = Ftỹ). Moreover matrix F

is also rank deficient. Since F′ has rank 2 and matrices ∆x

and ∆y have rank 3, then the rank of the RFM is always 2.
Equation 9 shows the structure of the 4×4 matrix F. The

RFM has 9 degrees of freedom (DOF): the 7 DOF of F′ plus
the 2 DOF associated with the distortion parameters ξx and
ξy. However matrix F has a total of 16 parameters fij with
i = 1, . . . 4 and j = 1, . . . 4. Therefore it must satisfy the
6 independent constraints of equation 10 (the scale factor is
ignored). The first constraint is the well known rank con-
straint of F′. The remaining 5 bilinear constraints are due
to the linear dependence between the firsts and fourths lines
and columns. If the radial distortion on both views is the
same then ξx = ξy and matrix F must verify the additional
constraint f14 − f41 = 0.





det(F2...4,2...4) = 0
f11fi4 − f14fi1 = 0, i = 2, 3, 4
f11f4j − f41f1j = 0, j = 2, 3

(10)

Henceforth we will be considering the right null space
ℵ(F) of the RFM. However the reasoning and statements
are equally valid for the left null space. Since F is a rank 2
matrix then ℵ(F) is bi-dimensional and can be represented
by a line µ on the lifted space ℘

3. As shown on Fig. 2, line
µ intersects the plane X1OX2 on a point E = (0, e′t)t.
From equation 9 follows that e′ = (e′x, e′y, 1)t is the null
space of F′ and represents the epipole on the undistorted
image plane. Moreover if ξ is the distortion parameter then
D = (−ξ−1, 0, 0, 1)t satisfies F.D = 0. Point D also lies
on line µ and is the intersection of µ with the OX0 axis.
These observations will prove to be useful.

4 Estimating the Fundamental Matrix from
Image Correspondences

Consider a set of K corresponding points xk ↔ yk

on two views with radial distortion parameters ξx and ξy

(K ≥ 15). The radial fundamental matrix F can be di-
rectly estimated from the lifted correspondences x̃k ↔ ỹk

(k = 1, 2 . . .K). The bilinear relation of equation 8 gives
rise to the set of equations of the form




x̃1
t
⊗ ỹ1

t

x̃2
t
⊗ ỹ2

t

...
x̃K

t
⊗ ỹK

t




︸ ︷︷ ︸
A




f11

f12

...
f44




︸ ︷︷ ︸
f

= 0 (11)

If the correspondences are noiseless then A has rank
15 and it is possible to solve for F up to a scale fac-
tor. In the presence of noise the radial fundamental ma-
trix can be estimated by minimizing the objective function
}(f) = f tAtAf . However, and since F has to satisfy
the constraints of equation 10, the minimum can only be
found using non-linear optimization methods. This is simi-
lar to what happens with the conventional fundamental ma-
trix and the rank constraint.

In this section we propose a linear method to compute
an initial estimate for the radial fundamental matrix. We
will show that the estimated F is accurate enough for many
applications. The method can also be used on a RANSAC
based approach in order to detect outliers in the correspon-
dences. Our 15-point algorithm is for the radial fundamen-
tal matrix as the 8-point algorithm is for the conventional
fundamental matrix.

4.1 The 15-Point Algorithm

Tab. 1 summarizes the 15-point algorithm. The 3 first
steps resemble the steps of the well known 8-point algo-
rithm. In order to avoid statistical bias a proper careful nor-
malization of the lifted correspondences is required [8, 5].
Then we find a least square solution for Af = 0 and enforce
the rank constraint using singular value decomposition. The
problem is that in general the obtained 4 × 4 matrix F̂ is
not a radial fundamental matrix. Despite of having rank 2,
matrix F̂ does not satisfy the bilinear constraints shown in
equation 10. The goal of steps 4 to 8 is to find a matrix with
the correct structure (equation 9).

As discussed on the previous section the right null space
of F̂ has dimension 2 and corresponds to a line µ̂ in ℘

3 (see
Fig. 2). In an ideal situation of noise free correspondences
the lines µ̂ and µ would be coincident. Unfortunately this
is not the case when dealing with real images. However, for
moderate levels of noise, we expect that µ̂ and µ are close



Step 1 Build matrix A (equation 11) using the nor-
malized lifted correspondences x̃k ↔ ỹk. The
normalizing transformations are Tx and Ty

consisting of a translation and scaling.
Step 2 Determine the 4×4 matrix Ḟ from the singular

vector corresponding to the smallest singular
value of A (total least squares)

Step 3 Replace Ḟ by F̂, the closest rank 2 matrix to
Ḟ under a Frobenius norm. The correction is
performed using SVD

Step 4 Compute the line µ̂x(µ̂y) corresponding to the
left(right) null space of F̂.

Step 5 Estimate the undistorted epipole e′

x(e′y) by
intersecting line µ̂x(µ̂y) with plane X1OX2

(Fig. 2)
Step 6 Estimate the distortion parameter ξx(ξy) by

minimizing the geometric distance between
µ̂x(µ̂y) and OX0 (Fig. 2 and equation 12).

Step 7 Parameterize the radial fundamental matrix in
terms of e′

x and e′y and compute the least
square solution for the epipolar collineation
[8, 5] (ξx, ξy , e′x and e′y are kept constant)

Step 8 Knowing the distortion parameters, the
epipoles and the epipolar collineation build
matrix F̈ which will satisfy the constraints of
equation 10.

Step 9 Denormalize the result in order to obtain the
radial fundamental matrix (F = Tt

yF̈Tx)

Table 1. The 15-point algorithm

enough, and that both the epipole and the distortion param-
eter can be estimated with reasonable accuracy. Thus, the
epipole e′

x before distortion is determined by intersecting
µ̂ with X1OX2 (point Ê in Fig. 2). Since in general lines
µ̂ and OX0 are not concurrent, the distortion parameter ξx

is computed using point D̂. This is the point on the X0

axis which is geometrically closer to µ̂. Point D̂ can be
easily determined by applying the closed form method pre-
sented in [4]. We have used this method to derive equation
12 which provides an analytical solution for the distortion
parameter. Vector u = (u0, u1, u2)

t is any 3D vector paral-
lel to µ̂ and Q = (q0, q1, q2)

t is any point lying in the line.
This same procedure is repeated for the left null space in
order to estimate ξy and e′y.

ξ = (
u0u1q1 + u0u2q2

u2
1 + u2

2

− q0)
−1 (12)

Consider the epipolar parameterization of the fundamen-
tal matrix as described in [8, 5]. The radial fundamental
matrix is written as a function of the distortion parame-
ters (ξx and ξy), the epipoles on the undistorted views (e′

x

and e′y) and the epipolar collineation. Since ξx, ξy, e′x and
e′y have already been determined we just need to estimate
the epipolar collineation that better fits the correspondences.
We can find a least square solution for the problem by ap-
plying SVD. The resultant matrix satisfies the constraints of
equation 10 and has the right structure to be a RFM.

4.2 Performance Evaluation

In this section synthetic images are used to evaluate the
performance of the 15-point algorithm. Camera X and Y ,
with different radial distortion parameters, are placed in the
virtual working space. The 480 × 640 synthetic images are
generated by projecting in both views a set of NC points.
These 3D points are randomly selected by uniformly sam-
pling the volume. Two-dimensional gaussian noise with
zero mean and standard deviation σ is added to each image
point. The radial fundamental matrix is estimated from the
noisy image correspondences using the 15-point algorithm
summarized in Tab. 1. The estimation results are compared
with the ground truth and the root mean square (RMS) error
is computed over 200 runs of each experiment.

Before discussing the results exhibited in Fig. 3 we
would like to make a couple of remarks. The first one is
that we are showing the RMS error which is more penaliz-
ing that the mean error. The difference between these two
metrics is specially noticeable when the results present sig-
nificant standard deviation. The second remark is that the
case that we are analyzing is particularly hard because the
amounts of radial distortion on the two views are unbal-
anced. The distortion in camera X causes a deviation of 85
pixels at the image corner while in camera Y the shift along
the radial direction is only 15 pixels.

The experiment of Fig. 3 evaluates the performance for
an increasing number of correspondences (NC= 50, 150 and
300). For comparison purposes we estimate both the radial
and the conventional fundamental matrices. The former is
determined with the 15-point algorithm. The latter is com-
puted with the 8-point algorithm after correcting the image
distortion (which is assumed to be known). The graphics
show the geometric distance between the data points and
the estimated epipolar circles, the error in determining the
epipole, and the relative error on the distortion estimation.

The 15-point algorithm performs poorly when the num-
ber of correspondences is small (NC=50). However when
NC increases the performance rapidly converges to the one
of the 8-point algorithm. This is due to the fact that the
number of correspondences is directly proportional to the
probability of having points in the image periphery. With-
out points in the periphery the algorithm is unable to deter-
mine the distortion and correctly estimate the RFM. The es-
timation of radial distortion also performs reasonably well.
According to the graphic of Fig. 3 for σ = 2 and NC=150
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Figure 3. Performance evaluation using synthetic generated views with different amounts of distor-
tion. The distortion of view X is high (85 pixels of deviation at the image corner) while the radial
distortion of view Y is almost negligible (15 pixels). The graphics show the performance of the 15-
point algorithm in estimating the radial fundamental matrix from 50, 150 and 300 correspondences.

the relative errors for the distortion parameters ξx and ξy are
18% and 55%. These values correspond to an error of 15.3
and 8.25 pixels on the deviation at the image corner. If we
take into account that in a 480 × 640 image the deviations
up to 15 pixels are barely noticeable, we can state that the
estimation is accurate enough for many applications.

4.3 Automatic Computation of F

Until now, we assumed that the point correspondences
were given. The matches between two captured images can
be obtained using different techniques [9, 5, 8]. Typically
interest points are computed on both views, and each point
on the first view is matched to each point on the second view
accordingly to a certain correlation metric. The pairs with
a correlation score above a certain threshold are considered
valid image correspondences. However, some of these pairs
are incorrect, and including them on the fundamental matrix
estimation severely degrades the accuracy.

In general the input to the estimation method is a set of
noisy image correspondences x ↔ y, some of which are
incorrect. An automatic algorithm must be able to detect
these outliers and exclude them from the estimation process.
To achieve this goal we propose a RANSAC strategy similar
to the one used for the conventional fundamental matrix.
At each iteration 15 correspondences are randomly selected
and F is estimated following the linear method outlined in
Tab. 1. A test is used to mark each correspondence as inlier
or outlier. The procedure is repeated for a certain number
of times and the final estimation of F is obtained from the
largest set of inliers.

The most important component of such an algorithm is
the test used to mark each correspondence as inlier or out-

lier. In the pin-hole case the classification is typically per-
formed using the distance from points to epipolar lines.
However, in the case of cameras with radial distortion,
this distance becomes the distance from points to epipo-
lar curves. In order to correctly perform the computation
Fitzgibbon suggests the correction of the radial distortion
of the noisy image points [6]. In section 2.1 we proved that
lines are projected into circles. This means that the epipolar
curves are in fact epipolar circles which greatly simplifies
the problem. The geometric distance from points to cir-
cles can be easily determined by subtracting the circle ra-
dius (rn) to the distance from the point to the circle center
(d(x,Cn)). Therefore we will classify the correspondences
as inliers or outliers using the geometric distances ε from
points to epipolar circles. The centers (Cx, Cy) and radius
(rx, ry) are calculated using the formulas of equation 3.

ε =‖ d(x,Cx) − rx ‖2 + ‖ d(y,Cy) − ry ‖2 (13)

5 Experiments

Fig. 4 shows an experiment where the 15-point algo-
rithm is used to estimate the radial fundamental matrix be-
tween two images acquired by different cameras. The radial
distortion in the first view is high, while in the second view
is just slightly noticeable. The correspondences between
images were automatically established using SIFT features
[9] and the outliers were detected after 500 iterations of
RANSAC. The Lowe detector found 408 correspondences
from which 269 were marked as inliers (34% of rejection).
Since we model both the epipolar geometry and the lenses
radial distortion, the inliers are spread all over the image in-



 Image 1 ( minilens, 4 mm ) 
Inlier
Outlier
Test
Img Center

Image 2 (C−mount lens)
Inlier
Outlier
Test
Image Center

Figure 4. Estimation of the Radial Fundamen-
tal Matrix between two 480 × 640 images ac-
quired by different cameras.

stead of being only in the image center [6]. The deviation at
the image corner due to the radial distortion was estimated
in 125.4 pixels for camera 1 and 22.9 pixels for camera 2
(the corrected images are presented in Fig. 5). In order
to test the correctness of the radial fundamental matrix we
manually selected 7 point pairs and drew the corresponding
epipolar circles (light blue curves). The experiment was re-
peated for 5 other image pairs acquired with the same cam-
eras. The standard deviation in the distortion estimation was
13.3 pixels for camera 1 and 7.1 pixels for camera 2.

The 288 × 352 images shown in Fig. 6 were acquired
using a cell-phone with a camera. In order to cope with
the low resolution and bad quality of the images, we used
a modified version of the 15 point algorithm. By assuming
equal radial distortion in both views, the lines µx and µy ,
corresponding to the left and right null spaces of F, must
intersect OX0 in the same point (see Fig. 2). This is an ad-
ditional constraint which helps to improve the estimation.

Correction of Image 1

Correction of Image 2

Figure 5. Correction of Radial Distortion. The
distortion was estimated in 125.4 pixels for
camera 1 and 22.9 pixels for camera 2

We also increased the threshold for the detection of inliers.
The image in the top of Fig. 6 is a linear combination of
the two views used in the computation of the radial fun-
damental matrix. The Lowe detector automatically found
68 correspondences from which 9 were considered outliers
(red arrows). According to the estimation results the distor-
tion causes a maximum shift of 19 pixels along the radial
direction. This value was used to correct the image at the
left-bottom corner of Fig. 6

Remark that in both cases the radial fundamental matrix
(RFM) was estimated by only applying the 15-point algo-
rithm. Like the 8-point algorithm used for the standard fun-
damental matrix, the 15-point algorithm is a linear approach
that provides a good initial estimate. Nevertheless the esti-
mation is sub-optimal in terms of error minimization, and
the accuracy can always be improved by a subsequent step
of non-linear optimization.



RANSAC Detection

Figure 6. Estimation of the Radial Fundamen-
tal Matrix between two views acquired with a
Sony-Ericsson cell phone. The distortion es-
timation is used to correct the image at the
left-bottom corner.

6 Conclusions

The fundamental idea of this paper is that by lifting the
projective plane to a quadric in the 3D projective space, the
radial distortion is expressed as a matrix transformation in
the lifted space. An epipolar constraint can be written as
a line equation which corresponds to a circle equation in
the distorted image plane. Therefore the epipolar constraint
in the lifted space can be represented by a new 4x4 matrix
that we called radial fundamental matrix. This is very good
news since any attempt till now had yielded in the best case
a quadratic eigenvalue problem. But even more important is
the capability to accommodate different radial distortion co-
efficients in the left and right image. Because of its simplic-
ity, it is very convenient for use in a RANSAC algorithm.

We would like to point out to the reader, who might think
”yet another radial distortion or calibration paper...”, the
significance of the problem. Camera networks available at
minimal cost nowadays are resulting in configurations with
only two-view overlap and recording scenes which might
not have a single reference landmark or a linear structure.
It is also necessary that such networks are deployed rapidly

with minimal preparation. It is for such cases that our al-
gorithm shows its potential because it relies only on cor-
respondences without any further prior knowledge on the
camera or the scene.
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