
USING THE GPU FOR FAST SYMMETRY-BASED DENSE STEREO MATCHING IN
HIGH RESOLUTION IMAGES

Vasco Mota† Gabriel Falcao? Michel Antunes† Joao Barreto† Urbano Nunes†

†Institute of Systems and Robotics, Dept. of Electr. & Computer Eng., University of Coimbra, Portugal
? Instituto de Telecomunicações, Dept. of Electr. & Computer Eng., University of Coimbra, Portugal

ABSTRACT

SymStereo is a new algorithm used for stereo estimation. In-
stead of measuring photo-similarity, it proposes novel cost
functions that measure symmetry for evaluating the likelihood
of two pixels being a match. In this work we propose a paral-
lel approach of the LogN matching cost variant of SymStereo
capable of processing pairs of images in real-time for depth
estimation. The power of the graphics processing units uti-
lized allows exploring more efficiently the bank of log-Gabor
wavelets developed to analyze symmetry, in the spectral do-
main. We analyze tradeoffs and propose different parameter-
izations of the signal processing algorithm to accommodate
image size, dimension of the filter bank, number of wavelets
and also the number of disparities that controls the space den-
sity of the estimation, and still process up to 53 frames per
second (fps) for images with size 288 × 384 and up to 3 fps
for 768× 1024 images.

Index Terms— Stereo estimation, Stereo rangefinding,
SymStereo, Parallel processing, High resolution images

1. INTRODUCTION

Recent developments have shown that stereo disparity estima-
tion can be improved by using symmetry, instead of photo-
similarity, for evaluating the likelihood of two pixels being a
match [1] . In this new SymStereo framework the pixel asso-
ciation problem is solved by mapping one view into the other
according to the homography induced by a virtual plane pass-
ing in-between the cameras, which is followed by measuring
local signal symmetry to detect the contour where the virtual
plane intersects the scene. The experiments show that Sym-
Stereo compares favorably against top performing matching
costs that rely in photo-similarity [1], and that its variant logN
is especially effective for Stereo-rangefinding that consists in
recovering the scene depth exclusively along a pre-defined
virtual scan plane.

This work was supported by the Portuguese Foundation for Science and
Technology (FCT) under Grants PDCS10:PTDC/EEA-AUT/113818/2009
and AMS-HMI12: RECI/EEI-AUT/0181/2012, and also by a Google Re-
search Award from Google Inc.

This work investigates for the first time the use of the pro-
cessing power of graphics processing units (GPU) for evalu-
ating symmetry-based stereo matching costs in pairs of high-
definition (HD) images in order to accomplish real-time depth
estimation. In particular, we focus in the logN variant of the
algorithm where the image symmetry analysis is carried us-
ing a bank of log-Gabor wavelets. Since the log-Gabor is an
analytical signal, the filtering must be carried in the spectral
domain and the result stored in memory for subsequent pro-
cessing. This poses important challenges in terms of both par-
allel processing and in particular regarding the GPU’s mem-
ory hierarchy management, since we need that a huge amount
of data is maintained in memory for processing.

The following contributions of the paper can be high-
lighted: i) Investigating till which extent GPUs can improve
its computational performance. This becomes even more im-
portant since full HD is becoming the mainstream. Therefore,
there is an urge to perform stereo matching in HD images in
real-time. ii) The symmetry calculation is performed in the
frequency domain, where the convolution (i.e., the wavelets
processing) must be performed, which can have benefits in
terms of processing time after a certain dimension of the
image (e.g., HD images). iii) Also, several tradeoffs are
analyzed and different parameterizations proposed for the al-
gorithm. For example, in case of higher speed requirements,
we can sacrifice spatial resolution without sacrificing depth
resolution.

2. SYMSTEREO AND DEPTH MAPS

The concept behind passive methods for stereo correspon-
dence (like SymStereo) is to find the correct depth map over
a scene. This map associates each pixel on an image with its
depth on the corresponding scene.

This mapping procedure is calculated using a process
that involves two main steps: i) the first one consist of using
a matching cost function across all possible disparities and
pixel locations, producing a Disparity Space Image (DSI); ii)
in the second step, the DSI goes trough an evaluation process
whose ultimate result is the depth map. Our work focus on
the first step.

2.1. Disparity and the DSI

Consider two images, I (left image) and I ′ (right image).
Consider also a given epipolar line on each image (I(q1) and
I ′(q1)). Disparity is the distance, in pixels, from a pixel in
line I(q1) to its equivalent in I ′(q1). Two pixels are equiv-
alent if they represent the same information on the scene. If
the disparity is 0, the object is on infinity. The bigger the
disparity, the closer the object is to the focal center.

The DSI consists is a 3D volume that, for each pair
{pi, dj}, (where pi stands for a pixel of the reference image
and dj stands for a disparity value) associates the correspond-
ing matching cost, which in this case is the joint energy.

2.2. The cost function

The cost function can be divided in two steps: the filtering and
the computation of the joint energy for each pair {pi, dj}.

2.2.1. Filtering Phase

On the filtering phase, N log-Gabor wavelets are used. These
are 1D analytical filters and filtering must occur in the spectral
domain. The wavelets’ wavelength grows as follows:

λk = m.λk−1, (1)

where m represents the multiplicative factor. The matrix of
coefficients of the filter is represented by G. The result of fil-
tering, for a given wavelet k, is IT .Gk, whereGk is a wavelet,
with the same length as the epipolar line and I = F(I),
where F denotes the 1D Fourier transform along the epipo-
lar lines of I . After the IDTFT (F−1) we obtain, for a given
epipolar line q1 and a given wavelet k, the following complex
signal: {

sk(q1) + iak(q1) = F−1(I(q1).Gk)
s′k(q1) + ia′k(q1) = F−1(I ′f (q1).Gk)

. (2)

I ′f represents I ′ flipped horizontally. I ′ is flipped before the
filtering occurs and flipped back once again after returning to
the time-domain.

2.2.2. Energy Computation Phase

To calculate the Energy, first, we calculate the Symmetry (sS

and aS) and AntiSymmetry coefficients (sA and aA). For a
given pair {pi, dj},

sSk (pi, dj) + jaSk (pi, dj) =

=
(
sk(pi) + s′k(pi − dj)

)
+ j
(
ak(pi) + a′k(pi − dj)

)
(3)

sAk (pi, dj) + jaAk (pi, dj) =

=
(
sk(p1)− s′k((pi − dj)

)
+ j
(
ak(pi)− a′k((pi − dj)

)
.
(4)

These coefficients allow us to calculate the Symmetry Energy
(ES):

ES(pi, dj) =

∑N
k=1 |sSk (pi, dj)| − |aSk (pi, dj)|∑

k

√
(sSk (pi, dj))

2 + (aSk (pi, dj))
2

(5)

and the Anti-Symmetry Energy (EA):

EA(pi, dj) =

∑N
k=1 |aAk (pi, dj)| − |sAk (pi, dj)|∑

k

√
(sAk (pi, dj))

2 + (aAk (pi, dj))
2
. (6)

Combining both equations, we calculate the joint energy E:

E = EA × ES . (7)

3. PARALLELIZING SYMSTEREO

The pipeline of SymStereo is depicted on Algorithm 1.
The most intensive processing is performed on the GPU
device. We use the Compute Unified Device Architecture
(CUDA) parallel programming model [2] that allows exploit-
ing multithread-based execution on the GPU device. The host
system is a CPU that communicates with the GPU using the
PCIe bus.

Algorithm 1 SymStereo Pipeline
1: Creation of the Gabor Coefficients, G
2: (CPU to GPU data transfer) I , I′ and G are copied to device
3: - - - - - - - - - - (On GPU)
4: Flip I′ horizontally
5: DTFT of I and I′f
6: Filtering of I and I′f
7: IDTFT of G.I and G.I′f
8: Flip back F−1(G.I′f)
9: Energy computation

10: - - - - - - - - - - (Back to CPU)
11: (GPU to CPU data transfer) DSI is copied back to host

Next we describe the main strategies used to perform the
parallelization of the algorithm.

3.1. Fourier Transform and LogGabor Filtering in the
Frequency-domain

For the DTFT and IDTFT, the optimized CUFFT API [3] was
used to perform the FFT calculation on the GPU. On the fil-
tering phase, each line of the spectrum is multiplied by the
same matrix of filter’s coefficients, G.

3.2. Calculating Energy

The energy computation implements (5) and (6), in order to
compute the joint energy from (7). This value is saved in the
DSI. Each thread is responsible for an entry of the DSI. There-
fore, it is necessary to perform the sum of the wavelets for a

Fig. 1. The usage of different types of memory during Energy
calculations. All threads in the same block access the same
info from F−1(I.G)

Fig. 2. Percentage of the execution time spent on each task

given pair {pi, dj}. Each thread’s input can be represented
as 2 columns: the entries from F−1(I.G) and F−1(I ′f .G)
referring to the pair {pi, dj}. Due to the considerable size of
data, all these entries are stored in the global memory after
flipping F−1(I ′f .G).

Consider I as the reference image. If we group the com-
putation by the pixels of I , we know that the threads on the
same group will be accessing the same data from F−1(I.G),
but not from F−1(I ′f .G), since that for each disparity value
we need a different pixel from that image.

By putting data from F−1(I.G) on the faster shared
memory, we greatly enhance the throughput performance.
The process is depicted in Fig. 1. Consequently, each thread
first copies data from F−1(I ′f .G) to its registers, accesses
the shared memory for F−1(I.G) and then computes the
values of equations (5) and (6), a value of k at a time. In the
end, all the N results are used to calculate (7). Finally, values
are saved on the DSI.

The DSI dimensions are considerably high. Therefore,
even the parallel version of the Energy calculation consumes
the most significant part of global processing time as Fig. 2
shows. The DSI dimension depends on the image resolution
times the disparity range and, for each entry, we process 2
columns of N elements each. Therefore, for a 768 × 1024

pixels image, with d = 170 disparities and aN = 45 wavelets
filter, in this stage we access 510 MByte of data.

4. APPARATUS AND EXPERIMENTAL RESULTS

The program was developed using CUDA 5.0 with runtime
4.2. The C/C++ code was compiled with GCC-4.4.7. The
host system is based on an Intel Core i7 950 @ 3.07GHz that
runs the GNU/Linux kernel 3.2.1-030201-i7. The GPU de-
vice is a Geforce GTX 680 powered with 1536 CUDA cores.

4.1. Experimental Results for Photo-Symmetry

Our experiments are based on variations of the following pa-
rameters: the number of wavelets of the filter (N), the dis-
parity range (d) and the multiplicative factor of the filter (m)
(see (1)). These experiments were performed in 2 different
sets of images. The first is the Tsukuba stereo set (288× 384
pixels) and the second one is a pair of larger images (768 ×
1024 pixels) captured by our group. Asm does not change the
computational effort, we do not show results for variations of
this parameter. However, it should be noted that it does in-
fluence the quality of the result. So, we averaged the results
for different values of m. The parameters used are presented
in table 1. We measured the temporal results of computa-

Table 1. Parameters used on our tests: number of wavelets
(N), disparity range (d) and filter’s multiplicative factor (m)

Set 1 Set 2
N {15, 20, 30} {20, 30, 25}
d {7, 15, 31} {70, 128, 170}
m {1.02, 1.05, 1.08 }

tions being performed on the GPU. For the first set, results
are shown in table 2. For this image format, we can get from
20 fps up to 50 fps, which is the frame rate used for video.

Table 2. Execution time (in ms) for the first set of images
d = 7 d = 15 d = 31

N = 15 18.70 20.50 24.42
N = 20 23.80 25.69 29.16
N = 30 37.98 39.91 43.69

In Fig. 3, we compare our results with the algorithm avail-
able in [4] and implemented in [5]. Images (a) and (b) show
SymStereo’s output. Image (c) presents the Tsukuba’s ground
truth disparity, which are the correct values of disparity for
the given set. Image (d) is obtained by using the algorithm
implemented on [5] with the Tsukuba set as input. As it is
observable, our results present less noise, but a lower level of
definition on the discontinuities. The use of a large number of
scales enables Symstereo to have a good performance in tex-

(a) N = 30,d = 15, m = 1.05 (b) N = 30,d = 31, m = 1.05

(c)Tsukuba’s ground truth disparity (d) Results using [5]

Fig. 3. Tsukuba set results comparing SymStereo with [5]

ture less regions with the disadvantage of more blurred edges
close to discontinuities in the disparity image.

For the second set of higher resolution images, we can
see from table 3 that we are able to process up to 3 fps. Given
the GPU’s memory size limitations, we were not able to test
N > 45. Image 4 shows the final depth map obtained form

Table 3. Execution time (in ms) for the second set of images
d = 69 d = 128 d = 170

N = 20 358.87 448.73 630.26
N = 30 528.2 647.7 922.1
N = 45 877.2 987.7 1412.7

the DSI. The original image from Fig. 4 (a) represents a chal-
lenge for stereo estimation since it has few textures and many
reflexions. Nevertheless, we can see on the image that, on
the right, the most distant plans, outside, are very well recon-
structed. Also, the reflexions on the ground are correct: since
the information perceived on the image is the light from the
outside reflected on the floor, instead of the floor itself, the
depth calculated corresponds to the source of such light: the
surfaces on the outside. It is also noticeable the board on a
closer plan than the wall on the background.

4.2. Speedup

In terms of speedup, the computation on the CPU of the im-
age from set 1, with N = 30, d = 15 and m = 1.05 takes
1.712 seconds to complete. This represents a speedup of 43×.
On the second set, for a setup with N = 45, d = 170 and
m = 1.06, the CPU takes approximately 158.78 seconds.
The achieved speedup for this image of higher dimensions
is 112× regarding CPU execution.

(a) Original left image (b) Depth map

Fig. 4. SymStereo results for the second set’s image with
d = 170, m = 106 and N = 45

Regarding disparities/second (disp/s) (measuring unit
used in [6]), our algorithm is able to perform 0.078 × 109

disp/s for set 2 and 0.083 × 109 disp/s for set 1. If we allow
to downgrade quality, using a smaller N , for the second set
we are able, with N = 20, to achieve, 0.21× 109 disp/s.

5. RELATION TO PRIOR WORK

Our work is the first attempt to use GPGPU on dense stereo,
using the SymStereo Framework presented in [1], where An-
tunes and Barreto worked on a fast CPU algorithm (2 fps),
but only for sparse stereo. In [7] Antunes et al. discuss the
utilization of this approach for laser stereo range finding.

Several approaches have been made on the GPGPU us-
age for stereo. A very important variable is the computational
complexity of the cost function. In [8], the authors analyze
this aspect in terms of speed and quality of different solu-
tions. Another review regarding speed is also performed in
[6] in terms of disparities/second. Our algorithm performs
around 0.08 × 109 disp/s. Yang et al. [9], one of the first
works on the field, achieved 6 to 8 fps on 256×256 depth map
with a 100 disparity search. Zhao et al. [10] creates a very
fast framework for stereo with moving objects, using adaptive
window sizes, achieving 30 fps on a 768 × 1024 stereo pair
with a 256 pixel disparity range. By adopting hybrid tech-
niques using both the GPU and the CPU, Miura et al. [11]
perform their computations using a set of reference points on
the image. With 6000 points, they achieve a 15 fps rate.

6. CONCLUSIONS

In this work we developed a parallel approach for SymStereo,
a depth estimation signal processing algorithm based on
photo-symmetry, rather than photo-similarity. Depending on
parameters such as image size or number of wavelets used,
we were able to process up to 53 fps for small images and 3
fps for high resolution images.

Given the data rates achieved, in the near future we ex-
pect to develop multiview systems for higher quality of depth
estimation and reconstructed images.

7. REFERENCES

[1] M. Antunes and J.P. Barreto, “Stereo estimation of depth
along virtual cut planes,” in Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Confer-
ence on, 2011, pp. 2026–2033.

[2] Victor Podlozhnyuk, Mark Harris, and Eric Young,
“Nvidia cuda c programming guide,” NVIDIA Corpo-
ration, 2012.

[3] NVIDIA Developer Technology, “cuFFT user guide,”
2012.

[4] D. Gallup, J. m. Frahm, and J. Stam, “CUDA stereo,”
June 2009.

[5] S. J. Kim, D. Gallup, J. m. Frahm, A. Akbarzadeh,
Q. Yang, R. Yang, D. Nistr, and M. Pollefeys, “Gain
adaptive real-time stereo streaming,” in Int. Conf. on
Vision Systems, 2007.

[6] R. Kalarot and J. Morris, “Comparison of FPGA and
GPU implementations of real-time stereo vision,” in
Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Computer Society Conference on,
2010, pp. 9–15.

[7] M. Antunes, J.P. Barreto, C. Premebida, and U. Nunes,
“Can stereo vision replace a laser rangefinder?,” in In-
telligent Robots and Systems (IROS), 2012 IEEE/RSJ In-
ternational Conference on, 2012, pp. 5183–5190.

[8] Ratheesh Kalarot, John Morris, David Berry, and James
Dunning, “Analysis of real-time stereo vision algo-
rithms on GPU,” 2011.

[9] Ruigang Yang and M. Pollefeys, “Multi-resolution
real-time stereo on commodity graphics hardware,” in
Computer Vision and Pattern Recognition, 2003. Pro-
ceedings. 2003 IEEE Computer Society Conference on,
2003, vol. 1, pp. I–211–I–217 vol.1.

[10] Y. Zhao and G. Taubin, “Real-time stereo on GPGPU
using progressive multi-resolution adaptive windows,”
Image and Vision Computing, 2011.

[11] M. Miura, K. Fudano, K. Ito, T. Aoki, H. Takizawa, and
H. Kobayashi, “GPU implementation of phase-based
stereo correspondence and its application,” in Image
Processing (ICIP), 2012 19th IEEE International Con-
ference on, 2012, pp. 1697–1700.

