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Abstract: Knee arthritis is a common joint disease that usually requires a total knee arthroplasty (TKA). There are multiple surgical
variables that have a direct impact in the correct positioning of the implants, and an optimal combination of all these variables is
the most challenging aspect of the procedure. Usually, preoperative planning using a CT or MRI helps the surgeon in deciding the
most suitable resections to be made. This work is a proof of concept for a navigation system that supports the surgeon in following
a preoperative plan. Existing solutions require costly sensors and special markers, fixed to the bones using additional incisions,
which can interfere with the normal surgical flow. In contrast to these solutions, we propose a computer-aided system that uses
consumer RGB and depth cameras and does not require additional markers or tools to be tracked. We combine a deep learning
approach for segmenting the bone surface with a recent registration algorithm for computing the pose of the navigation sensor with
respect to the preoperative 3D model. Experimental validation using ex-vivo data shows that the method enables contactless pose
estimation of the navigation sensor with the preoperative model, providing valuable information for guiding the surgeon during the

medical procedure.

1 Introduction

Osteoarthritis is a joint disease that causes pain and stiffness due
to damage of the joint cartilage and the underlying bone [13]. It
is the most common joint disease in the world, with an estimated
prevalence of 14% in adults with 25 years or older and 34% with
65 years or older [13]. Depending on the severity of the symp-
toms, the treatment options can vary from non-operative to a joint
arthroplasty. Total knee arthroplasty (TKA) is the principal choice
for improving the quality of life of patients suffering from advanced
knee arthritis. It is estimated that the demand for TKA in the United
States will approach 3.5 million cases per year by 2030 [5]. Although
being one of the most effective surgical options to reduce pain and
restore the knee function, about 20% of the patients undergoing a
TKA surgery are not satisfied [2]. As discussed in [15], there are
important surgical variables (e.g., lower leg alignment and soft tis-
sue balancing) that have a direct impact in the success of TKA,
which are manually controlled by the orthopedic surgeon. It requires
experience for accurately combining all these surgical variables into
an optimal implant alignment. To assist the surgeon in control-
ling these variables, several computer navigation systems have been
developed [15].

Existing TKA navigation systems require a sensing technology
for performing anatomical measurements or supporting the surgeon
in following a preoperative plan of the bone resections. The most
widely used technology for this purpose is optical tracking (e.g.,
Smith&Nephew’s NAVIO Surgical System [14]). While providing
accurate 3D measurements, navigation systems based on optical
tracking have three main drawbacks: (1) optical tracking platforms
are costly, which is one of the reasons for the high cost of existing
navigation systems, (2) they necessitate the insertion of pins in the
distal femur and proximal tibia for fixing the markers to be tracked,
requiring additional bone incisions and surgical time, and (3) the
trackers to be attached to the bones are bulky, interfering with the
normal surgical flow.
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This article describes and provides a proof of concept for the first
contactless video-based system for computer-aided TKA that does
not require any special markers to be attached to the body. A naviga-
tion sensor, integrating a consumer RGB camera and a depth camera,
is used to register an anatomical model of the patient, obtained with
a preoperative computed tomography (CT) scan or magnetic reso-
nance imaging (MRI), such that the bone resections for the implant
positioning can be guided according to a preoperative plan. The
paper introduces the video-based computer-aided TKA system, and
describes the two main modules of the software pipeline: (1) bone
surface segmentation from RGB images using a deep learning tech-
nique, and (2) registration of a preoperative CT/MRI model with a
noisy point cloud for computing the pose of the navigation sensor.
Augmented reality (AR) techniques for supporting the surgeon in
following a preoperative plan are then used. Experimental results in
real ex-vivo data are presented.

2 Video-based computer-aided TKA

This section overviews the proposed concept for computer-aided
TKA that uses a navigation sensor to perform 3D pose estima-
tion during the open surgery. By using additional depth sensing
capabilities, we avoid the use of visual markers as in [10] (see
figure 1).

Given a 3D model of the patient’s knee, which was acquired using
CT or MRI, the surgeon prepares a preoperative plan for optimizing
the implanting positioning, defining the resection plane parameters
that will guide the proposed computer-aided TKA system. During
the surgery, and at each time instant, RGB and depth data are cap-
tured from the navigation sensor and used for computing a local 3D
point cloud of the knee joint. The navigation sensor is handheld and
is composed of a camera and a depth sensor that are at all times
fixed together in a rigid manner. The point cloud is then used to reg-
ister the 3D preoperative model, enabling the estimation of the pose
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Fig. 1: Diagram of the proposed method. Bone segmentation is per-
formed using frames of the RGB camera. The segmentation is used
to get the region of interest in the point cloud from the depth sen-
sor. The point cloud is then registered to the anatomical model to
establish the relative pose.

of the navigation sensor with respect to the model. In this way, the
location of the resection planes with respect to the navigation sensor
are known, enabling to provide valuable guidance information to the
surgeon.

2.1  Segmentation of bone surface

Image segmentation is a widely investigated topic in medical imag-
ing and computer vision. As in many medical imaging application,
in TKA it is difficult to obtain large amounts of accurately labeled
data. The main difficulty is that crowd-sourcing frameworks can-
not be used, because the labeling of medical data requires expert
knowledge and special confidentiality aspects.

We will explore a deep learning approach for image segmentation
called U-Net [11], an encoder-decoder neural network architecture
with skip-connections between the encoder and the decoder sec-
tions of the network [11]. This network was shown to achieve good
results with a relative small number of annotated images for training
and for a wide variety of objects and scenarios [4, 11]. The ratio-
nale behind the skip-connections is that when doing a traditional
encoder-decoder approach some fine-grained details are lost in the
encoder, and as the signal is upscaled through the decoder it cannot
describe the object in the input image with high resolution. These
special connections aim to solve this problem.

The base neural network used was as provided by the authors
in [4]. The data processing, the optimization process, along with
some other modification, were implemented around the base U-net
by Iglovikov and Svets [4]. For the encoder part of the U-Net, the
weights where initialized to the weights of the VGG-11 network tak-
ing advantage of large datasets of generic training data, similarly to
[4]. However, since our training dataset is small, we decided to freeze
the encoder weights, while the rest of the network is optimized. This
led to better results and faster training. Dropout was implemented
for regularization. The hyper-parameter space for the optimization is
defined by the learning rate, dropout ratio, and the number of filters
in the convolutional layers of the decoder. The number of filters in
the decoder decreases in a similar way to the encoder growth, but as
multiple of this hyperparameter). As for the encoder, the number of
filters is fixed, because the weights being used are the same as the
weights of the VGG-11 network. A mini-batch of 10 was combined
with the Adam optimizer for training the network.

The dataset used in this paper contains several video sequences of
2 different femurs (3 sequences for the first femur and 1 sequence
for the second femur). The datasets have a wide variety of relative
poses and occlusion events. In some of the sequences, a marker was
attached to the bone before data acquisition. This base marker was
tracked through the sequences so that it could be used to aid in the
generation of ground truth data for segmentation and to compare tra-
jectories for evaluation of pose estimation. Due to the dimensions
of the dataset (approximately 10,000 images), manual segmentation
of all the images was not possible, and a semi-automated approach
was used for the labeling task. This was accomplished by man-
ually segmenting approximately 100 images, and propagating the
segmentation to the neighboring frames using the detected marker

pose and the 3D femur model. The dataset was split into approxi-
mately 9,000 images for training and 1,000 for validation. Note that
the validation dataset was taken as a different video sequence and not
randomly chosen frames of the same sequences to make the valida-
tion dataset as different as possible to the training dataset. Although
parts of the dataset also contain depth information, only the RGB
data was used for learning to segment bone surfaces. For augment-
ing the variability in the training dataset, we performed particular
transformations to the input images on-the-fly. Among these trans-
formation we included: image rotation, imaging flipping, and shifts
to the HSV space of the images. Additionally, the base marker was
masked and inpainted over to avoid implicit relationships between
the poses of the marker and the femur within the learning framework
and improve generalization.

2.2 Registration of a preoperative model with a noisy point
cloud

3D registration consists in aligning two models such that their over-
lapping areas are maximized. It is a well studied problem in com-
puter vision, with applications ranging from SLAM and tracking to
robotics and, more recently, to medicine [9]. Some solutions for the
3D registration problem work by matching features extracted from
the models and estimating the rigid transformation using RANSAC
or other robust estimators [12, 16]. Such approaches perform poorly
when the point clouds are too smooth and/or noisy because of the dif-
ficulty in finding repeatable features. The family of algorithms 4PCS
[1, 6, 7] makes use of hypothesize-and-test schemes that randomly
select sets of 4 coplanar points in one point cloud and find correspon-
dences in the other for establishing alignment hypotheses. Rencently,
Raposo and Barreto [8] proposed an algorithm that is faster than the
4PCS family of methods and resilient to very high levels of outliers.
In general terms, the method extracts pairs of points and their nor-
mals in one point cloud, finds congruent pairs of points in the other
and afterwards establishes alignment hypotheses which are tested in
a RANSAC scheme. The selected solution is refined using a standard
ICP [3] approach.

Closely related to our work in terms of application is [9], which
also employs 3D registration in the context of orthopedic surgery
for aligning a preoperative model of the targeted bone with the
patient’s anatomy. However, there are two important differences:
(1) while [9] includes an explicit surgical step where the surgeon
touches bone surface with a tracked probe for reconstructing 3D
points, our method uses a depth sensor and an automatic segmen-
tation process for reconstructing only the area corresponding to
the targeted anatomy; (2) [9] requires fiducial markers attached to
the patient’s body for estimating the camera pose. On the other
hand, our approach accomplishes camera pose estimation by reg-
istering the segmented point cloud with the preoperative model
at each frame. The registration algorithm proposed in [9] is fast,
accurate and robust to outliers. However, it is not suitable for our
case because it only solves the curve-vs-surface alignment problem
and we require surface-vs-surface registration. As mentioned in the
previous paragraph, this task is efficiently solved in [8].

Since it is reported that this method is able to handle outliers,
we attempted to register the complete point cloud obtained from the
depth sensor with the preoperative model. However, due to the sig-
nificant levels of noise and very high percentages of outliers, the
results were not satisfactory, evincing the need for a proper segmen-
tation of the bone surface. The registration parameters were tuned for
accommodating the noise in the data and qualitative and quantitative
results on the registration accuracy are provided in the next section.
Furthermore, some frames contain too many outliers and missing
information, whether due to the sensor being too close to the knee
(out of range), to specularities and/or total occlusion. Therefore a
registration was deemed successful only when 80% of inliers were
considered for its computation.
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3  Experimental results

The camera/sensor setup used was composed of a 1080p video
camera and a two-camera IR depth sensor with 480p resolution at
approximately 10 frames per second. The two components were
fixed together and calibrated.

To evaluate the proposed method both quantitatively and quali-
tatively, we have three datasets: the training and validation datasets
used in the machine learning framework, and an additional dataset
where no markers where inserted in the bone.

The proposed architecture for femur segmentation obtained an
intersection over union (IoU) metric of median 0.853 and a Dice
coefficient of median 0.921. The hyperparameters used were: learn-
ing rate - 0.0001, epochs - 10, number of filer for the decoder -
multiples of 2. Please refer to figures 2 and 3 for additional results
regarding femur segmentation.

To evaluate the registration, we compute the trajectory obtained
in the validation dataset and compare it to the trajectory obtained
by tracking the marker inserted in the femur. The two trajectories
were aligned using a rigid transformation and the results are show
in figure 4(a). Figure 4(b) shows the angular magnitude of the resid-
ual rotation between the ground truth and the estimated rotations, in
degrees, and the norm of the difference between the ground truth and
the obtained translation vectors; where the ground truth was taken as
the median pose of all successful registrations, thus giving a measure
of robustness of the registration procedure. The obtained median
rotation error (eR) is 3.17 degrees and the median translation error
(eT) is 6.18 millimeters. In figure 5, our contactless registration is
used to superimpose the bone model and show the preoperative plan
in an AR view.

To further test the generalization power of our method, we per-
formed a new hyperparameter search, this time using only one femur
for training (3 video sequences of the first femur) and one for testing
(1 video sequence of the second femur). This test aims to show that
generalization to other scenes is possible. However, using only one
femur for training is not ideal, and for a fully working framework
further data is needed. Figure 6 shows the results.

4 Discussion

The article proposed a new approach for navigation in TKA that
avoids the need of attaching fiducials to the anatomy, which is a
major problem in current navigation systems and cause surgeons
to avoid these techniques. Moreover, the proposed approach uses
off-the-shelf hardware and does not require any user input.

The segmentation worked under various conditions and surpassed
expectations in differentiating between the bone and the adjacent
tissue with similar color and texture, even though only approxi-
mately 100 images were manually segmented. The scarcity of the
data required for performing machine learning tasks, means that fair
evaluation of the segmentation algorithm is difficult. Further test-
ing segmentation with additional ex-vivo knees may be necessary to
confirm the generalization power shown here.

Regarding the full registration process, the work aimed to be a
proof of concept that demonstrated that it is feasible to robustly track
the anatomy without the need of attaching fiducial markers. The
results are encouraging but there is still work to do to accomplish
a final system that can be used in everyday clinical practice:

e Translation errors of 6.18 millimeters and rotation errors of 3.17
degrees, while satisfactory for a proof of concept, are above the
requirements for surgical navigation. The obtained errors can lead
to critical misalignment of the planned cuts and drills. Future work
will address this problem and focus on fine tuning the registration
algorithm to work under such extreme depth outlier conditions and
possibly use multiple frames to perform the pose estimation. Another
promising line of research is to eliminate the need to work with the
depth sensor and perform pose estimation with machine learning as
well. This is enticing since in our setup the depth map is the main
source of imprecision. Another line of research with potential would
be to use an end-to-end machine learning approach.
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Fig. 2: Femur segmentation results on the validation dataset (left
column) and on the dataset without markers (right column), which
does not have ground truth available. Green: prediction; blue: ground
truth; cyan: both.
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Fig. 3: Segmentation metrics for the femur segmentation in the val-
idation dataset: (a) metric distribution; (b) frame with worst IoU
metric.
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Fig. 4: Registration results in the validation dataset: (a) comparison
between the X, y, and z components of the trajectories of the pro-
posed registration (colors) and marker-based tracking (black); (b)
distribution of the rotation error (eR) in degrees and the translation
error (eT) in millimeters.

Fig. 5: Each row corresponds to a different frame showing the
markerless and contactless femur registration for AR-guided surgery
using pre-operative planned cuts.

Fig. 6: Femur segmentation results using video sequences of only
one femur for training: good results (left column) and bad results
(right column). Green: prediction; blue: ground truth; cyan: both.

e Occlusion is currently a problem for the segmentation. However,
this happens because only 100 manual segmentations were per-
formed. Further manual segmentations can be performed for better
resilience to occlusion. Another possible approach is to track the sur-
gical tools and remove them from the segmentation maps to generate
the dataset.

e Future work must comprise extension to other anatomies. So far
we have worked only with the femur. Extension to other procedures
where the anatomy is not so clearly exposed (e.g., hip arthroplasty)
may not be as straightforward. Nevertheless, evaluation of accuracy
in such cases may be interesting. Extension for the tibia, as required
for full TKA navigation, should be feasible but must be validated as
well.

Although additional testing is required for a full navigation sys-
tem to be used in the OR, this work opens the possibility for a
contactless registration to be used to guide the surgeon. A possible
path for the application of our work is to use the contactless regis-
tration to guide the drilling of the holes for the cut guide and only
then guide the distal cut. In this way, removing the necessity of the
registration the bone after the cuts, which is not contemplated by the
present work. However, this approach would require the holes to be
drilled before the first cut and further testing is mandatory.
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