
Automatic Clustering using a Genetic Algorithm
with New Solution Encoding and Operators

Carolina Raposo1, Carlos Henggeler Antunes2, and João Pedro Barreto1

1 Institute of Systems and Robotics, Dept. of Electrical and Computer Engineering,
University of Coimbra, Portugal

{carolinaraposo,jpbar}@isr.uc.pt
2 INESC Coimbra, Dept. of Electrical and Computer Engineering,

University of Coimbra, Portugal
ch@deec.uc.pt

Abstract. Genetic algorithms (GA) are randomized search and opti-
mization techniques which have proven to be robust and effective in
large scale problems. In this work, we propose a new GA approach for
solving the automatic clustering problem, ACGA - Automatic Cluster-
ing Genetic Algorithm. It is capable of finding the optimal number of
clusters in a dataset, and correctly assign each data point to a cluster
without any prior knowledge about the data. An encoding scheme which
had not yet been tested with GA is adopted and new genetic operators
are developed. The algorithm can use any cluster validity function as
fitness function. Experimental validation shows that this new approach
outperforms the classical clustering methods K-means and FCM. The
method provides good results, and requires a small number of iterations
to converge.

Keywords: Genetic Algorithms, Clustering, Calinski-Harabasz index,
K-means, Fuzzy C-Means

1 Introduction

Clustering is the problem of classifying an unlabeled dataset into groups of sim-
ilar objects. Each group, called a cluster, consists of objects that are similar
between themselves, according to a certain measure, and dissimilar to objects
of other groups, with respect to the same measure. Clustering has had an im-
portant role in areas such as computer vision [1], data mining and document
categorization [2], and bioinformatics [3].

The major difficulty in the clustering problem is the fact that it is an un-
supervised task, i.e., in most cases the structural characteristics of the problem
are unknown. In particular, the spatial distribution of data in terms of number,
volumes, and shapes of clusters is not known.

A classical clustering method is K-means [4], in which the data is divided
into a set of K clusters. This division depends on the initial clustering, and is
computed by minimizing the squared error between the centroid of a cluster and

its elements. One variant of K-means is the Fuzzy C-Means (FCM), in which
the elements of the dataset may belong to more than one cluster with different
membership degrees [5]. FCM proceeds by updating the cluster centroids and
the membership degrees until a convergence condition is attained. Both methods
have proven to perform well in many situations. However, they can easily get
stuck in local minima, depending on the initial clustering. Moreover, for problems
where the number of clusters is unknown a priori, it is necessary to perform the
clustering for different values of K and choose the best solution according to a
certain evaluation function. This becomes impractical and tedious in the presence
of a large number of clusters.

These issues (local minima and unknown number of clusters) can be tack-
led using GA [6], which have proven to be effective in search and optimization
problems [7]. GA are high level search heuristics that mimic the process of nat-
ural evolution, based on the principle of survival of the fittest, by using selec-
tion, crossover and mutation mechanisms. Solutions (individuals) are encoded
as strings, called chromosomes, and, at each iteration, the fitness of solutions in
the population is computed for determining the evolutionary process.

In [8] a GA was proposed to find the optimal partition of a dataset, given the
number of clusters. More recently, methods based on GA have been proposed
to solve the automatic clustering problem, i.e., when no information about the
dataset is known [9–13].

We propose a new GA approach for solving the automatic clustering prob-
lem, ACGA - Automatic Clustering Genetic Algorithm - which uses a solution
encoding based on the one presented in [14]. Two new mutation and one new
crossover operators have been developed in order to guarantee the existence of
high diversity in the population. As fitness function any internal cluster validity
measure can be used, for which the Calinski-Harabasz (CH) index [15] was cho-
sen. An experimental validation using real [16] and synthetic [17] datasets was
conducted, and the performance of ACGA was compared with the K-means and
FCM algorithms. ACGA outperforms these two classical methods, converging to
solutions with higher fitness function values.

The interest and motivation of this study have been provided in the intro-
duction. An overview of the GA approach describing the encoding scheme, and
genetic operators is presented in Section 2. Experiments and results are discussed
in Section 3. Finally, some conclusions are drawn in Section 4.

2 Overview of the GA Approach

In this Section a new GA approach for solving the automatic clustering problem
is presented. An encoding scheme based on [14] is used, and new genetic operators
(mutation and crossover) are developed.

Solutions represent different points in the search space, to which quality val-
ues are assigned, according to a pre-defined fitness function. The best B solutions
of the population are preserved, and pass to the next generation, thus endow-
ing the evolutionary process with a certain degree of elitism. A fixed number

of solutions is then selected to act as parents. Crossover is applied to the par-
ent chromosomes, originating new solutions, which are then subject to mutation.
The new population is evaluated, and this procedure is repeated until a stopping
criterion is satisfied.

Algorithm 1 shows the main steps of the GA. In the next Subsections, the
encoding scheme is described, as well as the procedures for generating the ini-
tial population, evaluating each solution, selecting the parent population, and
performing the crossover and mutation operators.

Algorithm 1: Pseudo-Code of the GA.

t← 0;

Generate initial population P (t);

Evaluate P (t);

while Stopping criterion not satisfied do
Select parent population P ′(t) from P (t);

Apply genetic operators to P ′(t)→ P (t+ 1);

Replace random solutions in P (t+ 1) with the best B solutions in
P (t);

Evaluate P (t+ 1);

t← t+ 1;

Result: Best solution (highest fitness value) of the population in the last
generation.

2.1 Encoding Scheme

In this work, we adopted an encoding scheme based on the one used in [14].
Each solution i is a fixed-length string represented by activation values Aij and
cluster centroids mij , j = 1, . . . ,Kmax, where Kmax is the maximum number of
clusters defined by the user. Then, solution i of the population is represented as:

Ai1 Ai2 . . . AiKmax
mi1 mi2 . . . miKmax

where Aij are activation values defined in the interval [0, 1]. An activation value
Aij larger than 0.5 means that the cluster with centroid mij is active, i.e., it is
selected for partitioning the dataset. Otherwise, the respective cluster is inactive
in chromosome i.

Since each centroid mij is a d-dimensional vector, where d is the number
of features of the data, each solution is a string with total length equal to
Kmax + dKmax. As an example, for a maximum number of clusters Kmax = 3
and a dataset with d = 2 features, the string

0.1 0.8 0.6 10 0.5 11 0.9 14 0.3

represents a solution i with two activated clusters with centroids mi2 = [11, 0.9]
and mi3 = [14, 0.3].

This encoding scheme has advantages over the more popular label-encoding,
where each position is an integer value corresponding to one cluster. These in-
clude the fact that it may lead to smaller solution vectors, in the presence of
large datasets, and solutions with isolated one-element clusters are more dif-
ficultly generated, since the labeling of each data point only depends on the
location of the centroids. However, this encoding has the disadvantage of requir-
ing one label to be assigned to each data point, before computing the fitness of
each solution. This is done by finding the active centroid closest to each point
(smallest euclidean distance).

2.2 Initialization of the Population

Each candidate solution in the population is initialized independently, with the
activation values and the cluster centroids initialized separately.

The Kmax activation values Aij are initialized as random values drawn from
the standard uniform distribution in the interval [0, 1]. In order to guarantee
that each initial solution has at least 2 active clusters, a minimum of 2 activation
values are forced to be larger than 0.5.

For initializing the Kmax centroids mij , the interval in which the data points
are contained is determined. More specifically, for each dimension relative to
each feature, the minimum and the maximum values in the dataset are deter-
mined. Then, for each dimension, Kmax random values are sampled from the
corresponding interval, originating Kmax points that are the initial centroids.

The size of the population P (number of candidate solutions) is a user-defined
value.

2.3 Solution Evaluation

A quality measure is assigned to each solution, which is computed using a fitness
function. In this work we chose to define the fitness function as the Calinski-
Harabasz (CH) index [15], which uses the quotient between the intra-cluster
average squared distance and the inter-cluster average squared distance. For
solution s, CH(s) is computed as in equation (1):

CH(s) =

N∑
i=1

||Xi −ms||2 −
Ks∑
j=1

∑
X∈Csj

||X −msj ||2

Ks∑
j=1

∑
X∈Csj

||X −msj ||2

N −Ks

Ks − 1
, (1)

where N is the number of objects Xi in the dataset, ms is the centroid of the
dataset, Ks is the number of clusters in solution s, and X are the objects in
cluster Csj with centroid msj . || · || denotes the L2 norm. Larger inter-cluster
distances and smaller intra-cluster distances lead to larger CH values, i.e., higher
quality solutions.

Fig. 1. Example of the crossover between two parent solutions p1 and p2, originating
two offspring c1 and c2. The solutions correspond to maximum number of clusters
Kmax = 3 and d = 2 features.

Note that for one-cluster solutions, the term Ks − 1 is substituted by 1, and
we have the relation

N∑
i=1

||Xi −ms||2 =

Ks∑
j=1

∑
X∈Csj

||X −msj ||2, (2)

leading to a CH value of 0. Thus, it is not necessary to explicitly deal with
one-cluster solutions since they are automatically assigned a null quality value.

2.4 Selection of the Parent Solutions

Before applying the genetic operators, a set of parent solutions must be selected.
This is done in a tournament scheme by selecting Pp random solutions from the
population and finding the one with the highest fitness, which will act as a parent
solution. This procedure is repeated P times, originating a parent population of
the same size as the original population.

2.5 Genetic Operators

The genetic operators should be suited to the encoding scheme. Their objective is
to ensure diversity in the population, such that better solutions can be produced
through the evolutionary process. In this work, one new crossover scheme is
presented, as well as two new mutation operators.

Crossover For each pair of parent solutions in the population crossover is
applied, originating two offspring. A binary mask of length Kmax is created,
where 1 occurs with a probability pcross. The centroids in the parent solutions
corresponding to the positions in the mask with a unitary value are exchanged,
originating two children. Figure 1 shows an example of the crossover between
parent solutions p1 and p2 yielding offspring c1 and c2.

Mutation Each solution produced by the crossover operator goes through a
mutation process. Two different types of mutation have been considered: muta-
tion in the activation values, and mutation in the centroids.

(a) An example of the activation
value mutation.

(b) An example of the centroid mu-
tation.

Fig. 2. Examples of the two different types of mutation proposed in this work: mutation
in the activation values, and centroid mutation. The solution vectors correspond to
maximum number of clusters Kmax = 3, and d = 2 features.

Activation value mutation
Similarly to the crossover operator, a binary mask of length Kmax is created,
where 1 occurs with a probability pmut. Let α be a user-defined parameter that
controls the perturbation of the activation values. For each unitary value in the
mask, a random value rα is drawn in the interval [−α, α]. The activation value
in the corresponding position is modified by adding rα: A′

ij = Aij + rα, where
A′
ij is the modified activation value.

If the resulting activation value A′
ij does not belong to the interval [0, 1], it

is forced to 0 or 1:

A′
ij =

{
1 if A′

ij > 1
0 if A′

ij < 0
. (3)

Figure 2(a) shows an example of the application of mutation to the activation
values. The centroid values remain unaltered, and only randomly chosen activa-
tion values, with probability pmut, are altered.

Since the crossover operator does not influence the activation values, this
type of mutation is the only possible way to achieve diversity in the number of
clusters between solutions in consecutive iterations of the algorithm.

Centroid mutation
The mutation operator applied to the centroids is similar to the activation value
mutation, with the difference that the perturbation is a d-dimensional vector
created according to the range of values of each feature of the data points.

Let ε be a user-defined parameter that controls the change in amplitude
of the centroids. For each dimension w of the data points, w = 1, . . . , d, let
gw = hw − lw be the difference between the largest value relative to feature w
found in the dataset, hw, and the smallest value relative to the same feature, lw.
By defining tw = εgw for each feature, a vector rε = [rε1, . . . , rεd] can be created
by drawing random values rεw from the intervals [−tw, tw].

The centroids mij that correspond to unitary values in the binary mask
(created as in the activation value mutation scheme) are modified by adding
the perturbation vector rε: m

′
ij = mij + rε, where m′

ij is the modified centroid.
Again, if the new centroid exceeds the boundary values of the data point values

in any dimension, it is forced to the corresponding boundary value:

m′
ijw =

{
hw if m′

ijw > hw
lw if m′

ijw < lw
,∀w = 1, . . . , d. (4)

Figure 2(b) shows an example of the application of mutation to the centroids.
In this case, only randomly chosen centroids are altered.

The activation value mutation may drastically change the number of clusters
in a solution, originating child solutions considerably different from the parent
solutions. This may be undesirable, since it easily leads to solutions with signifi-
cantly lower fitness values. Thus, this type of mutation is applied less often than
the centroid mutation. The algorithm proceeds until either a maximum number
of iterations Imax, or a fixed number of iterations without improvement of the
best solution in the population Ini are reached.

3 Experiments and Results

In this Section, we compare the performance of ACGA with two classical cluster-
ing methods: K-means [4] and FCM [5]. Since these two methods require the user
to input the number of clusters, we performed the clustering for a varying number
of clusters, and chose the solution with the highest quality value, using the same
fitness function used in the GA (CH index). We tested for K = 2, . . . ,Kmax,
with Kmax = 20, clusters. Experiments were performed using the datasets in
Table 1. The first three are synthetic datasets downloaded from [17], presenting
different degrees of cluster overlapping, as can be seen in Figure 3. The remain-
ing sets are real-life datasets, which were obtained from [16], and are commonly
used for the validation of clustering methods. The parameters refer to the orig-
inal labeling provided with the datasets. Table 1 shows the number of clusters
K, the number of objects N , and the number of features d for each dataset.
Moreover, the average intra-cluster and inter-cluster distances were computed.

Table 1. Description of the datasets used in the experiments. K is the number of
clusters, N is the number of data points, and d is the number of features.

Dataset K N d Avg Intra Avg Inter CH

Cluster Dist. Cluster Dist. value

S2 15 5000 2 42294.60 182459.12 12541

S3 10 3254 2 54507.97 174914.69 5002

S4 15 5000 2 55312.63 149595.93 5385

Iris 3 150 4 0.67 2.15 486

B. Cancer 2 638 9 2.66 4.65 303

Seeds 3 210 7 1.58 3.85 310

(a) Dataset S2 (b) Dataset S3 (c) Dataset S4

Fig. 3. The three synthetic datasets used in the experiments, presenting different de-
grees of cluster overlapping. Colors are used to identify the clusters.

For each cluster, the intra-cluster distance is the mean of the distances of all
data points to the cluster centroid. The inter-cluster distance is computed as the
minimal distance between cluster centroids, for each cluster. Table 1 also shows
the CH value, computed using equation (1). For all the datasets, 20 independent
runs of each method were performed. Since K-means and FCM depend on the
initial clustering which is obtained by randomly sampling the dataset, and gen-
erating random membership values, respectively, slightly different results may
be obtained in different runs. For ACGA, the values in Table 2 were assigned to
the parameters described in Section 2. Table 3 shows the results obtained for all
the datasets in Table 1, using K-means, FCM, and ACGA. The last column of
Table 3 presents the values for the Adjusted Rand (AR) index [18], which is a
measure of agreement between two partitions and is frequently used in cluster
validation. We computed the AR index between the original labelings and the
ones obtained with each method. This index indicates how similar the partition
obtained is to the original one. For two random partitions, the expected value of
the AR index is 0, and its maximum value is 1, obtained when comparing equal
partitions.

By comparing the AR index in Table 3, it can be seen that ACGA gen-
erally outperforms both K-means and FCM. As an example, an AR value of

Table 2. User-defined values used in the experiments.

Maximum number of clusters, Kmax 20

Population size, P 40

No. of solutions chosen for parent selection, Pp 3

Crossover probability, pcross 0.3

Mutation probability, pmut 0.1

Activation value mutation parameter, α 0.1

Centroid mutation parameter, ε 0.3

No. of elite solutions, B 4

Maximum no. of iterations, Imax 5000

Maximum no. of iterations without improvement, Ini 500

Table 3. Results obtained over 20 independent runs using ACGA, K-means, and FCM.
The first line of each dataset corresponds to the “ground truth” values in Table 1.

Dataset Method Avg. No. Clu. Avg. Inter Cluster Avg. CH Avg. AR

- 15 182459.12 12541 -
S2 ACGA 15.000±000 183081.207±316.112 13461.515±420.630 0.937±0.003

K-means 16.967±1.426 148383.088±10516.459 10658.228±1697.369 0.859±0.048
FCM 15.233±0.430 171068.182±5657.558 13106.362±924.506 0.926±0.027

- 10 174914.69 5002 -
S3 ACGA 10.000±0.000 177104.685±420.960 6307.633±16.153 0.806±0.003

K-means 10.267±1.112 173354.951±15347.364 5482.044±584.628 0.736±0.042
FCM 10.133±0.434 170345.561±9489.542 6091.281±387.783 0.785±0.041

- 15 149595.93 5385 -
S4 ACGA 15.000±0.000 152034.821±358.558 7865.943±12.925 0.724±0.003

K-means 15.933±1.460 138291.741±7920.736 6788.132±605.469 0.664±0.035
FCM 15.567±0.626 141600.223±4524.683 7570.782±339.299 0.713±0.019

- 3 2.15 486 -
Iris ACGA 3.00±0.000 2.185±0.000 506.297±0.000 0.886±0.000

K-means 3.067±0.450 1.932±0.319 473.496±75.401 0.791±0.158
FCM 3.00±0.000 1.940±0.000 506.297±0.000 0.886±0.000

- 2 4.65 303 -
Breast ACGA 2.000±0.000 11.793±1.117 1026.084±0.351 0.847±0.004
Cancer K-means 2.000±0.000 13.816±0.000 1026.262±0.000 0.846±0.000

FCM 2.000±0.000 13.886±0.000 1023.939±0.000 0.830±0.000

- 3 3.85 310 -
Seeds ACGA 3.000±0.000 3.107±0.153 329.191±3.108 0.704±0.012

K-means 3.000±0.000 3.988±0.000 328.267±0.000 0.706±0.000
FCM 3.000±0.000 3.970±0.000 329.918±0.000 0.694±0.000

0.886 obtained for the iris dataset means that 6 data points were misclassified,
corresponding to 4%. The superiority of ACGA is clear by comparing the re-
sults obtained for all synthetic datasets, where both K-means and FCM failed
to partition the dataset in the correct number of clusters in every run. Figure 4
shows a partition of the S2 dataset obtained with the three methods, where each
cluster is identified by a color. Comparing the results to the original clusters
in Figure 3(a), it can be seen that our solution (Figure 4(a)) yielded the cor-
rect number of clusters, with only a few misclassified objects. K-means (Figure
4(b)) performed poorly since it was not capable of finding the optimal number
of clusters. FCM (Figure 4(c)) produced a result considerably better than K-
means. However, it still failed to correctly classify many data points. Moreover,
ACGA leads to smaller intra-cluster distances and larger inter-cluster distances,
and consequently larger CH values. Due to cluster overlapping, the CH values
computed using the original partitions (Table 1) are, in some cases, lower than
the ones obtained with ACGA. Also, it presents much smaller standard devia-
tions than both K-means and FCM, especially in the synthetic datasets. This
means that ACGA is capable of producing stable results, independently of the
initialization, converging to very similar solutions in different runs.

(a) ACGA. (b) K-means. (c) Fuzzy C-Means.

Fig. 4. Results obtained for dataset S2 (refer to Figure 4) using ACGA, K-means, and
FCM. Clusters are identified by colors.

Table 4. Average number of iterations required to reach the results in Table 3.

Dataset S2 S3 S4 Iris B. Cancer Seeds

Iterations 2936.5 2199.5 3316.0 15.6 588.5 353.3

Table 4 shows the average number of iterations necessary to achieve the
solutions in Table 3. The values were obtained by subtracting the number of
iterations without improvement of the best solution in the population, Ini, to the
total number of iterations. It can be seen that for smaller and “well-behaved”
datasets, ACGA is fast and converges after a small number of iterations. For
larger datasets, such as S2, it requires approximately 3000 iterations.

Generally, using parameters such as the mutation probability that adapt
to the evolution of the algorithm is a good technique since higher diversity in
the population can be achieved, preventing the algorithm to get stuck in local
minima. Thus, we tested the influence of an increase in pmut triggered by reaching
a certain number of iterations without improvement of the best solution in the
population. Results obtained with dataset S2 are shown in Figure 5(a), which
plots the average (blue) and maximum (red) quality of the population, as well
as the number of clusters of the best solution (black), in each iteration. It can be
seen that, despite increasing diversity in the population, applying mutation at
higher rates leads to a decrease in the average quality of population, which is clear
by observing the evolution in the last 500 iterations. Thus, we kept all parameters
fixed after a tuning process, and the algorithm behaves as depicted in Figure
5(b), where the average quality curve presents always the same pattern. The
maximum quality in the population does not decrease due to elitism: the best B
solutions in each generation pass to the next generation unaltered. This moderate
degree of selective pressure due to elitism contributed to improve the results
without reducing exploration. Also, the high population diversity is evinced by
the significant changes in the average fitness in consecutive iterations of the
algorithm. The curves show that significant changes in the maximum quality are
generally caused by changes in the number of clusters.

(a) Results using adaptive mutation
probability.

(b) Results using fixed mutation proba-
bility

Fig. 5. Evolution of the fitness and number of clusters of the solutions in the population
for dataset S2. The figures show the maximum (red) and average (blue) fitnesses of
the population, as well as the number of clusters of the best solution in each iteration
(black). Fitness values have been scaled by a factor of 10−3.

4 Conclusion

We present a new GA approach, ACGA, for automatically finding the optimal
number of clusters in real and synthetic datasets, with different degrees of over-
lapping, and correctly assigning each data point to a cluster. It uses an encoding
scheme that, to the best of our knowledge, had never been incorporated into
GA. This required the development of new genetic operators that ensure diver-
sity in the population. ACGA does not require any information about the data,
and is able to outperform two classical clustering methods: K-means and FCM.
Experiments included three synthetic and three real datasets, and results show
that ACGA leads to partitions very similar to the original ones, requiring a small
number of iterations to converge.

Acknowledgments. This work was financially supported by a PhD grant
(SFRH/BD/88446/2012) from the Portuguese Foundation for Science and Tech-
nology (FCT). The author Carlos Henggeler Antunes acknowledges the support
of FCT project PEst-OE/EEI/UI0308/2014 and QREN Mais Centro Program
iCIS project (CENTRO-07-ST24-FEDER-002003).

References

1. Belahbib, F., Souami, F.: Genetic algorithm clustering for color image quantiza-
tion. 3rd European Workshop on Visual Information Processing (EUVIP), pp. 83-87
(2011)

2. Mecca, G., Raunich, S., Pappalardo, A.: A New Algorithm for Clustering Search
Results. Data and Knowledge Engineering, vol. 62, pp. 504-522 (2007)

3. Valafar, F.: Pattern Recognition Techniques in Microarray Data Analysis: A Survey.
Annals of New York Academy of Sciences, vol. 980, pp. 41-64 (2002)

4. Hartigan, J., Wong, M.: Algorithm AS 136: A K-Means Clustering Algorithm. Ap-
plied Statistics, vol. 28, no. 1, pp. 100-108 (1979)

5. Bezdek J., Ehrlich R., Full, W.: FCM: The fuzzy c-means clustering algorithm.
Computers and Geosciences, vol. 10, no. 2-3, pp. 191-203 (1984)

6. Holland, J.: Genetic algorithms. Scientific American (1992)
7. Srinivas, M., Patnaik, M.: Genetic algorithm: A survey. IEEE Computer vol. 27,

no. 6, pp. 17-26 (1994
8. Murthy C., Chowdhury, N.: In search of optimal clusters using GA. Pattern Recog-

nition Letters 17 pp. 825-832 (1996)
9. Tseng, L., Yang, S.: A genetic approach to the automatic clustering problem. Pattern

Recognition, vol. 34, no. 2, pp. 415-424 (2001)
10. Agustin-Blas, L., Salcedo-Sanz, S., Jimenez-Fernandez, S., Carro-Calvo, L., Del

Ser, J., Portilla-Figueras, J.A.: A new grouping GA for clustering problems. Expert
Systems with Applications, vol. 39, no. 10 (2012)

11. Sheikh, R., Raghuwanshi, M., Jaiswal, A..:Genetic Algorithm Based Clustering:
A Survey. First International Conference on Emerging Trends in Engineering and
Technology, vol. 2, no. 6, pp. 314319 (2008)

12. Liu, Y., Wu, X., Shen, Y.: Automatic clustering using genetic algorithms. Applied
Mathematics and Computation, vol. 218, no. 4, pp. 1267-1279 (2011)

13. He, H., Tan, Y.: A two-stage genetic algorithm for automatic clustering. Neuro-
computing, vol. 81, pp. 49-59 (2012)

14. Das, S., Abraham A., Konar, A.: Automatic Clustering Using an Improved Differ-
ential Evolution Algorithm. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 38, no. 1, pp. 218-237 (2008)

15. Calinski R., Harabasz J.: A dendrite method for cluster analysis. Communications
in Statistics, vol. 3, no. 1, pp. 1-27 (1974)

16. Asuncion, A., Newman, J.: UCI Machine Learning Repository, http://www.ics.
uci.edu/~mlearn/MLRepository.html, Irvine, CA: University of California, De-
partment of Information and Computer Science (2007)

17. Speech and Image Processing Unit. Clustering datasets, http://www.cs.joensuu.
fi/sipu/datasets/

18. Hubert, L., Arabie, P.: Comparing Partitions. Journal of Classification, no. 2, pp.
193-218 (1985)

