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Abstract. We propose a minimal algorithm for fully calibrating a cam-
era from 11 independent pairwise point correspondences with two other
calibrated cameras. Unlike previous approaches, our method neither re-
quires triple correspondences, nor prior knowledge about the viewed
scene. This algorithm can be used to insert or re-calibrate a new cam-
era into an existing network, without having to interrupt operation. Its
main strength comes from the fact that it is often difficult to find triple
correspondences in a camera network. This makes our algorithm, for the
specified use cases, probably the most suited calibration solution that
does not require a calibration target, and hence can be performed with-
out human interaction.

Keywords: Camera Networks, Multiple View Geometry, Camera Cali-
bration.

1 Introduction

Camera networks are sets of cameras whose fields of view are usually shared be-
tween two or more cameras within a network. They find applications in several
domains that are concerned with the capture, the record, and the analysis of dy-
namic scenes, for instance surveillance and animation modelling applications [15].
Most of these applications require the calibration of cameras in order to perform
geometric operations such as reconstruction. One widely proposed appproach
to achieve this purpose is to use a calibration pattern or rig [18,2,20,19,14,4],
which is typically an offline procedure, requiring human intervention. However,
there are many situations where a simpler and unsupervised scheme is desirable;
In particular when adding a camera or modifying its location or characteristics
while operating the network.

Without prior 3D information, image correspondences between cameras must
be considered. Since camera networks are often sparse, correspondences in 3 or
more images can be difficult to obtain, hence preventing the use of traditional
calibration tools [11]. In contrast, correspondences between 2 images are more
likely to be available by construction of camera networks.

This paper addresses the issue of fully calibrating a camera given independent
correspondences with 2 calibrated cameras. The situations particularly targeted
are the addition or the modification of a camera in a calibrated network under
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Fig. 1. We consider the problem of fully calibrating the camera C, given pairwise
correspondences with two calibrated cameras CA and CB

operation, which are common situations in practical camera network setups. The
literature provides solutions when correspondences with 3 or more cameras are
available [11], as well as when there is a mixture of corresponences with 2 and 3
cameras [8]. However, few efforts have been made to solve for the case with only
2-view correspondences. We investigate this issue and derive a minimal solution
that requires 11 correspondences to estimate the 11 parameters of the unknown
camera.

Our contribution to camera calibration is twofold:

– A minimal solution for the full calibration of a camera given independent
correspondences with 2 calibrated cameras.

– A simple and efficient scheme that can incrementally update camera network
calibration using already calibrated cameras.

1.1 Notation

Scalars are represented by plain letters, e.g. λ, vectors are indicated by bold
symbols, e.g. t, and matrices are denoted by letters in sans serif font, e.g. T. 3D
lines are expressed in homogeneous Plucker coordinates, e.g. the 6× 1 vector L.
The equality up to scale is denoted by ∼ in order to be distinguished from the
strict equality =, and the operator [v]× designates the 3 × 3 skew symmetric
matrix of a 3× 1 vector v. We also use matrix superscripts, e. g. T{n}, to denote
its nth column.

2 Problem Statement

Let’s consider two calibrated cameras CA and CB, such that the matrices of
intrinsic parameters are KA and KB, and the absolute poses are expressed in
a world coordinate system Ow by the rotations matrices RA and RB, and the
translation vectors tA and tB . Consider an additional camera C for which both
the intrinsic calibration K, and the extrinsic calibration R, t are unknown. Our
article addresses the problem of calibrating this third camera using as input

data a set of a image correspondences (x(i),x
(i)
A ) between C and CA, and set of



726 F. Vasconcelos, J.P. Barreto, and E. Boyer

b image correspondences (x(a+j),x
(j)
B ) between C and CB (Fig. 1). We assume

that the two sets of pairwise matches are independent, meaning that

xi �= xa+j , ∀i=1...a, j=1...b .

In other words, there are no triplets of correspondences generated by scene points
that are simultaneously seen by the three cameras. The absence of triple matches
precludes the application of the standard calibration techniques that are de-
scribed in text books [7,11]. These approaches typically rely on the recovery
of 3D points using the calibrated stereo views and standard triangulation [6].
These 3D points can in turn be used as reference points for the calibration of
the 3rd camera [11,2]. A possible alternative is to build a measurement matrix
with the image correspondences, and perform projective factorization using the
Sturm-Triggs algorithm [17] with a suitable extension for handling missing data
[18]. However, this class of methods is meant for problems with multiple cameras
and large number of correspondences, and it is unlikely that they will converge
to a solution with pairwise correspondences only.
In summary, and to the best of our knowledge, the calibration of a camera
using independent pairwise correspondences with two other views has never been
addressed in the literature before. We present in the following a minimal solution
when 7 or more matches with one of the view are available.

3 Linear System of Equations with a Minimum Number
of Unknowns

In this section we derive a system of linear equations that has a minimum num-
ber of unknowns and fully constrains the camera calibration. The problem is
formulated in the context of epipolar geometry between general camera models
[12], with one side being the uncalibrated pin-hole camera C, and the other side
being the pair of calibrated cameras CA and CB that can be understood as a
particular instance of a non-central imaging device denoted by CA ∪ CB. It is
shown below that under such configuration the corresponding back-projection
lines must satisfy a bilinear relation expressed by a 3×5 matrix, and that the es-
timation of the epipolar geometry using a DLT-like approach cannot be achieved
with less than 14 pairwise matches.

Note that when the intrinsics are known, this problem is a particular case
of the pose estimation between calibrated general camera models [12] that has
already been solved both linearly [9] and using the minimal number of 6 pairwise
correspondences [16].

3.1 Line Incidence Relations

Let xA and xB be image points in CA and CB. Since the cameras are fully
calibrated, the corresponding back-projection lines LA and LB can be expressed
in the common world reference frame Ow by a homogeneous Plücker vector

LA/B ∼
(
dA/B

mA/B

)
,
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with the 3-vectors dA/B and mA/B being respectively the direction and the
momentum of the line. In a similar manner, an image point x in C gives raise to
a back-projection line L that is represented in the local camera reference frame
by

L ∼
(
d
0

)
,

with the direction depending on the matrix of intrinsic parameters K

d ∼ K−1 x . (1)

If x and xA/B are image correspondences, then the back-projection lines L and
LA/B must be incident. Given the rigid displacement between the reference
frames Ow and C, and the condition for two lines in Plücker coordinates to
intersect, it comes that the following condition must hold

LT

(
0 I

I 0

)(
R 0

[t]×R R

)
LA/B = 0 .

Since the momentum of L is always zero, then the above equation can be re-
written as

dT
(
[t]×R R

)
LA/B = 0 (2)

Equation 2 is the particular case of the generalized epipolar constraint proposed
in [12] when one of the cameras is a conventional pin-hole. However, and sim-
ilarly to the general case, the bilinear relation between back-projection lines is
expressed by a 3× 6 matrix that encodes the calibration parameters. Therefore,
the linear estimation the 18 entries of the matrix up to a global scale factor still
requires a minimum of 17 image correspondences between C and the camera
pair CA ∪CB .

3.2 Analysis Using Linear Line Subspaces

In our case the parametrization of equation 2 leads to a linear estimation prob-
lem that is sub-determined. This is a situation similar to the degenerate con-
figurations recently reported in [9] in the context of motion estimation using
a calibrated multi-camera rig. We use the theory of linear line subspaces [13]
to explain the underlying reasons of the sub-determination, and prove that the
calibration problem can be formulated in a linear manner using a minimum of
15 parameters

It is well known that a line in 3D represented in Plücker coordinates can be
thought as a point in P

5 lying in the so-called Klein Quadric. Let’s consider a
generic hyperplane in P

5 with dimension N ≤ 5. The hyperplane intersects the
quadric in a locus that defines, via Plücker mapping, a certain subset of lines
in the original 3D space. This subset is called a linear line subspace (LLS) of
dimension N , and each line L in the LLS is in the linear span of N other lines
G with independent Plücker vectors [13].
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Fig. 2. Line subspaces; in each figure, the dotted lines represent possible lines that
could result from the linear combination of the generation basis

The lines going through a generic 3D point Q form a line bundle that is often
used to model the back-projection rays of a pin-hole camera (Fig. 2(a)). The
line bundle is a LLS of dimension N = 3, and each line L going through Q can
be uniquely expressed as the linear combination of any other three non-coplanar
lines in the bundle. It is said that these three lines {G1, G2, G3} are a basis for
the LLS. Consider now an additional line G4 that is not in the bundle. In this
case the span of {G1, G2, G3, G4} contains a LLS of dimension N = 4 that
comprises all the lines that go through point Q, and all the lines that lie in the
plane Π defined by Q and G4 (Fig. 2(b)). Finally, the addition of a fifth line G5

to the basis gives raise to a LLS of dimension N = 5 that is called a linear line
congruent (LLC) [13]. The LLC includes all the lines tangent to an axis S that,
in the particular case of Fig. 2(c), is defined by the center Q and the point R
where G5 meets the plane Π.

Let’s return to our calibration problem where the generalized cameraCA∪CB

is modeled by the union of two distinct line bundles. The key observation is
that every possible back-projection line LA/B must be tangent to the line going
throughCA and CB (the baseline). Thus, and since the lines LA/B are contained
in a LLC, they can be represented in a unique manner as the linear combination
of any 5 lines Gi that intersect the baseline

LA/B ∼ (
G1 G2 G3 G4 G5

)
︸ ︷︷ ︸

G

λA/B ,

where G is a 6 × 5 matrix with full rank, and λA/B is a 5-vector defined up to
scale. Replacing in equation 2 yields

dT
(
[t]×R R

)
GλA/B = 0 (3)

We have just re-written the epipolar constraint of equation 2 as a bilinear rela-
tion between the direction d of the line L in camera C, and the representation
λA/B of the back-projection line LA/B in the generalized camera CA ∪ CB.
Since the bilinear relation is now encoded by a 3 × 5 matrix with 15 entries,
then 14 image point correspondences are sufficient for estimating the epipolar
geometry in a DLT-like manner. The discussion clearly explains why the 18 pa-
rameter formulation of equation 2 is ambiguous [9], and shows that a compact
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Fig. 3. The space generated by two bundles of lines (the rays of 2 pinhole cameras)
can be fully represented as the linear span of {G1,G2,G3,G4,G5}

linear formulation of the stated calibration problem must necessarily have 15
parameters because the lowest dimensional linear sub-space containing all the
back-projection rays of two pin-holes is a LLC.

3.3 Compact Linear Formulation

Given the two arbitrary calibrated cameras, it is always possible to perform
a change of reference frames for achieving the configuration exhibited in Fig.
3.3. We consider, without any loss of generality, that the world reference frame
is aligned with the coordinate system of camera CA, and that the X-axis is
coincident with the baseline defined by the projection centers of the two pin-
holes. The local reference frame of the second camera is assumed to have origin in
CB and to be parallel to the coordinate system of CA. Under such circumstances
the rigid transformation that maps point coordinates from CB to CA is given
by

TB→A =

(
I h
0 1

)

with I being the 3 × 3 identity matrix and h =
(
h 0 0

)T
. Since the axes X, Y,

Z of the system of coordinates of CA, and the axes Y, Z of the reference frame
of CB are linearly independent lines, then they can be used to establish a basis
G for the LLC defined by the baseline. It comes that

G ∼
(
I I{2,3}

0 [h]
{2,3}
×

)

with the upper script {2, 3} denoting the second and third columns of the matrix.
Let’s now consider an image correspondence (x,xA) between C and CA. The

back-projection of xA is a line LA with direction dA expressed in the reference
frame of CA. Given the basis G above, it comes that LA ∼ GλA with

λA ∼ (
dT
A 0 0

)T
.
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Replacing in equation 3, and making d ∼ K−1 x, yields

xT FA dA = 0 (4)

with FA being the standard fundamental matrix between the uncalibrated cam-
era C and the calibrated view CA

FA = K−T [t]× R (5)

Repeating the reasoning for the case of an image correspondence (x,xB) between
C and CB, it comes that

λB ∼ (
dB,1 0 0 dB,2 dB,3

)T
.

with dB ∼ (
dB,1 dB,2 dB,3

)T
being the direction of the back-projection line LB

expressed in the local reference frame of camera CB. Making LB ∼ GλB in
equation 3, and taking into account that the first column of [h]× is a null vector,
we obtain that

xT FB dB = 0 (6)

with FB being the fundamental matrix between C and CB that can be written
as

FB = FA + K−1R[h]× (7)

It follows from the equation above that the first columns of matrices FA and FB

are always equal (F
{1}
A = F

{1}
B ).

Given the image correspondences (x(i),x
(i)
A ), with i=1, . . . a, and (x(a+j),x

(j)
B )

with j = 1, . . . b, we can determine the line directions d
(i)
A ∼ K−1

A x
(i)
A and

d
(j)
B ∼ K−1

B x
(j)
B , and establish a system of linear equations based on the bilinear

constraints of equations 4 and 6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
(1)
1 d

(1)
A

T
x
(1)
2 d

(1)
A

T
x
(1)
3 d

(1)
A

T
0T 0T

...
...

...
...

...
x
(a)
1 d

(a)
A

T
x
(a)
2 d

(a)
A

T
x
(a)
3 d

(a)
A

T
0T 0T

x
(a+1)
1 d

(1)
B

T
0T 0T x

(a+1)
2 d

(1)
B

T
x
(a+1)
3 d

(1)
B

T

...
...

...
...

...
x
(a+b)
1 d

(b)
B

T
0T 0T x

(a+b)
2 d

(b)
B

T
x
(a+b)
3 d

(b)
B

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

F
{1}
A

F
{2}
A

F
{3}
A

F
{2}
B

F
{3}
B

⎞
⎟⎟⎟⎠ = 0 (8)

If a + b ≥ 14 then the fundamental matrices FA and FB can be determined up
to a common scale factor using a standard DLT approach.

4 A Minimal Solution for the Estimation of FA and FB

We have shown that the two fundamental matrices, FA and FB, that encode the
calibration information K, R, and t, can be determined from a minimum of 14
independent image correspondences. However, the total number of independent
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unknowns is 11 (5 intrinsic parameters and 6 extrinsic parameters) meaning that
the estimation problem can be further constrained. Two of these constrains are
rather obvious:

det(FA) = 0 (9)

det(FB) = 0 (10)

For the third constraint it must observed that the sum of FA and FB is still a fun-
damental matrix. From equations 5 and 7 it comes after algebraic manipulation
that

FA + FB = K−1[2t+ Rh]×R ,

which means that the following condition must hold

det(FA + FB) = 0 (11)

The equation above basically enforces the condition that FA and FB must be
two fundamental matrices encoding the same rotation R.

4.1 Outline of the Estimation Algorithm

This section outlines an algorithm for estimating FA and FB from a minimum
number of a+ b = 11 pairwise correspondences. The solution is found by deter-
mining the 4-dimensional null space of the measurement matrix of the the linear
system of equation 8, followed by intersecting the span of this null-space with
the locus defined by the polynomials constraints of equations 9 to 11. Instead
of solving a system of 3 third order polynomials in 3 variables, we explore the
sparsity of the measurement matrix and simplify the problem to solving 1 cubic
polynomial in 1 variable, and a system of 2 quadratic polynomials in 2 variables.
In order for this to be possible 7 of the 11 image matches must be in the same
calibrated view (a = 7, b = 4)1.

1. Build the linear system of equation 8 from the 11 pairwise correspondences,
and determine the 4-dimensional solution space using SVD. The solution
space is spanned by the columns of the 15 × 4 matrix V{12...15} (the last 4
columns of V)

2. The first 9 rows of V{12...15} define always a rank 2 sub-matrix due to the
the structure of the linear system and the fact that a = 7. Thus, the solution
space of FA is spanned by the two columns of the sub-matrix, a and a′, that
are linearly independent, which enables to write FA(α) = A′ + αA with α
being a free parameter.

3. Compute α by solving the cubic constraint of equation 9 and determine the
fundamental matrix FA.

1 The current version of the minimal algorithm cannot cope with the situation of a = 6
and b = 5
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Fig. 4. Conic envelope Ω establishes linear relations sTKKTs = 0 and rTKKTr = 0

4. Substitute FA in the linear system which results in 4 equations in 7 un-
knowns. The solution space of this system is 3-dimensional and FB can be
written as the linear span FB(β1, β2) = B′′ + β1B

′ + β2B)
5. Substitute FA and FB(β1, β2) in equations 10 and 11. This leads to a bi-

variate system of 2 quadratic equations that corresponds geometrically to
determining the point intersections of two conic curves. Compute β1 and β2

by solving the bivariate system [3], and determine the fundamental matrix
FB.

Since the cubic equation of step 3 gives up to 3 discrete solutions, and the
bivariate system of quadric equations has at most 4 distinct solutions, then
there is a maximum of 12 possible solutions for the pair of fundamental matrices
(FA,FB).

5 Factorization of FA and FB

So far we have shown how to estimate the fundamental matrices FA and FB

from a minimum of 11 pairwise correspondences. In order to solve the calibration
problem, FA and FB must be factorized into the intrinsic parameters K and the
relative pose R, t . The absence of intrinsics in the right side of the fundamental
matrices leads to a simplified version of Kruppa’s equations [11,7] that enable the
recovery of K in a relatively straightforward manner. This section discusses how
this can be achieved. After knowing K, we can compute the essential matrix EA

and apply standard techniques for determining the rotation R and the translation
t up to scale factor [11,7]. This scale factor can be easily found using the known
baseline between CA and CB.

Let’s now discuss the extraction of the matrix K. Consider the fundamental
matrix FA that is given in equation 5. After some algebraic manipulations we
obtain that

FA FT
A ∼ [Kt]×KKT [Kt]×

From the result above it follows that, if y is a point in the projective plane that
satisfies

yT FA FT
A y = 0 ,

then the line defined by y and the left epipole of FA must lie in the conic envelope
KKT that is the dual of the image of the absolute conic (DIAC) [11,7]. FA FT

A is
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a rank 2 symmetric matrix that represents a degenerate conic. Thus, and since
this conic consists in two lines sA, rA that intersect in the left epipole, it is easy
to conclude that sA, rA must belong to the DIAC. The same reasoning can be
applied to the fundamental matrix FB of equation 7

FB FB
T ∼ [K(Rh+ t)]×KKT[K(Rh+ t)]× ,

and to the matrix FB − FA that is still rank deficient because the first columns
of the two fundamental matrices are equal

(FB − FA)(FB − FA)
T ∼ [KRh]×KKT[KRh]× .

Summarizing, and as shown in Fig. 4, the DIAC is fully constrained by the
line pairs arising from the rank 2 degenerate conics FAF

T
A, FBF

T
B, and (FB −

FA)(FB − FA)
T
. It is important to refer that, although we have six lines, they

only give raise to five independent constraints on the parameters of the DIAC.
This is explained by the fact that their pairwise intersections are collinear.

6 Experimental Results

In this section we validate our algorithm, and compare it against a calibration
procedure based on a minimum of 6 triplets of correspondences, described in [11]
(hereinafter called the 6 point algorithm). We found this approach to be the most
common alternative to our algorithm in a real calibration network situation.

6.1 6 Point Algorithm

Given the cameras CA, CB, and C from our problem, suppose that instead of pair-

wise correspondences we have triplets of correspondences (x
(i)
A ,x

(i)
B ,x(i)) across

the 3 views. We can use the points x
(i)
A and x

(i)
B to obtain a set of 3D points X(i)

by triangulation, and then establish a set of linear equations of the form

x(i) = P

(
X(i)

1

)
(12)

where P is a 3× 4 up to scale projection matrix, that can be factorized into the
calibration parameters R, t, and K with standard methods [7]. As P has 11 free
parameters, and each point X(i) establishes 2 linearly independent constraints,
a minimum of 6 triplets are required to compute a calibration. Therefore we
need a set of 12 pairwise correspondences, one more than with our proposed 11
correspondences algorithm.

If we compare our algorithm against the 6 Point, with both using their min-
imum number of correspondences, it is expected that the latter is more stable,
since its additional constraint helps to average the noise. In order to make a
fair comparison of stability, we also test a modified version of the 6 point al-
gorithm, that we designate by 5 1

2 point algorithm. The modification consists in
discarding one of the 12 linear equations on the matrix P, making it minimally
constrained. The goal of this algorithm is only to extract meaningful insights in
the simulation environment, and has no practical purpose.
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Fig. 5. Simulation distribution errors for different levels of noise. The inner box markers
are median values, the box limits are the 25th and 75th percentiles, and the dotted
lines limits are the minimum and maximum values. Red: 6 point; Blue: 5 1

2
point;

Green: 11 correspondences.

6.2 Synthetic Validation

A simulation environment was built to evaluate the stability of our algorithm,
in comparison with the 6 point and the 5 1

2 point algorithms. In each trial we
generate 3 pinhole cameras in random poses: two of them are calibrated network
nodes (CA and CB) and the other one is a new camera that we want to calibrate
(C). Then we generate two sets of 3D points: for our algorithm we generate a set
of 11 points, such that CA only detects 7 of them, CB detects the remaining 4,
and C detetects all of them; for the 6 point algorithm we generate 6 points that
are all detected by the 3 cameras. By doing this we simulate the conditions for
which each algorithm uses its minimum number of correspondences.

The error distribution in terms of translation, rotation and focal length for
100 trials is displayed in Fig. 5, for different levels of noise. Since we have access
to the groudtruth calibration parameters RGT , tGT and KGT , the rotation error
is measured as the euler angle of the residual rotation matrix RTRGT , the trans-

lation error as ||t−tGT ||2
||tGT ||2 , and the focal length error as |f1 − fGT |, considering

that diag(KGT ) =
(
afGT a−1fGT 1

)T
.

We can observe that, as expected, our algorithm is clearly more sensitive to
noise than the 6 point algorithm, and has a similar stability with the 5 1

2 point
algorithm. Although both 5 1

2 point and the 11 correspondences algorithms use
the same number of constraints, the former makes more assumptions about the
data, since the correspondences must be triple. In theory, this more structured
input also favors the stability of the 5 1

2 point algorithm, however, there is no
empirical evidence from this simulation that our algorithm has a noticeably
inferior performance.

6.3 Validation with Real Data

As we have seen in simulation, the 6 point algorithm seems to be more stable
than our 11 correspondences approach, and when we compare it using the same
number of linear equations (5 1

2 point), we obain equiparable results. However,
in a real camera network, situations arise in which the overlap between cameras
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Fig. 6. Selected images from one frame of the stick dataset, from the 4d repository [1]

is not enough for the 6 point algorithm to find enough triple correspondences.
In these cases our algorithm is the only available solution.

To demonstrate this we use a dataset from the 4d repository [1], containing
synchronized images of a room. We selected 5 images from one particular frame
(Fig. 6), and used SIFT features [10] to establish point correspondences between
the images, and tested their geometric consistency against the groudtruth cal-
ibration to select the inlier correspondences. We consider as inliers, for the 11
correspondences algorithm, the pairwise correspondences with epipolar error in-
ferior to 1.5 pixels, and for the 6 point algorithm triplets with reprojection error
inferior to 1.5 pixels. As this is an experiment for validation purposes only, we
conveniently have access to groundtruth values to exclude outlier measurements.
In a practical situation, outliers can be discarded with a robust estimator, such
as RANSAC [5].

We tested both algorithms on all 30 possible configurations of 3 views, and
present median results for the errors in translation, rotation, and focal length in
table 1. In many cases both algorithms fail to find a reasonable solution, and we
consider them as failures. They can happen in 2 situations: when there are not
enough correspondences to compute a solution (less than 11 pairwise correspon-
dences, or less than 6 triplets); and when the algorithms output unreasonable
results (we consider them unreasonable for errors in focal length greater than
100%). The failure events are discarded for computing the median results.

It is clear that in this dataset there are many configurations in which it is im-
possible to use the 6 point algorithm, as its percentage of failures is considerably
higher. In Fig. 7 we depict an example of a configuration in which this happens.
In this case there are many consistent pairwise correspondences (blue and green),
however, there is only a single consistent triplet (red), making it impossible to
use the 6 point algorithm. The fact that there is a wide baseline between the
3 images explains why it is so difficult to find common correspondences across
the 3 images, but like in this case, there are many camera networks in which, by
construction, there are no nodes with short baselines.

Furthermore, considering only the specific configurations that have enough
triplets to use the 6 point algorithm, our solution is considerabily more stable
(third line of table 1). The reason for this is the much higher number of consistent
correspondences that are available to our algorithm, which provide more con-
straints. Note that in the simulation experiment presented previously, it occurs
the opposite situation, i. e., since we use the minimum number of correspon-
dences for both methods, the 6 point algorithm uses more constraints than our
algorithm.
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Fig. 7. In this configuration, the left and right images are the calibrated nodes CA

and CB , and the center image is the uncalibrated camera C. In blue and green are the
pairwise inlier correspondences, and in red the single triple inlier correspondence.

Table 1. Median errors for 30 different calibration attempts, using both the 6 point
and our algorithm (11 point). In the third column (signaled by ∗) we only considered
the configurations that resulted in success for the 6 point algorithm.

R (deg) t (mm) f (pixels) failures (%)

6 point 2.67 94.32 19.69 80
11 point 1.90 199.60 46.80 33
11 point∗ 0.54 58.49 8.58 0

7 Conclusions

We presented a new algorithm to fully calibrate a camera, given the minimal
number of 11 pairwise correspondences with other 2 calibrated cameras. We
demonstrated experimentally that in many configurations of conventional cam-
era networks, the absence of triple correspondences makes our algorithm the only
approach that can effectivelly compute a solution. Note that we only presented
a closed form minimal solution, and that in a real scenario its performance can
be significantly improved by robust estimators such as RANSAC and non-linear
refinement routines (bundle adjustment). This will constitute future work.
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