
Tracking Feature Points in Uncalibrated Images

with Radial Distortion

Miguel Lourenço and João P. Barreto

Institute for Systems and Robotics,
Dept. of Electrical and Computer Engineering,

University of Coimbra, Portugal
{miguel,jpbar}@isr.uc.pt

Abstract. The appearance of moving features in the field-of-view (FoV)
of the camera may substantially change due to different camera poses.
Typical solutions for tracking image points involve the assumption of
an image motion model and the estimation of the motion parameters
using image alignment techniques. While for conventional cameras this
suffices, the radial distortion that arises in cameras with wide FoV lenses
makes the standard motion models inaccurate. In this paper, we propose
a set of motion models that implicitly encompass the distortion effect
arising in this type of imaging devices. The proposed motion models are
included in a standard image alignment framework for performing fea-
ture tracking in cameras presenting significant distortion. Consolidation
experiments in repeatability and structure-from-motion scenarios show
that the proposed RD-KLT trackers significantly improve the tracking
performance in images presenting radial distortion, with minimal com-
putational overhead when compared with a state-of-the-art KLT tracker.

1 Introduction

Tracking image keypoints across frames is useful in computer and robotic vi-
sion applications such as optical flow [1, 2], object tracking [3], and 3D recon-
struction [4]. The interest in feature tracking dates back to [1, 2], where the
authors propose the well known KLT tracker for computing optical flow be-
tween spatially and temporally close frames. The original KLT method assumes
a translation model and iteratively estimates the displacement vector using im-
age alignment techniques. Several improvements [5–8] have been proposed to the
original method, specially aiming at reducing its computational complexity [5, 6]
and improving tracking in wide-baseline situations [7, 8].

Wide field-of-view (FoV) cameras became increasingly popular due to their
benefits in vision systems. Panoramic cameras proved to be highly advantageous
in egomotion estimation [9, 10], and in surveillance systems due the thorough
visual coverage of the environments [11]. However, the projection in cameras with
wide angle lens presents strong radial distortion (RD) caused by the bending of
the light rays when crossing the optics. The distortion increases with the distance
to the center of distortion, and it is typically described by nonlinear terms that
are function of the image radius.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Lourenço and J.P. Barreto

Image alignment techniques applied in a feature tracking context rely on the
assumption of a motion model that determines the degree of deformation tol-
erated by the tracker. Several motion models have been used in the literature,
ranging from a low complexity translation model [1, 2] to an affine motion model
[5, 6, 8]. As discussed in [12] the performance of local feature tracking can be
improved through the designed of specialized motion models. Unfortunately, the
standard motion models do not compensate the RD effect arising in cameras
equipped with unconventional optics.

Despite of these facts, the KLT tracker has been applied in the past to images
with significant RD [13, 14]. While some simply ignore the effect of RD during
registration [14], others correct the distortion in a pre-processing step before
applying the KLT [13]. Although the later approach is quite straightforward,
the distortion rectification requires the interpolation of the image signal, which
is computationally expensive and unreliable since the synthetically corrected
images contain artificially interpolated pixel intensities [15].

In this paper we focus on the problem of feature tracking in images presenting
significant radial distortion. Our contributions are the following:

(i) We propose an extension of the affine motion model for describing the
patches deformation that fuses feature motion with image distortion. It is
proved that the proposed RD compensated motion model verifies the require-
ments to be used inside the efficient inverse compositional KLT framework
[5, 6] whenever the calibration is known in advance. Unfortunately, the par-
ticular structure of this warp does not allow to calibrate the distortion during
tracking, as we will discuss later;

(ii) To cope with this problem, we also propose an approximation to the ideal
theoretical model that enables to robustly calibrate distortion during track-
ing. To the best of our knowledge this is the first work showing that is
possible to estimate RD using solely low-level feature motion;

(iii) Extensive repeatability [16] and structure-from-motion experiments [15] show
that the tracking performance can be significantly improved through a proper
RD compensation, with a computational overhead of 15% when compared
with a standard KLT algorithm.

The structure of this paper is as follows: Section 2 reviews the adopted cam-
era model and the literature related with the KLT. Section 3 derives the RD
compensated motion models and explains how to include them in the inverse
compositional KLT. In section 4, the proposed RD-KLT trackers are evaluated
in a representative set of repeatability [16] and structure-from-motion (SfM)
experiments [15]. Finally, section 5 presents the conclusions of our work.

Notation: Matrices are represented by symbols in sans serif font, e.g. M, and
image signals are denoted by symbols in typewriter font , e.g. I. Vectors and vec-
tor functions are typically represented by bold symbols, and scalars are indicated
by plain letters, e.g x = (x, y)

T
and f(x) = (fx(x), fy(x))

T
. 0 is specifically

used to represent a null vector.
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2 Background

In this section, we review the adopted camera model and the KLT framework
using direct and inverse image alignment. We also summarize standard image
motion models, and discuss the importance of the local template updates and
pyramidal image representation for achieving reliable tracking.

2.1 The Division Model for Radial Distortion

We assume that the image distortion can be described using the 1st order division
model with the amount of distortion being quantified by a single parameter ξ
(typically ξ < 0). Let x = (x, y)

T
and u = (u, v)

T
be corresponding points in

distorted and undistorted images expressed with respect to a reference frame
with origin in the center of the image [17]. f is a vector function that maps
points from the distorted image I to its undistorted counterpart Iu:

u = f(x) = (1 + ξxTx)−1x. (1)

The function is bijective and the inverse mapping from I to Iu is given by[18]:

x = f−1(u) = 2(1 +
√
1− 4ξuTu)−1u. (2)

Given that the radius of x is r =
√
xTx, the corresponding undistorted radius is

ru = (1 + ξr2)−1r. (3)

Henceforth, and in order to make the compression undergone by a particular
image more intuitive, the amount of distortion will be quantified by

%RD =
ruM − rM

ruM
× 100 = −ξrM × 100 (4)

with rM being the distance from the center to an image corner (maximum dis-
torted radius) [15].

2.2 Kanade-Lucas-Tomasi Algorithm

Feature tracking between temporally adjacent images is typically formulated as
a non-linear optimization problem whose cost function is the sum of the squared
error between a template T and incoming images I. The goal is to compute

ε =
∑

x∈N

[
I(w(x;p)) − T(x)

]2
, (5)

where p denotes the components of the image warping function w, and N de-
notes the integration region of a feature. Lucas and Kanade proposed to optimize
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Eq. 5 by assuming that a current p motion vector is known and iteratively solve
for δp increments on the warp parameters, with Eq. 5 begin approximated by

ε =
∑

x∈N

[
I(w(x;p+ δp))−T(x)

]2
≈

∑

x∈N

[
I(w(x;p))+∇I∂w

∂p
δp−T(x)

]2
. (6)

Differentiating ε with respect to δp, and after some algebraic manipulations, a
closed-form solution for δp can be obtained:

δp = H−1
∑

x∈N

[
∇I∂w(x;p)

∂p

]T(
T(x)− I(w(x;p))

)
, (7)

with H =
∑

x∈N
[
∇I∂w(x;p)

∂p

]T[
∇I∂w(x;p)

∂p

]
being a 1st order approximation of

the Hessian matrix, and the parameter vector being additively updated pi+1 ←
pi + δp at each iteration i. This method is also known as forward additive KLT
[5, 6] and it requires to re-compute H at each iteration due its dependence with
incoming image I.

For efficiently solving Eq. 6, Baker and Matthews [5, 6] proposed an inverse
compositional alignment method that starts by switching the roles of T and I

ε =
∑

x∈N

[
I(w(x;p))− T(w(x; δp))

]2
≈

∑

x∈N

[
I(w(x;p))− T(w(x;0))−∇T

∂w

∂p
δp

]2
.

(8)

The increments δp are then computed as:

δp = H−1
∑

x∈N

[
∇T∂w(x;0)

∂p

]T(
I(w(x;p)) − T(x)

)
, (9)

with H =
∑

x∈N
[
∇T∂w(x;0)

∂p

]T[
∇T∂w(x;0)

∂p

]
, and w(x;0) being the identity

warp. H is computed using the template gradients and, therefore, it is con-
stant during the registration procedure, leading to a significant computational
improvement when compared with the forward additive KLT. Finally, the warp
parameters are updated as follows:

w(x;pi+1) ← w(x;pi) ◦w−1(x; δp). (10)

Although the update rule of the inverse compositional alignment is computation-
ally more costly than a simple additive rule, Baker and Matthews [5, 6] show that
the overall computational complexity of the inverse formulation is significantly
lower than that of the forward additive KLT.

The motion model w used for feature tracking determines the degree of image
deformation tolerated during the registration process. The original contribution
of Lucas and Kanade [1, 2] assumes that the neighborhood N around a feature
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point x moves uniformly and, therefore, the authors model the image motion us-
ing a simple translation model. However, the deformation that it tolerates is not
sufficient when the tracked image region is large, or the video sequence under-
goes considerable changes in scale, rotation and viewpoint. In these situations,
the affine motion model [5, 6, 8] is typically adopted

w(x;p) = (I+ A)x + t, (11)

where the parameter vector is p = (a1, .., a4, tx, ty)
T
, I is a 2×2 identity matrix,

and A =

(
a1 a2
a3 a4

)
. In this paper, we propose an extension to the affine motion

model that accounts for the RD effect arising in cameras equipped with wide
FoV lenses.

For long-term feature tracking, the template update is a critical step to keep
plausible tracks. An inherent problem to the template update step is the lo-
calization drift introduced whenever the template is updated [19]. High-order
motion models tend to be more flexible in terms of the deformation tolerated
during the registration process, with the templates being updated less frequently
[19, 5, 6]. We carefully choose the frequency of the template update using the
squared error of Eq. 5, as detailed in [8].

Despite of the warp complexity, the registration process may fail to converge
when the initialization of the warp parameters p0 is not close enough to the
current motion parameters, i.e. p0 is not in the convergence region C where the
1st order approximation of Eq. 8 is valid [5, 6]. To attenuate this effect we adopt
a pyramidal tracking framework [7], where several image resolutions are built by
downsampling the image by factors of 2. A L-levels pyramidal tracking algorithm
proceeds from the coarse to the finest pyramid level, with the coarsest feature
position being given by xL = 2−Lx. The registration proceed at each pyramid
level, with the result begin propagated to next level as xL−1 = 2xL (for further
details see [7]). Since the integration region N is kept constant across scales,
the pyramidal framework greatly improves the probability of p0 belonging to C,
which by consequence increases the tracking success.

3 RD-KLT: Feature Tracking in Radial Distorted Images

In this section, we derive an extension to the affine motion model for cameras
equipped with wide FoV lenses. It is proved that the derived RD model met
the necessary requirements to be used in the inverse compositional KLT frame-
work whenever the distortion calibration is known. As it will be discussed, this
warping function does not allow to estimate the ξ during tracking due to its
particular structure. Therefore, we also propose an approximation to the ideal
theoretical model that enables to accurately estimate the distortion coefficient,
at a negligible lost of tracking performance.
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3.1 Mapping Composition for Deriving an RD Compensated
Motion Model

Let’s consider the standard situation where two undistorted images Iu and Iu
′

that are related by a generic motion function w such that Iu(u) = Iu
′
(w(u;p)).

We now consider that Iu and Iu
′
are the warping result of the original distorted

images I and I′. Using the distortion function of Eq. 1, we know that correspond-
ing undistorted and distorted coordinates are related by u = f(x), so we can
re-write the mapping relation as Iu(u) = Iu

′
(w(f(x);p)). Since Iu(u) = I(x),

with x = f−1(u), we can finally write directly the mapping relation between
two distorted image signals as I(x) = I′(f−1(w(f(x);p))). Therefore, the RD
compensated motion model that related the two distorted image signals can be
expressed using the following function composition:

x′ = vξ(x;p) =
(
f−1 ◦w ◦ f

)
(x;p). (12)

3.2 cRD-KLT - Calibrated RD-KLT

In case the ξ coefficient is known in advance, the parameter vector p of vξ

comprises the same parameters of the original motion of Eq. 11. The efficient
inverse compositional KLT algorithm requires that the proposed set of warps
form a group with respect to composition [5, 6]. The RD compensated motion
model verifies the necessary group requirements:

(i) Identity - vξ(x;0) = x
(ii) Invertibility - vξ(x;p)

−1 = (f−1 ◦ v ◦ f)−1 = f−1 ◦ v−1 ◦ f
(iii) Composition - vξ(x;p) ◦ vξ(x; δp) = f−1 ◦w(x;p) ◦w(x; δp) ◦ f
It can be observed that the function composition to obtain the RD compensated
model can be applied to any family of warps w that form group. By replacing
our motion model vξ in the inverse composition KLT, it is straightforward to
obtain the closed-form solution for δp, which is given by:

δp = H−1
d

∑

x∈N

[
∇T∂vξ(x;0)

∂p

]T(
I(vξ(x;p)) − T(x)

)
(13)

with Hd =
∑

x∈N
[
∇T∂vξ(x;0)

∂δp

]T[
∇T∂vξ(x;0)

∂p

]
, and the Jacobian

∂vξ(x;0)
∂p being

evaluated at p = 0. Finally, the motion parameters are updated at each iteration
as follows:

vξ(x;p
i+1)← vξ(x;p

i) ◦ v−1
ξ (x; δp) = f−1 ◦w(x;pi) ◦w−1(x; δp) ◦ f . (14)

3.3 Difficulties in Extending cRD-KLT to Handle Non-calibrated
Images

The cRD-KLT considers a warping function vξ that compensates the radial
distortion, applies the motion model, and then restores the non-linear image
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deformation (see Fig. 1(a)). As it will be shown in the evaluation section, this
approach is highly effective for performing image alignment of local patches in
cameras with lens distortion, improving substantially the tracking accuracy and
repeatability if compared with standard KLT. However, it has the drawback of
requiring prior knowledge of the distortion parameter ξ, which implies a partial
camera calibration. A strategy to overcome this limitation is to use the differ-
ential image alignment to estimate both the motion and the image distortion.
This passes by extending the vector p of model parameters in order to consider
ξ as a free variable in addition to the motion variables. In this case the warping
function becomes v(x; q) with the difference with respect to vξ(x,p) being only
the vector q = (p, ξ) of free parameters to be estimated.

Unfortunately, the model v(x; q) cannot be used for image registration using
inverse compositional alignment. The problem is that any vector of parameters
q of the form q = (0, ξ) is a null element that turns the warping function into
the identity mapping

v(x; (0, ξ)) = x, ∀ξ.
This means that the Jacobian of v(x; q) evaluated for any q such that p = 0
is singular and, consequently, Hd is non-invertible precluding the use of inverse
compositional alignment. An alternative would be to use the forward additive
framework, since the only requirement needed is the differentiability of the warp
with respect to the motion parameters [5, 6]. Unfortunately, the computational
complexity of this approach is significantly higher than that of the efficient in-
verse formulation. Instead of using the forward additive registration, the next
section proposes to approximate the warp v(x; q) by assuming that the distor-
tion is locally linear in a small neighborhood around the feature point.

3.4 uRD-KLT - Uncalibrated RD-KLT

This section shows that it is possible to avoid the singular Jacobian issue by re-
placing the v(x;q) by a suitable approximation of the desired composed warping.
As it will be experimentally shown, this approximation has minimum impact in
terms of error in image registration, enabling to use inverse compositional align-
ment to estimate both motion and distortion in an accurate and robust manner.

Let’s assume that in a small neighborhoodN around a feature c the distortion
effect can be approximated by

f(x) ≈ gc(x) = (1 + ξcTc)−1x. (15)

Remark that by replacing the radius of each point x by the radius of the cen-
tral point c of the window N the non-linear function f becomes a projective
transformation gc(x) as shown in Fig. 1(b). This is a perfectly plausible approx-
imation whenever the distance between the feature point c and the center of
the image is substantially larger than the size of the neighborhood N . In the
situations where this is not verified, the effect of distortion is negligible, and the



8 M. Lourenço and J.P. Barreto

O 

x

u
u'

x'=( f-1ο w ο  f )(x;p)  

f(x) f-1(u)

w(u;p)

ξ

(a) vξ

O 

x

u
u'

x'=( f-1ο w ο  gc )(x;p)  

gc(x) f-1(u)

w(u;p)

(b) vc

vξ

vc
(c) vξ − vc

Fig. 1. Schematic difference between the (a) accurate and the (b) approximate RD
compensated motion model. The black dashed lines in (b) represent the patches us-
ing the accurate RD model. (c) shows the difference between the accurate and the
approximate models for a corner patch of an image with high distortion.

approximation does not introduce significant error. Replacing f by gc in Eq. 12
yields the following approximation to the ideal theoretical model (see Fig.1(b)):

vc(x;q) =
(
f−1 ◦w ◦ gc

)
(x;q). (16)

In this case, the warp has single null element, and the Jacobian is not singular
when evaluated in q = 0, leading to an invertible Hd. Remark that replacing
f−1 by g−1

c would again lead to a motion model with singular Jacobian and
non-invertible Hd.

Estimation of the Warp Parameters: The next step concerns the estimation
of the increments δq of parameter vector q . Due to the global nature of the
RD, the distortion coefficient ξ must be simultaneously estimated for the N
features being tracked, while keeping each the vector p specific for each feature.
Recall that we want to compute the increment δq using the inverse compositional
algorithm, through the following closed-form solution:

δq = H−1
d

∑

N

[
∇T

∂vc(x;0)

∂p

]T(
I(vc(x;q))− T(x)

)
. (17)

For each image feature, this equation can be re-written as

Bn×nδqn×1 = en×1, (18)

where Bn×n = Hd =
(
Hn×n−1 hn×1

)
, and n is the number of parameters of q.

By performing a proper block-by-block stacking, the observation of all the N
tracked features lead to the following system:

⎛

⎜
⎜
⎜
⎝

H1
(n×n−1) 0 ... 0 h1

(n×1)

0 H2
(n×n−1) h2

(n×1)

...
. . .

...
0 . . . 0 HN

(n×n−1) h
N
(n×1)

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
BnN×(n−1)N+1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δp1

δp2

...
δpN

δξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
δqt

(n−1)N+1×1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e1

e2

...

eN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
et
nN×1

(19)
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These systems of linear equations are typically solved through the computation
of the pseudo-inverse δqt = B†et = (BTB)−1BTet. However, the explicit compu-
tation of the pseudo-inverse is computational expensive and subject to residual
errors [20]. We solve the system of linear equations using the gaussian elimi-
nation method [20]. Since we have an over-constrained problem, we compute
BTBδqt = BTet. Through Cholesky decomposition, we factorize BTB = LTL,
with L being an upper triangular matrix. The updates δqt are computed after
solving an upper and lower triangular system, which are fast to compute [20].

Update of the Warp Parameters: The final step of the algorithm concerns
the update the current parameters estimative. In theory [5, 6], the incremental
warp vc(x; δq) must be composed with the current warp estimative. We relax
this composition requirement and use an approximate relation to update the
warp parameters. We start from the relation given in [5, 6]

vc(x;q
i+1)← vc(x;q

i) ◦ v−1
c (x; δq) ≡ vc(vc(x;−δq);qi). (20)

Using this equation, we can formulate the parameters update as an additive
step through the computation of a Jacobian matrix Jq that maps the inverse
compositional increment δq to its additive first-order equivalent Jqδq [5, 6],
with the warp parameters being additively updated as qi+1 ← qi + Jqδq.

4 Experimental Validation

A tracking algorithm must be able to perform long-term feature tracking with
high pixel accuracy [16]. Typically, the tracking performance is benchmarked
through the evaluation of the tracking repeatability and the sub-pixel accuracy
achieved during the image registration process [16]. This section compares the
standard KLT algorithm against the proposed cRD-KLT and uRD-KLT trackers
in sequences with different amounts of RD. All the trackers are directly used in
the images with distortion, without ant type of rectification or pre-processing.We
perform experiences in sequences of planar scenes, where it is possible to obtain
ground truth to assess repeatability [16], and scenes with depth variation, where
we evaluate the accuracy of Structure-from-Motion [15] . In addition, we describe
an experience in self-calibration using the uRD-KLT tracker that can be helpful
in practical surveillance scenarios. The three methods under evaluation were
implemented using the affine motion model and a squared integration window
N of 11 × 11 inside a pyramidal image registration with 4 resolution levels.
Since our main goal is to perform feature (position) tracking rather than the
template itself, we monitor the health of the template through the evaluation
of the squared error of Eq. 5, with a new template being captured at the last
feature position whenever required.

4.1 Repeatability Analysis in Planar Scenes

This experiment evaluates the reliability of the feature tracking algorithms us-
ing images of planar scenes. This means that every 2 images are related by an
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homography that is used to verify the correctness and localization accuracy of
the tracked features. For the computation of the ground truth homographies, we
apply a robust estimation algorithm [21] that uses hundreds of correspondences
obtained with sRD-SIFT, which provide precisely located features in radial dis-
torted images [15]. The trackers are tested using four levels of distortion (0%,
10%, 25% and 45 %), with each level comprising 3 types of motion: slow trans-
lation, fast translation and generic camera motion.

We start by extracting 150 features using the Shi-Tomasi detection criteria
[2], and track them along the 600 frames of each sequence. The reliability of the
tracks are measured using the following metrics:

(i) Repeatability measures the ratio of correct points in the frame f using the

ground truth homography Hf
1 that provides the mapping from view 1 to f .

The repeatability is measured as:

R =
#(||xf − Hf

1x1|| < D)

#(Hf
1x1)

, (21)

where || · || denotes the euclidean distance and D = 2 pixels.

(ii) The Sub-pixel accuracy is measured for the points N that are reliably
tracked. At frame f , we evaluate the RMS of the euclidean distance be-
tween consecutive feature positions as:

Serr =

√∑
(||xf − Hf

1x1||)2
N

; (22)

(iii) The Photometric error Aerr is measured as the RMS of the squared error
of Eq. 5 of the N tracked features.

We also include the computational time (FPS - frame per second) of the different
methods for tracking the 150 features and the RD estimation for each level of
distortion obtained using the uRD-KLT. The image sequences presenting distor-
tion are calibrated using the Single Image Calibration (SIC) proposed in [22],
which provides the ground truth for the distortion estimation.

Table 1 shows the repeatability results obtained in the planar image sequences.
The conventional KLT tracker performs well in low distortion sequences, or when
the motion between frames is smooth. In such cases, the distortion changes
smoothly between two points locations, and the template update process enables
to keep plausible tracks. However, when more complex motions, such as fast
translation or affine camera motions are considered, the distortion changes more
abruptly between two feature locations, precluding an effective performance of
the registration process with direct consequences in the tracking results. As we
increase the distortion and the complexity of the motion, the KLT starts loosing
performance, which proves the importance of compensating distortion during
tracking.

The compensation of distortion during registration, either by knowing RD
calibration, or by performing it on-the-fly, brings improvements in all the eval-
uation parameters. The deformation tolerated by the RD compensated motion
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Table 1. Performance evaluation in the planar scenes. The results are organized by
type of motion (vertically) and corresponding amount of distortion (horizontally). The
results presented are the RMS of the evaluation metric computed over the 600 frames.
The distortion estimation and computational time are averaged over the 3 sequences
with the same RD. The computational times were measured in a Intel Core i7-2600
CPU @3.4GHz.

Slow Trans Fast Trans Affine Motion

%RD FPS R Serr Aerr R Serr Aerr R Serr Aerr

0
%

KLT — 6.11 0.98 0.21 0.014 0.95 0.27 0.021 0.90 0.35 0.032

uRD-KLT 0.6±1.4 5.32 0.98 0.23 0.018 0.95 0.31 0.028 0.90 0.39 0.035

1
0
%

KLT — 6.09 0.98 0.38 0.038 0.92 0.58 0.055 0.90 0.59 0.045

cRD-KLT 9.8 6.03 0.98 0.30 0.021 0.98 0.47 0.028 0.98 0.43 0.027

uRD-KLT 9.4±0.48 5.28 0.98 0.32 0.021 0.98 0.47 0.028 0.98 0.43 0.027

2
5
%

KLT — 6.07 0.98 0.42 0.049 0.88 0.56 0.047 0.69 0.85 0.051

cRD-KLT 24.7 6.02 0.99 0.33 0.026 0.98 0.43 0.026 0.90 0.55 0.027

uRD-KLT 24.5±1.3 5.24 0.99 0.33 0.026 0.98 0.45 0.027 0.90 0.58 0.034

4
5
%

KLT — 5.95 0.87 0.81 0.051 0.76 1.15 0.065 0.64 1.27 0.076

cRD-KLT 44.3 5.95 0.95 0.56 0.029 0.91 0.70 0.038 0.84 0.65 0.047

uRD-KLT 44.2 ± 2.9 5.19 0.95 0.58 0.031 0.89 0.75 0.041 0.84 0.66 0.049

models allow to compensate the pernicious effects of distortion, which in practice
is translated in accurate estimations of the feature motion parameters. This is
visible in the lower appearance error and spatial accuracy achieved by the RD-
KLT trackers. Since the registration is more accurate, the appearance error is
lower, and the template update is less frequent, minimizing the inherent error in
localization introduced by this process. It can also be observed that uRD-KLT
performs slightly worse than the cRD-KLT algorithm in the sequences with high
distortion and more complex motion. The differences in sub-pixel precision and
photometric error are due to the use of the approximated RD motion model,
which becomes slightly more imprecise as we increase distortion. Nevertheless,
the difference is almost marginal without practical influence in the repeatability.

The 3 methods were implemented in Matlab/MEX files. The C-MEX files in-
clude operations that are transversal to the 3 methods, namely the interpolation
routines, image gradient computation and image pyramid building. The com-
putational time of the cRD-KLT (≈ 1.11 milliseconds (ms)/feature) is slightly
higher than the conventional KLT (≈ 1.10 ms/feature). The small differences
are explained by the different motion models used, which in our case is a non-
linear mapping function that requires a little more computation. The uRD-KLT
(≈ 1.27 ms/feature) presents a computational overhead of≈ 15%, which is a con-
sequence of performing the RD estimation globally using Eq. 19. Nevertheless, it
has the obvious advantage of not requiring distortion calibration for performing
efficient feature tracking.
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Fig. 2. SfM experiments with a 25% distortion sequence and with a endoscopic se-
quence with 35% of RD. It can be observed that the RD-KLT tracker permit to long-
term feature tracking (b) at a high precision accucary (c). (d) compares the distortion
estimation form uRD-KLT with the explicit calibration results [22].

4.2 Structure-from-Motion (SfM)

Tracking features have been successfully applied to camera motion estimation
and 3D scene reconstruction [21], with accurate point correspondence across
frames being of key importance [21]. In this paper, the motion estimation is
carried by a sequential SfM pipeline that uses as input the tracked points ob-
tained by the 3 competing tracking methods. The objective is to recover the
motion of two sparse sequences of 45 frames (sampled uniformly from sequences
of 900 frames). The first sequence is obtained using a mini-lens that presents RD
≈ 25%, and the second sequence is captured using a boroscope with RD ≈ 35%,
commonly used in medical endoscopy and industrial inspection.

The SfM pipeline iteratively adds new consecutive frames with a 5-point
RANSAC initialization (using 2 views) [23], a scale factor adjustment (using
3 views) [21], and a final refinement with a sliding window bundle adjustment.
Figure 2 shows that the motion estimation results. It can be observed that the
RD-KLT trackers provide a lower re-projection error meaning that the extra
parameter in the RD motion models permits a better convergence of the regis-
tration process in images presenting significant amounts of distortion. Finally,
it can be seen in Fig. 2(d) that the distortion is robustly estimated, with the
results being close to the ones obtained with the explicit calibration from [22].

4.3 RD Calibration for Surveillance Applications

Surveillance systems largely benefit with the usage of wide-angle lens that, due
their wide FoV, enable a complete visual coverage of the environments [11]. In
this final experiment, we show that using the uRD-KLT can be advantageous
for estimating the distortion of a steady camera using the moving objects of
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RD = 25.9% RD = 24.4%

Frame 91- No motion detectedFrame 32 Frame 166

Fig. 3. Tracking experiment in a surveillance scenario from CAVIAR project. Distor-
tion estimation is performed when significant motion is detected in the environment.
Image inside the same bounding box concern the same instant of time. In each bound-
ing box, the tracking results are shown on the left image, and the distortion estimation
on the right image.

the scene. We test the algorithm using a sequence of the CAVIAR project1, for
which the RD calibration is unknown. We detect corner points at each frame
sequence and initialize the uRD-KLT. If the points do not move in the next two
frames, we re-initialize the tracker. The tracking results can be observed in Fig.
3. In each pair of bounded images, the original image (left image) shows the
tracking results and the correspondent rectified image is shown on the right. In
the middle block of images, the RD distortion estimated is negligible since no
motion is detected and, therefore, the registration framework does not have any
clues about how the local patches are deformed under the action of distortion.

5 Conclusions

This article presented for the first time an extension to the conventional KLT
algorithm for point feature tracking in images with radial distortion. This was
achieved by modifying the warping functions in order to account for both the
motion and the non-linear image deformation arising in cameras with wide-
angle lenses. Comparative experiments show that our RD-KLT tracker performs
almost as well as the standard KLT tracker in sequences of correct perspective
images, and achieves substantially better results in sequences with any amount of
non-linear distortion. This is accomplished with minimum computational over-
head. Such improvements in tracking are of strong importance for applications
and domains that employ cameras equipped with mini-lens, fish-eye lenses, or
boroscopes (e.g. robotics, medical applications, etc). In addition, we show for the
first time that it is possible to accurately calibrate the image distortion while
tracking low-level point features.
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1 Available at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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