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Abstract. The image of a planar mirror reflection (IPMR) can be interpreted as
a virtual view of the scene, acquired by a camera with a pose symmetric to the
pose of the real camera with respect to the mirror plane. The epipolar geome-
try of virtual views associated with different IPMRs is well understood, and it
is possible to recover the camera motion and perform 3D scene reconstruction
by applying standard structure-from-motion methods that use image correspon-
dences as input. In this article we address the problem of estimating the pose of
the real camera, as well as the positions of the mirror plane, by assuming that
the rigid motion between N virtual views induced by planar mirror reflections is
known. The solution of this problem enables the registration of objects lying out-
side the camera field-of-view, which can have important applications in domains
like non-overlapping camera network calibration and robot vision. We show that
the positions of the mirror planes can be uniquely determined by solving a sys-
tem of linear equations. This enables to estimate the pose of the real camera in a
straightforward closed-form manner using a minimum of N = 3 virtual views.
Both synthetic tests and real experiments show the superiority of our approach
with respect to current state-of-the-art methods.

1 Introduction

It is well known that the image of a planar mirror reflection (IPMR) is equivalent to
the image that would be acquired by a virtual camera located behind the mirror. Such
virtual camera has a pose symmetric to the pose of the real camera with respect to the
plane of reflection, and presents the same intrinsic parameters [1]. We can use a planar
mirror for observing a scene from a viewpoint different from the actual viewpoint of
the imaging device. This has been explored in the past for building planar catadioptric
systems (PCS) able to provide multi-view imagery while using a single static camera,
[2][3][4]. All these works assumed a specific mirror configuration for computing the
rigid transformations between virtual views and achieve extrinsic calibration.

Gluckman and Nayar were the first authors studying the epipolar geometry between
virtual views induced by planar mirror reflections with the mirrors being in an arbitrary
configuration [5]. They proved that in general a pair of IPMRs is related by a fundamen-
tal matrix, and that the rigid displacement between the corresponding virtual cameras is
always a planar motion. Since in a planar motion the translation is orthogonal to the ro-
tation axis, then the fundamental matrix between IPMRs has only 6 degrees of freedom
(DOF) [6].
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Without lost of generality, let’s consider a sequence of IPMRs obtained by moving
a planar mirror in front of a static camera, c.f. Fig. 1(a). Since there is an epipolar
geometry relating the virtual views, it is possible to recover the virtual camera motion
and compute the scene structure using a suitable structure-from-motion (SfM) approach
[6],[7]. However, this approach, neither provides the pose of the real camera, nor de-
termines the location of the mirror planes. This article proposes a robust closed-form
method for accurately estimation of the 3D pose of the real camera using the rigid dis-
placement between N ≥ 3 virtual views.

Knowing the pose of the real camera enables to determine the rigid transformation
between the camera and scene objects lying outside of its FOV, which can be useful
for many application scenarios. Hesch et al. consider a camera mounted on a robotic
platform, and describe a method that uses planar mirror reflections for estimating the
rigid transformation relating camera and robot reference frames [8]. They track points
in hundreds of IPMRs acquired while moving the robot in front of a mirror, and use
a complicated iterative ML estimator to find the transformation. Still in the context of
hand-eye calibration, Mariotinni et al. propose several geometric methods for localizing
the real camera and the mirror planes in stereo PCS [9]. However, all the methods
require the real camera and the virtual views to simultaneously observe a part of the
scene, which somehow undermines the usefulness of the approach.

Closely related to our work is the article by Sturm et al. [10], that determines the
position of an object lying outside the camera FOV. They observe that the planar mo-
tion between pairs of virtual views [5] can be described as a fixed-axis rotation, with
the rotation axis being the intersection of the two mirror planes. Thus, they propose a
constructive approach that, for a certain virtual view, estimates the fixed-axes of rota-
tion in a closed form manner. It determines the mirror position by fitting a plane to the
estimated 3D lines, and finally it recovers the real camera pose by reflecting the virtual
view with respect to the mirror. The article proves for the first time that the position
of mirrors and camera can be uniquely determined from a minimum of N = 3 vir-
tual views and, in addition, it discusses singular configurations. The main difference to
our work is that we recover the mirror position in a single estimation step by solving
a new system of linear equations. The experimental results show that our formulation
significantly improves accuracy and increases robustness.

Another related work is the one of Kumar et al. [11], concerning the calibration of
camera networks with non-overlapping FOV. The extrinsic calibration of
non-overlapping nodes is achieved by registering them with respect to a reference ob-
ject that is observed through planar mirror reflections. The poses of the real cameras are
obtained by solving a system of linear equations derived from orthogonality relations
between axes of different reference frames. The linear estimator proposed by Kumar
et al. requires a minimum of N = 5 views and provides a closed form solution that
is sub-optimal. This solution is used as an initial estimate for a subsequent refinement
step using bundle adjustment. We present tests, with both synthetic and real data, that
show that the estimations obtained with this approach are substantially less accurate
and robust than the ones achieved with our algorithm.

Notation: Matrices are represented in sans serif font, e.g. M, vectors in bold,e.g. Q
q, and scalars in italic, e.g. d. We do not distinguish between a linear transformation
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Fig. 1. The geometry of IPMR: (a) The object B is observed by camera Cr through N planar
mirror reflections, with each mirror plane Π i giving rise to a virtual camera ̂Ci. The N −1 rigid
transformations Ti (and possibly the pose of the object TB) are known ’a priori’. We recover
the position of mirror Π0 and localize the real camera Cr by reflecting ̂C0 . (b) The 3D point
Q is seen through a planar mirror reflection. The line of back-projection L always goes trough
point ̂Q, that is symmetric to Q with respect to the mirror plane Π . (c) The virtual camera ̂C
and the real camera C are symmetric to each other with respect to the mirror Π . Remark that any
symmetry transformation causes a change in the handiness of the coordinate systems.

and the matrix representing it. If nothing is said 3D points are represented in non-
homogeneous coordinates, and the vector product is carried using the skew symmetric
matrix, e.g. t × n = [t]× n. The symbol̂signals virtual entities induced by planar
mirror reflections, e.g. ̂Q, and vectors topped with an arrow are versors with unitary
norm, e.g. �n.

2 Projection Model for Images of Planar Mirror Reflections

This section shows how to model the projection of a camera seeing a scene through
a planar mirror reflection. We re-formulate some background concepts that have been
introduced in the past [5],[9],[11], [10].

2.1 Projection of a 3D Point

Consider the scheme of Fig. 1(b) showing a camera with projection center C and a 3D
planar mirror Π . Both entities are expressed with respect to a world reference frame
with origin in O. The mapping of world coordinates into camera coordinates is carried
by a 4 × 4 matrix T in the special euclidean group se(3) [12].

T =
(

R t
0 1

)

with R being a rotation matrix, and t a 3 × 1 translation vector. Plane Π is uniquely
defined by its normal, represented by the unitary vector �n, and the scalar euclidean
distance d. A generic point X lies on the plane Π iff it satisfies the following equation

�nT X = d
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Let Q be the coordinates of a 3D point that is observed through a planar mirror reflec-
tion. The reflection follows Snell’s law, and Q is projected into the image point q. It
is easy to see that the back-projection line L always goes through point ̂Q, that is the
symmetric of Q with respect to Π . Since every point on L is imaged into q, we can use
the symmetry to go around the Snell’s reflection. Thus, the projection of Q into q can
be expressed in homogeneous coordinates by

q ∼ K
(

I 0
)

T

(

̂Q
1

)

, (1)

with I being the 3 × 3 identity matrix, and K the matrix of intrinsic parameters [6].
From Fig. 1(b) it follows that the world coordinates of the symmetric point ̂Q

are
̂Q = Q + 2 (d − �nT Q)�n

The equation can be re-written in the following matrix form:
(

̂Q
1

)

= S

(

Q
1

)

(2)

with S being a symmetry transformation induced by Π

S =
(

I − 2�n�nT 2d�n
0 1

)

(3)

2.2 Symmetry Matrices

Let’s denote by ss(3) the set of all 4 × 4 symmetry matrices S whose structure is given
in equation 3. The top-left 3 × 3 sub-matrix of any element in ss(3) is always a House-
holder matrix [13]. Taking into account the properties of the Householder matrices, it
is straightforward to prove that the following holds:

(i) The symmetry transformations are involutionary: S−1 = S , ∀S∈ss(3)

(ii) The product of two symmetry transformations is a rigid transformation: S1 S2 ∈
se(3) , ∀S1 S2 ∈ ss(3) (ss(3) is not an algebraic group)

(iii) In general the product of a symmetry transformation S by a rigid transformation
T is not an element of ss(3)

2.3 The Virtual Camera

Consider the projection equation 1. Replacing ̂Q by the result of equation 2 yields:

q ∼ K
(

I 0
)

T S

(

Q
1

)

(4)

We can think on T S as being a transformation that maps world coordinates into coordi-
nates in a certain reference frame ̂C. It follows from equation 4, that the IPMR can be
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modeled as the image that would be directly acquired by a virtual camera placed in ̂C
and having intrinsic parameters K [5]. It is also easy to realize that this virtual camera
̂C and the real camera C are symmetric to each other with respect to the mirror plane
Π , c. f. Fig 1(c). The transformation from the real camera C to the virtual camera ̂C is
carried by the symmetry matrix S′:

S′ = T S T−1 (5)

Since S′ is involutionary, it also maps the virtual camera into the real camera. Moreover,
and as pointed out by Kumar et al. [11], if the reference frame C is right-handed, then
the reference frame ̂C is left-handed, and vice-versa.

3 Assumptions and Problem Formulation

Without loss of generality, let’s consider a situation where an object, lying outside
the FOV of a static camera, is observed through planar mirror reflections obtained
by freely moving the mirror in front of the camera 1. As discussed in section 2.3, for
each position of the mirror plane Π i, with i = 0, 1, . . . , N − 1, there is a virtual
camera ̂Ci that models the projection, c. f. Fig. 1(a). For convenience, it will be as-
sumed that the world coordinate system is coincident with the reference frame of the
virtual camera ̂C0, and that geometric entities are expressed in world coordinates by
default.

The rigid motions Ti of the virtual cameras ̂Ci, as well as the pose of the object TB ,
are assumed to be known ’a priori’. They can be computed from image data using a
suitable SfM approach [5][6]. The choice of the most suitable method for the problem
at hands, as well as eventual adaptations to take into account the constraints of planar
camera motion [5], are beyond the scope of the work. Our objective is to estimate the
pose of the real camera Cr, using the rigid displacements Ti. Remark that, if the posi-
tion of the real camera is known, then the mirror plane Π i can be easily determined by
finding the orthogonal plane that bisects the line that joins the centers of Cr and ̂Cr.
On the other hand, if the position of the mirror plane Π i is known, then the real camera
can be determined by a symmetry transformation of ̂Ci (equation 3). Therefore, we can
solve the formulated problem by either estimating directly the pose of the real camera,
or by finding the position of one of the mirror planes. We will pursue the latter strategy
and look for the position of Π0.

Finally, remark in Fig. 1(c) that the system of coordinates O is right-handed, while
the virtual camera reference frame is left-handed. Since most implementations of popu-
lar SfM algorithms provide as output rigid transformations that preserve the handiness,
it will be henceforth assumed that the scene is represented using left-handed coordi-
nates. In this manner, the transformations between the object B and the virtual camera
̂Ci can be carried by an element of ss(3), at the expenses of considering a symmetry
transformation between the object and the real camera, c.f. Fig 1(a).

1 This is not geometrically equivalent to keeping the mirror stationary and moving the camera
in an unconstrained manner. In this case the rigid displacement between virtual views is not
necessarily a planar motion.
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4 Searching for the Mirror Planes

As pointed out by Gluckman and Nayar, the rigid transformation between two virtual
cameras is always a planar motion [5]. This section derives the constraints that each
planar motion Ti imposes on the position of the planar mirrors Π0 and Πi.

Consider the scheme of Fig. 1(a), with the reference frame of camera ̂C0 being
the world coordinate system in which the different planes are represented. Let ̂Q0 and
Qr be the coordinates of the same 3D point expressed with respect to ̂C0 and Cr

respectively. It follows that,
(

Qr

1

)

= S0

(

̂Q0

1

)

with S0 being the symmetry transformation defined by plane Π0 (equation 3). If ̂Qi

represents the same 3D point in the coordinate system of ̂Ci, it comes from equation 5
that

(

Qr

1

)

= Ti Si T−1
i

(

̂Qi

1

)

By equaling the two equations above, replacing ̂Qi by Ti
̂Q0, and considering the prop-

erties of the symmetry matrices, we conclude that

Ti = S0 Si

Considering explicitly the rotation Ri, the translation ti, and expressing the symmetries
in terms of the plane parameters, it yields

(

Ri ti

0 1

)

=
(

I − 2�n0�nT
0 2d0�n0

0 1

) (

I − 2�ni�nT
i 2di�ni

0 1

)

(6)

4.1 Geometric Properties

Taking into account the result of equation 6, we can state the following property that
relates the rotation Ri between virtual cameras, to the normals �n0 and �ni of the corre-
sponding mirror planes.

Statement 1: Let �ωi and θi denote, respectively, the direction of the rotation axis and
the rotation angle of Ri. If αi is the angle between the normals to the mirror planes such
that �nT

0 �ni = cos(αi), then the following equalities hold:

�ωi = �ni×�n0
sin(αi)

∧

θi = 2 αi

Proof: Let R′
i be a rotation by an angle of 2αi around an axis with unit direction (�ni ×

�n0) sin(αi)
−1. By applying Rodrigues’ formula [12], it follows that:

R′
i = I +

sin(2αi)
sin(αi)

[�ni × �n0]× +
(1 − cos(2αi))

sin(αi)2
[�ni × �n0]2×
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We conclude after some algebraic manipulation that:

[�ni × �n0]× = �n0�nT
i − �ni�nT

0

[�ni × �n0]
2
× = cos(αi) (�n0�nT

i + �ni�nT
0 ) − �n0�nT

0 − �ni�nT
i

Replacing the above results in the expression of R′
i, and performing some simplifica-

tions, it yields that

R′
i = I + 4 cos(αi)(�n0�nT

i ) − 2 (�n0�nT
i + �ni�nT

0 )

Finally, taking into account that cos(αi) = �nT
0 �ni, it follows that

R′
i = (I − 2�n0�nT

0 ) (I − 2�ni�nT
i )

Thus, R′
i and Ri are the same rotation matrix (see equation 6), and the correctness of

the statement has been proved. �

The next result was originally stated in [5], and it is presented in here for the sake of
completeness

Statement 2: The rigid transformation Ti is a planar motion, with the translation com-
ponent ti being orthogonal to the rotation axis �ωi.

Proof: From equation 6, and taking into account that �nT
i �n0 = cos ( θi

2 ), we can write
the translation as

ti = 2(d0 − 2 di cos (
θi

2
)) �n0 + 2 di �ni (7)

Since �ωi is orthogonal to both �n0 and �ni (property 1) it is obvious that tT
i �ωi, = 0,

which proves the orthogonality statement. �

4.2 Linear Constraints

As stated in section 3, it is sufficient to estimate the position of one mirror plane for
solving for the pose of the real camera and position of remaining planes. It is shown
in here that each planar motion Ti gives rise to a pair of independent linear constraints
on the position of the plane Π0, c.f. Fig. 1(a). Henceforth, the rigid transformation is
expressed in terms of �ωi, θi and ti, while the planes are parametrized by their normals
�n and scalar distances d.

Consider the transpose of equation 7 with both sides being multiplied by �n0. It arises
after some algebraic manipulation that

tT
i �n0 − 2 d0 + 2 cos(

θi

2
) di = 0 (8)

A different equation can be derived by considering the cross product between ti and
�n0. From equation 7 and property 1, we obtain that

[ti]× �n0 − 2 sin(
θi

2
) �ωi di = 0 (9)
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(a) (b) (c)

Fig. 2. (a) The space of possible solutions. ̂C0 and ̂C1 are two virtual cameras. The figure shows
the planes Π0 satisfying equation 10, as well as the corresponding solutions for the real camera
Cr. The red circle is the locus of camera centers, while the green circle is the locus of points
where Π0 bisects Cr

̂C0. It can be verified that there are an infinite number of solutions for the
pose of the real camera that are consistent with the two virtual cameras. (b) Determining the real
camera Cr for the case of N = 3. Consider the two pairs of virtual cameras ̂C0, ̂C1 and ̂C0,
̂C2. Each pair has a space of possible solutions for the real camera. The two loci intersect in
two points: the common virtual camera ̂C0, and the correct solution for the real camera Cr. (c)
Camera cluster setup used to evaluate the algorithms performance using IPMRs.

Equations 8 and 9 provide 4 linear constraints on the unknown plane parameters �n0, d0

and di. However, and since [ti]× is a singular matrix, only 3 constraints are independent.
It is interesting to see that equation 9 implicitly enforces orthogonality between the
rotation axis �ωi and vectors �n0 (property 1) and ti (property 2).

By solving equation 8 in order to di, and replacing the result in equation 9, it arises

( [ti]× + tan(
θi

2
) �ωi ti

T)�n0 − 2 tan(
θi

2
) �ωi d0 = 0 (10)

Equation 10 provides 2 independent linear constraints on the parameters of plane Π0.
Since the camera pose and mirror planes can be uniquely recovered by finding the
position of one of those planes, the constrains of equation 10 constitute a minimal for-
mulation of the problem in terms of the number of unknowns. However, these two
independent constraints are insufficient to determine the 3 DOF of the mirror plane. As
pointed out by Sturm and Bonfort [10] the problem is under-determined when using just
a pair of virtual views. In this case the real camera can be at any location in a circular
locus on the plane orthogonal to the axis of the relative rotation. This is illustrated in
Fig. 2(a).

5 Determining the Real Camera from N ≥ 3 Virtual Cameras

Three virtual cameras, ̂C0, ̂C1 and ̂C2, define two independent planar motions T1 and
T2. Each motion gives rise to two independent linear constraints on the parameters �n0

and d0 (equation 10). Since we have a total of 4 equations and just 3 unknowns, then it
is possible to uniquely determine the plane Π0 and estimate the pose of the real camera.
Fig. 2(b) provides a geometric insight about localizing the real camera using N = 3
virtual cameras.
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5.1 The System of Linear Equations

Consider N virtual cameras defining N − 1 independent planar motions, c.f. Fig. 1(a).
From section 4.2 follows that each motion Ti gives rise to a set of linear constraints on
the parameters of the mirror plane Π0. Stacking the constraints of the N − 1 motions
leads to a system of linear equations that can be solved using a DLT estimation ap-
proach. We consider two alternative formulations for the system of equations: Method
1 that is based on the result of equation 10, which becomes singular whenever θi = π;
and Method 2 that uses the constraints derived in equations 8-9.

Method 1. The system of equations can be written as
⎛

⎜

⎝

A1

...
AN−1

⎞

⎟

⎠

︸ ︷︷ ︸

A

(

�n0

d0

)

= 0 (11)

where each planar motion Ti defines a sub-matrix Ai with dimension 3 × 4 (equation
10)

Ai =
(

[ti]× + tan( θi

2 ) �ωitT
i −2 tan( θi

2 )�ωi

)

Method 2. This second method uses the linear constraints derived in equations 8-
9. Remark that the formulation is non-minimal in the sense that involves the scalar
parameters di. The system of equations can be written in the following form

⎛

⎜

⎜

⎜

⎝

B1 b1 0 . . . 0
B2 0 b2 . . . 0
...

...
...

. . .
...

BN−1 0 0 . . . bN−1

⎞

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

B

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�n0

d0

d1

d2

...
dN−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 (12)

with Bi being 4 × 4 sub-matrices

Bi =
(

tT
i −2

[ti]× 0

)

and bi vectors with dimension 4

bi =
(

2 cos( θi

2 )
−2 sin( θi

2 )�ωi

)

5.2 Outline of the Algorithm

1. Let Ti be the transformations mapping ̂C0 into ̂Ci, with i = 1, 2, . . .N − 1. For
each Ti obtain the rotation axis �ωi, the rotation angle θi and the translation vector
ti
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2. Build the 3(N −1)×4 matrix A of equation 11 (for method 2 build the 4(N −1)×
(N + 3) matrix B of equation 12)

3. Apply SVD to find a least square solution for the system of equations (the vector
result is denoted by x).

4. Compute plane Π0 by making �n0 = x1...3
||x1...3|| and d0 = x4

||x1...3||
5. Determine the symmetry matrix S0 using �n0 and d0 (equation 3). This matrix maps

̂C0 into Cr, enabling the localization of the real camera, c.f. Fig. 1(a).

6. Compute the position of remaining mirror planes Π i, by finding the plane orthog-
onal to the line ¯Cr Ci that bisects it.

5.3 Singular Configurations

It has already been referred that the linear equations of method 1 present an algebraic
singularity for the case of θi = π. In addition, the null spaces of matrices A (method 1)
and B (method 2) become multi-dimensional whenever all the mirror planes intersect
into a single line in 3D. This is a singular configuration for which there are multiple
solutions for the real camera pose. It can occur by either rotating the mirror around
a fixed-axis, or by translating the mirror in a manner that all the reflection planes are
parallel between them (the intersection line is at infinity). This degeneracy has been
originally observed by Sturm and Bonfort [10].

6 Performance Evaluation with Synthetic Data

This section evaluates the accuracy of the algorithm outlined in section 5.2. The two
linear formulations (method 1 and method 2) are compared against the closed-form
linear estimation approaches proposed by Sturm [10] and Kumar et al. [11]. For the
latter we used the code implementation made publicly available by the authors, while
for the former we re-implemented the method following the steps in the paper.

In order to have reliable ground truth we defined a simulation environment for gen-
erating synthetic data. We consider a working volume with a static camera. A set of N
planes, simulating the mirrors, are generated assuming a convenient random uniform
distribution. Each plane gives rise to a virtual camera using the symmetry transforma-
tion of equation 3. The positions of the virtual cameras are disturbed both in translation
and rotation. The direction of the translation and rotation axis are drawn from a random
uniform distribution, while the amount of disturbance is given by a zero mean normal
distribution with variable standard deviation (the noise power). For convenience the er-
rors in translation are relative errors defined as a percentage of the modulus of the true
translation vector. The disturbed pose of the virtual cameras are the input to the dif-
ferent methods. The translation and rotation angle of the relative rigid motion between
the estimate and ground truth are used as error metrics. We performed tests for differ-
ent noise conditions. For each test the simulation was ran 100 times and the root mean
square error was computed. The results are exhibited in Fig. 3.

According to the synthetic experiments the two linear methods presented in this pa-
per outperform the linear approach proposed by Kumar et al. [11]. This is not surprising
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Kumar et al. Linear Method 1 Method 2 Sturm & Bonfort Linear

Fig. 3. Synthetic experiment for comparing the performance in estimating the real camera pose
for an increasing number N of images of planar mirror reflections. The top row shows the RMS of
the relative error in translation, while the bottom row concerns the angular RMS error in rotation.
Each column concerns results assuming different standard deviations σR and σt for the additive
noise in rotation and translation.

because the latter provides a sub-optimal solution in the sense that it estimates the rigid
displacement between camera and object without taking into account the rotation con-
straints. The approach by Sturm and Bonfort is in general less accurate than both method
1 and method 2, and seems to be highly sensitive to noise in the rotation between virtual
views. However, it presents better results in the estimation of the real camera rotation
for the case of σR = 1◦. This behavior can be explained by the fact that their algo-
rithm fits the mirror to the estimated fixed rotation axes by first determining the normal
orientation of the plane, and then its distance to the origin. Under negligible noise in
rotation, the direction of the axes is accurately determined, and the normal to the mirror
is correctly computed. Since the real camera rotation only depends on the mirror orien-
tation, the final estimation error is very small. When the noise in rotation increases, the
estimation of the direction of the fixed rotation axes becomes inaccurate, and the final
results suffer a quick degradation.

Our two methods carry the estimation of the mirror position by simultaneously solv-
ing for the orientation and distance to the origin. This leads to a better trade-off in terms
of sensitivity to noise. It also worth mentioning that during the simulations there were
situations for which both Sturm’s and Kumar’s algorithm diverged in the sense that the
output estimate was too off from the ground truth. In the case of Sturm’s approach this
happened occasionally for N = 3, while for Kumar’s approach this happened quite of-
ten for N ≤ 6. The situations of divergence were discarded and the random generation
of data was repeated to produce the results of Fig. 3.

Somehow surprising is the fact that method 2 systematically over-performs the min-
imal formulation of method 1. From synthetic results and experiences with real data,
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Fig. 4. Extrinsic calibration of a camera cluster with 3 nodes (Fig. 2(c)). The graphics compare the
errors in estimating the relative displacement between camera nodes using different approaches.
Since the cameras have overlapping FOV’s, we determined an approximate ground truth by using
a conventional extrinsic calibration approach [6].

method 2 remained the most accurate approach. In order to not overload the next graphs
only the results using Method 2 will be shown.

7 Experiments in Extrinsic Calibration

In this experiment we use IPMRs to perform the extrinsic calibration of a small cluster
with 3 camera nodes. Fig. 2(c) shows the setup where a calibration grid is placed out-
side of the FOV of the cameras. Several images of the grid are acquired with the help
of a mirror, and the corresponding virtual cameras are localized in the grid reference
frame by homography factorization [7]. This is performed independently for each cam-
era node. The virtual views are used as input for the different methods that return a pose
estimate for the real camera. Since we are using a common object, the 3 cameras are
registered in the same reference frame which enables extrinsic calibration. The results
are subsequently refined by optimizing the re-projection error with respect to the mirror
positions and real camera pose.

Fig. 4 shows the difference between the reference ground truth and the extrinsic cal-
ibration from mirror reflections. The graphics compare the performance of the different
methods for an increasing number of virtual views N = 3, . . . , 12. Since we collected
a total of 12 images per node, we provide the RMS error taking into account the es-
timation results for all possible N image combinations. This real experiment confirms
the conclusions reached in synthetic environment: Kumar et al. algorithm is in general
inferior to both our method and Sturm’s approach. It needs a larger number of views
to provide accurate estimations, and it diverges for N ≤ 8 views. For N < 4 views
Sturm’s approach also diverges in the cases that the mirrors are close to a singular
parallel configuration. Table 1 shows the number of diverging cases for all methods.
These situations were not considered in the statistical treatment of the results shown in
Fig. 4. It is also important to refer that, since the determination of motion from planar
homographies typically presents a good accuracy in rotation, this is an experiment that
favors Sturm’s approach, explaining the excellent performance in estimating the camera
rotation.
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Table 1. The table summarizes the number of situations for which each method fails in providing
a suitable initial estimate. Our approach shows an impressive robustness even when the number
of virtual views is small and/or are close to a singular parallel configuration.

Number of views 3 4 5 6 7 8 9 10 11 12
Total number of combinations 220 495 792 924 792 495 220 66 12 1
Method 2 0 0 0 0 0 0 0 0 0 0
Sturm and Bonfort Linear 8 2 0 0 0 0 0 0 0 0
Kumar et al. Linear 756 441 146 19 0 0 0 0

Fig. 4 also shows the optimized results from each method. It can be observed that
Kumar’s accuracy is not brilliant for N ≤ 8 because of the poor closed-form initial-
ization. Also Sturm’s initialization for N=3 does not provide good convergence results
because of the inaccuracy in the translation estimate. For N ≥ 3 both Sturm’s and our
method converge towards the same solution.

8 Conclusions

This article provides a geometric insight about IPMRs and shows that the position of
the mirror planes can be recovered in a straightforward manner by solving a system
of linear equations. This leads to a new closed-form estimation method that is able
to recover the pose of the real camera from a minimum of N = 3 views. Extensive
experimental results clearly show the superiority of our approach with respect to the
state-of-the-art. Our approached proved to have a well balanced sensitivity to noise in
translation and rotation, a good behavior under situations of quasi-singularity, and an
excellent accuracy even when the number of images is minimum.
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