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Abstract. Near-Lighting Endoscopes are self-illuminated cameras often
used in minimal invasive surgery. Since they have a wide field of view,
their images are affected by high radial distortion(RD) and reduced res-
olution in the periphery of the image. Perspective Shape From Shading
has been used for reconstruction but suffers from the problem of resolu-
tion and high RD when endoscopes are used. We propose in this paper
two improvements to the state of the art methods for PSFS in Near-
Lighting Endoscopes. The first contribution is the introduction of the
RD model directly in PSFS equations and the second contribution is the
compensation of the reduced resolution of the image in its periphery,
due to wide FOV. Tests performed in real objects and in a knee bone
show that by modeling these two effects our method highly enhances the
accuracy of the estimation.
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1 Introduction

The use of endoscopes in surgery is becoming more and more common. They
provide the surgeon visual access to zones of the human body that are difficult
to reach, assisting in minimal invasive procedures. However, usually the images
of bones and organs are partial and illuminated directly by the endoscope probe,
whose interpretation is not an easy task.

Shape from shading (SFS) has been lately used in this scenario, in order
to provide the surgeon shape reconstructions of bones and organs. Since the
light source is incorporated in the endoscope probe, the general orthographic
shape from shading model is, however, not adequate to this case. Instead, the
perspective shape from shading (PSFS) model is more appropriate. Furthermore,
endoscopes are vision systems with wide field of view (FOV) and thus presenting
high RD. The existing SFS methods correct the RD in a previous step, by
computing an undistorted image. While this step presents no problems for images
with small distortion, it is a big source of error for images with medium to high,
hence for endoscopes.
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In this paper we propose two modifications to the general formulation of the
PSFS problem using near-lighting endoscopes. The first contribution is the mod-
elling of the RD directly in the shape from shading reflectance equations. The
new reflectance equations allow us to use non interpolated data (original image)
in the estimation and so reduce the estimation error. The second contribution is
to compensate the effect of reduced resolution in the periphery of the image, a
problem that arises for wide FOV cameras.

1.1 Related Work

Shape from shading has been introduced to computer vision since the early works
by authors like [1], [2]. The major part of papers are focused on Lambertian
surfaces with orthographic projection and distant light sources ([1],[3]), however
some authors have been considering more complex and realistic environments
like non-Lambertian surfaces, perspective projection ([4], [2]). There are some
relevant works for near-lightning and taking into account 1/r2 attenuation factor
(fall-off law of isotropic point sources). Namely [5] and [4] have considered the
particular case of the endoscope. In the former case they assume that the light
source is coincident with the projection center and in the latter, they assume two
sources of light very close (and symmetric) to the camera center of projection.

2 Perspective Shape from Shading for a Near Point Light
Source
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Fig. 1. Perspective projection model for a near light source located at the projection
center O. The camera plane XYZ is centred at O.

Due to the light source position on the tip of the endoscope, we consider a
perspective projection and formulate the shape from shading problem for a near
point light source located at the projection center, as seen in (1). Assuming a
Lambertian reflectance of the surface and the inverse square distance fall-off for
the light intensity, the scene radiance can be recovered by:

R = I0ρ
(n̂ . l̂)

r2
(1)
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where I0 and ρ are the light source intensity and the surface albedo, respectively.
The Z − axis of the camera plane (XY Z) corresponds to the depth. The unit

vector l̂ represents the incident direction of a light ray on the surface point P
while r is the distance from O to P . As proposed by [1], the surface normal n̂ is
obtained in terms of partial derivatives of the scene depth z:

n̂ =

[
−∂z
∂x
,−∂z

∂y
,−1

]
/

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1 (2)

When this problem is formulated under orthographic projection these deriva-
tives are applied directly in the image (u, v) coordinates. However under perspec-
tive projection we have:

x =
uz

F
, y =

vz

F
(3)

where F is the focal length. So we should represent the partial derivatives of z
in terms of image coordinates as [4]:

∂z

∂x
=

Fp

z + up
, p =

∂z

∂u

∂z

∂y
=

Fq

z + vq
, q =

∂z

∂v

(4)

As the light source is located at the projection center r =
−→
l and we can

explicitly write the light rays direction vectors as:

−→
l =

[
−uz
F
,−vz

F
,−z

]
l̂ =

−→
l

‖
−→
l ‖

(5)

From equations (2-5) the Reflectance equation is then rewritten as function
of u, v, z, p, q:

R(u, v, z, p, q) = I0ρ
n̂(u, v, z, p, q) . l̂(u, v, z)

r(u, v, z)2
(6)

Estimating the Reflectance map: The mapping of the surface reflectance
is done taking into account that we have 3 unknown parameters to estimate,
the depth z and the corresponding partial derivatives p and q. From the Image
Irradiance Equation [1] we have R(u, v, z, p, q) = E(u, v), where E represents
irradiance transmitted by the surface radianceR. Different optimization methods
have been proposed ([6],[7], [4]). We use the minimization method proposed by
[4]. The Error Function is thus computed as:

e(z, p, q) = λei(z, p, q) + (1− λ)es(z, p, q) (7)

where ei is the integrability error and es is the smoothness constraint:
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ei(z, p, q) =

∫ ∫
image

(E(u, v)−R(u, v, z, p, q))2 dudv (8)

es(z, p, q) =

∫ ∫
image

z2u + z2v + p2u + p2v + q2u + q2vdudv (9)

The unknowns z, p, q are computed in an iterative process where each one
is defined by discretizing and minimizing the error function. So for each pixel
position, ω = [z, p, q] the update equations are:

ωn+1 = ωn
m +

λ

4(1− λ)
[E(u, v)−R(u, v, ωn)]

∂R

∂ω
|ωn (10)

where λ is initialized with a small value (0.005), being increased by a step of 0.02
as the error is reduced by 1% and ωm corresponds to the four-neighbourhood
average for each pixel.

2.1 Improvements to the Estimation model

As already stated, we aim for a better reconstruction when using wide-view
lenses with high RD, so we introduce two enhancements to [4] estimation model.
First we insert the RD Correction directly in the Reflectance map equation, then
we introduce the so called Field of View Compensation in order to improve the
reconstruction results in the image periphery.

Division model for Radial Distortion Correction: According to [8] the
image RD can be described using the 1st order division model where the level of
distortion is quantified by only one parameter ξ (typically ξ < 0). Let u = (u, v)

T

and uu = (uu, vu)
T

be the corresponding distorted and undistorted points, ex-
pressed with respect to a reference frame with origin in the principal point of
the image [8]. f is a vector function that maps points from distorted, Id, to
undistorted, Iu, images:

uu = f(u) = (1 + ξuTu)−1u. (11)

The radius of u is r =
√

uTu, and the corresponding undistorted radius is
ru = (1 + ξr2d)−1rd.

Instead of obtaining an undistorted image we integrate (11) directly in the
Reflectance equation which becomes a function of uu, vu, z, p, q:

R(uu, vu, z, p, q) = I0ρ
n̂(uu, vu, z, p, q) . l̂(uu, vu, z)

r(uu, vu, z)2
(12)

By introducing the RD directly in the reflectance equation, and so eliminating
the previous step of creating an undistorted image, we eliminate an interpolation
step which is one source of error. This is specially important for medium to high
radially distorted images, as endoscopes are.
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Fig. 2. (a) shows the effect of equal spacing in angles and its effect on the resolution and
(b) the scene distance variation with respect to the angle. We can observe that to an
isotropic variation in the angle between the optical axis and the light ray irradiated by
the surface the distances in the scene plane increase while in the arc they are constant.

Field of View Compensation: A typical camera presents a FOV between
40◦ and 70◦. Which is a rather low value when compared to the 140◦ of our
endoscope. We can thus observe in the images a gradual loss of quality from the
center to the periphery. Figure 2 shows that for each 5◦ interval, the distances
between the light rays increase along the scene plane. This means that for equal
distances in the scene plane as the viewing angle increases, the light rays spacing
also increases, and hence there is a loss of resolution which can be observed in
the image plane by backprojection of the light rays.

Regarding this we modified the smoothness constraint in the estimation
model, to compensate the loss of resolution in the reconstruction. By discretizing
we can represent (9) for each pixel (i, j) as:

es(z, p, q) = (zi+1,j − zi,j)2 + (zi,j+1 − zi,j)2

+(pi+1,j − pi,j)2 + (pi,j+1 − pi,j)2

+(qi+1,j − qi,j)2 + (qi,j+1 − qi,j)2
(13)

This constraint is based in a pixel by pixel difference which becomes larger
in the image periphery due to loss of resolution. We propose a new smoothness
constraint where the differences are compensated according to the viewing angle.
In 2 we can see that the rays concentration in the arc tangent to the scene plane
is always the same for equal distances. Using the arc length we calculated the
image coordinates in the arc. Considering x = (x, y)

T

xarc = x

F tan

(√
x2+y2

F

)
√
x2 + y2

 (14)
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where xarc = (xarc, yarc)
T

are the coordinates in the arc tangent to the image
plane. We thus redefine the smoothness constraint as:

es(z, p, q) = ((xarci+1,j − xarci,j )(zi+1,j − zi,j))2 + ((yarci,j+1 − yarci,j )(zi,j+1 − zi,j))2

+((xarci+1,j − xarci,j )(pi+1,j − pi,j))2 + (yarci,j+1 − yarci,j )(pi,j+1 − pi,j))2

+((xarci+1,j − xarci,j )(qi+1,j − qi,j))2 + (yarci,j+1 − yarci,j )(qi,j+1 − qi,j))2
(15)

In this way the pixel differences are attenuated according to the loss of resolution.
This also implies new equations to the estimation ω = [z, p, q]:

ωn+1 = ωn
m +

λ

distarc(1− λ)
[E(u, v)−R(u, v, ω)]

∂R

∂ω
|ω (16)

distarc = (xarci+1,j−xarci,j )2+(xarci−1,j−xarci, )2+(yarci,j+1−yarci,j )2+(yarci,j−1−yarci,j )2 (17)

ωn
m =

1

distarc
[ωi+1,j(x

arc
i+1,j − xarci,j )2 + ωi−1,j(x

arc
i−1,j − xarci,j )2+

ωi,j+1(yarci,j+1 − yarci,j )2 + ωi,j−1(yarci,j−1 − yarci,j )2]

(18)

3 Calibration of the Endoscopic System

In figure 3 we present the framework of the aquisiction which mainly consists
in a geometric and radiometric calibration of the images. The use of a perspec-
tive projection requires the computation of the camera intrinsics respecting the
assumptions made in the calculus of the reflectance function.

Checker Board

Machbeth Color Cheker

Dataset 

Image  Acquisition

Post-Processing
Geometric Calibration

Radiometric Calibration

Obtain Corrected Images 

Fig. 3. Overview of the system framework.

3.1 Geometric Calibration

The aim in this step is to determine the intrinsic calibration K0 (as defined in
[9]) and the RD ξ when the lens probe is at a fixed position.

Several authors addressed the specific problem of intrinsic calibration or RD
correction in medical endoscopes [10] [11] [9]. We used a recent toolbox, Easy-
CamCalib [9], which only requires an image of a checker-board to fully calibrate
a camera specifically developed to lens presenting moderate to high RD. In [9]
it can be found a detailed explanation of the algorithm.



VII

3.2 Radiometric Calibration

The radiometric calibration is frequently addressed in literature as an essen-
tial step to SFS [4]. As stated earlier, we must guarantee a linear photometric
response of the CCD and an isotropic distribution of the light rays, by which
mean we define the image irradiance perceived by the camera as E(u, v) =
Γ−1(I(u, v))U−1(u, v), where Γ−1 corresponds to the Photometric Response
Function, I(u, v) to the Image Brightness at each pixel and U−1(u, v) to the
anisotropy of the light source. From equations (1) and assuming that the image
irradiance equals the scene radiance we can rewrite the irradiance as:

Γ−1(I(u, v)) = ρ I0 U(u, v)

(
n̂ . l̂

r2

)
(19)

In order to estimate Γ−1,U−1 and (n̂ . l̂) / r2 all the other variables ρ,I0, n̂,

l̂ and r must be known, so for calibration purposes a MachBeth Colour Chart
composed by 24 patches with known albedo is used. As formulated by [4] by
applying a logarithm on both sides of (19) we can reformulate the problem as:

log(Γ−1(I(u, v))) = log(ρ) + log(I0) + log

(
U(u, v)

(
n̂ . l̂

r2

))
(20)

Then we found separate solutions to the 3 unknown parameters by using
several images of the Colour Chart patches. For the Response Function Γ−1 we
make comparisons at the same pixel position for different images while for the
anisotropy, U−1, we use different pixel positions on the same image.

(a) Ball Calib Image (b) Ball Reconstruction

Fig. 4. Reconstruction for one of the spheres used (in this case a ping-pong ball). We
can see that the reconstruction is quite good, and the surface obtained is very smooth.

4 Experimental Evaluation

For the evaluation we used an oblique-viewing endoscope with a single light
source located at the end of the scope tip which has a 4 millimetres diameter.
The light source has a sickle shape and a thickness smaller than 1 millimetre. The
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endoscope distortion is about 40% and the FOV near 140◦. We compared our
estimation method with [4] using 3 geometric objects: 2 spheres (Ball and YBall)
and a cylinder (Roll) with a radius of 43, 18 and 26 millimetres, respectively.
Figure 4 shows an example of a reconstruction using the YBall. 30 images, 10
for each, were used in the evaluation. We also perform reconstructions for a knee
model in order to test our estimation with bone-like surfaces.

4.1 Results with Geometric Shaped Images

From the obtained images we performed the corresponding geometric approx-
imations of a sphere and a cylinder. These estimations were improved using
RANdom SAmple Consensus (RANSAC)[12]. The metrics used to test the ap-
proximations were the Mean Error from the distance of each pixel to the sphere
surface, its Standard Deviation and the percentage of Inliers.

Table 1. Comparison of our method incorporating the RD correction and the FOV
compensation against the original estimation method proposed by [4]

.

Algorithm Mean Error Std Deviation Inliers(%) Object (N◦ Images)

0.25 0.19 99 Ball(10)
Ours 0.26 0.25 99 YBall(10)

1.05 0.75 97 Roll(10)

0.30 0.24 99 Ball(10)
Wu [4] 0.31 0.25 98 YBall(10)

1.89 1.35 89 Roll(10)

In table 1 we compare the performance of our algorithm with [4]. For all
datasets used we obtained inferior values for Mean Error, Standard Deviations
and better values for the % of inliers. The results improved 20% in both spheres
and 80% in the cylinder. They are quite satisfactory. The improvement for the
cylinder is probably related with the FOV compensation as we can see in 5 where
we compare our test by the difference introduced in the reconstruction by the
FOV compensation. There is a noticeable quality loss in the periphery of the
cylinder reconstruction when not using the FOV compensation.

4.2 Results from Images of the Knee Model

In figure 6, although the irregularities presented along the reconstructed surface
resulting from the non-smoothness of the bone surface, its shape is inferred quite
accurately. The goal of this kind of reconstructions is to access the viability of
using it in endoscopic interventions were a surgeon could access in real time to
a robust 3D shape of the surface in study.



IX

(a) Original (b) Calibrated Image

(c) No FOV compensation (d) With FOV comp.

Fig. 5. Influence of the FOV compensation: (a)Original image. (b)Calibrated image,
we can see the difference in the radiometric response and in the anisotropy of the light
source. (c)Reconstruction method with RD correction. (d)the RD correction and the
FOV compensation were both used.

5 Conclusions

This paper presented an estimation method for near-lightning Perspective Shape
from Shading for Endoscopes and by taking into account the effect of high RD,
typical in Endoscopes, and also the reduced resolution in the periphery of the
image due to a wide FOV. The improvements to the PSFS state of the art are
the integration of RD estimation directly in the radiance equation and a new
smoothness constraint for wide view cameras. The framework used allowed us
to compare with good accuracy the reconstructions obtained. The experimental
results shown in general very small errors with our algorithm having a better
behaviour than the original proposed by [4]. By visually inspecting the recon-
struction results, our method shows a more robust reconstruction in the image
periphery as intended by the FOV compensation.
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