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Abstract

Stereo vision is broadly employed in robotics and intel-
ligent vehicles for recovering the 3D structure of the envi-
ronment. The scene depth is typically estimated by triangu-
lation after associating pixels between views using a dense
stereo matching approach. In the last few years, the im-
age resolution has steadily increased due to the advances
in camera technology. Unfortunately, achieving real-time
stereo using large size images is difficult because of the
computational cost of dense matching. An obvious solu-
tion is to re-sample the acquired input images, but this im-
plies decreasing the accuracy of depth estimates. We pro-
pose an alternative that consists in performing the stereo
reconstruction of the contour C where a pre-defined vir-
tual cut plane intersects the scene. This approach enables
a trade-off between runtime and 3D model resolution that
does not interfere with depth accuracy. The profile cuts C
are independently recovered using the SymStereo frame-
work that has been recently introduced in [1]. It is proved
through comparative experiments that SymStereo is partic-
ularly well suited for recovering depth along virtual cut
planes, outperforming state-of-the-art stereo cost functions
both in terms of accuracy and runtime.

1. Introduction
Stereo reconstruction consists in recovering the 3D

structure of a scene by associating pixels in two calibrated
images acquired from different viewpoints. The stereo ap-
proaches can be coarsely divided into two groups: sparse
stereo, that sparsely extracts features from the images and
then searches for corresponding locations in the other views
[13]; and dense stereo, that performs dense data association
between images by assigning to each pixel a disparity value
[11]. The matching process typically uses some type of sim-
ilarity measure to determine how likely pixels in different
views correspond [7].

Many autonomous systems employ stereo vision for re-
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Figure 1. Estimation of scene depth from rectified stereo. The
dashed lines are the depths corresponding to successive disparity
values (unit steps). The runtime can be decreased by considering
disparity steps that are greater than one (solid lines). Unfortu-
nately, in this case the red pixels will receive an inaccurate depth
label. A possible alternative is to sample the 3D space by a set
of virtual cut planes intersecting the baseline (yellow), and recon-
struct the curves where they meet the structure. This leads to a 3D
model that is coarser (not all image pixels are reconstructed), but
with the maximum possible depth resolution along the cut planes.

constructing the surrounding environment in order to ac-
complish navigation and detection tasks [6]. The chosen
stereo approach must run in real-time and provide depth es-
timates that are accurate enough to build an useful 3D map.
The accuracy of the depth estimates is mainly limited by the
computational cost of the matching, with the acquired input
images being often re-sampled to keep execution tractable.
As shown in Fig. 1, the runtime of dense stereo can be re-
duced by increasing the disparity sampling intervals, i.e. by
selecting integer disparities to be larger than unitary pixel
shifts. Unfortunately, this means decreasing the metric ac-
curacy of the final depth estimates, which is prejudicial for
many applications. Thus, and in order perform stereo over
high resolution images in real-time, we propose to sample
the 3D space by N virtual planes and detect the images of
the contours C where each cut plane intersects the scene
structure (see Fig. 2(b)). The reconstruction of theN profile
cuts C gives raise to a sparse 3D model of the scene with the
largest possible depth resolution (unitary pixel steps). The
runtime can be reduced by decreasing the number of virtual
cut planes, leading to a coarser scene model but with the



same depth resolution.

(a) Image I (b) 3D model (c) Image I′

Figure 2. The figure shows the stereo pair, I and I′, and a 3D
model of the scene structure. In (b) the virtual cut plane Π (yel-
low) passes between the cameras, and intersects the structure in a
non-continuous 3D curve C (magenta). The SymStereo approach
is used for determining the image of the profile cut C that is over-
laid in magenta in (a) and (c).

Let’s consider a particular virtual plane Π and the cor-
responding profile cut C. The profile cut can be easily re-
constructed by finding the contours where C is projected
in the two views (see Fig. 2). Remark that, since Π in-
duces an homography relation, then each image pixel has a
unique disparity hypothesis. Thus, the image of C can be
determined by looking for extrema in a stereo cost function
defined across the possible disparities.

Instead of relying in a standard matching cost, we ap-
ply the SymStereo framework [1] for detecting the image of
the profile cut C using exclusively symmetry analysis. This
is possible because, since the virtual plane Π is assumed
to pass in between the cameras, the homography mapping
of one view into the other gives raise to a warped image
that is mirrored with respect to the locus where C is pro-
jected. As discussed in [1], the symmetry cue has a global
character that is advantageous in handling low textured re-
gions where photo-consistency based metrics are often non-
discriminative. According to experiments using the Middle-
bury dataset, SymStereo is significantly better for estimat-
ing depth along independent cut planes than state-of-the-art
stereo cost functions [7].

It is important to refer that SymStereo was first intro-
duced in [1] for reconstructing the ”line cuts” where virtual
planes meet planar surfaces in the scene. In here, the Sym-
Stereo framework is used for recovering arbitrary profile
cuts. Moreover, we provide a formal proof of the mirroring
effect, and discuss how the virtual cut planes relate with the
disparity space image (DSI) [14]. Finally, we present new
experiments using the Middlebury dataset, that show for the
first time that symmetry outperforms photo-consistency for
the purpose of sparse stereo reconstruction.

1.1. Structure and Notation

The paper is organized as follows: Section 2 explains
the rendering of symmetric images, provides a formal proof
for the mirroring effect, and discusses how the virtual cut
planes are mapped into the DSI [14]. Section 3 introduces
the log-Gabor wavelets used for quantifying signal symme-

try [8], and demonstrates how the detection of more than
one profile cut can be implemented efficiently. Section 4
applies the SymStereo framework in the reconstruction of
sparse profile cuts of the scene. The results are compared
against state-of-the-art matching costs.

We denote scalars by italics, e.g. s , vectors by bold char-
acters, e.g. p, P, matrices in sans serif font, e.g. M, im-
age signals in typewriter font, e.g. I, and curves by calli-
graphic symbols, e.g. C. Unless otherwise stated, we use
homogeneous coordinates for points and other geometric
entities, e.g. an image point with non-homogeneous coordi-
nates (p1, p2) is represented by p ∼

(
p1 p2 1

)T
, with

∼ denoting equality up to a scalar factor. [v]× refers to the
skew symmetric matrix defined by the 3-vector v, and I3×3

is the 3× 3 identity matrix.

2. Stereo From Induced Symmetry

The plane sweeping algorithm was first introduced by
Collins [3] for finding matches across multiple images with-
out the need of rectification. It has been widely used in
dense depth estimation due to its simplicity and computa-
tional efficiency. The basic idea consists in sampling the
3D space by a family of parallel virtual planes, back-project
the images onto these planes, and find the locations where
the back-projections are most similar. Ideally, these lo-
cations correspond to the intersection points of the plane
with the imaged surfaces, which enables depth recovery.
Stereo matching over rectified stereo [11] can be under-
stood as a particular instance of plane-sweeping, with the
virtual planes being fronto-parallel to the cameras, and each
plane corresponding to a disparity hypothesis. The Sym-
Stereo approach for stereo reconstruction relates with plane-
sweeping in the sense that it also samples the 3D space by
virtual planes. However, there are two major differences:
(i) exclusively virtual planes that intersect the baseline in
a point between the cameras are considered; (ii) the pixel
association, instead of being performed using direct photo-
similarity, is implicitly achieved based on symmetry cues.

2.1. The Mirroring Effect

Works using plane sweeping consider virtual planes
passing between the cameras a degenerate configuration to
be avoided [5]. The reason is as follows: Let I be the left
stereo image and Î be the result of warping the right image
I′ by the plane homography of the virtual cut plane (see
Fig.2). Since the virtual plane crosses the baseline, I and
Î are mirrored one with respect to the other around a con-
tour C, which corresponds to the projection of the 3D curve
where the plane cuts the scene (the profile cut).

Following this, and as shown in Fig.3, the sum of I and
Î yields an image signal Is that is locally symmetric around
the cut contour C. In a similar manner, the subtraction of Î



(a) Is = I + bI (b) Ia = I− bI
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Figure 3. Is and Ia are symmetric and anti-symmetric image signals generated from the stereo pair of Fig. 2 (just the overlapping part
between the two views is shown). They are rendered by adding and subtracting I with bI, that is the result of warping I′ by the homography
induced by Π. Fig. 3(c) shows the intensity level of Is and Ia for three distinct epipolar lines (blue, green and red). The intersections
with the contour C can be identified with almost no ambiguity by searching the pixel locations for which the top and bottom 1D-signals are
respectively symmetric and anti-symmetric. The convolution of Is and Ia with the log-Gabor wavelets yields Es and Ea. The final energy
E is computed by pixel-wise multiplication of Es and Ea to highlight pixel locations for which both symmetry and anti-symmetry arise.

from I gives raise to an image signal that is anti-symmetric
at the exact same location. Thus, we propose to detect C,
and implicitly recover the depth information, by searching
for common pixel locations where Is and Ia are respec-
tively symmetric and anti-symmetric. As shown in Fig.3,
this seems to be a highly discriminative cue for stereo.

2.2. Formal geometric proof
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Figure 4. Geometric derivation of SymStereo. We assume rectified
stereo with the entire analysis being carried in an arbitrary epipolar
plane. The camera centers C and C′ are separated by a distance
b > 0 (the baseline length), and the world coordinate system is
assumed to be coincident with the reference frame of the left view.
For the sake of graphical clarity the points are projected behind the
optical centers.

This section derives and analyzes the proposed symme-
try cue for the case of rectified stereo [4]. As shown in
Fig. 4, the reference frame centers C and C′ of the two
cameras are aligned. Thus, the relative camera rotation is
R = I3×3 and the translation is

t =
(
b 0 0

)T
.

Consider that the virtual cut plane is represented by the ho-
mogeneous vector

Π ∼
(
n1 n2 n3 −h

)T
.

The plane Π intersects the 3D line going through C and C′

that can be parametrized using the so-called Plücker coor-
dinates [9]. Knowing that the line direction and momentum
are respectively u = t and v = 0 (the line goes through
the origin), it comes that the intersection point O is

O ∼
(
−[0]× t
−tT 0

)
Π ∼

(
h
n1

0 0 1
)T
.

Let β be the ratio of the distances CO and CC′. The cut
plane Π passes between the cameras iff the following con-
dition holds

0 <
(
β =

O1

b

)
< 1 ⇐⇒ b n1

h
> 1. (1)

A generic point P is projected onto the stereo images
in points p and p′. Since we are assuming rectified stereo,
then the non-homogeneous coordinates p2 and p′2 must have
the same value y. Moreover, it can be proved [4] that

P ∼
(
b
dp
p1

b
dp
p2

b
dp

1
)T

, (2)

where dp denotes the disparity between left and right views

dp = p1 − p′1. (3)

In addition to the generic point P, consider the point Q,
that lies on the same epipolar plane and also belongs to Π.
Let q and q′ be the projections of Q onto the stereo pair.
The signed distances between the images of the two points
are defined as

g = p1 − q1
g′ = p′1 − q′1

(4)

In general, the order of corresponding points in the two
views is the same and the distances g and g′ have the same
sign. However, there are singular stereo situations for which



the ordering constraint is not verified. In this case we are in
the presence of a double nail illusion, that typically arises
in scenes with thin foreground objects or narrow holes [12].

The virtual cut plane Π defines an homography H that
can be used to map points p′ of the right image into points
p̂ in the left image. Given the relative camera pose and the
planar surface coordinates, it follows that [9]

H ∼
(
I3×3 +

t nT

h

)−1

∼

1 + bn1
h−bn1

bn2
h−bn1

bn3
h−bn1

0 1 0
0 0 1

 ,

(5)
with n =

(
n1 n2 n3

)T
. By making p̂ ∼ H p′, we

easily conclude that the first non-homogeneous coordinate
of the map result is

p̂1 =
(

1 +
bn1

h− bn1

)
p′1 + ky,

where ky is a constant for points sharing the same epipolar
line y. From Eq.4 it yields that p′1 = g + q1. By replacing
in the expression above, it comes that

p̂1 =
(

1 +
bn1

h− bn1

)
q′1 + ky︸ ︷︷ ︸bq1=q1

+
(

1 +
bn1

h− bn1

)
g′.

The homography H transforms q′ into q because the 3D
point Q lies in the cut plane Π. Thus, the signed distance
between the image point q and the mapped point p̂ is

ĝ = p̂1 − q1 =
(

1− bn1

h

)−1

g′ (6)

For the case of the virtual plane Π going between the
stereo views, the condition of Eq.1 holds, and the distances
g′ and ĝ have always opposite signs. Thus, whenever g
and g′ have the same sign, the points p and p̂ are located
on opposite sides of q, which leads to the mirroring ef-
fect described previously. The only cases for which the ho-
mography map does not induce a reflection with respect to
the cut contour C are the situations of double nail illusion
[12]. This is a singularity of the SymStereo framework, that
rarely happens and henceforth will be ignored.

2.3. Interpreting the cut planes in terms of the DSI

The DSI can be understood as a function from R3 into
R that assigns to each pixel (q1, q2) and possible disparity
dq a scalar matching cost that reflects the likelihood of the
hypothesized disparity being correct [14]. Let us now dis-
cuss how a virtual cut plane Π is related to the DSI. The
homography defined by a particular cut plane Π implicitly
establishes a range of possible disparity values for each im-
age pixel. It can be proved from Eq.5 that, for the images of

a point Q lying on Π, the following holds

q′1 = (1 +
bn1

h
) q1 +

bn2

h
q2 +

bn3

h
.

Replacing q′1 in the computation of the disparity dq yields

dq =
bn1

h
q1 +

bn2

h
q2 +

bn3

h

The equation above specifies a plane in the 3-
dimensional space parametrized by (q1, q2, dq). Thus, each
virtual cut plane Π gives raise to a planar surface Γ in the
DSI domain, that has homogeneous representation

Γ ∼
(
bn1
h

bn2
h −1 bn3

h

)T
.

In our experiments we will assume a pencil of virtual cut
planes Πθ that intersect in a vertical axis going through
the midpoint of the baseline (θ indicates the rotation around
the axis). The corresponding plane surfaces in the DSI are
parametrized by

Γλ ∼
(
2 0 −1 −λ

)T
,

with λ = 2 tan(θ). λ is chosen to be integer valued, so
that for given a plane Γλ, each pixel p in the left view will
correspond to a particular integer disparity hypothesis dp,
and hence to a particular pixel p′.

3. Evaluating Signal Symmetry
This section shows how to use log-Gabor wavelets for

the quantification of symmetry and anti-symmetry along
image rows, and how this task can be implemented effi-
ciently if more than one virtual cut plane are considered.

3.1. Symmetry analysis using log-Gabor wavelets

The localization of the contour C requires quantifying
the symmetry and anti-symmetry of Is and Ia along the
epipolar lines. This is achieved using the approach pro-
posed by Kovesi [8], that applies log-Gabor wavelets with
pre-specified scales k for measuring the image signal sym-
metry and anti-symmetry at every pixel location. The lo-
cal spectral information is computed by using two filters in
quadrature.

Let us consider a row r of the symmetric image Is. We
must quantify the signal symmetry at every pixel location i
in order to find the point belonging to the contour where C
is projected. The amount of symmetry can be measured by
using a similar energy function to that used by Kovesi [8]

Es(i)r =
∑n−1
k=0 | sk(i) | − | ak(i) |∑

k Ak(i)
(7)

with sk(i) and ak(i) being the real and imaginary parts of
the convolution of the image row r with the 1-D log-Gabor



!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~ ω

σi

ω0

σ0

ωn−1

σn−1

iωω0

 Frequency/ Space

ωn−1 ω i

 Frequency/ Space

χ

Figure 5. (Qualitative) space-frequency behavior of the log-Gabor
wavelet for a shape-factor χ. σi represents the filter spatial extent,
and ω0 is the center frequency of the mother wavelet. Low wavelet
scales k are well suited for the analysis of high-frequency signals
(texture) with short spatial extent; on the contrary, high scales k
are appropriate for low-textured regions with large spatial extent.

wavelet logGk, and n is the number of different wavelet
scales used. The energy is computed as the sum of the
difference between even and odd responses across wavelet
scales. The normalization by the sum of the magnitudes Ak
of the filter responses provides invariance to changes in illu-
mination. Note that in a location i of symmetry the response
of sk is high and the response of ak is low. By following the
same reasoning, an anti-symmetry energy Ea is defined by
summing the differences between odd and even responses
across wavelet scales. Fig. 5 provides an intuition of the
way the wavelet scale k relates with the space-frequency
behavior of the log-Gabor filter for the case of a constant
shape-factor χ.

As shown in Fig. 3, the convolution of the image Is with
the log-Gabor wavelets gives raise to a symmetry energy
Es. An equivalent procedure is followed for generating an
anti-symmetry energy Ea from Ia. It can be observed that
in both cases there are several local maxima that preclude a
correct detection of the relevant contour using a single type
of energy. The pixel-wise multiplication of Es and Ea leads
to E where the pixel locations with both types of energy
are clearly highlighted. This joint energy E is the output
of the SymStereo pipeline that will be often referred in the
subsequent sections.

3.2. Efficient implementation for the case of a ver-
tical pencil of cut planes

As described previously, a set of N virtual cut planes in-
tersecting the baseline in its midpoint will be used to recon-
struct sparsely the 3D scene. We will show in this section
that SymStereo can be implemented efficiently without re-
quiring the rendering of the images Is and Ia for each cut
plane.

From Eq.5, and assuming a virtual cut plane belonging
to the vertical pencil and whose axis intersects the baseline

in its midpoint, comes that

Hλ ∼

−1 0 −λ
0 1 0
0 0 1

 , (8)

This particular homography corresponds to a reflection
(mirrorring) about the origin and a horizontal shift of λ (pro-
portional to the rotation θ of the virtual cut plane).

In Section 3.1 we referred that the signals sk and ak in
Eq.7 are obtained by a 1D convolution of an image row r
of Is = I + Î with the log-Gabor kernels logGk at scale
k 1. Since the convolution is a linear operator, we can first
perform the convolution of the rows of I and Î with logGk,
and then the addition. Moreover, as Î is computed using
Eq. 8, Î is simply a reflected and shifted version of I′. This
means that we only need to perform one convolution for the
N virtual cut planes, namely

[Rk, Ik] = I ∗ logGk[
R̂k, Îk

]
= Î0 ∗ logGk

where Rk (R̂k) and Ik (Îk) are the even and odd responses
of the 1D convolution, and Î0 is a mirrored version of I′

(corresponding to the plane Π0). Finally, sk and ak of the
various virtual cut planes are simply different combinations
of Rk (R̂k) and Ik (Îk) that depend on λ.

4. Experiments
This section evaluates the use of induced symmetry as

a matching cost. As described previously, SymStereo is
able to exclusively recover depth along a pre-specified cut
plane, which provides a new controlled manner for probing
into the 3D structure, useful for problems like piecewise-
planar reconstruction [1]. However, this feature can also
be achieved by adapting other methods in the literature.
This section evaluates the usage of induced symmetry as
a matching cost for reconstruction a virtual contour C
against other matching costs, namely Zero-mean Normal-
ized Cross-Correlation (ZNCC), Census filtering [16], and
the sampling-insensitive absolute difference of Birchfield
and Tomasi [2] in conjunction with background subtraction
by bilateral filtering [15] (BilSub/BT), that were rated as top
performers in a recent evaluation [7].

4.1. Quantitative evaluation

The methodology described in [7] is used as guide-
line for our experiments that compare SymStereo against

1It is important to refer that log-Gabor filters are analytical signals. This
implies that instead of directly convolving the images with the pre-defined
set n of wavelets, the filtering is achieved by taking the DFT of the rows
of Is and Ia, multiply by the log-Gabor kernels and then take the IDFT to
obtain the signals sk and ak . This operations are performed using the Fast
Fourier Transform (FFT), which is very efficient.



Figure 6. The experimental evaluation of the matching costs was
carried on these 15 Middlebury stereo images [10, 7] (only the left
image is shown), containing a wide variety of possible 3D scenar-
ios e.g. slanted surfaces, different textures, depth discontinuities.

.

ZNCC, Census and BilSub/BT. The choice of ZNCC is jus-
tified by its popularity, whereas BilSub/BT because it is one
of the best parametric matching costs of [7]. The Census
filter was selected because it proved to be the top similar-
ity measure for dense disparity estimation [7]. We decided
to use a local stereo method for the final disparity selection
because: (i) local aggregation is better suited for compar-
ing stereo cost functions because it is more straight forward
than global methods with many tuning parameters and so-
phisticated inference from priors; and (ii) it is better suited
for real-time applications. Since we only analyze the 3D
space along a virtual cut plane, the aggregation of the DSI
is accomplished by summing over a 9× 1 window (no hori-
zontal disparity aggregation is used). The points with lowest
cost are selected as being the image location of the profile
cut in the reference view.

For each matching cost, we manually tune their param-
eters using the 4 standard evaluation images of the Middle-
burry data set [11]: (i) in [7] the Census filtering is accom-
plished using a 9× 7 pixels window, we decided to use the
same window height and to tune the width; (ii) for ZNCC
we tuned the square window size; (iii) a similar procedure
is followed for choosing the log-Gabor scales for the sym-
metry detection [8]; and (iv) the BilSub/BT parameters are
the same as in [7]. After the tuning, the parameters are kept
constant for the rest of the experiment using the more recent
and challenging Middleburry stereo pairs [10, 7], see Fig. 6.

We assume a disparity range of 80 pixels for gray-level
images with an approximate size of 450 × 370 pixels. For
each input stereo pair we sample the 3D space by 31 vir-
tual cut planes with the angles θ being chosen such that the
distance between consecutive corresponding parallel planes
Γλ in the DSI is maintained constant. As described in Sec-
tion 2.3, each pixel on the image of the profile contour C
implicitly corresponds to a disparity hypothesis. This al-
lows us to evaluate the estimations by counting the number
of pixels of the image of C whose disparity differs by more
than 1 with respect to the ground truth. In this counting we
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Figure 7. Comparison of BilSub/BT, Census, ZNCC and Sym-
Stereo for the detection of the image of the profile contour C. The
evaluation was carried on 15 stereo pairs (see Fig.6), and for each
stereo pair 31 virtual cut planes ware considered. The graphics
show for each matching cost the mean percentage of incorrectly
assigned disparities over the virtual cut planes and the mean run-
times for processing 1 and 31 virtual planes.

exclude occluded image regions.
The average results in the detection of the profile contour

C are depicted in the graphics of Fig. 7. From Fig. 7(a) we
observe that, although SymStereo is a 1D metric and ZNCC
and Census are 2D metrics, the former is the top-performer
in terms of accuracy, with 2.1% less errors compared to
ZNCC, and 4.6% less errors compared to Census. Surpris-
ingly, the performance of Census is worst than ZNCC for
the detection of the contour C, which is in contrast with the
evaluation results of [7]. This means that ZNCC has more
discriminative power along a virtual cut plane than Census.
Concerning BilSub/BT, since it only analyzes a very small
1D neighborhood, there is not enough support to locate the
correct matches along the virtual plane. From the evaluation
we might conclude that SymStereo is specially well suited
for estimating depth along virtual cut planes, outperforming
state-of-the-art matching costs.

In addition to the performance of depth estimation of the
different matching costs, the runtime is also an important
issue for many applications e.g. autonomous vehicles and
robots. All matching costs were implemented in C++. The
runtimes were measured on an Intel Core Q720 1.6GHz
CPU laptop. Note that the runtime can vary on different
CPU architectures (including their relative sizes), and that
some implementation tricks can speed-up the matching pro-
cesses. However, this evaluation provides an approximate
idea about the computational effort. Fig. 7(b) illustrates
the mean runtime of the different matching costs over the
stereo data sets of Fig. 6, for one and for 31 virtual cut



(a) Results obtained using ZNCC (b) Results obtained using SymStereo

Figure 8. Qualitative evaluation of different matching costs for detecting the image of the profile contour C. The first row concerns the
Door dataset, the second row concerns the Pedestrian dataset, and the last row shows the 3D reconstructions obtained. In the first two rows
the 3D space was sampled by 31 virtual cut planes, while in the last row 161 were employed.

planes. In the case of a single virtual cut plane, the fastest
matching cost is ZNCC, approximately three times faster
than SymStereo and four times faster than Census. This
comes from the fact that before comparing directly match-
ing hypotheses in the two views, SymStereo and Census
need a pre-processing step: Census calculates a bit string
for each pixel, which encodes the intensity distributions in
the local neighborhood; while SymStereo starts by convolv-
ing the left and right views with the n log-Gabor wavelets
(see Section 3.2). After the first cut plane, Census and Sym-
Stereo only need pixelwise comparisons, which are fast,
while ZNCC continues to compare square windows in the
two views. Remark that the processing of 31 virtual cut
planes is more than 4 times faster using SymStereo than
ZNCC. BilSub/BT is comparatively very slow due to the
bilateral filtering. This aspect can eventually be improved
using an approximate separable implementation.

4.2. Qualitative evaluation

In this section, we compare ZNCC and SymStereo in im-
ages of scenes with high surface slant and/or regions of low
texture (see Fig. 8). We assume a disparity range of 350
pixels for gray-level images with an approximate size of
1280 × 1024 pixels. Since these images are roughly three
times larger than the images in the previous section (Fig. 6),
the parameters of the matching costs were tuned accord-
ingly.

In order to access the reconstruction accuracy, each pro-
file cut is projected in the two views (see Fig. 8). A correct

cut gives raise to a pair of image contours going through
corresponding image pixels.

The results are shown in Fig. 8. In the Door example
it can be seen that both ZNCC and SymStereo do a good
job in the floor surface. However, ZNCC clearly fails in re-
constructing the door and the white wall. SymStereo man-
ages that because of the global character of the symmetry
cue. In the Pedestrian example, SymStereo also outper-
forms ZNCC. Note that using SymStereo the low-textured
cloths of the pedestrian are accurately reconstructed, and
the high slant of the wall causes almost no difficulties.

5. Conclusions

The article describes a new stereo framework, dubbed
SymStereo, that uses symmetry for determining the scene
depth along virtual cut planes. The virtual cut planes consti-
tute a new manner of probing into the 3D structure, enabling
a trade-off between computational effort and sparseness of
reconstruction that preserves depth resolution. This is a use-
ful feature for applications in robotics and autonomous ve-
hicles that have simultaneous requirements in terms of time
and accuracy. Moreover, we provide convincing evidence
that symmetry is better suited than photo-consistency for
the purpose of sparse stereo. The experiments in recon-
structing profile cuts in Middlebury images clearly show
that SymStereo outperforms state-of-the-art matching costs
[7] both in terms of accuracy and computational overhead.
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