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Abstract

Affine Correspondences (ACs) are more informative than
Point Correspondences (PCs) that are used as input in
mainstream algorithms for Structure-from-Motion (SfM).
Since ACs enable to estimate models from fewer correspon-
dences, its use can dramatically reduce the number of com-
binations during the iterative step of sample-and-test that
exists in most SfM pipelines. However, using ACs instead of
PCs as input for SfM passes by fully understanding the re-
lations between ACs and multi-view geometry, as well as by
establishing practical, effective AC-based algorithms. This
article is a step forward into this direction, by providing a
clear account about how ACs constrain the two-view geom-
etry, and by proposing new algorithms for plane segmen-
tation and visual odometry that compare favourably with
respect to methods relying in PCs.

1. Introduction
An Affine Correspondence (AC), denoted in this pa-

per by (x,y,A), consists in a Point Correspondence (PC)
across views plus a 2× 2 affine transformation A that maps
image points in the neighbourhood of x into image points
around y (see Fig 1). Since an affine map describes well
the warp undergone by a local image patch while the cam-
era moves, the concept of AC is broadly used for tracking
and/or matching points across views [1, 14], or estimating
similarity models as in [17], where local transformations are
exploited for geometrical alignment. However, and despite
ACs being often readily available, mainstream methods for
relative pose estimation, such as [21, 8, 7], use as only in-
put the PCs (x,y) completely disregarding the information
about local affine maps.

This fact has been noticed by previous authors that con-
ducted seminal research in jointly using PCs and affine
maps for Structure-from-Motion (SfM). Perdoch et al. [16]
and Riggi et al. [19] proposed to use ACs for generating ad-
ditional PCs and estimate the epipolar geometry. However,
these new matches are mere approximations that do not nec-

Figure 1: Images I1 and I2 are provided by two cameras
related by R, t that observe the same scene. They are used
for extracting point (z,w) and affine (x,y,A) correspon-
dences. In this configuration, since the tangent plane to the
surface in points x and z is the same, both the point match
and the AC are compatible with homography H.

essarily correspond to correct PCs. Koser [11] studied the
relationships between ACs and homographies and advanced
a single point method to compute the relative pose between
a plane and a camera [10]. Recently, Bentolila and Fran-
cos proved that 1 AC puts 3 constraints on the fundamental
matrix [3]. Despite these seminal works, neither the theory
relating ACs with multi-view geometry is fully understood,
nor exist practical algorithms such that ACs can become an
effective alternative to PCs in SfM pipelines.

The most obvious benefit in using ACs is that models
can be estimated from fewer correspondences. Thus, and
since SfM pipelines invariably comprise an iterative step of
sample-and-test (e.g. RANSAC [6]), robustness and com-
plexity can dramatically improve by reducing the number
of possible combinations, as it happened in the past with
the introduction of minimal solvers [15]. These advantages
can be specially useful for applications with high combina-
torics as it often arises in problems of multi-model fitting or
single-model fitting with high percentages of outliers. Ex-
amples for the former are applications in plane detection
[18] or multibody SfM [20], and for the latter the case of
SfM in scenes dominated by deformable surfaces [13]. This
article starts by investigating how ACs constrain two-view
geometry deriving both new and known relations in a uni-
fied, systematic way. Also, it uses the new relations and in-
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sight to propose algorithms for detecting planes in the scene
and recovering the camera relative pose using ACs. The
contributions can be summarized as follows:
Characterization of the family of homographies compat-
ible with an AC: It is well known that the affine mapping A
is equal to the Jacobian of the homography H induced by the
plane tangent to the 3D surface containing the image point
[10, 9, 11, 3]. This paper shows that an AC is compatible
with a 2-parameter family of homographies containing H,
that not all correspondences are compatible with this family,
and that 2 additional PCs, or 1 extra AC, define a particular
instance of this family that can be estimated in closed-form.
Although some of these facts have already been stated by
Koser [11] and Chum et al. [4], we provide more clear, in-
tuitive derivations that lead to explicit formulas, generalize
results, and give new insights on the topic.
Epipolar geometry from ACs: It is shown in [3] that each
AC puts 3 constraints on the parameters of the fundamen-
tal matrix, having derived these constraints for the case of
the image coordinates being centred in the correspondence.
This article derives these 3 constraints without requiring any
change of coordinates. The advantages of these new equa-
tions are twofold: first, the constraints can be used for both
essential and fundamental matrix estimation; and second,
the well known 5-point and 7-point algorithms [15, 8, 7] can
be applied with almost no changes to determine the epipolar
geometry from ACs. In this case we simply substitute the
bilinear relations arising from 5 or 7 PCs by the new con-
straints arising from 2 or 3 ACs, respectively.
Image plane segmentation using ACs: The article derives,
for the first time, the constraints that must be verified by
a PC or AC to be compatible with the 2-parameter fam-
ily of homographies associated with an initial AC. These
constraints have a clear geometric interpretation and can be
used as a metric for segmenting correspondences according
to planes present in the scene. Comparative experiments
show the benefits of this direct metric with respect to so-
phisticated global multi-model fitting approaches [12] using
the 4-point algorithm for homography estimation [8].
Visual odometry using ACs: We propose an algorithm
for estimating the essential matrix from 2 ACs that is ex-
tensively tested against the 5-point method [21] in real se-
quences. This work provides for the first time convincing
experimental evidence that ACs are a viable alternative to
PCs for visual odometry and can be highly advantageous in
the presence of many outliers as it happens in scenes with
multiple moving objects and/or deformable surfaces.

2. Geometric Relations between ACs and Ho-
mographies

In this section, theoretical results on the relationship be-
tween ACs and homographies are presented. We start by
reviewing background concepts and afterwards show how

additional PCs and ACs constrain the homography.
Consider the setup of Fig 1 where two cameras, related

by a rotation R and a translation t, observe a scene, originat-
ing images I1 and I2. Let (x,y,A) be an AC such that the
patches surrounding x and y are related by a non-singular
2× 2 matrix A, with

x =
[
x1 x2

]T
,y =

[
y1 y2

]T
,A =

[
a1 a3
a2 a4

]
. (1)

For a point correspondence (u,v) in the patch, it comes that

v = Au+ (y − Ax). (2)

Let us also assume that the patches are related by an ho-
mography

H ∼

h1 h4 h7
h2 h5 h8
h3 h6 h9

 , (3)

such that in non-homogeneous coordinates

v = f(u) = δ−1
u

[
h1u1+h4u2+h7 h2u1+h5u2+h8

]T
,

(4)
where δp = h3p1 + h6p2 + h9. As first proposed by Koser
et al. in [10, 9], approximating Eq 4 using the first-order
Taylor expansion around x yields v = f(x)+Jf (x)(u−x),
where Jf is the Jacobian of f . Knowing that f(x) = y, the
expression can be written as

v = Jf (x)u+ (y − Jf (x)x). (5)

Relating Eq 2 and 5, it can be seen that A = Jf (x), mean-
ing that the affine transformation A is the Jacobian of the
homography defined in point x.

2.1. 2-Parameter Family of Homographies

The result introduced by Koser et al. [10, 9] allows the
homography to be defined as a function of the AC. From
y = f(x), two constraints on the parameters of the homog-
raphy are obtained. This allows (h7, h8) to be written as[

h7
h8

]
=

[
(h3 − h1)x1 + (h6 − h4)x2 + h9
(h3 − h2)x1 + (h6 − h5)x2 + h9

]
. (6)

Replacing this result in Eq 4, the Jacobian becomes

Jf (x) = δ−1
x

[[
h1 h4
h2 h5

]
− y

[
h3 h6

]]
, (7)

which, since Jf (x) = A, yields that[
h1 h4
h2 h6

]
= δxA+ y

[
h3 h6

]
. (8)

Replacing the results of Eq 6 and 8 in the homography 3, it
comes that the AC (x,y,A) induces a two-parameter family
of homographies H defined as

H ∼ δx
[
A y − Ax
0 1

]
+

[
y
1

] [
h3 h6 h9 − δx

]
. (9)



Note that this is a two-parameter family since, although
there are 3 unknowns, there are only 2 degrees-of-freedom
(DOFs) because H is defined up to scale. Several authors
[10, 9, 3] suggest to make h9 = 1 in order to fix the scale
factor, which has the drawback of not avoiding singular con-
figurations. H is non-singular whenever A is full rank and
δx 6= 0. In order to assure that H is always full rank, we
introduced the following change of parameters:g3g6

g9

 =

 1 0 0
0 1 0
x1 x2 1

h3h6
h9

 , (10)

which leads to

H ∼ g9
[
A y−Ax
0 1

]
+

[
y
1

] [
g3 g6 −x1g3−x2g6

]
.

(11)
Making g9 = 1 fixes the scale factor and avoids singular
configurations, yielding

H(g;x,y,A) =

[
A+ ygT y − (A+ ygT)x

gT 1− gTx

]
, (12)

with g =
[
g3 g6

]T
.

In case H is a perspectivity, there are 4 solutions that
can be determined by solving two second-order equations
in g that force the first and second columns of H to have the
same norm and be orthogonal. Note that this generalizes
the result by Koser and Koch [10] that requires the origin of
plane coordinates to be coincident with x.

2.2. Using PCs to Constrain the Homography

The two-parameter family of homographies in Eq 12 can
be further constrained by using PCs. Consider an additional
match (z,w), as depicted in Fig 1, which is used to deter-
mine the homography H(g;x,y,A) by estimating g. Al-
though at first (z,w) may appear to provide two constraints
in H that should suffice to uniquely determine g, this is not
the case as proven next.

Assume that (z,w) is compatible with H such that

k
[
wT 1

]T
= H(g;x,y,A)

[
zT 1

]T
, (13)

with k being a scale factor. From Eq 12, it comes in a
straightforward manner that k = gT(z − x) + 1, which,
by replacing in Eq 13, yields

(w − y)(z− x)Tg = A(z− x)− (w − y). (14)

Two important facts arise from Eq 14. The first is that since
(w−y)(z−x)T is a rank-1 matrix, it can be concluded that
a point match (z,w) only puts one constraint in g. Thus,
two point correspondences are required to fully constrain
H(g;x,y,A). The second fact is that the span S of matrix

(w−y)(z−x)T is 1-dimensional, with S = λ(w−y),∀λ ∈
R, which means that H is compatible with (z,w) iff A(z−
x) − (w − y) ∈ S. In other words, (z,w) is compatible
with the homography H iff the following holds

(w − y)TPA(z− x)=0, with P=

[
0 1
−1 0

]
(15)

Note that the geometric meaning of Eq 15 is that vectors
c1 = A(z − x) and c2 =

[
w2 − y2 −(w1 − y1)

]T
must

be orthogonal. This finding allows using the angle between
c1 and c2 as an error metric for checking compatibility be-
tween a PC and an homography induced by an AC. PCs not
verifying Eq 15 cannot lie in a plane that contains the 3D
point that gives rise to the AC. Although the condition is
necessary but not sufficient to assure coplanarity, it can be
used as an error metric for plane segmentation or tracking
tasks. Section 4.1 validates the practical usefulness of the
metric in a planar segmentation experiment.

2.3. Estimating the Homography using ACs

Instead of using PCs, an additional AC can be applied
to further constrain the homography H(g;x,y,A). Let
(z,w,B) be an extra AC that lies in the same plane as
(x,y,A), or that corresponds to the same plane tangent to
the surface in the point of correspondence. This implies
that there must be a choice of parameters g,m such that
H(g;x,y,A) = kH(m; z,w,B), where k is a scale factor.

Considering the homography as represented in Eq 12, the
relations k=1+gT(z−x) and g=km are obtained. Replac-
ing in Eq 12, and making M=

(
(z−x)Tg

)
B, it comes

kH(m;B, z,w)=

[
B+M+wgT w−Bz−Mz−gTxw

gT 1− gTx

]
.

(16)
Since it is known that H(g;x,y,A)=kH(m; z,w,B), the
following system of six equations is obtained

A−B−(w−y)gT−M = 0
y−Ax−(w−Bz) + (w−y)xTg+Mz = 0

. (17)

This allows the computation of the 2 unknown terms of the
homography, g, from linear least squares. Therefore, re-
placing in Eq 12 or 16, H becomes fully determined.

As previously observed, each AC yields 6 constraints on
the parameters of the homography H. Thus, two distinct
ACs yield 12 restrictions, allowing 4 constraints to be writ-
ten in the terms of (x,y,A) and (z,w,B) because the ho-
mography has only 8 DOFs. Using the first matrix equation
of system 17 to substitute M and (w−y)gT in the second,
it yields two conditions as the one in Eq 15 in the terms
of A and B, respectively. This is expected since, by con-
struction, the point match of one AC is compatible with the
homography induced by the other. The remaining two con-
straints can be obtained by determining g from e.g. the first



two equations in the first matrix equation and replacing the
solution in the last two. After some algebraic manipulation,
this procedure yields the last matrix equation in System 18.
Thus, the 4 conditions for (x,y,A) and (z,w,B) to be com-
patible with the same homography are

(w − y)TPA(z− x) = 0
(w − y)TPB(z− x) = 0[

s+a2b3−a3b2 −(a1b3−a3b1)
a2b4−a4b2 s−(a1b4−a4b1)

]
︸ ︷︷ ︸

L

(w−y) = 0, with

s= [−a2+b2 a1−b1](w−y)−(a1b2−a2b1)(x1−z1)
(x2−z2)

.

(18)
Note that, as reasoned for Eq 15, the last matrix constraint
means that both vectors lT1 and lT2 , corresponding to the first
and second rows of the 2 × 2 matrix L, respectively, must
be orthogonal to (w−y). Thus, in this case, there are 4
different angles that can be combined to provide an error
metric of compatibility between two ACs and an homogra-
phy. Since more information is being included, this metric
should be more robust than the one computed solely from
PCs. Experiments in Section 4.1 on planar segmentation
confirm this hypothesis.

3. Epipolar Geometry using ACs
It has recently been shown by Bentolila and Francos

[3, 2] that one AC yields 3 linear constraints on the terms
of the fundamental matrix F. Their method follows a se-
quence of steps including: (i) coordinate shifting so that the
origin is the center of an AC; (ii) estimation of the epipole
location ep by intersecting 3 conics computed from the 3
ACs; (iii) estimation of two PCs through line intersection
for finding an homography H; (iv) computing F = [ep]× H.
This method does not make direct use of the linear con-
straints since they were derived only for the AC centred in
the origin, requiring many small steps to achieve an estima-
tion of F. Also, it is not clear how it could be adapted to the
calibrated case, for the estimation of the essential matrix E.

We propose a new formulation for the estimation of the
epipolar geometry from ACs by deriving the linear con-
straints in the original coordinate system. The new method
does not require any of the steps proposed in [3], being
much more straightforward and easier to implement. More-
over, it can be applied both to the uncalibrated and cali-
brated cases.

It is known that an homography compatible with a funda-
mental or an essential matrix verifies the condition HTT +
TTH = 0, for T = F,E, respectively. We will derive the
constraints for the case of E, with

E =

e1 e4 e7
e2 e5 e8
e3 e6 e9

 . (19)

Consider the 2-parameter family of homographies induced
by an AC (x,y,A) in Eq 12. The matrix equation HTE +
ETH = 0 yields 9 equations, 6 of which are linearly inde-
pendent and can be written as

q1 q2 g3 0 0 0 0 0 0
0 0 0 q3 q4 g6 0 0 0
q3 q4 g6 q1 q2 g3 0 0 0
q5 q6 γ 0 0 0 q1 q2 g3
0 0 0 q5 q6 γ q3 q4 g6
0 0 0 0 0 0 q5 q6 γ


︸ ︷︷ ︸

N

e = 0, (20)

where γ depends on the unknown g, γ=1−g3x1−g6x2,
qi, i = 1, . . . , 6 are defined as q1=a1+g3y1, q2=a2+g3y2,
q3=a3+g6y1, q4=a4+g6y2, q5=y1γ−a1x1−a3x2 and
q6=y2γ−a2x1−a4x2, and e is the vectorization of E by
columns. Due to the sparse nature of matrix N, it is possi-
ble to combine the 6 equations in order to eliminate the two
unknowns g3, g6. Right-multiplying the system of Eq 20 by
the following matrix C

C=

 x21 x22 x1x2 x1 x2 1
−g6x21 −x2(g6x2−2) −x1(g6x1−1) −g6x1 1−g6x2 −g6

−x1(g3x1−2) −g3x22 −x2(g3x1−1) 1−g3x1 −g3x2 −g3


(21)

yields three equations that only depend on the terms of the
AC (x,y,A): x1y1 x1y2 x1 x2y1 x2y2 x2 y1 y2 1

a3x1 a4x1 0 y1+a3x2 y2+a4x2 1 a3 a4 0
y1+a1x1 y2+a2x1 1 a1x2 a2x2 0 a1 a2 0

 e=0

(22)
It can be seen that, as expected, the first equation corre-
sponds to the point match. It is also important to note that
the simplicity of matrix N is due to the change of vari-
ables that was performed when representing the homogra-
phy (Eq 10). Moreover, solving for g using the first two
equations in system 20 and substituting in the third, yields,
after some algebraic manipulation, det(E) = 0.

All the derivations obtained up to this point are valid both
for the essential and fundamental matrices. Thus, since one
AC provides three linear equations in the form of Eq 22, the
7-DOFs matrix F can be determined from 3 ACs and the 5-
DOFs matrix E from a minimum of 2 ACs. A total of 9 and
6 equations are obtained in the uncalibrated and calibrated
cases, respectively, meaning that either the 8-point or the
7-point solvers [8] can be used in the former case and the 6-
point or 5-point solvers [21] in the latter. Section 5 presents
experiments on the estimation of the essential matrix using
5 PCs and 2 ACs, in both rigid and non-rigid scenarios.

Note that Eq 20 can be interpreted the opposite way:
suppose we know the epipolar geometry, E or F, and an
AC, and wish to find the homography H compatible with
both. Rewriting Eq 20 for isolating the unknown g, a non-
homogeneous system of 6 equations linear in the terms of g
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Figure 2: Experiment on planar segmentation using 5 dif-
ferent methods: A: 4 points UFL, B: 1 AC + 2 points UFL,
C: 2 AC UFL, D: 1 AC + 2 Metric, E: 2 AC Metric. Seg-
mentation errors and computation times are shown for each
method. Planes are identified with colors and the reference
AC is depicted with a lighter shade of the same color.

is obtained. Solving for g and substituting in Eq 12, allows
for H to be fully determined.

4. Experiments in Homography Estimation
This section reports two experiments for testing the va-

lidity and usefulness of the theoretical results on homogra-
phies. The first one consists in performing planar segmenta-
tion on images that contain between 3 and 5 planes, both by
formulating the problem as an Uncapacitated Facility Lo-
cation (UFL)1 problem that can be solved using message
passing [12] and by using the novel error metrics proposed
in Sections 2.2 and 2.3. The second experiment assesses the
accuracy of homography estimation using 1 AC plus 2 PCs
and 2 ACs and compares it with the 4-point linear algorithm
applied in an MSAC-framework [24].

In all experiments, affine covariant features are extracted
with the Hessian Laplace detector [14, 25] using the VLFeat
library [26]. The affine part of the ACs, A, is refined by
minimizing the photo-geometric error for increasing the es-
timation accuracy. The maximum number of iterations in
the optimization was set to 10 in order to assure fast com-
putation. Point normalization a la Hartley is always used

1A global formulation (UFL) is much more effective for multi-modal
fitting than greedy generalizations of RANSAC such as [27].

before any linear estimation.

4.1. Segmentation of PCs and ACs

This experiment consists in the planar segmentation of
all visible planes in 30 randomly sampled pairs of images
from a sequence of the RGB-D dataset [22]. Ground truth
segmentation was obtained using the method proposed in
[23]. For each plane in an image pair, a reference AC
was chosen by selecting the one that yielded the smallest
photo-consistency error from the set of ACs belonging to
that plane. Since multiple planes are being segmented si-
multaneously, this task is a multi-model fitting problem that
can be cast as an UFL problem [12]. The goal is to assign
each correspondence (client) to an homography hypothesis
(facility), while simultaneously using as few hypotheses as
possible. Our data cost matrix is created using the sym-
metric transfer error [8], and homography hypotheses are
generated using the three minimal sets of 4 PCs, 1 AC plus
2 points (Section 2.2) and 2 ACs (Section 2.3). These three
methods are referred to as A, B and C in Fig 2, respectively.
Each homography hypothesis is generated by using the ref-
erence AC plus 3 PCs, 2 PCs or 1 AC randomly selected,
for methods A, B and C, respectively. For each plane, 50
hypotheses were generated from this procedure, yielding a
total of 50× no. of planes + 1 labels per image pair due to
the inclusion of the discard label.

An alternative way of performing planar segmentation is
by using the constraints derived in Sections 2.2 and 2.3 that
must be verified for an homography induced by an AC to be
compatible with a point match and another AC, respectively
(methods D and E in Fig 2). In this case, explicit estimation
of the homography is not required as only the constraint is
used. For the case of PCs, it consists in two vectors a and
b that must be orthogonal. Thus, for each point match the
error is simply e = 90−∠(a,b). When working with ACs,
a stronger error metric may be used. In this case, 4 angu-
lar constraints were derived, yielding 4 errors e which are
combined by taking their weighted mean that accounts for
the quality of the ACs, computed from photo-consistency.
In both cases, the constraints are computed between the ref-
erence AC and all remaining correspondences. Labelling
is performed by assigning correspondences that yield errors
below a pre-defined threshold (1◦ in our experiments) to the
plane and if a correspondence is assigned more that one la-
bel, the one that yielded the smallest error is chosen.

Segmentation errors and computation times are shown
for each method in Fig 2. The first conclusion is that the
proposed error metrics effectively segment all the planes in
the scene, being much more accurate and faster than the
more sophisticated UFL approach. Moreover, when formu-
lating the segmentation task as a UFL problem, it can be
seen that it is significantly better to use either the 1 AC plus
2 PCs or the 2 ACs minimal solutions than the 4-point al-
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Figure 3: Results of homography estimation for a 12-image dataset from [22] using 7 different methods: A: 4 points MSAC,
B: 1 AC + 2 points MSAC, C: 2 AC MSAC, D: 1 AC + 2 points Planar segmentation, E: 2 AC Planar segmentation, F: 1 AC
+ 2 points Planar segmentation & MSAC, G: 2 AC Planar segmentation & MSAC. Coloured boxplots were used for better
visualization, where the 4-point method corresponds to red and the methods using 1 AC + 2 points and 2 ACs are shown in
shades of blue and green, respectively. Rotation, translation and plane normal errors are given in degrees. For the last two,
the error is the angle between the estimated and ground truth vectors. The table shows the average number of iterations and
computation time of a pair of images. Inlier and outlier points and the reference AC are shown in blue, red and green.

gorithm. This is expected for two main reasons. The first is
that the former solutions require less correspondences to be
selected, increasing the probability of all correspondences
being in the same plane. The second is that as an AC im-
poses 6 restrictions on the homography as opposed to 2 for
a point match in method A, it is more likely that correct
solutions will be chosen for methods B and C.

4.2. Structure-from-Motion

The homography associated to the checkerboard plane in
Fig 3 is estimated for 12 different image pairs from dataset
[22]. For each one, a reference AC on the plane was chosen
as described in the previous experiment. The homography
H is estimated using 7 different methods, 5 of which rely
on the robust estimator MSAC [24] for selecting the inlier
correspondences. Methods A, B and C in Fig 3 consist on
using the reference AC and randomly selecting the rest of
the required correspondences for estimating H from 4 points
[8], 1 AC plus 2 points and 2 ACs, respectively. Methods
F and G correspond to methods B and C with a prior pla-
nar segmentation using PCs and ACs, respectively, with the
proposed metric. Finally, methods D and E are the sim-
plest since they perform planar segmentation and estimate
H from the inlier correspondences. The estimated homog-
raphy is decomposed into a rotation, a translation known up
to a scale factor and the plane normal. The test images con-
tain ground truth rotation and translation. The ground truth
plane equation is computed using the method presented in
[23]. Presenting information on the quality of the plane nor-
mal estimation is relevant since, as observed in Fig 3, there

are sets of matches that may provide homographies which
originate small errors in rotation and translation but esti-
mate the plane normal very poorly. This is very evident for
method A both due to the combinatorics of the problem and
because the reference AC only puts two constraints on H in
this case, meaning that there are homographies that do not
correspond to real scene planes that may originate minima
in the cost function of MSAC.

The results in Fig 3 also show that method E performs
better than method D, which is coherent with the results
from the previous experiment. When combining the seg-
mentation with an MSAC, a significant increase in the ac-
curacy is obtained, being this the best choice of methods for
the task of estimating H. Finally, the table shows that as the
minimum required number of matches decreases, less iter-
ations of MSAC are used, occurring an almost immediate
convergence when applying a prior segmentation step.

5. Experiments in Epipolar Geometry

The planar segmentation and homography estimation ex-
periments of the previous section make use of ACs extracted
solely from planes in the scene. In order to assess the va-
lidity of using ACs extracted from any kind of scene, an
experiment was conducted where the epipolar geometry is
estimated in sequences with planes, without planes, and hy-
brid. Moreover, motivated by the fact that our proposed
2-AC algorithm significantly reduces the combinatorics of
the essential matrix estimation problem when compared to
the state-of-the-art 5-point algorithm, we evaluated the per-
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Figure 4: Experiment on the estimation of E for 3 sequences of the dataset from [22]. The number of input correspondences
was reduced from 100 to 50, 25 and 12, and outliers were injected so that they constituted 0%, 30%, 60%, and 90% of
the input set, originating 16 different configurations. For each sequence, color plots of the RMS rotation and translation
errors are included, where the colors between the 16 error values were obtained by interpolation, for visualization purposes.
Computational time for the complete sequences and average number of iterations of MSAC per image pair are shown.

formance of both methods in the presence of outliers and/or
few input matches. Such conditions may occur in scenarios
with very low textured surfaces where it is difficult to ex-
tract features and/or much deformation caused by the move-
ment of pedestrians, vegetation in the wind, etc. Thus, in
the first experiment we injected outliers and decreased the
size of the data set, while in the second two real sequences
dominated by large deformations were considered.

A total of 6 equations in the form of Eq 22 are obtained
from 2 ACs. Our proposed method selects 5 out of the 6
equations for generating up to 10 solutions for E using the
solver [21] and the remaining - that must be one correspond-
ing to a point match - for selecting the best solution using
the reprojection error. The 5-point algorithm used is the one
proposed in [21]. As a final step for both methods, an itera-
tive refinement was performed with the inlier matches.

The first experiment reports results on 3 sequences from
[22], where the first only contains planes, the second con-
tains both planar and non-planar objects and the third does
not have any planar surfaces (Fig 4). The size of the data set

was reduced from 100 correspondences down to 12 by ran-
domly sampling data points from the original set, and out-
liers were injected by adding noise sampled from a uniform
distribution of mean 0 and standard deviation 5 pixels. In
Fig 4, results are shown for our proposed method and for the
5-point algorithm using as input the PCs from the extracted
ACs. However, we also performed tests by using as input
SIFT features and 6 PCs extracted from the 2 ACs, as pro-
posed in [3]. These results are not shown because they com-
pare unfavourably to the 5-point and 2-AC algorithms, re-
spectively. For the first case, using SIFT features provides a
decrease in computational time of about 20% but originates
a decrease in accuracy of approximately 9% in translation
and 25% in rotation. When extracting points from the ACs,
besides this extra overhead, the average error also increased
(3.8% in translation and 19.6% in rotation). From Fig 4 it
can be seen that the 5-point algorithm is slightly superior
when working with large input sets and low percentages
of outliers, being, however, similar to the proposed 2-AC
method for the first sequence. This implies that the quality
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Figure 5: Experiment on the estimation of the essential matrix for a 220-image sequence (trajectories on the left) and a
600-image sequence (trajectories on the right) from the dataset presented in [5]. The estimation was performed for the left
and right channels of the stereo pairs independently. The trajectories recovered for each channel, for the proposed 2-AC
algorithm and the 5-point algorithm are identified with colors. For each sequence, an example showing the inlier (blue) and
outlier (red) points is given. The stereo pair channel and used method are identified with a coloured circle.

of the ACs in this sequence is higher. Another important ob-
servation is that our method is significantly more resilient to
outliers and small data sets. As an example, the RMS error
in translation never exceeds 25◦ while the 5-point algorithm
frequently reaches errors over 60◦. Concerning the number
of MSAC iterations, it becomes clear that the large decrease
in the size of the minimum set of correspondences from 5
to 2 significantly favours a robust estimator. In relation to
computational time, the discrepancy is not so evident due to
the overhead of AC refinement. However, for large data sets
with high percentages of outliers, the 2-AC method still is
computationally more efficient.

The last experiment shown in Fig 5 compares the per-
formance of the 5-point algorithm with the proposed 2-AC
method in two sequences dominated by strong deformations
[5]. They were acquired with calibrated stereo cameras, al-
lowing the estimation of E individually for each channel.
Results show that the trajectories obtained with our method
are much more similar and smoother than the ones obtained
with the 5-point algorithm, suggesting the superiority of the
2-AC approach. This can be confirmed by the examples
that show how the 5-point method tends to select as inliers
matches that belong to pedestrians or moving objects. From
the known extrinsic calibration of the stereo cameras, it is
possible to compute the estimation error between left and
right channels, for each image. It was observed that similar
error distributions were obtained for both methods, with the
exception that the proposed method yields less outliers in
the distributions. For the first sequence, using 2 ACs and 5
PCs originated 6 and 22 outliers, respectively. For the sec-
ond, our method originated large errors in only 4 frames,
while the 5-point algorithm failed 14 times, of which 3 were
rotation errors over 30◦. It is important to note that small
between-channels errors are obtained whenever a method
incorrectly chooses inliers in the same moving objects. The
examples in Fig 5 show that this happens often for the 5-
point method, leading to trajectories that are not smooth.

The experiments reported in this section confirm that us-
ing 2 ACs as opposed to 5 PCs in the estimation of E brings
important benefits when dealing with scenarios where it is
difficult to extract valid correspondences.

6. Conclusions

We investigate the use of ACs in homography and epipo-
lar geometry estimation and show that both can be accom-
plished from as few as 2 ACs, benefiting hypothesis-and-
test schemes. The geometric insights provided two new er-
ror metrics that proved to be very useful in the clustering of
points in planes. Also, we derive, for the first time, the gen-
eral linear constraints for an AC to be compatible with an
epipolar geometry. A particular case for these constraints
was determined in [3, 2] that is only valid when the coordi-
nate system is centred in the AC. The proposed approaches
are successfully applied in planar segmentation and homog-
raphy estimation tasks, as well as in conventional SfM. In
the latter case, our method compares very favourably with
the state-of-the-art 5-point algorithm in the presence of high
percentages of outliers and/or small input data sets. As fu-
ture work, we intend to exploit the benefits of using ACs in
multi-model fitting for other applications such as piecewise-
planar reconstruction and visual odometry in the presence
of non-rigid or piecewise rigid structures. We believe it is
now possible to solve such problems, that have been tack-
led in [18] and [13] using stereo cameras, with monocular
cameras, providing a significant advance in the literature.

Acknowledgements
Carolina Raposo acknowledges the Portuguese Sci-

ence Foundation (FCT) for funding her PhD under
grant SFRH/BD/88446/2012. The authors also thank
FCT and COMPETE2020 program for generous fund-
ing through project VisArthro with reference PTDC/EEI-
AUT/3024/2014.



References
[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. International Journal of Computer Vision,
56(3):221–255, 2004. 1

[2] J. Bentolila and J. Francos. Homography and fundamental
matrix estimation from region matches using an affine er-
ror metric. Journal of Mathematical Imaging and Vision,
49(2):481–491, 2014. 4, 8

[3] J. Bentolila and J. M. Francos. Conic epipolar constraints
from affine correspondences. Computer Vision and Image
Understanding, 122:105 – 114, 2014. 1, 2, 3, 4, 7, 8

[4] O. Chum and J. Matas. Homography estimation from cor-
respondences of local elliptical features. In Pattern Recog-
nition (ICPR), 2012 21st International Conference on, pages
3236–3239, Nov 2012. 2

[5] A. Ess, B. Leibe, K. Schindler, and L. van Gool. A mo-
bile vision system for robust multi-person tracking. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’08). IEEE Press, June 2008. 8

[6] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981. 1

[7] R. Hartley. In defense of the eight-point algorithm. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
19(6):580–593, Jun 1997. 1, 2

[8] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 1, 2, 4, 5, 6

[9] K. Koser, C. Beder, and R. Koch. Conjugate rotation: Param-
eterization and estimation from an affine feature correspon-
dence. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8, June 2008. 2,
3

[10] K. Koser and R. Koch. Differential spatial resection - pose
estimation using a single local image feature. In D. Forsyth,
P. Torr, and A. Zisserman, editors, Computer Vision ECCV
2008, volume 5305 of Lecture Notes in Computer Science,
pages 312–325. Springer Berlin Heidelberg, 2008. 1, 2, 3

[11] K. Kser. Geometric estimation with local affine frames and
free-form surfaces. PhD thesis, University of Kiel, 2009.
http://d-nb.info/994782322. 1, 2

[12] N. Lazic, B. J. Frey, and P. Aarabi. Solving the uncapacitated
facility location problem using message passing algorithms.
In Y. W. Teh and D. M. Titterington, editors, Proceedings of
the Thirteenth International Conference on Artificial Intel-
ligence and Statistics (AISTATS-10), volume 9, pages 429–
436, 2010. 2, 5

[13] M. Lourenco, D. Stoyanov, and J. P. Barreto. Visual odome-
try in stereo endoscopy by using pearl to handle partial scene
deformation. In Augmented Environments for Computer-
Assisted Interventions, volume 8678 of Lecture Notes in
Computer Science, pages 33–40. Springer International Pub-
lishing, 2014. 1, 8

[14] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Gool. A com-

parison of affine region detectors. International Journal of
Computer Vision, 65(1-2):43–72, 2005. 1, 5

[15] D. Nister. An efficient solution to the five-point relative pose
problem. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(6):756–770, June 2004. 1, 2

[16] M. Perd’och, J. Matas, and O. Chum. Epipolar geometry
from two correspondences. In Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, volume 4,
pages 215–219, 2006. 1

[17] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spa-
tial matching. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR ’07. IEEE Conference on, pages 1–8, June
2007. 1

[18] C. Raposo, M. Antunes, and J. Barreto. Piecewise-planar
stereoscan:structure and motion from plane primitives. In
Computer Vision ECCV 2014, volume 8690 of Lecture Notes
in Computer Science, pages 48–63. Springer International
Publishing, 2014. 1, 8

[19] F. Riggi, M. Toews, and T. Arbel. Fundamental matrix esti-
mation via tip - transfer of invariant parameters. In Pattern
Recognition, 2006. ICPR 2006. 18th International Confer-
ence on, volume 2, pages 21–24, 2006. 1

[20] K. Schindler and D. Suter. Two-view multibody structure-
and-motion with outliers through model selection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
28(6):983–995, June 2006. 1

[21] H. Stewénius, C. Engels, and D. Nistér. Recent develop-
ments on direct relative orientation. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 60:284–294, June 2006.
1, 2, 4, 7

[22] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 5, 6, 7

[23] C. Taylor and A. Cowley. Parsing indoor scenes using rgb-d
imagery. In Proceedings of Robotics: Science and Systems,
Sydney, Australia, July 2012. 5, 6

[24] P. H. S. Torr and A. Zisserman. Mlesac: A new robust esti-
mator with application to estimating image geometry. Com-
puter Vision and Image Understanding, 78:2000, 2000. 5,
6

[25] T. Tuytelaars and K. Mikolajczyk. Local invariant feature
detectors: A survey. Found. Trends. Comput. Graph. Vis.,
3(3):177–280, July 2008. 5

[26] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.
vlfeat.org/, 2008. 5

[27] M. Zuliani, C. S. Kenney, and B. S. Manjunath. The multi-
ransac algorithm and its application to detect planar homo-
graphies. In Image Processing, 2005. ICIP 2005. IEEE In-
ternational Conference on, volume 3, pages III–153–6, Sept
2005. 5

http://www.vlfeat.org/
http://www.vlfeat.org/

