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Abstract

This article presents a general approach for the active
stereo tracking of multiple moving targets. The problem is
formulated on the plane, where cameras are modeled as
”line scan cameras” and targets are described as points
with unconstrained motion. We propose to control the ac-
tive system parameters in such a manner that the images of
the targets in the two views are related by an homography.
This homography is specified during the design stage and
implicitly encodes the tracking behavior. It is shown that
this formulation leads to an elegant geometric framework
that enables to decide about the feasibility of a particular
active tracking task. We apply it to prove that two cameras
with rotation and zoom control, can track up to three mo-
ving targets, while assuring that the image location of each
target is the same for both views. In addition, the framework
is also useful for devising tracking strategies and deriving
the required control equations. This feature is illustrated
through a real experiment on tracking two independent tar-
gets using a binocular stereo head.

1. Introduction
Active tracking is a part of the active vision paradigm

[15, 2], where visual systems adapt themselves to the obser-
ved environment in order to obtain extra information or per-
form a task more efficiently. Active tracking consists in con-
trolling the degrees of freedom (DOF) of robotized cameras,
such that specific scene objects are imaged in a certain man-
ner. An example of active tracking is fixation, where camera
control assures that the gaze direction is maintained on the
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same object over time.
Fixation can be performed with either one camera (mo-

nocular fixation) or two cameras (binocular fixation). The
former typically employs a pan-tilt-zoom (PTZ) camera
such that the point of interest is aligned with the optical
axis and projected at the image center (fovea) [17].The latter
usually considers a stereo head [1], with the point of inte-
rest being foveated by intersecting the optical axes of both
cameras at the exact target location (the vergence/fixation
point). Since the fixation point lies in the horopter [8],
many binocular systems use target disparity between reti-
nas as feedback control signal [6]. In general, and at the
low image level, fixation can be formulated as a regulation
control problem that does not require explicit target iden-
tification or expensive image processing [3]. However, the
ability to fixate can be helpful in simplifying a broad range
of high-level vision tasks (e.g., object recognition [12], 3D
reconstruction [16] and robot navigation [10]).
While fixation concerns tracking a single object or point

of interest, our article addresses the problem of using an
active stereo setup to simultaneously track N > 1 free mo-
ving targets. Sommerland and Reid have recently proposed
an information theoretical framework for tracking multiple
targets with multiple PTZs [14]. However, they address pro-
blems like sensor-target assignment, camera hand-off and
zoom control without missing new objects, whereas the fo-
cus of our work is towards extending the classical binocular
fixation framework for the case multiple points of interest.
We aim to push the single focus of attention paradigm, typi-
cal of binocular fixation, towards a more general multi-focal
attention framework [5].
In this paper we show that it is possible to control the

cameras parameters such that the two views of the N tar-
gets are related by an homography. This homography H -
henceforth called the configuration homography - is speci-
fied in advance, and maps points of interest in one image,
into corresponding points of interest in the other image. A
suitable choice of H can either ensure that the N objects



are simultaneously visible in both images, and/or enforce a
particular relation between views that can simplify certain
high-level visual tasks. This formulation leads to a geo-
metric framework that, for a particular stereo configuration,
desired homographyH, and number of targetsN , enables to
decide about the feasibility of the tracking task and derive
the relevant constraints on the control parameters.
The problem is fully formulated in the plane, with the

cameras being modeled as ”line scan cameras”, and the
targets being described as 2D points. Such simplified mo-
del is often used in binocular fixation algorithms, where the
control in tilt assures the alignment between the object and
the plane defined by the camera optical axes [1], allowing
for the tracking in that plane. For the case of multiple target
tracking, the alignment in tilt is often impossible to achi-
eve (e.g. for N > 3 the points of interest are in general
non-coplanar). However, and for practical purposes, we can
always consider projecting the 3D target motion onto the
plane defined by the camera optical axes. We will show that
this solution is particularly effective for indoor applications,
where trajectories are usually parallel to the ground plane.
Although the focus of this paper is placed on active trac-

king, our framework has a wider scope for application. Our
work can potentially be used in any system where collabo-
rative inter-image processing is acomplished/facilitated by
proper camera placement and orientation, as the same geo-
metric principles apply.

2. Notation and Background
We do not distinguish between a projective transforma-

tion and the matrix representing it. Matrices are represented
by symbols in sans serif font, e.g. M, and vectors by bold
symbols, e.g. Q. Equality of matrices or vectors up to a
scalar factor is written as ∼. Points and lines, unless sta-
ted otherwise, are represented in projective homogeneous
coordinates.
Vectorization of matrix equations: Let Y, A, X and B

be rectangular matrices such that

Y = AX B .

The equality above can be re-written as

vec(Y) =
(
BT ⊗ A

)
vec(X),

where ⊗ denotes the Kronecker product while vec(X) and
vec(Y) are the column-wise vectorizations of matrices X
and Y (c.f. chapter 4 in [9]). It is also convenient to keep in
mind the following property of the Kronecker product

(AB)⊗ (CD) = (A⊗ C) (B⊗ D) .

Vector representation of conic curves: Consider a
point in the plane, with homogeneous coordinates

X =
(
x y z

)T
,

Figure 1. Line scan camera model where OXY is the world sys-
tem of coordinates. The camera is centered in C and rotated by
an angle θ with respect to the Y axis. The 2D point Q is projec-
ted into q in the line image. The dashed lines L(λ) represent the
pencil of back-projection.

and a conic curve represented by the symmetric matrix

Ω ∼
(

a b/2 d/2
b/2 c e/2
d/2 e/2 f

)
.

PointX is on the conic curve iff XT ΩX = 0. This second
order polynomial can be re-written in the following form

ωT X̂ = 0,

with X̂ being the lifted point coordinates ofX

X̂ =
(
x2 xy y2 xz yz z2

)T
,

and ω a vector representation of the conic curve

ω =
(
a b c d e f

)T
.

3. Modeling the Line Scan Camera
In this article the objects are described as free moving

points, and the cameras are modeled as ”line scan came-
ras” that can translate and rotate around an axis orthogonal
to the plane of motion. The geometry of uni-dimensional
cameras has already been studied under different contexts
of application [7, 4]. This section introduces the projection
and back-projection models that will be considered in the
remaining of the paper.

3.1. Projection Matrix
Fig. 1 shows a line scan camera with projection center

C =
(
Cx Cy 1

)T
,

and matrix of intrinsic parameters

K ∼
(

f 0
0 1

)
,

where f stands for the focal length. Without loss of ge-
nerality, it will be assumed that the origin of the image is
coincident with the principal point.



LetQ be a generic point in the plane, and q the 1D pro-
jective representation of its image. The projection for the
line scan camera can be carried as follows

q ∼ KR
(
I −C′) Q. (1)

I denotes the 2 × 2 identity matrix, C′ is the non-
homogeneous representation of the projection center and R
encodes the rotation of the camera by an angle θ:

R =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

The result of equation 1 is a 2×3 version of the standard
projection matrix for the case of 1-D cameras [8].

3.2. Back-Projection Pencil
Let’s now consider the problem of computing the back-

projection of an image point q. Define the matrix U such
that

U ∼
(

0 −1
1 0

)
.

Since U denotes a rotation by an angle of 90◦, it is easy to
verify that

qT Uq = 0, ∀q∈P1 .

By left multiplying both sides of equation 1 by qTU, it
follows that

qT U KR
(
I −C′)

︸ ︷︷ ︸
LT

Q = 0 .

L is a vector with length 3 that can be interpreted as the
homogeneous representation of a line in the plane. Since
L goes through Q and C, then it corresponds to the back
projection of the image point q.
Define λ such that

(
λ
1

)
∼ RT KT UT q. (2)

For each image point q there is a λ value that parametri-
zes the corresponding back-projection line according to the
formula

L(λ) ∼
(
I −C′)T

(
λ
1

)
.

L(λ) is the pencil of lines going through the camera center
C. It can be shown that for λ = 0 the line is parallel to the
X axis, while for λ = ∞ the line becomes parallel to the Y
axis (Fig. 1).

4. The Homographic Curve
We propose using a 1-D configuration homography H to

specify the desired tracking behavior. The idea is to control
the active stereo system such that the two views of the N

Figure 2. The homography H induces an homographic relation
between the back-projection pencils. It follows from Steiner’s the-
orem that corresponding lines in two homographically related pen-
cils intersect on a conic locus. Ω is called the homographic curve
of H because the images of any pointQ on Ω satisfy q2 ∼ Hq1.

targets are mapped one into the other by the homography
H. This section discusses the locus of points in the wor-
king plane whose stereo projections are related by a given
homography. We show that this locus is in general a conic
curve going through the two camera centers. The curve -
henceforth called the homographic curve - depends both on
the chosen H and on the configuration of the stereo setup.
Thus, the active tracking problem can be formulated as the
manipulation of the cameras parameters such that the ho-
mographic curve goes through the N free-moving targets.
Remark that the homographic curves generalize both the
horopter [8] and the iso-disparity curves proposed in [11].
The former is the homographic curve forH ∼ I, with points
being projected at the same location in both images. The
latter corresponds to the case of H being a 1-D translation
that shifts image points by a constant amount.

4.1. Image Homography and Pencil Homography
Fig. 2 shows two cameras with centersC1 andC2, rota-

tion matrices R1 and R2, and intrinsics K1 and K2. Let the
desired image homography be

H ∼
(

a b
c d

)
. (3)

H maps points q1 in the first view, into points q2 in the
second view

q2 ∼ Hq1.

Consider now the parametrization of the back-projection
pencils discussed in section 3.2. Each image point q is
mapped into a λ value that defines the corresponding back
projection line (equation 2). Let λ1 and λ2 be the parame-
ters associated with q1 and q2. By inverting equation 2 and
replacing q1 and q2 in the above equation, it arises

(
λ2

1

)
∼ RT

2 KT
2 UT HU K−T

1 R1︸ ︷︷ ︸
HL

(
λ1

1

)
.

The image homography H defines a correspondence
between back-projection lines. This correspondence is des-
cribed by HL that maps lines of the pencil going through



C1 into lines of the pencil going through C2. The equation
relating H and HL can be written in a vectorized form using
the approach described in section 2. It follows that

vec(HL) ∼ M F vec(H), (4)

whereM is a 4× 4 matrix depending of the rotation angles
θ1 and θ2

M ∼ RT
1 ⊗ RT

2 ,

and F is a matrix encoding the intrinsic parameters

F ∼ (K−1
1 ⊗ KT

2 ) (U−1 ⊗ UT)

∼
(

0 0 0 f2
0 0 −1 0
0 −f1 f2 0 0
f1 0 0 0

)

4.2. The Equation of the Homographic Curve
The homography H transforms points q1 into points q2

establishing an implicit correspondence between the respec-
tive back-projection lines. This correspondence is parame-
terized by the 1-D pencil homography HL, that maps lines
going through C1 into the lines going through C2. Let Q
be the intersection point of two corresponding lines. It fol-
lows that the images of Q in the two views must satisfy
the original image homography H. This means that the ho-
mographic curve that we are aiming is the locus of the in-
tersections points Q. According to Steiner’s theorem, two
homographically related pencils intersect into a conic curve
that goes through the centers of the pencils [13]. Thus, and
as illustrated in Fig. 2, the homographic curve associated
with H is always a conic Ω containing C1 and C2. Given
HL and the camera centers, the conic Ω can be computed in
a straightforward manner. The procedure is briefly outlined
below (for further details c.f. chapters 5 and 6 of [13]).
(i) Consider the line l going through the two centers.
Since the line belongs to both pencils, determine the
respective λ1 and λ2 values;

(ii) Use HL to map l into l2 in the second pencil, and H−1
L

to map l into l1 in the first pencil;
(iii) Compute point D where l1 and l2 intersect. It can be

shown thatD and l are pole-polar with respect to Ω

(iv) Find any two additional corresponding lines and de-
termine the intersection pointA lying on the conic;

(v) Let C1, D, C2 and A define a canonical projective
basis in the plane. For this particular parameterization
the conic curve is

Ω′ ∼
(

0 0 −1/2
0 1 0

−1/2 0 0

)

(vi) Determine the projective transformation S that maps
the points back to their Euclidean coordinates. The
final conic is

Ω ∼ S−T Ω′ S−1.

Ω depends both of the camera centers and the homo-
graphic relation HL between the pencils. Considering the
conic in its vectorized form ω, it follows that

ω ∼ N vec(HL) ,

with N being a function of the non-homogeneous coordina-
tes of C1 and C2

N ∼





0 0 −1 0
1 0 0 −1
0 1 0 0

−C1,y 0 C1,x+C2,x C2,y

−C2,x −C1,y−C2,y 0 C1,x

C1,y C2,x C1,y C2,y −C1,x C2,x −C1,x C2,y



 .

The map of the image homography H into its correspon-
ding homographic curve, is obtained by replacing vec(HL)
for the result of equation 4.

ω ∼ NM F vec(H) . (5)

Remark that the equation is nicely factorized in matrix N,
that encodes the position of the centers (or alternatively the
translational component of camera motion), matrix M, that
depends of the cameras rotations, and matrix F that is a
function of the optical parameters.

4.3. Discussion
This section further analyzes equation 5, in order to gain

insight about the homographic curve and its dependencies.
The product of matrices N and M is a 6 × 4 matrix, where
each column µi can be interpreted as the vectorized repre-
sentation of a conic.

NM ∼
(
µ1 µ2 µ3 µ4

)
.

Consider the focal lengths in F and the scalar entries of H
(equation 3). It follows from equation 5 that

ω ∼ d f2 µ1 − b µ2 − c f1 f2 µ3 + a f1 µ4 . (6)

Equation 6 denotes a linear system of conics with basis
µi, with i = 1, . . . 4 [13]. The equation shows that in ge-
neral an homographic curve ω belongs to a 4D subspace in
the space of all conics. This subspace is fully defined by
the kinematic configuration of the stereo setup, because the
conics µi in the basis only depend on the rotation and trans-
lation of the cameras. The coordinates of ω in the linear
system of conics are a function of the intrinsic parameters
and the desired configuration homography H.
Let V be the fixation point and T the point in the plane

that is projected at infinity in both views (Fig. 3(a)). If C1

and C2 are fixed points, then the coordinates of V and T
only depend on the rotation angles θ1 and θ2. It is curious
to verify that conics µi are rank 2 degenerate conics cor-
responding to pairs of lines in the plane. Moreover, and as



(a) C1, C2, V and
T

(b) µ1 (c) µ2 (d) µ3 (e) µ4

Figure 3. µi, i = 1, .., 4 are rank 2 degenerate conics and form the basis of the linear system of conics of equation 6. As shown in (b)-(e),
the pair of lines composing each degenerate conic go through points C1, C2, V (the fixation point) and T (the point at infinity). These
points encode the kinematic configuration of the active stereo system and implicitly define a 4D linear subspace in the space of all conics,
containing every possible homographic curve ω.
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Figure 4. Dependence between the homograhic curve and the selected homography H. The cameras are static and and the focal lengths are
constant and equal for both views (the linear subsystem of equation 6 is fixed). The entries of matrix H (equation 3) are changed in order
to observe different shapes for the conic ω

shown in Fig. 3 (b)-(e), these lines can be found by knowing
the locations of points C1, C2,V and T.

Fig. 4 shows the effect that the choice of the configura-
tion homography H has in shaping the conic ω. It considers
a particular kinematic configuration for the cameras such
that C1, C2, V, T are fixed points that implicitly define a
subspace in the space of all conics. Parameters f1 and f2

are assumed to be equal and constant. Fig. 4(a) concerns
the case of H being a diagonal matrix. The different co-
nics ω are generated by varying the ratio d/a. In this case
the configuration homography specifies a scaled mapping
between images, and the linear system of conics becomes a
conic pencil [13]. Since the pencil is defined by µ1 and µ4

that intersect at points C1, C2, V and T, then the homo-
graphic curve ω always goes through these points. In Fig.
4(b) the configuration homography specifies a disparity of
b pixels between the stereo pair of images. H is an eucli-
dean transformation that maps the point at infinity in the
first view, into the point at infinity in the second view. This
explains the fact of T being always in the conic ω. On the
other hand, and sinceH specifies a shift between images, the
image centers are not mapped one into the other. This is in
accordance with the observation that ω does not go through
the fixation pointV. Please note that the homographic cur-

ves of Fig. 4(b) are the iso-disparity curves discussed by
Pollefeys et al. in the context of stereo reconstruction [11].
Finally, Fig. 4(c) shows the homographic curves for the case
of H being a true projective transformation. Since b is zero,
the linear system of equation 6 becomes a conic net [13],
with point V being common to every member (the image
centers are always mapped one into the other).

The remaining sections discuss the usage of the fra-
mework to study the feasibility of a tracking task and find
the relevant control laws. The discussion is carried for two
different examples: the tracking of N targets with PTZ ca-
meras that undergo pure rotation motion (section 5); and the
tracking ofN objects using a binocular stereo head without
zoom control (section 6). Henceforth, we will assume the
configuration homographyH to be the identity I. In this case
the active tracking behavior assures that the N targets are
imaged at the same location in both views, which might be
an useful feature for many real application scenarios. Ple-
ase note that assuming H ∼ I does not imply a loss of ge-
nerality. The framework can be equally employed for diffe-
rent choices of the configuration homographies, motivated
by the need of meeting particular requirements of a certain
tracking problem.



5. Active Tracking with Two PTZ Cameras
Consider two PTZ cameras with centers C1 and C2.

Both cameras undergo independent pan rotation and have
zoom control that enables manipulating the ratio between
the focal lengths

ρ = f1/f2.

The degrees of freedom (DOF) of the active stereo sys-
tem are the ratio ρ and the rotation angles θ1 and θ2. The
goal is to track a set ofN free-moving targets in such a man-
ner that they are imaged at the same position in both views.
Since the configuration homography is H ∼ I, it follows
from equation 6 that the curve ω is always a member of the
conic pencil

ω ∼ µ1 + ρ µ4. (7)

In this case the homographic curve ω is the horopter of the
stereo setup [8]. The curve contains pointsV andT, which
depend on the cameras rotation angles, as well as the fixed
projection centers C1 and C2 (Fig. 3(b) and (e)). Since
ω is a function of ρ, θ1 and θ2, the problem can be stated
as controlling the system DOF such that the homographic
curve goes through the locations of the N targets.

5.1. Tracking for the case of N = 1

Let the target have coordinates Q at a certain time ins-
tant. From the previous discussion it follows that the pro-
blem is feasible if there is an homographic curve ω such
that: (

Q̂ Ĉ1 Ĉ2 V̂ T̂
)T

︸ ︷︷ ︸
A

ω = 0,

with ˆ denoting lifted point coordinates (c.f. section 2).
A is a 5 × 6 matrix that is function of θ1 and θ2 (this

dependency is due to pointsV andT). In general, A has an
uni-dimensional null space N (A), that can be interpreted
as a 6 × 1 vector representing a conic curve. This curve
belongs to the conic pencil of equation 7, because it goes
through the four intersections of µ1 and µ4. By replacing
ω by N (A) and solving with respect to ρ, it arises

ρ = (C2,x−Qx+(C2,y−Q1) tan θ2)(Qy−C1,y+(C1,x−Qx) tan θ1)
(Qy−C2,y+(C2,x−Qx) tan θ2)(C1,x−Qx+(C1,y−Qy) tan θ1)

The equation above is written in terms of the non-
homogeneous coordinates of C1, C2 and Q. Any triplet
of values (ρ, θ1, θ2) satisfying it, is an admissible solution
for the active tracking problem. Remark that the tracking is
still feasible for the situation of cameras without zoom con-
trol. In this case the ratio ρ is a constant and the equation
expresses a constraint over the rotation angles θ1 and θ2.

5.2. Tracking for the case of N = 2

Let Q1 and Q2 be the two free-moving targets. Repea-
ting the reasoning of the previous section, the tracking for
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Figure 5. Solutions for the case of N = 2: The set of feasible
solutions defines a 3D curve in the space of the control variables
(ρ, θ1, θ2). This curve depends on pointsQ1,Q2,C1 andC2.

the case ofN = 2 is feasible if there is a non-trivial solution
for the following equation

(
Q̂1 Q̂2 Ĉ1 Ĉ2 V̂ T̂

)T

︸ ︷︷ ︸
B

ω = 0

Unfortunately B is in general a 6 × 6 non-singular matrix.
However, and since the B is a function of the camera rota-
tion angles, the values of θ1 and θ2 can be chosen such that
the matrix becomes rank deficient. In this case the equation
admits a non-trivial solution ω ∼ N (B), with N (B) de-
noting the 1-D null space of B. Th solution ω ∼ N (B)
must satisfy the equality of equation 7, which leads to an
additional constraint involving the focal length ratio ρ.

{
det(B) = 0
N (B) ∼ µ1 + ρ µ4

Any solution (ρ, θ1, θ2) of the system of equations is a
feasible solution for the tracking problem. It assures that
the homographic curve goes through Q1 and Q2, and that
targets are projected in the same location in both images.
Each one of the above equations is a constraint on the con-
trol variables, defining a surface in the space of parameters
(ρ, θ1, θ2). The feasible solutions are points lying in the
locus of intersection of these two surfaces. Fig. 5 plots an
example of this locus for particular values of Q1, Q2, C1

and C2. Remark that for N = 2 the tracking problem still
has an infinite number of solutions. However, there are ran-
ges in ρ, θ1 and θ2 for which there are no feasible solutions.
Moreover, and unlike what happens for N = 1, the accom-
plishment of the tracking objectives requires controlling the
3 DOF of the active system (e.g. if the system had no zoom
control, then the tracking would not be in general possible).

5.3. Tracking for the case of N = 3

Repeating the approach, it follows that the solutions
(ρ, θ1, θ2) for the simultaneous tracking ofQ1,Q2 andQ3



must satisfy





det(C1...6) = 0
det(C1...5,7) = 0
N (C) ∼ µ1 + ρ µ4

,

where the numbers in subscript denote lines in the 7 × 6
matrix C

C ∼
(
Q̂1 Q̂2 Q̂3 Ĉ1 Ĉ2 V̂ T̂

)T
.

In general the system of equations has 8 solutions.
However, some of the triplets (ρ, θ1, θ2) are either redun-
dant or have no physical meaning (e.g. ρ < 0). We will
not pursue the discussion further but, and according to our
simulations, the tracking forN = 3 is usually achievable in
practice.
For N > 3 it is easy to verify that the constraints out-

number the DOF of the active system. This means that in
general there is no solution for the problem. Such conclu-
sion is not surprising because the homographic curve is a
conic defined by a maximum of 5 points. Thus, and taking
into account that ω must go through the two projection cen-
ters, the tracking for N > 3 is in general not feasible.

6. Tracking with an Active Stereo Head
This section discusses the tracking of multiple targets

using an active stereo head. The two cameras are mounted
on a robotic platform that rotates around an axis orthogonal
to the working plane. The rotation angle α places the ca-
mera centers at different pairs of antipodal points on a circle
with diameterB (the baseline). The two cameras have inde-
pendent pan rotation (angles θ1 and θ2), equal focal lengths,
and no zoom control.
We aim at tracking N targets assuming a configuration

homography H ∼ I. Since the focal lengths are equal, then
ρ = 1 and equation 6 becomes

ω ∼ µ1 + µ4.

The horopter of two cameras with the same intrinsic para-
meters is the well known Vieth-Müller circle [8]. Thus, the
above conic ω is a circle, containing points C1, C2,V and
T, as well as the circular points I and J [13, 8]. While in
section 5 the camera centers are fixed points, now points
C1 andC2 depend on the rotation angle α. This means that
µ1 and µ4 are a function of the DOF of the system α, θ1

and θ2. The fact that ω is a circle assures that point V is
aligned with the curve iff point T is also aligned. Hence-
forth, we will ignore T because it adds no information to
the problem.
The tracking of a single target Q is trivial. Let α take a

particular value such that C1 and C2 are antipodal points
of the circle of diameter B. The three pointsQ,C1 andC2

Figure 6. Simultaneous tracking of N = 2 targets. The platform
rotation placesC1 andC2 at antipodal positions on the circle with
diameter B. The horopter (the curve ω for H ∼ I) is the Vieth-
Müller circle that goes through the targets and the camera centers.

define a circle in an unique manner. Any choice of angles
(θ1, θ2) that aligns the fixation pointV with this circle is a
feasible solution for the tracking problem.

6.1. Tracking for the case of N = 2

Let Q1 and Q2 be target coordinates. The tracking pro-
blem is feasible iff there is a circle ω that simultaneously
goes through the targets and the pointsC1,C2 andV. This
means that the following equation must admit a non-trivial
solution

(
Q̂1 Q̂2 Î Ĵ Ĉ1 Ĉ2 V̂

)T

︸ ︷︷ ︸
D

ω = 0 .

The existence of a non-trivial solution requires matrix D to
be rank deficient. It follows that

{
det (D1...6) = 0
det (D1...5,6) = 0 ,

where the subscripts denote the matrix lines. The two
equations are constraints on the controllable parameters
(α, θ1, θ2). The first is a constraint only on α, and pro-
vides a single solution of practical significance. It implies
that the platform rotation is uniquely defined byQ1 andQ2

(Fig. 6). The second equation is a condition that is satisfied
by any pair (θ1, θ2) that places the fixation point on the cir-
cle defined by the targets and the camera centers. Therefore,
the simultaneous tracking ofN = 2 targets is a feasible pro-
blem, with a unique solution for the platform rotation, and
multiple solutions for the pan angles (θ1 and θ2 must only
assure thatV lies on ω)
Fig. 7 shows a pair of stereo frames acquired during a

real experiment in tracking two moving objects. The con-
trol was based on the discussion of the previous paragraph,
with the fixation point placed in the middle of the targets
in order to take full advantage of the cameras field of view.
Unfortunately, and due to space limitations, we neither pre-
sent details about control and singularities, nor discuss te-
chnicalities of the implementation. However, the results are
shown in the video provided as supplementary material. To
the best of our knowledge this is the first experiment in si-
multaneously tracking two free-moving targets with a stereo
head.



Figure 7. Simultaneous tracking of 2 moving objects using an ac-
tive stereo head. The control of the stereo head tries to project the
targets at the same horizontal location in both images (H ∼ I).
The workspace is 4 × 4m, the FOV=45◦, and B = 0.3m. The
image processing is based on color which explains the markers.
The head actuators are equipped with encoders enabling the re-
construction of the target positions by simple stereo triangulation.

6.2. Tracking for the case of N = 3

For the case of N = 3 the matrix D in the previous sec-
tion gives place to the 8× 6 matrix G

G ∼
(
Q̂1 Q̂2 Q̂3 Î Ĵ Ĉ1 Ĉ2 V̂

)T
.

Enforcing the rank deficiency would lead to two inde-
pendent constraints on the angle α (det (G1...6) = 0 ∧
det (G1...5,7) = 0) that are either impossible or do not have
a common solution. Thus, for N > 2 the tracking is not
feasible.

7. Conclusions
This article extends the active fixation framework for the

case of N > 1 points of interest. The tracking behavior
is specified by selecting a configuration homography that
defines how the stereo images of the targets should relate.
We show that the locus of points whose stereo projections
are consistent with an homography is a plane conic, and
that the tracking problem can be casted as the alignment
of this conic with the moving targets. This formulation is
quite convenient because it enables the systematic analysis
of the feasibility of a given tracking task, and the straight-
forward derivation of the relevant constraints and control
laws. These features were illustrated by showing that two
PTZ cameras can track up to N = 3 targets while keeping
them in the horopter. In addition, and to the best of our
knowledge, we also presented the first experiment in simul-
taneously tracking two targets with an active stereo head.
As future work, we intend to investigate the possibility

of using configuration mappings other than the homography
(e.g. second order functions), in an attempt to extend the
approach for the case of N > 3 targets. We also believe
that the application domain goes beyond robotics and sur-
veillance. The framework provides a powerful and insight-
ful geometric analysis that is also relevant for problems in
camera placement, camera networks, and stereo reconstruc-

tion (remark that the homographic curves generalize the iso-
disparity curves presented in [11]).
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