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Abstract

We study the epipolar geometry between views acquired
by mixtures of central projection systems including cata-
dioptric sensors and cameras with lens distortion. Since
the projection models are in general non-linear, a new rep-
resentation for the geometry of central images is proposed.
This representation is the lifting through Veronese maps of
the image plane to the 5D projective space. It is shown that,
for most sensor combinations, there is a bilinear form re-
lating the lifted coordinates of corresponding image points.
We analyze the properties of the embedding and explicitly
construct the lifted fundamental matrices in order to under-
stand their structure. The usefulness of the framework is
illustrated by estimating the epipolar geometry between im-
ages acquired by a paracatadioptric system and a camera
with radial distortion.

1. Introduction

A central projection camera is an image acquisition de-
vice with a single effective viewpoint. The vision sensor
measures the intensity of light traveling along rays that in-
tersect in a single point in 3D (the projection center). Exam-
ples of broadly used central projection systems are perspec-
tive cameras, central catadioptric systems [1], and cameras
with lens distortion. The projection in conventional per-
spective cameras is described by the pin-hole model where
scene points are linearly mapped into image points. Cor-
responding points in two perspective views must satisfy a
bilinear constraint that is usually represented by a 3×3 ma-
trix. The fundamental matrix encodes the calibration and
rigid displacement between views, and can be estimated
in closed-form using image correspondences. These facts
make the fundamental geometry one of the most popular
and useful concepts in computer vision. Unfortunately, the
projection model for central catadioptric systems and cam-
eras with radial distortion is non-linear in homogeneous co-
ordinates. The epipolar geometry between views acquired
by mixtures of these systems does no longer have a bilinear

form, which considerably limits their usefulness.
The first papers generalizing the epipolar geometry to

the non pin-hole case either assumed pre-calibrated systems
[13], or completely relied on non-linear iterative minimiza-
tion [15]. Closely related with the approach herein pre-
sented are the works of Geyer et al. [7], Sturm [12] and
Claus et al. [5]. Geyer et al. propose an image plane lifting
to a four dimensional ’circle space’ and prove that there is
a 4× 4 fundamental matrix encoding the epipolar geometry
between two paracatadioptric views. Sturm uses a slightly
different lifting strategy and derives the fundamental matri-
ces for mixtures of perspective, affine and paracatadioptric
cameras. In [5], Claus et al. propose the lifting of image
points to a six dimensional space to build a general purpose
model for radial distortion in wide angle and catadioptric
lenses. The epipolar geometry between distorted views is
represented by a 6 × 6 matrix. As stated by the authors,
their non-parametric model is algebraic in inspiration rather
than geometric. Therefore, they do not provide any insight
or geometric interpretation about the structure of the lifted
fundamental matrix.

In this paper we introduce a representation for the im-
age plane of central systems including catadioptric sensors
and cameras with distortion. The representation is similar to
the one proposed in [5], and consists in the lifting through
Veronese maps of the projective plane ℘2 to the 5D pro-
jective space ℘5 [11]. Our goal is to establish a unifying
framework for the geometry of general single viewpoint im-
ages. A full theory to lift points, lines, conics and conic
envelopes is presented. It is also shown how to transfer a
linear transformation from ℘2 to ℘5 as well as other geo-
metric relations. We prove that, for most combinations of
central projection views, there is a bilinear form relating the
lifted coordinates of corresponding points. Our embedding
theory is used to understand this lifted epipolar geometry
and explicitly construct the different fundamental matrices.
The main contributions can be summarized as follows:

• We establish a lifted representation of the image plane
and develop a full embedding theory to transfer geo-
metric entities and relations from ℘2 to ℘5.
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• We present the lifted fundamental matrices for differ-
ent mixtures of central projection systems. It is proved
for the first time that there is a lifted bilinear constraint
between images acquired by a perspective and hyper-
bolic camera as well as a parabolic sensor and camera
with lens distortion.

• The different fundamental matrices are presented in a
systematic manner and their structure is discussed. We
also provide a comprehensive geometric explanation
for the non existence of bilinear forms for hyperbolic
views other than the combination with a perspective.

2. Epipolar Geometry using Veronese Maps

Conventional perspective cameras, central catadioptric
systems, and cameras with radial distortion are vision sys-
tems with a single effective viewpoint. All these sensors
measure the intensity of light traveling along rays that in-
tersect in a single point in 3D (the projection center). Con-
sider a coordinate system attached to the camera such that
the R (rotation) and t (translation) describe its rigid dis-
placement with respect to the world reference frame. Any
visible 3D point X is mapped into a projective ray x = PX
with P = R[I|− t]. The 3×4 matrix P is the conventional
projection matrix, and we will say that x = (x, y, z)T is a
projective point in the Canonical Perspective Plane (CPP).

Consider the case of central catadioptric systems, where
x is mapped into the image point x′. The relation be-
tween these two projective points is provided in equation
1 where � is a non-linear function (equation 2) and Hc is a
collineation depending on the camera intrinsics, the relative
rotation between camera and mirror, and the shape of the
reflective surface. Function � is equivalent to a projective
mapping from a sphere to a plane as shown in Fig. 1 [6].
Parameter ξ in equation 2 depends on the mirror shape and
takes values in the interval ]0, 1].

x′ = Hc�(x) (1)

�(x) = (x, y, z + ξ
√

x2 + y2 + z2)T (2)

Equation 3 shows the correspondence between projec-
tive rays x and image points x′ for the case of perspective
cameras with lens distortion. Matrix Kc denotes the camera
intrinsic parameters and ð is a non-linear function modeling
the radial distortion. In this work the lens distortion is mod-
eled using the division model introduced in [4]. For now we
will assume that the coordinates system in the image plane
has origin in the distortion center that is known. The inverse
function of ð is provided in equation 4 where parameter ξ
quantifies the amount of radial distortion. Transformation ð

has a geometric interpretation similar to the popular sphere
model used for catadioptric systems. It can be proved that
function ð is isomorphic to a projective mapping from a
paraboloid to a plane (Fig. 1) [2].
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Figure 1. Geometric relation between views acquired by a cata-
dioptric system and a dioptric camera with radial distortion. The
3D point X is imaged in point x′ in the dioptric camera, and in
point y′ in the catadioptric image plane.

x′ = ð(Kcx) (3)

ð
−1(x′) = (x′z′, y′z′, z′2 + ξ(x′2 + y′2))T (4)

The type of central projection system is defined by the
value of parameter ξ. In the case of barrel distortion the
ξ is negative and ð is used. If ξ is positive then the sys-
tem is a catadioptric sensor. The parameter is unitary in the
parabolic case and ξ ∈]0, 1[ for hyperbolic/elliptical mir-
rors. For ξ = 0 both equations 1 and 2 become linear and
represent the well known pin-hole model for perspective
cameras.

2.1. Epipolar Geometry

This work aims to study the multi-view relations that
hold between images obtained with any mixture of central
projection systems. Fig. 1 shows two views of the same
3D point X acquired by a camera with lens distortion and
a central catadioptric sensor. If x ↔ y are corresponding
projective rays then they must satisfy yT Ex = 0 where
E = t̂R is the essential matrix. Since both � and ð are
invertible functions it follows from equations 1 and 2 that

(�−1(H−1
y y′)︸ ︷︷ ︸

y

)T EK−1
x ð

−1(x′)︸ ︷︷ ︸
x

= 0. (5)

It is broadly known that corresponding points in two per-
spectives satisfy a bilinear constraint called the fundamen-
tal equation. The fundamental relation is linear in homoge-
neous coordinates and can be represented by a 3× 3 matrix
F. Equation 5 is the equivalent of the fundamental relation
for two views acquired by a catadioptric sensor and a cam-
era with distortion. Due to the non-linear image mapping
the relation is no longer linear which limits its usefulness
when compared with the conventional fundamental matrix.

2.2. Lifting of Coordinates using Veronese Maps

A standard technique used in algebra to render a non-
linear problem into a linear one is to find an embedding



P-H Hyper. Parab. Dist.
P-H 9 1 3 3

Hyper. 1 0 0 0
Parab. 3 0 1 1
Dist. 3 0 1 1

Table 1. Dimension of the null space of matrix Ψ for pairs of views
acquired by different combinations of sensors (P-H = pin-hole;
Hyper = Hyperbolic; Parab = Parabolic; Dist = Radial Distortion).

that lifts the problem into a higher dimensional space. In
a certain extent the homogeneous representation is an em-
bedding of �2 into �3. Unfortunately the use of an ad-
ditional coordinate does no longer suffice to cope with the
non-linearity of equations 1 and 3. The present work aims
to overcome this problem and derive a bilinear fundamen-
tal relation that holds for general central projection systems.
We propose to embed the projective plane ℘2 in the five di-
mensional projective space℘5 using second order Veronese
mapping [11]. This polynomial embedding preserves ho-
mogeneity and is suitable to deal with quadratic functions
because it discriminates the entire set of second order mono-
mials. The lifting of coordinates can be performed by ap-
plying the following operator

Γ(x, x̄) = (xx̄,
xȳ + yx̄

2
, yȳ,

xx̄ + zx̄

2
,
yz̄ + zȳ

2
, zz̄)T

(6)
Operator Γ transforms two 3 × 1 vectors into a 6 × 1

vector. Equation 6 maps the pair of projective points x, x̄
into one, and only one, point in ℘5. This point lies on a pri-
mal of the 5D projective space called the cubic symmetroid
[11]. As shown in equation 7, Γ can also be used to map a
single point x into a point x̃ in the lifted space, lying on a
quadratic surface known as the Veronese surface [11]. The
Veronese surface V is a subset of the cubic symmetroid S.

x −→ x̃ = Γ(x,x) = (x2, xy, y2, xz, yz, z2)T . (7)

2.3. The Lifted Fundamental Matrix �

Fig. 1 shows a pair of corresponding image points x′ ↔
y′. The lifted coordinates of the two points are x̃′ and ỹ′

(equation 7). The idea of embedding the projective plane in
℘5 is to obtain a bilinear relation between the two views.
The goal is achieved if there is a 6×6 homogeneous matrix
� such that

ỹ′T
�x̃′ = 0. (8)

Consider the set of lifted correspondences x̃′
i ↔ ỹ′

i with
i = 1, 2 . . . N and N > 35. Matrix Ψ is obtained by stack-
ing the N lines corresponding to the Kronecker products

x̃′T
i ⊗ ỹ′T

i . The bilinear relation of equation 8 holds iff ma-
trix Ψ is rank deficient. If Ψ has a left null space then the
non-trivial solutions of equation 9 are solutions for the lifted
fundamental matrix �. x̃′T

1 ⊗ỹ′T
1

...
x̃′T
N ⊗ỹ′T

N


︸ ︷︷ ︸

Ψ

[
f11

...
f66

]
= 0 (9)

We planned a synthetic experiment to determine the
combinations of central projection sensors for which equa-
tion 8 holds. For each combination the two vision sensors
are placed in a virtual volume and a set of N points is gener-
ated assuming a random distribution (N � 35). Noise free
correspondences are obtained by projecting the 3D points
in both views. The lifted coordinates of the matching points
are used to build matrix Ψ. Tab. 1 summarizes for each
case the dimension of the left null space of Ψ. For most of
the sensor combinations there is a bilinear relation between
views. The only exception is whenever there is an hyper-
bolic sensor involved. In this situation equation 8 holds
only if the other view is acquired by a pin-hole. If one of the
views is a conventional perspective then there are multiple
solutions for the lifted fundamental matrix.

3. The Embedding in ℘5

In order to interpret the results of Tab. 1 and gain in-
sight about the structure of the lifted fundamental matrix,
we need to understand the way that geometric entities and
relations in the projective plane are embedded in ℘5.

3.1. Lifting Lines and Conics

A conic curve in ℘2 is usually represented by a 3 ×
3 symmetric matrix Ω. Point x lies on Ω iff equation
xT Ωx = 0 is verified. Since a 3 × 3 symmetric matrix
has 6 parameters, the conic locus can also be represented
by a 6 × 1 homogeneous vector ω̃, that is the lifted repre-
sentation of Ω in ℘5 (equation 10).

Ω =
[

a b d
b c e
d e f

]
−→ ω̃ = (a, 2b, c, 2d, 2e, f)T . (10)

Consider the rank 2 conic Ω = mlT + lmT composed
by two lines m and l. From equation 10 follows that the
corresponding lifted representation is

Ω = mlT + lmT −→ ω̃ = D̃Γ(m, l) (11)

where D̃ = diag{1, 2, 1, 2, 2, 1}. A single line n =
(nx, ny, nz)T is another example of a degenerate conic
curve Ω = nnT . Line n in the projective plane is mapped
into ñ in ℘5 as shown in equation 12.



n → ñ = D̃Γ(n,n) = (n2
x, 2nxny, n2

y, 2nxnz, 2nynz, n
2
z)

T

(12)
Conic Ω goes through point x iff the inner product of the

corresponding lifted representations is zero (xT Ωx = 0 →
ω̃T x̃ = 0). Additionally, if points x and x̄ are harmonic
conjugates with respect to Ω, then ω̃T Γ(x, x̄) = 0. The
embedding of the projective plane in ℘5 using Veronese
mapping creates a dual relation between points and conics.
Moreover, and since lines are degenerate conics of rank 1,
the duality between points and lines is preserved.

3.2. Lifting Conic Envelopes

In general a point conic Ω has a dual conic envelope Ω∗

associated with it [11]. The envelope is usually represented
by a 3×3 symmetric matrix. A certain line n is on the conic
envelope whenever it satisfies nT Ω∗n = 0. The conic en-
velope can also be represented by a 6 × 1 homogeneous
vector ω̃∗ (equation 13). In this case a line n lies on Ω∗ iff
the corresponding lifted vectors ñ and ω̃∗ are orthogonal.

Ω∗ =
[

a∗ b∗ d∗
b∗ c∗ e∗
d∗ e∗ f∗

]
−→ ω̃∗ = (a∗, b∗, c∗, d∗, e∗, f∗)T .

(13)
If matrix Ω∗ is rank deficient then the conic envelope

is said to be degenerate. There are two possible cases of
degeneracy: when the Ω∗ is composed by two pencils of
lines going through points x and x̄ (Ω∗ = xx̄T + x̄xT ),
and when the envelope is formed by a single pencil of lines
(Ω∗ = xxT ). The lifted representations are respectively
provided in equations 14 and 15.

Ω∗ = xx̄T + x̄xT −→ ω̃∗ = Γ(x, x̄) (14)

Ω∗ = xxT −→ ω̃∗ = Γ(x,x) (15)

3.3. Lifting Linear Transformations

The linear transformation H maps points x and x̄ in
points Hx and Hx̄. The operator Λ, that lifts transforma-
tion H from the projective plane to the embedding space
℘5, must satisfy the following relation

Γ(Hx,Hx̄) = Λ(H).Γ(x, x̄) (16)

Such operator can be derived by algebraic manipulation.

Λ( [ v1 v2 v3 ]︸ ︷︷ ︸
H

) = [ Γ11Γ12Γ22Γ13Γ23Γ33 ] D̃︸ ︷︷ ︸
H̃

(17)

It can be proved that the operator provided above verifies
the following properties

Λ(H−1) = Λ(H)−1

Λ(H.B) = Λ(H).Λ(B)
Λ(HT ) = D̃−1.Λ(H)T

.D̃
Λ(I3×3) = I6×6

(18)

Operator Λ maps any 3× 3 matrix H into a 6× 6 matrix
H̃. A pair of points in the plane is related by H, iff the
pair of corresponding lifted representations in ℘5 is related
by H̃ (y = Hx ↔ ỹ = H̃x̃). The set of transformations
H̃ = Λ(H) is the subset of linear transformations of ℘5

that fixes both the cubic symmetroid S and the Veronese
surface V. However, neither S nor V are fixed point-wise.
The transformation of points, conics and conic envelopes
are lifted in the following manner

y = Hx −→ ỹ = H̃x̃
Ψ = H−T ΩH−1 −→ ψ̃ = H̃−T ω̃

Ψ∗ = HΩ∗HT −→ ψ̃∗ = H̃ω̃∗
(19)

The operator Λ can be also be applied to lift correlations
in ℘2 [11]. A correlation G maps points x into lines n =
Gx. It can been easily proved that the corresponding lifted
coordinates are related by ñ = D̃G̃x̃.

4. Useful Relations in ℘5

The previous section shows how a linear transformation
in the original space ℘2 can be transferred to a linear trans-
formation in℘5. This section focuses on the non-linear fea-
tures of the mapping functions of equations 1 and 3. There-
fore, and without loss of generality, collineations Hc and
Kc will be ignored for clarity reasons.

The catadioptric projection of a line is in general a conic
curve [13, 6]. This is due to the non-linear characteristics
of function � (equation 2) that transforms points x in the
Canonical Perspective Plane (CPP) into image points x′.
We show that there is a linear correspondence between the
lifted representation of a line n and the conic curve where it
is projected. This result allows us to derive a linear relation
between an image point x′ and its back-projections in the
CPP. The discussion of the this section is of key importance
to interpret the results of Tab. 1.

4.1. Projection of Lines

Consider the central catadioptric sensor depicted in Fig.
1 and a plane Π defined by a 3D line and the system ef-
fective viewpoint O. The normal vector of Π is n =
(nx, ny, nz)T that can also be interpreted has a line pro-
jection in the CPP. Plane Π intersects the reference sphere
in a great circle that is projected from O′ into a conic curve
Ω′. The non-linear formula relating a line n in the CPP and
the image conic Ω′ is provided in [6]. If ñ and ω̃′ are the
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Figure 2. Back-projection of points in an hyperbolic sensor. The
projective ray associated with x′ intersects the unitary sphere in
two points. These points define two distinct back-projections x+

(forward looking direction) and x− (backward looking direction)

lifted coordinates of n and Ω′ then it is straightforward to
prove that equation 20 holds. The 6× 6 matrix ∆̃c of equa-
tion 21 transforms a line in the CPP into the corresponding
conic curve in the catadioptric image plane. Remark that the
structure of ∆̃c does not follow equation 17, which means
that there is no linear counterpart in ℘2.

ω̃′ = ∆̃cñ. (20)

∆̃c =


1−ξ2 0 0 0 0 −ξ2

0 1−ξ2 0 0 0 0

0 0 1−ξ2 0 0 −ξ2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ; ∆̃r =

 0 0 0 0 0 ξ
0 0 0 0 0 0
0 0 0 0 0 ξ
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 1


(21)

The projection of a line by a camera with lens distortion
is also a conic curve. Function ð of equation 4 is equiv-
alent to projecting the scene on the surface of an unitary
paraboloid and re-projecting from its vertex. As shown in
Fig. 1 a projective ray x going through the camera projec-
tion center O is mapped in x′ going through O′. In this case
plane Π, containing the original 3D line, cuts the reference
paraboloid in a great circle that is projected into a conic Ω′.
The lifted representations of the line n in the CPP and the
image conic are linearly related in ℘5 by ω̃′ = ∆̃rñ. The
6 × 6 matrix ∆̃r is provided in equation 21 where ξ quan-
tifies the amount of radial distortion.

4.2. Back-Projection of Image Points in Central
Catadioptric Systems

Fig. 2 shows the sphere model for a catadioptric sen-
sor. A 3D point X defines a projective ray/point x that
is mapped at x′ = �(x). Given an image point x′ =
(x′, y′, z′)T , we intend to invert the mapping in order to
compute its back-projection x in the CPP. The equation of
the reference sphere in the coordinates system centered in
O′ is x′2 + y′2 + (z′ − ξ)2 = 1. Since x′ is a projective ray
going through O′, there is a scalar λ such that λx′ is a 3D

point lying on the sphere surface. The scalar λ can be com-
puted by solving equation (λx′)2+(λy′)2+(λz′−ξ)2 = 1.
Since it is a second order equation, there are two solutions
λ+ and λ− that are provided below.

λ± =
z′ξ ± √

z′2 + (1 − ξ2)(x′2 + y′2)
x′2 + y′2 + z′2

(22)

The projective ray x′, with origin in O′, intersects the
reference sphere in two points λ+x′ and λ−x′ (Fig. 2).
By representing these points in the reference frame cen-
tered in the effective viewpoint O we obtain two distinct
back-projections x+ and x− (equation 23). Since the cam-
era is forward looking the mirror, the correct solution for
the back-projection is x = x+. Point x− is just a spurious
algebraic solution.

x± = (λ±x′, λ±y′, λ±z′ − ξ)T (23)

Assume a line n in the CPP going through one of the
back-projections of x′. Line n is projected into a conic
curve Ω′ that must go through the image point x′. There-
fore, and considering the embedding in ℘5, it follows that
ω̃′T x̃′ = 0. Replacing ω̃′ by the result of equation 20
yields

ñT ∆̃c

T
x̃′︸ ︷︷ ︸

ω̃∗

= 0. (24)

Equation 24 is satisfied by any line n going through
one of the back-projections of x′ which means that ω̃∗

is the lifted representation of a the conic envelope in the
CPP. The conic envelope is degenerate (rank 2) because it
is composed by two pencils of lines defined by points x+

and x−. Equation 25 is derived taking into account that
ω̃∗ = Γ(x+,x−) (equation 14). The embedding in ℘5 al-
lowed us to establish a linear relation between a point in
the catadioptric image plane and the corresponding back-
projections in the CPP.

Γ(x+,x−) = ∆̃c

T
x̃′. (25)

4.3. Back-Projection of Image Points in Paracata-
dioptric Systems and Cameras with Distortion

For the case of paracatadioptric systems the parameter ξ
is unitary and the projective mapping of Fig. 2 becomes a
stereographic projection [6]. If ξ = 1 then λ− = 0 and the
spurious back-projection is always x− = (0, 0, 1)T (equa-
tions 22 and 23). Since the re-projection center is on the
sphere, the projective ray x′ must always intersect the sur-
face in O′ which explains the result. Assume that the back-
projection in the forward-looking direction is x = (x, y, z)
(x+ = x). Since Γ(x+,x−) = (0, 0, 0, x/2, y/2, z)T , it
follows from equation 25 that



Pin-Hole Hyperbolic Parabolic Distortion

Pin-Hole K−T
y EK−1

x K̃−T
y D̃Ẽ∆̃T

c H̃−1
x K−T

y EΘT H̃−1
x

K−T
y EK−1

x Φ̃T
x

Hyperbolic H̃−T
y ∆̃cD̃ẼK̃−1

x - - -

Parabolic H̃−T
y ΘEK−1

x - H̃−T
y ΘEΘT H̃−1

x
H̃−T

y ΘEK−1
x ΦT

x

Distortion ΦyK−T
y EK−1

x - ΦyK−T
y EΘT H̃−1

x
ΦyK−T

y EK−1
x ΦT

x

Table 2. This table summarizes the results for the lifted fundamental matrices � relating pairs of views acquired by any mixture of central
projection systems. The perspective image plane should not be lifted to avoid multiple solutions for the fundamental geometry (see Tab.
1). Therefore, � is a 3 × 3 matrix in the case of two pin-hole images, and a 3 × 6 matrix for the situation of a perspective view and a
paracatadioptric/distortion view. In the remaining cases � is always a 6 × 6 square matrix.

x =
[

2 0 0
0 2 0
0 0 1

] [
0 0 0 1 0 0
0 0 0 0 1 0−1 0 −1 0 0 1

]
︸ ︷︷ ︸

ΘT

x̃′. (26)

According to equation 26 there is a linear transformation
that maps the lifted coordinates of a point in the paracata-
dioptric image into the corresponding point x in the CPP.
Remark that the 3 × 6 matrix is the transpose of the three
last columns of ∆̃c when ξ = 1 (equation 21).

For the case of cameras with lens distortion the re-
projection center is located on the vertex of the paraboloid
(Fig. 1). This case is similar to the paracatadioptric sys-
tem because O′ also lies on the reference surface. The spu-
rious back-projection x− is always (0, 0, ξ), and there is a
3×6 matrix ΦT that maps lifted image points x̃′ into points
x = ð

−1(x′).

x =
[

2 0 0
0 2 0
0 0 1

] [
0 0 0 0.5 0 0
0 0 0 0 0.5 0
ξ 0 ξ 0 0 1

]
︸ ︷︷ ︸

ΦT

x̃′ (27)

5. Fundamental Matrices in ℘5

In the experiment of section 2.3 we artificially generated
a set of noise-free correspondences and investigated the di-
mensionality of the null space of matrix Ψ to find the mix-
tures of central projection systems with a fundamental ma-
trix in lifted coordinates. The results of Tab. 1 are a good
guideline, however they do not provide a geometric insight
on the problem. In this section we apply the embedding
theory presented in sections 3 and 4 to explicitly derive the
lifted fundamental matrices.

5.1. Views Acquired by Pin-Hole Cameras

Consider two views acquired by a pair of perspective
cameras with intrinsic parameters Kx and Ky. Correspond-
ing image points x′ ↔ y′ must satisfy y′T Fx′ = 0 with F
the conventional 3 × 3 fundamental matrix. F is a correla-
tion in the projective plane because it transforms points in
one view into lines in the other view (the epipolar lines).

According to section 3.3, a correlation F in ℘2 is lifted to
D̃F̃ in the 5D projective space. Taking into account the
result of equation 18, it follows that

F = K−T
y EK−1

x −→ D̃F̃ = K̃−T
y D̃ẼK̃−1

x (28)

The experiment of section 2.3 confirms that if y′T Fx′ =
0 then ỹ′TD̃F̃x̃′ = 0. Matrix � = D̃F̃ is a lifted funda-
mental matrix relating two views acquired by perspective
cameras. However there are other solutions for equation 9.
It is easy to see that the following equation holds

ỹ′T [ 0 0
0 F ] x̃′ = 0.

Tab. 1 shows that the null space of matrix Ψ is multi-
dimensional. For the case of image pairs acquired by pin-
hole cameras the epipolar geometry is described by a bilin-
ear form in ℘2. Since there is a fundamental matrix F, the
lifting to ℘5 is just an over parameterization that leads to
multiple � solutions.

5.2. Views Acquired by Paracatadioptric Sensors
and Cameras with Radial Distortion

Consider the scheme of Fig. 1 showing a camera with
lens distortion and a paracatadioptric system. The projec-
tion centers are respectively Ox and Oy, Kx represents the
intrinsic parameters of the dioptric camera (equation 3), and
Hy encodes the calibration of the paracatadioptric sensor
(equation 1). The 3D point X defines two projective rays, x
and y, going through the effective viewpoints Ox and Oy.
The two points verify yT Ex = 0 where E stands for the
conventional essential matrix. Point x is mapped in the dis-
torted image plane at x′ = ð(Kxx) (equation 3). From
equation 27 follows that x = K−1

x ΦT
x x̃′. The projection in

the paracatadioptric image plane is y′ = Hy�(y) and the
inverse mapping is y = ΘT H̃−1

y ỹ′ (equations 1, 17, 18 and
26). Replacing x and y in the essential relation yields

ỹ′T H̃−T
y ΘEK−1

x ΦT
x︸ ︷︷ ︸

�

x̃′ = 0 (29)



The derived matrix � is the 6 × 6 fundamental matrix
observed in section 2.3 for the mixture of distorted and
paracatadioptric views. Remark that � is still a correla-
tion in ℘5, transforming the lifted coordinates of points in
one view into the corresponding epipolar curves in the other
view (ω̃′

y = �x̃′ and ω̃′
x = �T ỹ′). The reasoning to derive

the lifted fundamental matrices for mixtures of two para-
catadioptric sensors and two cameras with radial distortion
is similar. The results are presented in Tab. 2.

For views acquired by a parabolic sensor and a pin-hole
camera there are multiple 6 × 6 fundamental matrices �

satisfying equation 8 (Tab. 1). As discussed above, by lift-
ing the point coordinates in a perspective image we end up
with an over-parameterization that generates multiple solu-
tions. The problem is solved by using lifted coordinates
only for the paracatadioptric view. Equation 30 shows the
corresponding 3×6 fundamental matrix. The case of a pin-
hole and a camera with lens distortion is identical.

y′T K−T
y EΘT H̃−1

x︸ ︷︷ ︸
�3×6

x̃′ = 0 (30)

The division model is a simple second order model that
requires the center to be known and the distortion to be
isotropic [10]. There are other distortion models without
such limitations [14, 8]. Remark that our framework can be
used with any non-linear projection model, as far as there is
a 3 × 6 linear transformation between lifted image coordi-
nates and undistorted points (equation 27).

5.3. Views Acquired by Hyperbolic Sensors

According to the synthetic experiment of section 2.3, the
lifting of coordinates fails in enforcing a bilinear form for
the epipolar geometry of mixtures that include hyperbolic
sensors. As explained in section 4.2, the lifted representa-
tion of an image point x̃′ can be mapped by a linear transfor-
mation into a conic envelope that encodes the correct back-
projection x = x+, and a spurious solution x−. For the
case of paracatadioptric systems and cameras with lens dis-
tortion the spurious solution is constant and there is a linear
transformation that maps x̃′ in x. The results of equations
26 and 27 proved to be crucial in deriving the lifted funda-
mental matrices for mixtures involving these systems. For
the case of hyperbolic sensors it is not possible to decouple
x− and x+, which explains the non existence of fundamen-
tal matrices. One possible solution is to increase the dimen-
sionality of the Veronese lifting. However, the correspond-
ing estimation problem would probably be non tractable.
An alternative is to find an embedding that simultaneously
encodes orientation and preserves homogeneity. Such em-
bedding, as far as we are aware, does not exist.

The only case that admits a lifted fundamental matrix is
the combination with a perspective view. The structure of

the corresponding 6 × 6 fundamental matrix � is provided
in equation 31. Curiously, the epipolar curve in the per-
spective plane ω̃′

y = �x̃′ is a rank 2 conic. This conics is
composed by two lines: the forward looking epipolar line
and the backward looking epipolar line.

ỹ′T K̃−T
y D̃Ẽ∆̃T

c H̃−1
x︸ ︷︷ ︸

�

x̃′ = 0 (31)

6. Experiments with Real Images

Tab. 2 shows the mixtures of central projection sys-
tems for which there are lifted bilinear constraints between
views. For these cases, and under the assumption of an ideal
noise-free situation, the computation of the fundamental
matrix � from a set of image correspondences is straight-
forward. As shown in equation 9, we just need to build
matrix Ψ and determine its right null space. In practice the
correspondences are always affected by noise and matrix Ψ
is in general full rank. In this situation we can always apply
SVD decomposition to enforce a null space and estimate �.
The problem is that not every 6× 6 matrix is a lifted funda-
mental matrix. As discussed in the previous section, � must
be a rank 2 matrix with a specific structure that depends on
the type of central cameras used to acquire the views (Tab.
2). In [5], Claus et al. report an experiment in estimating
the fundamental matrix between two views acquired with a
fish-eye lens using a standard linear algorithm. According
to the report, they succeeded in obtaining a bilinear form
that seems to fit the data, however they were unable to ex-
tract correct distortion information. This suggests that the
use of purely algebraic approaches is not enough, and that
the structure of � must be taken into account.

To prove the applicability of our framework we ran an
experiment to estimate the geometry between two uncali-
brated images acquired by a paracatadioptric system and a
camera with lens distortion (Fig. 3). The estimation prob-
lem is simplified by considering a skewless parabolic sys-
tem with unitary aspect ratio. Under this assumption the
lifting of coordinates is similar to the one used in [7, 12],
and the dimension of � is 4× 4. From the correspondences
we build a matrix Ψ (equation 9) and estimate � using lin-
ear least squares. The rank constraint on � is enforced using
SVD. From the analysis of the structure of � it follows that
the null space on the side of the distorted view encodes the
undistorted epipole and the amount of distortion. This infor-
mation is extracted and used as a prior to re-fit the matrix to
the correspondences. The sub-optimal two step factoriza-
tion approach is entirely linear and provides a fundamen-
tal matrix with the desired structure (for further details see
[3]). Since the estimation has a closed-form solution, it can
be run in a RANSAC approach to discard outliers. Fig. 3
shows the results in estimating the lifted fundamental ma-
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Figure 3. Estimation of the lifted fundamental matrix for views acquired by a paracatadioptric sensor and a camera with radial distortion.
The Lowe’s detector found 101 correspondences from which 54 were marked as inliers. The high rejection percentage is explained by the
difficulty in establishing robust correspondences between images that look so different.

trix. The correspondences were automatically detected us-
ing SIFT features [9]. To test the correctness of the result
we manually selected 7 correspondences and drew the cor-
responding epipolar curves (Fig. 3). Additionally we ex-
tracted the radial distortion information from the estimated
� and corrected the distorted view (Fig. 4).

7. Conclusions

We proposed a representation for central projection im-
ages through a lifting of the projective plane to the 5D pro-
jective space. In addition, we presented a full embedding
theory to transfer geometric entities and relations between
the original and lifted spaces. The theory was applied to ex-
plicitly construct the lifted fundamental matrices and under-
stand their structure. We believe that such geometric insight
is essential to develop robust estimation algorithms and ex-
tract information from the estimated matrices.
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