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Abstract Freehand 3D ultrasound (US) refers to in-

strumenting a conventional US probe with a tracking

device such that successive 2D scans can be registered

in a stationary 3D world reference frame. The technique

invariably requires a calibration procedure for finding

the rotation, translation, and scaling of the scan plane

with respect to the tracking device. We describe the

first minimal, closed-form solution for calibrating the

US probe using a single-plane phantom that is able

to determine the 8 unknown degrees-of-freedom (DOF)

from as little as 4 frames. This minimal solution is used

in a hypothesis-and-test framework for accomplishing

robust calibration in a fully automatic manner. Experi-

ments with a low resolution curvilinear probe show that

we can obtain calibrations with point reconstruction

accuracy of 1.06 mm for scans up to 120 mm depth
using as little as 30 frames. Our method reaches state-

of-the-art metric accuracy with a much smaller number

of input frames when comparing to other calibration

methods.

Keywords Ultrasound · Geometric calibration

1 Introduction

Freehand 3D ultrasound (US) [6] is a technique where

a hand-held 2D US is instrumented with a 3D tracking
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device such that successive scans can be registered in

a common world coordinate system. The technique has

applications in different clinical domains including 3D

reconstruction during US examination [6,8], 3D regis-

tration of organs in computer-aided surgery [28,18], and

orientation of needles (probes) during US guided biopsy

[27]. In particular, the dissemination of interventional

imaging is contributing for the increasingly popular-

ity of freehand 3D US among clinicians, with several

manufacturers providing the required equipment (e.g.

BrainLab, SonoWand).

The technique consists in freely moving a standard

2D US probe while a pose tracking system measures

its 3D rotation and translation such that pixel coordi-

nates in each 2D US scan are mapped into 3D metric

coordinates in a stationary reference frame (the world

coordinate system). Pose tracking can be accomplished

with different technologies such as optical [18,33], elec-

tromagnetic [14], mechanical [32], or cameras operating

in the visible spectrum [27]. These technologies require

the 2D US probe to be instrumented with a tracking

sensor or device whose reference frame is not coinci-

dent with the system of coordinates of the US image.

Thus, representing the US depth readings in world co-

ordinates invariably passes by determining the trans-

formation that maps 2D image pixels in the US scans

into 3D points in the reference frame of the tracking

sensor [20] (Fig. 1). This is accomplished through a

preliminary calibration procedure that estimates the 8

unknown Degrees-of-Freedom (DOFs): 3 for rotation, 3

for translation, and 2 for the XY scale of the US scan.

The calibration is typically carried using a phantom

object that is registered in the coordinate system of the

tracking sensor. The depth of certain phantom features

(e.g. points, lines, etc) are measured by the US probe

in different positions until there are enough geometric
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Fig. 1 Overview of a freehand 3D US system. A freely mov-
ing US probe is tracked in real time by a rigidly attached
sensor. In this figure the marker is an electromagnetic sensor
whose pose is determined by a tracking station. This enables
to map 3D objects to image coordinates of US scans.

constraints to accurately determine the mapping trans-

formation. The phantom is either immersed in water or

in a gel with similar acoustic properties to human tis-

sue. The procedure is usually time consuming because

it requires to carefully collect a large number of input

frames, as well as pin-pointing features in the 2D US

scans to establish correspondences. The poor usability

of existing methods preclude the calibration to be car-

ried in the Operating-Room (OR) right before starting

each procedure, with most commercial equipments hav-

ing a rigid configuration that is set-up from factory.

This article describes a new fast, robust, and fully

automatic calibration method that can be used in OR

by a non-expert user with benefits in terms of accuracy,

flexibility, and cost. First, the fact that the calibration

is carried before each usage prevents deviation in fac-

tory pre-sets along time that affect metric accuracy.

Second, the clinician is no longer limited to a particu-

lar equipment set-up having the freedom to choose the

US probe, the image tunings, and the place where to

attach the tracking device depending on what is bet-

ter suited for the clinical procedure to be carried. And

third, the easy calibration enables to combine different

tracking systems with already existing US equipments

as opposed to purchasing a new integrated solution.

The literature reports a large number of possible

phantoms from which the simplest and cheapest is a

single plane surface. Our method uses a single plane

whose 3D pose is known in the coordinate frame of

the tracking system. The technical contributions of the

paper are as follows:

– Minimal solution for single-plane calibration: The

unknown transformation has 8 DOFs and each scan

provides 2 independent constrains, which means that

in theory the calibration problem can be solved us-

ing a minimum of 4 images. The article describes

a minimal solution for this problem that, given 4

scans of the phantom plane, it computes 2 possi-

ble solutions for the transformation between US and

tracking sensor. This is accomplished by extending

the minimal algorithm in [30] to also compute the

XY scale of the US image.

– Pipeline for unsupervised, robust calibration: Since

the phantom is a plane, the features to be detected

in the US scans are continuous lines. In order to

avoid the need of human intervention the line fea-

tures are automatically detected, which raises issues

of robustness and accuracy because of the risk of

mis-detection and/or poor estimation of line posi-

tion. This difficulty is overcome by using the min-

imal algorithm in an iterative Random Sampling

Consensus (RANSAC) step to discard outlier inputs

[7]. The final result is a complete calibration pipeline

that is fully automatic and robust. Computational

efficiency is assured by the minimal solution that

reduces the combinatorics of the RANSAC robust

estimator.

– High accuracy with small number of input frames:

Extensive experiments with a visually tracked curvi-

linear probe in realistic calibration conditions show

good repeatability of results using 10 or more in-

put frames. For an imaging depth up to 130mm

the average Point Reconstruction Accuracy (PRA)

is 2.2mm and 1.0mm for 10 and 30 calibration im-

ages, respectively. These accuracies compare with

the current state-of-the-art method [22] that reports

a PRA of 1.0mm for 50 or more calibration frames.

However, since we use a 2D US probe with less than

half the resolution of [22], our results suggest that

our method accomplishes similar accuracies with 4

to 5 times less frames.

2 Related Work

During the years literature has introduced 2D US free-

hand calibration methods using a wide variety of differ-

ent phantoms [12]. Some methods use as a calibration

target a set of 3D points at known locations. This can

be achieved with spherical objects [2], sets of intersect-

ing wires [15], or the tip of an instrumented stylus [34].

The accuracy of these methods highly depends opera-

tor’s ability to precisely align the US scanning plane

with the phantom target points, and the careful acqui-

sition of calibration measurements can be extremelly

time consuming. Line-based methods can use a set of

wires [4] (typically in a z-shape format), a hollow tube

[1], or an instrumented stylus/needle [31]. In this case

a set of 3D lines with known coordinates is registered

against their corresponding 2D US point sections under

different views. Plane-based methods [24,25,22] use a

planar surface as phantom object that is measured as
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a line by the US probe. This approach can also be ex-

tended to a phantom containing multiple planes [21],

increasing the number of geometric constraints per US

image acquisition. Both the line-based and the plane-

based approaches are more flexible than the point-based

ones because any arbitrary section of a 3D line or plane

can be acquired. This also makes it easier to acquire cal-

ibration images within a wider range of motions, which

yields more accurate calibration results. Additionally,

there are self-calibration methods that use an arbitrary

unknown target volume, however these require either

the US probe to be moved in a controlled way [3], or

exhaustive sweeps of volumes with very distinctive vi-

sual landmarks such as the human brain [29].

Using the single plane method is specially attrac-

tive for two reasons: it uses the easiest and least ex-

pensive phantom to build; the phantom is measured in

US scans as a continuous line instead of a discrete set of

points, which makes it significantly more feasible to per-

form automatic and robust segmentation of the phan-

tom features. Unfortunately, it suffers from the so called

beam thickness problem [24]. As any other calibration

approach, the single plane method requires the user to

scan the phantom under a wide variety of poses, and

when the US probe is oriented obliquely to the plane it

produces a systematic error in line measurements. One

possibility to counter this effect is to scan the phantom

in symmetrical poses with respect to the plane normal,

producing measurement pairs with opposite errors that

cancel each other. This, however, requires the calibra-

tion process to be done in a very carefully and time

consuming manner. Another approach uses the Cam-

bridge phantom [24] to minimize the thickness beam

effect but this requires a complex instrument and also

makes the calibration procedure more difficult and time

consuming. The older single plane methods [24,17,25,

11] use iterative minimization of re-projection errors

and require hundreds of images to converge. Najafi et.

al. [22] proposed a method that is able to achieve an ac-

curate calibration using a significantly lower number of

images. This is accomplished by reducing the number of

unknown variables (the plane phantom coordinates are

pre-determined) and by using a closed-form solution.

In this paper we aim at improving on [22] by provid-

ing a minimal closed form solution to the single plane

calibration problem. The method in [31] provides a min-

imal solution that could be used for plane-based cali-

bration, however, since it is formulated as a similarity

registration problem, it only estimates a single US scale

parameter and thus it is not suitable to US probes with

different horizontal and vertical scaling parameters. Re-

cent research in computer vision has proven the im-

portance of the so-called minimal solutions [23,26,16],

i. e. solving a problem with the same number of con-

straints as the number of unknowns. Minimal solutions

can be efficiently used within a RANSAC framework [7]

in order to produce robust estimations in the presence

of outlier measurements. Rousseau et. al. [25] also use

RANSAC to robustly segment lines independently in

each US scan, however, since their calibration method

is iterative it cannot be used within a more comprehen-

sive RANSAC that ensures geometric consistency in all

measurements simultaneously.

In the single plane calibration problem there are 8

unknowns (3 in translation, 3 in rotation, and 2 im-

age scale factors) while each line scan provides 2 con-

straints. This means that the problem can be solved

from a minimum of 4 line scans. Such minimal solu-

tion combined with RANSAC can overcome both the

accuracy and usability limitations of single plane meth-

ods because the user can carelessly collect data while

wrong acquisitions are discarded. The solution of [22]

is non-minimal in the sense that it requires at least 5

line scans, and furthermore it assumes that one of the

image scale parameters is known, which might not be

viable with some US probes. In practice they only re-

port results with 20 scans or more. To the best of our

knowledge we propose the first minimal solution for this

problem. Experiments with a low resolution curvilinear

probe show that we can obtain calibrations with point

reconstruction accuracy of 1.06± 0.53 mm for scans up

to 120 mm depth using as little as 30 frames, which

dramatically outperforms state-of-the-art methods.

2.1 Notation

Scalars are represented by plain letters, e.g. λ, vectors

by bold symbols, e.g. t, matrices by letters in sans serif

font, e.g. T. The operator []× designates a 3 × 3 skew

symmetric matrix, such that [x]×v = x× v for any 3× 1

vectors x, v. The operator ⊗ designates the Kronecker

product.

We use a letter with prime symbol, e. g. Σ′, for ge-

ometric entities represented in the reference frame of

the US probe. Plain letters, e. g. Πi, are used to des-

ignate geometric entities in the reference frame of the

marker sensor attached to the US probe. An asterisk, e.

g. Π∗i denotes geometric entities in the reference frame

of the pose tracking station. Note that the same letter

with/without these additional symbols, e. g. Σ∗, Σ′, Σ

represents the same geometric entity under the differ-

ent reference frames.
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Fig. 2 Freehand 3D US model. A 2D image point x′i is
mapped to a 3D point X′i in the probe reference frame with
a scaling transformation S. Consequently, this point can be
mapped to the tracking sensor reference frame through a rigid
transformation T.

3 Model for the freehand 3D US

The model for the freehand 3D US is summarized in

Fig. 3. A 2D US probe with reference frame O′ is at-

tached to a tracking sensor with reference frame O that

is tracked by a static station with reference frame O∗.
A point x′i in pixel coordinates from a US scan is scaled

to metric coordinates Xi in the US reference frame O′

using the transformation

X′i = Sx′i (1)

with

S =
*..
,

ax 0

0 ay
0 0

+//
-
, ax > 0, ay > 0. (2)

where ax , ay are positive scalars that convert from pix-

els to metric coordinates (mm). Note that, without loss

of generality, we consider that points X′i lie in the plane

z = 0 in US metric coordinates O′. These points are

mapped to marker coordinates O through a rigid trans-

formation T(
Xi

1

)
=

(
R t

0 1

)
︸︷︷︸

T

(
Sx′i
1

)
. (3)

Since the tracking sensor pose is known in each mea-

surement, successive scans can be registered in a static

reference frame O∗ to obtain a 3D US representation.

Our calibration problem consists in determining the

rotation R, the translation t, and the scaling transfor-

mation S. Note that these unknowns have 8 degrees of

freedom: 3 in rotation, 3 in translation and 2 scale pa-

rameters. The complete transformation from image pix-

els to tracking sensor coordinates O can be condensed

into a single transformation

(
Xi

1

)
=

(
H t

0 1

) (
x′i
1

)
(4)

with

H =
(
h1 h2

)
=

(
axr1 ayr2

)
(5)

where h1, h2 are the first and second columns of H, and

r1, r2 are the first and second columns of R.

Note that since | |r1 | | = | |r2 | | = 1, both S and R
can be easily extracted from H and thus determining

h1, h2, t solves the calibration problem. Additionally,

since R is an orthogonal matrix the following quadratic

constraint must be verified

a1
Ta2 = 0 (6)

This calibration problem can be solved with at least 8

constraints on the parameters h1, h2, t.

4 Single Plane Calibration

The single plane method requires a planar phantom ob-

ject that is registered in the coordinate system of the

tracking sensor. The calibration procedure is displayed

in Fig. 4 and consists in acquiring a set of US scans with

the US probe under significantly different poses. The

US probe measures a line L′i that belongs to the phan-

tom plane Πi. For each line measurement the phantom

plane is obtained in the tracking sensor reference frame

O as

Πi = Mi
−TΠ∗ (7)

where Mi is the rigid transformation from the tracking

sensor to the tracking station, and Π∗ is the calibration

plane in the tracking sensor reference frame O. Mi is

a different sensor measurement in each acquisition and

Π∗ is a fixed plane that is pre-determined before the

calibration procedure.

4.1 Minimal Solution with known S

We start by formulating our calibration problem for

an easier scenario in which the scale factors sx and

sy are known. In this case the problem is identical to

the extrinsic calibration between a camera and a laser

rangefinder using a planar checkerboard, which in [30] it

was shown to be equivalent to the Perspective-3-Point

(P3P) problem [9]. In this section we provide a simpler

derivation of the same result and describe how it can

be applied to freehand 3D US calibration.



A minimal solution for the single plane calibration of a freehand 3D ultrasound 5

Πi

O

Probe

Tracking SensorR t( ) 

Phantom

O
*

Tracking Station

0 1

Mi

T =

Fig. 3 Calibration set-up with planar phantom. The US
probe measures a line cut Li , while the phantom plane is
simultaneously determined in the tracking sensor reference
frame O through the tracking station. The transformation
TP is pre-determined, while TM, i is measured in each acqui-
sition.

For each acquisition with the US probe we obtain a

line l′i in pixel coordinates and a plane Πi represented

in O. In this case, the lines l′i can be readily scaled

to metric coordinates L′i and the calibration problem

becomes the 3D euclidean alignment between a set of

planes Πi in the tracking sensor reference frame O and

a set of co-planar lines L′i that lie in the US measuring

plane Σ′ (Fig. 4(a)). This problem has already been

solved for a minimum of 3 line measurements in the

context of extrinsic calibration between a camera and a

laser rangefinder [30], and we now review this method.

Consider Fig. 4(b), that represents 3 line measure-

ments L′1, L′2, L′3 in the US cutting plane Σ′. In general,

each pair of lines L′i, L′j intersects at a point P′i j . Now

consider the planes Π1, Π2, Π3 represented in O. Each

plane Πi contains its correspondent US line L′i (rep-

resented in blue in Fig. 4(c)). In general, each pair of

planes Πi, Πj intersects at a line with direction di j that

goes through the corresponding point P′i j . The 3 planes

also intersect at a single point M. Note that the points

P′i j , the point M, and the directions di j can be easily

determined from measurement data by intersecting the

known lines L′i and the known planes Πi.

From Fig. 4(c) it can be observed that points P′i j
are represented in O as

Pi j = RP′i j + t (8)

which leads to the following equation

RP′i j + t =M + αi jdi j (9)

where αi j is the unknown depth from M to Pi j . Deter-

mining the 3 depths α12, α13, α23 is known as the p3p

problem, which leads to the following system of equa-

T

Tracking Sensor

(a) For each line L′i measured by the US probe cor-
responds a plane Πi in the tracking sensor reference
frame.

O'

(b) For 3 plane-line measurements, each pair of lines
L′i , L′j intersects at point P′i j .

T

Track or

(c) Each pair of planes Π′i , Π′j intersects at line with

direction di j ; the three planes intersect at point M;
the classic p3p problem emerges from the 3 orienta-
tions di j and their corresponding 3D points P′i j .

Fig. 4 From registration of planes and co-planar lines to the
p3p problem.

tions:




α2
12 + α

2
13 − α12α12d12

Td13 = | |P
′
12 − P′13 | |

2

α2
12 + α

2
23 − α12α12d12

Td23 = | |P
′
12 − P′23 | |

2

α2
13 + α

2
23 − α12α12d13

Td23 = | |P
′
13 − P′23 | |

2

. (10)

Multiple methods are available in the literature to solve

this system [9], which has up to 8 solutions. Once depths

αi j are known it is possible to obtain the 3 points Pi j =

M + αi jdi j . The rotation R and translation t are deter-

mined by substituting points Pi j , P′i j in 3 instances of

equation 8. This is known as the Absolute Orientation

problem, for which a solution is also available in the

literature [10].
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We now summarize the complete algorithm for es-

timating the minimal solution for the rotation R and

translation t using 3 line measurements L′1, L′2, L′3 and

the corresponding planes Π1, Π2, Π3.

Algorithm 1 Minimal solution with known S
1. For each two planes Πi , Π j determine the direction di j

of their intersecting line, by cross-multiplying the plane
normals.

2. Determine the point intersection M of the planes Π1, Π2,
Π3. This can be done by computing the null space of(
Π1 Π2 Π3

)
.

3. For each two lines L′i , L′j determine their point intersec-

tion P′i j .

4. Formulate the p3p problem by substituting P′i j and di j

in equation 10. Obtain 3 depths αi j using any standard
p3p approach [9]. There are up to 8 different solutions.

5. Determine 3 points Pi j =M + αi jdi j .
6. Formulate the Absolute Orientation problem by substi-

tuting points Pi j and P′i j in equation 8. Obtain the ro-

tation R and the translation t using a standard Absolute
Orientation approach [10].

This problem has up to 8 discrete solutions for 3

plane-line measurements (Πi,L
′
i). When 4 or more plane-

line measurements are available, a single solution can

be obtained by combining the minimal solution with

RANSAC [7]. We describe this method later in this pa-

per.

4.2 Minimal Solution for the general case

In general S is not known which means that in relation

to the previous case we have 2 more unknowns and an

additional plane-line measurement is required. In this

case the 4 lines L′i and the intersection points P′i j cannot

be readily determined. Each pair of 2D lines l′i, l′j in

pixel coordinates intersects at a point p′i j (Fig. 5(a)),

such that

P′i j = Sp′i j (11)

When there are 4 plane-line correspondences, in gen-

eral each of the 6 pairs of lines L′i, L′j intersects at a

point P′i j . Additionally, each of the 6 pairs of planes

Πi, Πj intersects at a line with direction di j and each

of the 4 triplet of planes Πi, Πj , Πk intersects at a

point Mi jk . In Fig. 5(b) we display the intersections for

a triplet of planes Π1, Π2, Π3.

Substituting points p′i j in equation 9 yelds

Hp′i j + t =Mi jk + αi jdi j (12)

The unknown scalars αi j can be eliminated using cross

product

[di j ]×Hp′i j + [di j ]×t = [di j ]×Mi jk (13)

l2'

l3'
l4'

l1'

p34'

p24'

p13'
p12'

p23'
p14'

(a) 4 lines l′i on the US image intersect
at six 2D points p′i j .

T

Tracking Sensor

(b) Each of the 4 triplets of planes Πi , Π j , Πk in-
tersects at a point Mi jk and the directions di j , dik ,
d jk that are aligned with the points P′i j , P′

ik
, P′

jk
.

Fig. 5 Registration of 4 Line-plane correspondences.

Finally this equation can be re-written as

(
p′i j ⊗ [di j ]× [di j ]×

) (
a1

T a2
T tT

)T
= [di j ]×Mi jk (14)

Each instance of equation 14 puts 2 linear constraints

on the 9 parameters of a1, a2, t. Although all combina-

tions of line and point intersections provide 12 instances

of equation 14, there are only 8 linearly independent

constraints of this form. Stacking these 8 relations gen-

erates a linear system in 9 variables that can be solved

up to an unknown parameter β. Equation 6 is then used

to determine β and find the parameters a1, a2, t.

We now summarize our minimal algorithm step by

step. Consider 4 correspondences between planes Πi in

the visual tracking sensor reference frame and 4 lines l′i
in US image coordinates.

This problem has up to 2 discrete solutions for 4

plane-line measurements (Πi,L
′
i). Analogously to the

previous simpler case, when 5 or more plane-line mea-

surements are available, a single solution can be ob-

tained by combining the minimal solution with RANSAC.
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Algorithm 2 Minimal solution with unknown S
1. Determine the line direction di j for the intersection of

each pair of planes Πi , Π j .
2. Determine the point intersection Mi jk for each triplet of

planes Πi , Π j , Πk .
3. Determine the point intersection p′i j for each pair of lines

l′i , l′j .

4. Substitute di j , Mi jk , p′i j in equation 14 until 8 linearly

independent equations are found.
5. Solve the linear system up to one scalar unknown β, such

that A = βA1 + A2 and t = βt1 + t2.
6. Substitute βA1 + A2 in equation 6 to determine β. There

are up to 2 solutions.
7. For each (a1, a2, t) solution, find the positive values ax ,

ay such that r1,r2 from equation 5 have unitary norm.

8. Determine the rotation as R =
(
r1 r2 r1 × r2

)

4.3 Degenerate Configurations

We now discuss the degenerate configurations of the

general calibration problem for which the solutions for

R, t, S are ambiguous. This helps to understand how the

US probe should be positioned in different acquisitions

to avoid inaccurate calibration results.

When all lines L′i are parallel there is a translational

ambiguity along the same direction (Fig. 6(a)). In our

calibration problem we are in this configuration when

all acquisitions are done by moving the probe without

rotation, or just with rotations that are either around

the x−axis of O′ or around an axis perpendicular to

the phantom plane. When all the line directions di j are

parallel, there is a translational ambiguity along the

same direction (Fig. 6(b)). This happens in our prob-

lem when all planes Πi have co-planar normals, i. e.,

all acquisitions are done by rotating the probe along

an axis parallel to the calibration plane. Finally, when

all points Mi jk are coincident, there is a scale factor

ambiguity (Fig. 6(c)). In this case we can always scale

ax ,ay in order to put the probe further away or closer

to the calibration plane. This situation occurs when all

acquisitions are done by rotating the probe around a

single point on the phantom plane.

To summarize, degenerate configurations can be avoided

by measuring different regions of the calibration plane

and by exploring all three degrees of freedom in rotation

when moving the probe between different acquisitions.

5 Practical Considerations

5.1 Automatic Line Detection

We perform automatic line segmentation on the US

scan images using the Hough transform [5]. However,

artifacts caused by undesired reflections may produce

O

O

(a) When the detected lines are parallel there
is an ambiguity in translation.

O

O

(b) When the representations of the phantom
plane in O for different acquisitions intersect
in parallel lines there is an ambiguity in trans-
lation

O

O

fy

(c) When the representations of the phantom
plane in O for different acquisitions intersect
at the same point there is an ambiguity in
scale and translation.

Fig. 6 Degenerate configurations.

multiple line detections (Fig. 7(a)). While it might be

easy for a human observer to select which line corre-

sponds to the phantom plane, performing this selection

automatically is not trivial, given that the maximum

Hough peak does not always correspond to the cor-

rect line. In order to deal with this problem we use

the PEARL approach for multi-model fitting [13] to

remove spurious line detections, while still considering

multiple line segment candidates in ambiguous cases.
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(a) The green line segment is a correct detection of
the calibration plane while the red is an incorrect
detection produced by an undesired artifact on the
US image.

 wi
'

 zi
'

 wi
'

 zi
'

 li
'
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 ~
 '

(b) Line segment detections are represented by start
and end points w′i, j , z′i, j . RANSAC uses as error

metric the orthogonal distances between these points
and the re-projected line l̃′i, j .

Fig. 7 Line detection with Hough transform and PEARL.

For each scan PEARL detects line segments defined by

their start and end points w′i, j , z′i, j (Fig. 7(b)). Each

line candidate, even if belonging to the same image,

is considered as an individual plane-line measurement

(Πi, l
′
i). All line candidates, both the correct and the in-

correct, will be used as input to the RANSAC estimator

described in the next subsection.

5.2 RANSAC

Wrong line detections are automatically removed with

the RANSAC robust estimator. This algorithm itera-

tively generates different candidate solutions (R, t, S)
using the minimal solution with 4 random plane-line

correspondences. Each candidate solution is evaluated

by a cost function against the remaining N − 4 plane-

line measurements. In each iteration the best solution

is updated whenever a candidate solution is found with

the lowest cost function. After a certain number of it-

erations RANSAC stops and outputs the current best

model.

Consider N > 4 measurements of planes Πi and lines

l′i defined by their start and end points w′i , z′i, j . Each ac-

quisition is represented by a vector vi, j =
(
w′Ti, j z′Ti, j ΠT

i

)T
.

Some vectors vi result from erroneous measurements

and thus are outliers. The cost function to be mini-

mized is the number of outliers, which are the measure-

ments vi whose residue r j to the solution exceedes a

pre-defined threshold t.
We now explain how to compute the residue ri, given

a measurement vi and a candidate model (R, t, S). The

phantom plane Π′i in the US reference frame is given

by

Π′i =

(
RT 0

tT 1

)
Πi (15)

This plane can be projected onto the scan image as the

2D line

l̃′i =
*..
,

a−1x 0 0 0

0 a−1y 0 0

0 0 0 1

+//
-

Π′i (16)

which should be very close to the detected line l′i for an

inlier measurement and significantly misplaced for an

outlier measurement. The residue ri is the squared sum

of the orthogonal distances between points w′i, j , z′i, j and

the 2D line re-projection l̃′i of the calibration plane Πi

onto the image (Fig. 7(b))

ri, j = | |∆z′i, j | |
2 + | |∆w′i, j | |

2 (17)

5.3 Final Refinement

A final refinement of the calibration solution is per-

formed using Levenberg-Marquadt iterative optimiza-

tion [19]. After removing outliers with RANSAC, we

convert each line segment l′i into a discrete set of image

points p′i, j corresponding to each line pixel. We also re-

project each plane Π onto the US image by representing

it in the US reference frame and intersecting it with the

plane z = 0. We minimize the total squared orthogonal

distance between points pi, j and the re-projected lines

l̃i in pixels (Fig. 7(b)).

6 Experiments and Results

This section reports experiments that validate and as-

sess the accuracy of the proposed algorithm. All ex-

periments are carried using a TITAN SONOSITE US

system with a 2 - 4 Mhz curvilinear transducer that

provides images with a resolution of 640 × 480. The

pose of the US probe is estimated by attaching a planar
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(a) Single-plane phantom (b) Single-plane scan

(c) Multi-plane phantom (d) Multi-plane scan

Fig. 8 Experimental acquisition

checkerboard pattern to the transducer that is visually

tracked using a Grasshopper2 camera from PointGrey.

Camera and pattern play, respectively, the roles of ”sta-

tionary station” and ”sensor/marker” (Fig. 1). All ex-

periments are carried in a water tank with the plane

phantom placed at the bottom. The phantom has also

a visual marker attached that enables to determine its

pose in camera coordinates before filling the tank with

water.

Section 6.1 reports a first set of experiments in which

the freehand 3D US is calibrated using a single plane

(Fig. 8(a), Fig. 8(b)). It is shown that the propose algo-

rithm provides accurate, repeatable results comparing

favourably against the state-of-the-art. Section ?? de-

scribes a second experiment in which the single plane is
replaced by a multi-plane phantom similar to the one

used by Najafi et. al. [21] for obtaining more plane-

line correspondences with fewer acquisitions (Fig. 8(c),

Fig. 8(d)). The objective is to evaluate till which extent

the proposed algorithm can be combined with this new

phantom to further improve usability without sacrific-

ing accuracy and robustness.

6.1 Single Plane

We acquired 30 scans of the single plane phantom for

the purpose of testing the calibration algorithm. The

line segmentation was carried in a fully automatic man-

ner, as described in section 5.1, which may lead to some

erroneous detections (outliers). A quick visual inspec-

tion of the detection results revealed that, from the 30

acquisitions, 21 lines seemed to be well estimated and

9 were clearly off. The 30 lines detections, including in-

liers and outliers, were used as input to the algorithm

Table 1 PRA for points at varying depths.

0 – 40 mm 40 –80 mm 80 –120 mm Total

10 images 2.27 ± 2.02 1.99 ± 2.02 2.35 ± 1.87 2.20 ± 1.97

20 images 1.17 ± 0.66 1.20 ± 0.80 1.42 ± 0.66 1.26 ± 0.72

30 images 0.92 ± 0.47 0.99 ± 0.65 1.25 ± 0.37 1.06 ± 0.53

leaving to RANSAC the task of automatically filtering

the data (section 5.2).

The US probe was calibrated using an increasing

number of frames ranging from N = 10 to 30. For each

N we performed 50 trials using N randomly selected

images out of the available 30. The distribution of ro-

tation, translation, and scale parameters is displayed in

9. Both rotation and translation are decomposed into

x, y, z components. The z-axis is perpendicular to the

US measuring plane Σ, while x and y axes are aligned

respectively with the horizontal and vertical directions

of the US scans.

The overall impression is that results are highly re-

peatable, which proves the robustness and reliability of

the approach. As expected, variation tends to decrease

with an increasing number N of input frames. It can

also be observed that calibration results have a higher

variation along the z-axis in translation and the x-axis

in rotation. This is a known, persistent problem in US

calibration [4,22] that is due to the fact that moder-

ate changes in pose along these directions only produce

very slight changes in US scan line measurements.

The accuracy of the calibration was then evaluated

with the help of a 403 GS LE phantom (Fig. 10(a)).

This phantom contains a set of precision-made paral-

lel wires immersed in a tissue mimicking gel. The wires
were located in the reference frame of the stationary

tracking station (the camera reference frame) using a vi-

sual marker. The calibrated probe was directed towards

the set of wires and the corresponding white blobs in

the image were manually selected (Fig. 10(b)). For each

scan we selected six points at depths ranging between 20

and 120 mm. These points were then reconstructed in

3D using each one of the 550 calibration trials depicted

in Fig. 9. Note that in the phantom’s gel, the sound

travels approximately 3% faster than in water, which

means that the scaling parameters ax , ay had to be ad-

justed by the same factor. The point re-construction

accuracy (PRA) was finally computed as the distance

between the reconstructed points and the known posi-

tion of the wires along the US measuring plane.

The PRA distribution for all trials is displayed in

Fig. 11(a). We also re-project the known wires on the

US scan and measure their distance in pixels to the

manually marked points (re- projection error, Fig. 11(b)).

The results converge to a stable accuracy level of ap-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Parameter distribution of 50 calibration trials for an increasing number of input images. The central blue markers
represents median values, the blue box boundaries represent the lower and upper quartiles, and the red markers represent
outliers.

(a) (b)

Fig. 10 403 GS LE wire-phantom.

(a) (b)

Fig. 11 Validation on 403 GS LE phantom. The central blue
markers represents median values, the blue box boundaries
represent the lower and upper quartiles, and the red markers
represent outliers.

proximately 1 mm / 3 pixels for 22 or more images.

Note that wire measurements in are detected as white

elongated blobs occupying several pixels that are diffi-

cult to detect with a very high pixel accuracy. In Table

1 we display the PRA results with 10, 20, and 30 images

for different depth ranges. The results are generally bet-

ter for points with depths between 0 and 80 mm. This

is to be expected, as the wire detection degrades with

increasing depth (Fig. 10(b)).

Najafi et al. show in [22] that, for the same number

of input frames, plane-based calibration achieves the

same accuracy as competing methods with the advan-

tage of using a much simpler phantom object. For 50

input frames and a maximum scanning depth of 50mm

using a curvilinear transducer they report a PRA of

about 1.00 mm. Table 1 shows that the method herein

described reaches a similar accuracy with 30 frames.

Moreover there are two important differences: First, our

maximum scanning depth is 130 mm, which means that

for depths up to 50mm the algorithm accomplishes an

accuracy similar to [22] not only with less frames, but

also using US scans with less than half the resolution.

Second, while in [22] the line detection is supervised,

in here the calibration process is fully automatic. Thus,

the 30 frames include a significant number of outlier

detections that are efficiently discarded by RANSAC

without requiring time consuming verification by an ex-

perienced user.

7 Conclusion

We propose a minimal solution to the single-plane US

calibration problem. Minimal solutions have been suc-

cessfully used in many calibration problems from Com-

puter Vision and in this paper we show that this method-

ology is useful to improve the state-of-the-art in planar

phantom calibration, by achieving the same level of ac-

curacy as previous approaches with less image acquisi-

tions. Our method also provides a framework to handle
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(a) Norm of translation error
(SP).

(b) Rotation error (SP). (c) Aspect ratio error (SP).

(d) Norm of translation error
(MP).

(e) Rotation error (MP). (f) Aspect ratio error (MP).

Fig. 12 Error distribution of 50 calibration trials with single plane (SP) and multi-plane (MP) for a growing number of
images. The error is computed against a calibration with 30 images that is used as ground truth. The central blue markers
represents median values, the blue box boundaries represent the lower and upper quartiles, and the red markers represent
outliers.

fully automatic segmentation of the phantom in the US

images. This approach simplifies the calibration proce-

dure from the user perspective, by shortening its dura-

tion and eliminating the need for human supervision of

the acquired data.
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