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Abstract

In this paper we study projection systems with a single effective viewpoint, including com-
binations of mirrors and lenses (catadioptric) as well as just lenses with or without radial
distortion (dioptric systems). Firstly, we extend a well-known unifying model for central
catadioptric systems to incorporate a class of dioptric systems with radial distortion. Sec-
ondly, we provide a new representation for the image plane of central systems. This repre-
sentation is the lifting through a Veronese map of the original image plane to the 5D pro-
jective space. We study how a collineation in the original image plane can be transferred to
a collineation in the lifted space, and we prove that in the case of central parabolic systems
and cameras with lens distortion the locus of the lifted points representing projections of
world lines is a plane. The similarities between paracatadioptric systems and lens with ra-
dial distortion are emphasized by extending to the latter algorithms initially established for
the former.
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1 Introduction

A vision system has a single viewpoint whenever it measures the intensity of light
traveling along rays which intersect in a single point in 3D (the projection center).
Vision systems satisfying the single viewpoint constraint are called central projec-
tion systems. The perspective camera is an example of a central projection system.
In this case the mapping in homogeneous coordinates of points in the scene into
points in the image is linear and can be described by a 3 × 4 projection matrix P
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(pin-hole model) [1]. Perspective projection can be modeled by intersecting a plane
with a pencil of lines going through the scene points and the projection center O.

There are central projection systems whose geometry can not be described using
the conventional pin-hole model. In [2] Baker et al. derive the entire class of cata-
dioptric systems satisfying the single viewpoint constraint. Sensors with a wide
field of view and a unique projection center can be built by combining a hyper-
bolic mirror with a perspective camera, or a parabolic mirror with an orthographic
camera (paracatadioptric system). However, the mapping between points in the 3D
world and points in the image is non-linear. Svoboda et al. show that in general
the central catadioptric image of a line is a conic section [3]. A unifying theory for
central catadioptric systems is proposed in [4]. Geyer et al. prove that central cata-
dioptric projection is isomorphic to a projective mapping from a sphere, centered in
the effective viewpoint, to a plane with the projection center on the perpendicular to
the plane. Perspective cameras with non-linear lens distortion are another example
of central projection systems where the relation in homogeneous coordinates be-
tween scene points and image points is no longer linear. True lens distortion curves
are typically very complex and higher-order models are introduced to approximate
the distortion during calibration [5,6]. However, simpler low-order models can be
used for many computer vision applications where an accuracy in the order of a
pixel is sufficient. In this paper the radial lens distortion is modeled after the divi-
sion model proposed in [7,10]. The division model is not an approximation to the
classical model in [5], but a different approximation to the true curve.

The present work proposes a general image formation model that accommodates
conventional perspective cameras, central catadioptric systems and dioptric cam-
eras with lens distortion. The model is linearized by lifting through Veronese maps
the projective plane in the five-dimensional space. Such an embedding provides
new insights about the geometric properties of each type of projection. The contri-
butions can be summarized as follows:

(1) The unifying model of central catadioptric systems proposed in [4] is extended
to include radial distortions. It is proved that the division model for lens dis-
tortion is equivalent to a projective mapping from a paraboloid to a plane,
orthogonal to the paraboloid’s axis, and with projection center in the vertex
of the paraboloid. It is also shown that in general the distorted projection of a
line is a conic curve.

(2) For both catadioptric and radially distorted dioptric systems, we establish a
new representation through lifting of the image plane to a five-dimensional
projective space. In this lifted space, a collineation in the original plane corre-
sponds to a collineation of the lifted points. We know that world lines project
to conic sections whose representatives in the lifted space lie on a quadric.
We prove that in the cases of parabolic catadioptric projection and radial lens
distortion this quadric degenerates to a hyperplane.
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Fig. 1. Steps of the unifying model. The 3D point X is projected into point x = PX

assuming the conventional pin-hole model. To each point x corresponds an intermediate
point x

′ which is mapped in the final image plane by function ð. Depending on the sensor
type, functions } and ð can represent a linear transformation or a non-linear mapping (see
Tab 1).

2 A Unifying Model for Perspective Cameras, Central Catadioptric Systems,
and Lenses with Radial Distortion

In [4], a unifying model for all central catadioptric systems is proposed where con-
ventional perspective imaging appears as a particular case. This section reviews this
image formation model as well as the result that in general the catadioptric image
of a line is a conic section [3]. This framework can be easily extended to cameras
with radial distortion where the division model [7,10] is used to describe the lens
distortion.

This section shows that conventional perspective cameras, central catadioptric sys-
tems, and cameras with radial distortion underly one projection model. Fig. 1 is a
scheme of the proposed unifying model. A point in the scene X is transformed into
a point x by a conventional projection matrix P. Vector x can be interpreted both as
a 2D point expressed in homogeneous coordinates, and as a projective ray defined
by points X and O (the projection center). Function } transforms x in the interme-
diate point x′. Point x′ is related with the final image point x′′ by function ð. Both }

and ð are transformations defined in the two dimensional oriented projective space
[8]. They can be linear or non-linear depending on the type of system, but they are
always injective functions with an inverse. Tab. 1 summarizes the results derived
along this section.

2.1 Perspective Camera and Central Catadioptric Systems

The image formation in central catadioptric systems can be split in three steps [9]
as shown in Fig. 1: world points are mapped into an oriented projective plane by a
conventional 3×4 projection matrix P; the oriented projective plane is transformed
by a non-linear function } (equation 1); the last step is a collineation in the plane
Hc (equation 2). In this case, the function ð is a linear transformation depending on
the camera intrinsics Kc, the relative rotation between the camera and the mirror
Rc, and the shape of the reflective surface. As discussed in [4,9], parameters ξ and
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Perspective Camera (ξ = 0, ψ = 0)

}(x) = (x, y, z)T ; ð(x′) = Kx
′

}−1(x′) = (x′, y′, z′)T ; ð−1(x′′) = K
−1

x
′′

Hyperbolic Mirror (0 < ξ < 1)

}(x) = (x, y, z + ξ
√
x2 + y2 + z2)T ; ð(x′) = Hcx

′

}−1(x′) = (x′, y′, z′ − (x′2+y′2+z′2)ξ

z′ξ+
√
z′2+(1−ξ2)(x′2+y′2)

)T ; ð−1(x′′) = Hc
−1

x
′′

Parabolic Mirror (ξ = 1)

}(x) = (x, y, z +
√
x2 + y2 + z2)T ; ð(x′) = Hcx

′

}−1(x′) = (2x′z′, 2y′z′, z′2 − x′2 − y′2)T ; ð−1(x′′) = Hc
−1

x
′′

Radial Distortion (ξ < 0)

ð(x′) = (2x′, 2y′, z′ +
√
z′2 − 4ξ(x′2 + y′2))T ; }(x) = Kx

ð−1(x′′) = (x′′z′′, y′′z′′, z′′2 + ξ(x′′2 + y′′2))T ; }−1(x′) = K
−1

x
′;

Table 1
The mapping functions } and ð and corresponding inverses.

ψ in equations 1 and 2, depend only on the system type and shape of the mirror.
For paracatadioptric systems ξ = 1, while in the case of conventional perspective
cameras ξ = 0. If the mirror is hyperbolic then ξ takes values in the range ]0, 1[.

x′ = }(x) = (x, y, z + ξ
√
x2 + y2 + z2)T (1)

x′′ = KRc

[
ψ−ξ 0 0

0 ξ−ψ 0
0 0 1

]

︸ ︷︷ ︸
Hc

}(x) (2)

The non-linear characteristics of the mapping are isolated in } which has a curious
geometric interpretation. Since x′ is a homogeneous vector representing a point in
an oriented projective plane, λx′ represents the same point whenever λ > 0 [8].
Assuming λ = 1/

√
x2 + y2 + z2, it follows from equation 1 that





x′ = x√
x2+y2+z2

y′ = y√
x2+y2+z2

z′ − ξ = z√
x2+y2+z2

Assume that x and x′ are projective rays defined in two different coordinates sys-
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Fig. 2. The sphere model for central catadioptric projection. Each projective ray x inster-
sects the unit sphere, centered in the projection center O, at point Xm. The new projective
point x

′ is defined by O
′ and Xm. The distance between the origins O and O

′ is ξ which
depends on the mirror shape [9].

tems in <3. The origin of the first coordinate system is the effective viewpoint O
and x is a projective ray going through O. In a similar manner x′ represents a pro-
jective ray going through the origin O′ of the second reference frame. According
to the previous equation to each ray x corresponds one, and only one, projective
ray x′. The correspondence is such that the pencil of projective rays x intersects
the pencil of rays x′ in a set of points lying on a unit sphere centered in O. The
equation of the sphere in the coordinate system centered in O′ is

x′2 + y′2 + (z′ − ξ)2 = 1

We have just derived the well known sphere model proposed in [4] (Fig. 2). The
homogeneous vector x can be interpreted as a projective ray joining a 3D point in
the scene with the effective projection center O, which intersects the unit sphere
in a single point Xm. Consider a point O′ in <3, with coordinates (X, Y, Z) =
(0, 0,−ξ)T (ξ ∈ [0, 1]). To each x corresponds an oriented projective ray x′, de-
fined by points O′ and Xm. The non-linear mapping } is equivalent to projecting
the scene on the sphere surface and then re-projecting into a plane from a novel
projection center O′. Points in the image plane x′′ are obtained after a collineation
Hc of the 2D projective points x′ (equation 2).

Consider a line in space lying on a plane Π with normal n = (nx, ny, nz)
T and

going through the effective viewpoint O (Fig. 2). The 3D line is projected in a
great circle which is the intersection of Π with the reference sphere. Projective
rays x′, joining O′ with points in the great circle, form a central cone with vertex
O′. The central cone intersects the canonical image plane Π∞ in a conic curve Ω′.
The equation of Ω′ is provided in 3 and depends of the normal n and parameter ξ
[4,9]. The original 3D line is projected in the catadioptric image on a conic section
Ω′′, which is the projective transformation of Ω′ (Ω′′ = Hc

−tΩ′Hc
−1) [4,3].

5



Ω
′ =




n2
x(1 − ξ2) − n2

zξ
2 nxny(1 − ξ2) nxnz

nxny(1 − ξ2) n2
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zξ
2 nynz

nxnz nynz n2
z




(3)

Notice that the re-projection center O′ depends only on the mirror shape. In the
case of parabolic mirrors point O′ lies in the sphere surface and the re-projection
is a stereographic projection. For hyperbolic systems ξ ∈ (0, 1) and point O′ is
inside the sphere in the negative Z-axis. The conventional perspective camera is a
degenerate case of central catadioptric projection where ξ = 0 and O′ is coincident
with O.

2.2 Dioptric Systems with Radial Distortion

In perspective cameras with lens distortion the mapping between points in the scene
and points in the image is no longer described by a linear function. Following the
pin-hole model, each point in the scene X originates a projective ray x = PX
which is transformed into a 2D projective point x′ = Kx. The image point x′′ is
related with x′ by a non-linear transformation that models the lens radial distortion.
In this paper we consider the so called division model [7,10] for lens distortion.
The non-linear transformation is provided in equation 4 with parameter ξ quanti-
fying the amount of radial distortion. Remark that if ξ = 0 then points x′ and x′′

are the same, and the camera is modeled as a conventional pin-hole. The function
of equation 4 is the inverse of ð (see Fig. 1 and Tab. 1), and isolates the non-linear
characteristics of the mapping. In the case of dioptric systems with radial distor-
tion function } is a linear transformation K (matrix of intrinsic parameters). The
division model of equation 4 requires that points x′ and x′′ are referenced in a co-
ordinate system with origin in the image distortion center. If the distortion center
is not known in advance, we can place it at the image center without significantly
affect the correction [6].

x′ = ð−1(x′′) = (x′′z′′, y′′z′′, z′′2 + ξ(x′′2 + y′′2))T (4)

Transformation ð has a geometric interpretation similar to the sphere model derived
for central catadioptric image formation. As stated before, x′ and λx′ represent the
same point whenever λ is a positive scalar [8]. Assuming λ = 1/

√
x′′2 + y′′2 in

equation 4 yields
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Fig. 3. The paraboloid model for perspective cameras equipped with lens with radial dis-
tortion. The division model for lens distortion [7,10] is isomorphic to a projective mapping
from a paraboloid to a plane with projection center on the vertex O

′′. The distance between
O

′′ and the effective viewpoint is defined by the distortion parameter ξ.





x′ = x′′z′′

x′′2+y′′2

y′ = y′′z′′

x′′2+y′′2

z′ − ξ = z′′2

x′′2+y′′2 .

(5)

Reasoning as in the previous section, x′ and x′′ can be interpreted as projective
rays going through two distinct origins O′ and O′′. From equation 5 follows that
the two pencils of rays intersect on a paraboloid with vertex O′′. The equation of
this paraboloid in the coordinate system attached to the origin O′ is

x′2 + y′2 − (z′ − ξ) = 0

.

The scheme of Fig. 3 is the equivalent of Fig 2 for the situation of lens with radial
distortion. It shows an intuitive ’concrete’ model for the non-linear transformation
ð (Tab. 1) based on the paraboloid derived above. Since in this case the ξ parameter
is always negative [10], the effective projection center O′ lies inside the parabolic
surface. The projective ray x′ goes through the viewpoint O′ and intersects the
paraboloid at point Xm. By joining Xm with the vertex O′′ we obtain the projective
ray associated with the distorted image point x′′. Our model is in accordance to the
fact that the effects of radial distortion are more noticeable in the image periphery
than in the image center. The reference paraboloid is a quadratic surface in ℘3

which is tangent to the plane at infinity at point (X ′, Y ′, Z ′,W ′)T = (0, 0, 1, 0)T . If
the angle between the projective ray x′ and theZ ′ axis is small, then the intersection
point Xm is close to infinity. In this case the rays associated with x′ and x′′ are
almost coincident and the effect of radial distrtion is negligible.
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Consider a line in the space that, according to the conventional pin-hole model, is
projected into a line n′ = (n′

x, n
′

y, n
′

z)
T in the projective plane. Points x′, lying on

line n′, are transformed into image points x′′ by the non-linear function ð. Since
n′Tx′ = 0 and x′ = ð−1(x′′), then n′Tð−1(x′′) = 0. After some algebraic manip-
ulation the previous equality can be written in the form x′′TΩ′′x′′ = 0 with Ω′′

given by equation 6. In a similar way to what happens for the central catadioptric
systems, the non-linear mapping ð transforms lines n′ into a conic sections Ω′′ (see
Fig. 3).

Ω′′ =




ξn′

z 0 n′

x

2

0 ξn′

z

n′

y

2

n′

x

2

n′

y

2
n′

z




(6)

3 Embedding ℘2 into ℘5 Using Veronese Maps

Perspective projection can be formulated as a transformation of <
3 into <

2. Points
X = (X, Y, Z)T are mapped into points x = (x, y)T by a non-linear function
f(X) = (X/Z, Y/Z)T . A standard technique used in algebra to render a nonlinear
problem into a linear one is to find an embedding that lifts the problem into a
higher dimensional space. For conventional cameras, the additional homogeneous
coordinate linearizes the mapping function and simplifies most of the mathematic
relations. In the previous section we established a unifying model that includes
central catadioptric sensors and lens with radial distortion. Unfortunately the use
of an additional homogeneous coordinate does no longer suffice to cope with the
non-linearities in the image formation.

In this paper, we propose the embedding of the projective plane into a higher di-
mensional space in order to study the geometry of general single viewpoint images
in a unified framework. This idea has already been explored by other authors to
solve several computer vision problems. Higher-dimensional projection matrices
are proposed in [11] for the representation of various applications where the world
is no longer rigid. In [12], lifted coordinates are used to obtain a fundamental ma-
trix between paracatadioptric views. Sturm generalizes this framework to analyze
the relations between multiple views of a static scene where the views are taken by
any mixture of paracatadioptric, perspective or affine cameras [13].

The present section discusses the embedding of the projective plane ℘2 in ℘5

(equation 7) using Veronese mapping [14,15]. This polynomial embedding pre-
serves homogeneity and is suitable to represent quadratic relations between image
points [16,17]. Moreover there is a natural duality between lifted points x̃ and con-
ics which is advantageous when dealing with catadioptric and distorted projection
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of lines. It is also shown that projective transformations in ℘2 can be transposed to
℘5 in a straightforward manner.

x ∈ ℘2 −→ x̃ = (x0, x1, x2, x3, x4, x5)
T ∈ ℘5 (7)

3.1 Lifting Point Coordinates

Consider an operator Γ which transforms two 3× 1 vectors x, x̄ into a 6× 1 vector
as shown in equation 8

Γ(x, x̄) = (xx̄,
xȳ + yx̄

2
, yȳ,

xx̄ + zx̄

2
,
yz̄ + zȳ

2
, zz̄)T (8)

The operator Γ can be used to map pairs of points in the projective plane ℘2, with
homogeneous coordinates x and x̄, into points in the 5D projective space ℘5. To
each pair of points x, x̄ corresponds one, and only one, point x̃ = Γ(x, x̄) which
lies on a primal S called the cubic symmetroid [14]. The cubic symmetroid S is a
non-linear subset of ℘5 defined by the following equation

x0x2x5 + 2x1x3x4 − x0x
2
4 − x2x

2
3 − x5x

2
1 = 0,∀x̃∈S (9)

By making x̄ = x the operator Γ can be used to map a single point in ℘2 into a
point in ℘5. In this case the lifting function becomes

x −→ x̃ = Γ(x,x) = (x2, xy, y2, xz, yz, z2)T . (10)

To each point x in the projective plane corresponds one, and only one, point x̃ lying
on a quadratic surface V in℘5. This surface, defined by the triplet of equations 11,
is called the Veronese surface and is a sub-set of the cubic symmetroid S [14,15].
The mapping of equation 10 is the second order Veronese mapping that will be used
to embed the projective plane ℘2 into the 5D projective space.

x2
1 − x0x2 = 0 ∧ x2

3 − x0x5 = 0 ∧ x2
4 − x2x5 = 0,∀x̃∈V. (11)

3.2 Lifting Lines and Conics

A conic curve in the projective plane ℘2 is usually represented by a 3 × 3 sym-
metric matrix Ω. Point x lies on the conic if, and only if, equation xTΩx = 0 is

9



satisfied. Since a 3×3 symmetric matrix has 6 parameters, the conic locus can also
be represented by a 6 × 1 homogeneous vector ω̃ (equation 12). Vector ω̃ is the
representation in lifted coordinates of the planar conic Ω

Ω =
[
a b d
b c e
d e f

]
−→ ω̃ = (a, 2b, c, 2d, 2e, f)T . (12)

Point x lies on the conic locus Ω if, and only if, its lifted coordinates x̃ are orthog-
onal to vector ω̃ (ω̃T .x̃ = 0). Moreover, if points x and x̄ are harmonic conjugates
with respect to the conic then xTΩx̄ = 0 and ω̃T .Γ(x, x̄) = 0. In the same way as
points and lines are dual entities in ℘2, there is a duality between points and conics
in the lifted space ℘5. Since the general single viewpoint image of a line is a conic
(equations 3 and 6), this duality will prove to be a nice and useful property.

Conic Ω = m.lT + l.mT is composed of two lines m and l lying on the projective
plane℘2. In this case the conic is said to be degenerate, the 3×3 symmetric matrix
Ω is rank 2, and equation 12 becomes

Ω = mlT + lmT −→ ω̃ =




1 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1




︸ ︷︷ ︸
D̃

.Γ(m, l) (13)

In a similar way a conic locus can be composed by a single line n = (nx, ny, nz)
T .

Matrix Ω = n.nT has rank 1 and the result of equation 12 can be used to establish
the lifted representation of a line

n → ñ = D̃.Γ(n,n) = (n2
x, 2nxny, n

2
y, 2nxnz, 2nynz, n

2
z)
T (14)

Consider a point x in ℘2 lying on line n such that nT .x = 0. Point x is on the line
if, and only if, its lifted coordinates ñ are orthogonal to the homogeneous vector
ñ (ñTx̃ = 0). Points and lines are dual entites in ℘2 as well as in the lifted space
℘5. By embedding the projective plane into ℘5 lines and conics are treated in a
uniform manner. The duality between points and lines is preserved and extended
for the case of points and conics. The space of all conics is the dual 5D projective
space ℘5∗, because each point ω̃ corresponds to a conic curve Ω in the original 2D
plane. The set of all lines n is mapped into a non-linear subset V∗ of ℘5∗, which is
the projective transformation of the Veronese surface V by D̃ (equation 14).

10



3.3 Lifting Linear Transformations

In the previous sections we discussed the representation of points, lines and conics
in the 5D projective space ℘5. However a geometry is defined not only by a set
of objects but also by the group of transformations acting on them [18]. This sec-
tion shows how a linear transformation on the original space ℘2 can be coherently
transferred to the lifted space ℘5.

Consider a linear transformation, represented by a 3×3 matrix H, which maps any
two points x and x̄ into points Hx and Hx̄. Both pairs of points can be lifted to ℘5

using the operator Γ of equation 8. We wish to obtain a new operator Λ that has the
following characteristic

Γ(Hx,Hx̄) = Λ(H).Γ(x, x̄) (15)

The desired result can be derived by developing equation 15 and performing some
algebraic manipulation. The operator Λ, transforming a 3×3 matrix H into a 6×6
matrix H̃, is provided in equation 16 with v1, v2 and v3 denoting the columns of
the original matrix H.

Λ( [ v1 v2 v3 ]︸ ︷︷ ︸
H

) =




Γ(v1,v1)T

Γ(v1,v2)T

Γ(v2,v2)T

Γ(v1,v3)T

Γ(v2,v3)T

Γ(v3,v3)T



D̃

︸ ︷︷ ︸
H̃

(16)

It can be proved that Λ, not only satisfies the relation stated on equation 15, but
also has the following properties

Λ(H−1) = Λ(H)−1

Λ(H.B) = Λ(H).Λ(B)

Λ(HT ) = D̃−1.Λ(H)T .D̃

Λ(I3×3) = I6×6

(17)

From equation 15 comes that if x and y are two points in℘2 such that y = Hx then
ỹ = Λ(H).x̃ where x̃ and ỹ are the lifted coordinates of the points. The operator
Λ maps the linear transformation H in the plane into the linear transformation
H̃ = Λ(H) in ℘5. The transformation of points and conics are transferred to the
5D projective space in the following manner

11



y = Hx −→ ỹ = H̃x̃

Ψ = H−tΩH−1 −→ ψ̃ = H̃−tω̃
(18)

We just proved that the set of linear transformations in ℘2 can be mapped into a
subset of linear transformations in℘5. Any transformation, represented by a singu-
lar or non-singular 3 × 3 matrix H, has a correspondence in H̃ = Λ(H). However
note that there are linear transformations in ℘5 without any correspondence in the
projective plane.

4 The Subset of Line Images

This section applies the established framework in order to study the properties of
line projection in central catadioptric systems and cameras with radial distortion. If
it is true that a line is mapped into a conic in the image, it is not true that any conic
can be the projection of a line. It is shown that a conic section ω̃ is the projection
of a line if, and only if, it lies in a certain subset of ℘5 defined by the sensor type
and calibration. This subset is a linear subspace for paracatadioptric cameras and
cameras with radial distortion, and a quadratic surface for hyperbolic systems.

4.1 Central Catadioptric Projection of Lines

Assume that a certain line in the world is projected into a conic section Ω′′ in the
catadioptric image plane. As shown in Fig. 2, the line lies in plane Π that contains
the projection center O and is orthogonal to n = (nx, ny, nz)

T . The catadioptric
projection of the line is Ω′′ = Hc

−tΩ′Hc
−1 with Hc the calibration matrix. The

conic Ω′ is provided in equation 3 and depends on the normal n and the shape of
the mirror.

The framework derived in the previous section is now used to transpose to ℘5 the
model for line projection discussed in section 2.1. Conic Ω′ is mapped into ω′ in
the 5D projective space. As shown in equation 3 the conic depends on the normal n
and on parameter ξ. This dependence can be represented in ℘5 by ω̃′ = ∆̃cñ with
∆̃c given by equation 19. The lifted coordinates of the final image of the line are
ω̃′′ = H̃c∆̃cñ. Hence forth, if nothing is said, the collineation H̃c is ignored and
we will work directly with ω̃′ = H̃−1

c ω̃
′′.
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a′

2b′

c′

2d′

2e′

f ′




︸ ︷︷ ︸
ω̃′

=




1 − ξ2 0 0 0 0 −ξ2

0 1 − ξ2 0 0 0 0

0 0 1 − ξ2 0 0 −ξ2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




︸ ︷︷ ︸
∆̃c




n2
x

2nxny

n2
y

2nxnz

2nynz

n2
z




︸ ︷︷ ︸
ñ

(19)

Notice that the linear transformation ∆̃c, derived from equation 3, does not have
an equivalent transformation in the projective plane (equation 16). The catadioptric
projection of a line, despite of being non-linear in ℘2, is described by a linear
relation in ℘5.

As stated in section 3.2, a line n in the projective plane is lifted into a point ñ which
lies on the quadratic surface V∗ in ℘5∗. From equation 19 it follows that a generic
conic ω̃′ is the catadioptric projection of a line if, and only if, ∆̃c

−1
ω̃′ ∈ V∗. Since

surface V∗ is the projective transformation of the Veronese surface V (equation 11)
by D̃, then ω̃′ = (a′, 2b′, c′, 2d′, 2e′, f ′)T is the projection of a line if, and only if,





d′2(1 − ξ2) − f ′(a′ + f ′ξ2) = 0

e′2(1 − ξ2) − f ′(c′ + f ′ξ2) = 0 ,∀
ω̃′∈ζ

b′2 − (a′ + fξ2)(c′ + f ′ξ2) = 0

(20)

Equation 20 defines a quadratic surface ζ in the space of all conics. The constraints
of equation 20 have been recently introduced in [19] and used as invariants for
calibration purposes.

4.2 Line Projection in Paracatadioptric Cameras

Let’s consider the situation of paracatadioptric cameras where ξ = 1. In this case
point O′ lies on the sphere surface (Fig. 2) and the re-projection from the sphere
to the plane becomes a stereographic projection [4]. Equation 21 is derived from
equation 20 by making ξ = 1. For the particular case of paracatadioptric cameras
the quadratic surface ζ degenerates into a linear subspace ϕ which is the set of all
line projections ω̃′.
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a′ + f ′ = 0 ∧ c′ + f ′ = 0 ∧ b′2 = 0,∀
ω̃′∈ϕ

(21)

Stating this result in a different manner, the conic Ω′ is is the paracatadioptric
projection of a line if, and only if, the corresponding lifted representation ω̃′ is on
the null space of matrix Np.

[
1 0 0 0 0 1
0 0 1 0 0 1
0 1 0 0 0 0

]

︸ ︷︷ ︸
Np

ω̃′ = 0 (22)

We have already seen that if point x′ is on conic Ω′ then ω̃′T x̃′ = 0. The lifted point
x̃′ must lie on the prime of ℘5 that is orthogonal to ω̃′ [14]. However, not all points
in this prime are lifted coordinates of points in ℘2. Section 3.1 shows that only
points lying on the Veronese surface V have a correspondence on the projective
plane. Thus, points x′ lying on Ω′ are mapped into a subset of ℘5 defined by the
intersection of the prime orthogonal to ω̃′ with the Veronese surface V.

Consider the set of all conic sections Ω′ corresponding to paracatadioptic line pro-
jections. If this conic set has a common point x′ then its lifted vector x̃′ must be on
the intersection of V with the hyperplane orthogonal toϕ. Points Ĩ′ and J̃′ are com-
puted by intersecting the range of matrix Np

T (the orthogonal hyperplane) with the
Veronese surface defined in equation 11. These points are the lifted coordinates of
the circular points in the projective plane where all paracatadioptric line images Ω′

intersect.





Ĩ′ = (1, i,−1, 0, 0, 0)T

J̃′ = (1,−i,−1, 0, 0, 0)T
→





I′ = (1, i, 0)T

J′ = (1,−i, 0)T
(23)

In a similar way, if there is a pair of points x, x̄ that are harmonic conjugate with
respect to all conics Ω′ then, the corresponding vector Γ(x, x̄), must be in the
intersection of S with the range of Np

T . The intersection can be determined from
equations 9 and 22 defining the cubic symmetroid S and matrix Np. The result is
presented in equation 24 where λ is a free scalar.





P̃′Q′ = (−λ, 1, λ, 0, 0, 0)T →





P′ = (1 +
√

1 + λ2, λ, 0)T

Q′ = (1 −
√

1 + λ2, λ, 0)T

R̃′T′ = (1, λ, λ2, 0, 0, 1 + λ2)T →





R′ = (1, λ,−i
√

1 + λ2)T

T′ = (1, λ, i
√

1 + λ2)T

(24)
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According to equation 23, any paracatadioptric projection of a line must go through
the circular points. This is not surprising, since the stereographic projection of a
great circle is always a circle (see 2). However, not all circles correspond to the
projection of lines. While points P′,Q′ are harmonic conjugate with respect to a
all circles, the same does not happen with the pair R′,T′. Thus, a conic Ω′ is the
paracatadioptric image of a line if, and only if, it goes through the circular points
and satisfies R′TΩ′T′ = 0. This result has been used in [20,21] in order to constrain
the search space and accurately estimate line projections in the paracatadioptric
image plane.

4.3 Line Projection in Cameras with Radial Distortion

We have already shown that for catadioptric cameras the model for line projection
becomes linear when the projective plane is embedded in ℘5. A similar derivation
can be applied to dioptric cameras with radial distortion. According to the conven-
tional pin-hole model a line in the scene is mapped into a line n′ in the image plane.
However, and as discussed on section 2.2, the non-linear effect of radial distortion
transforms n′ into a conic curve Ω′′. If ω̃′′ and ñ′ are the 5D representations of Ω′′

and n′ it follows from equation 6 that




a′′

2b′′

c′′

2d′′

2e′′

f ′′




︸ ︷︷ ︸
ω̃′′

=




0 0 0 0 0 ξ

0 0 0 0 0 0

0 0 0 0 0 ξ

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 1




︸ ︷︷ ︸
∆̃r




n′2
x

2n′

xn
′

y

n′2
y

2n′

xn
′

z

2n′

yn
′

z

n′2
z




︸ ︷︷ ︸
ñ′

(25)

For the paracatadioptric camera situation (ξ = 1) matrix ∆̃c has a structure similar
to matrix ∆̃r. It can be proved that a conic section ω̃′′ is the distorted projection of
a line if, and only if, it lies on a hyperplane ς defined as follows

a′′ − ξf ′′ = 0 ∧ c′′ − ξf ′′ = 0 ∧ b′′2 = 0,∀ω̃′
∈ς (26)

Repeating the reasoning that we did for the paracatadioptric camera, it can be
shown that conic Ω′′ is the distorted projection of a line if, and only if, it goes
through the circular points of equation 23 and satisfies the condition M′′TΩ′′N′′ =
0 with M′′ and N′′ given below
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(a) Original Image

,

(b) Corrected Image

Fig. 4. Estimation of radial distortion using line projections. On the left we show one of
the six images used in this experiment. The size of the image is 768 × 1024. For each
test image we fitted 4 circles to the projection of 4 lines and estimated the radial distor-
tion parameter ξ (equation 28). The mean value for the radial distortion estimation was
ξ = −7.3125× 10−7 . It corresponds to a displacement along the radial direction of 273.55
pixels at the image corner. The standard deviation of the estimated displacement was 9.925
pixels. The correction of radial distortion using the estimated value is exhibited on the right
side.

M̃′′N′′ = (1, λ, λ2, 0, 0,−ξ(1 + λ2))T →





M′′ = (1, λ,
√
ξ(1 + λ2))T

N′′ = (1, λ,−
√
ξ(1 + λ2))T

(27)

5 Experiments

Conventional perspective cameras, central catadioptric systems and dioptric cam-
eras with lens distortion underly a common model for central projection (Fig. 1).
According to this model the central projection of a line is in general a conic curve
that is dual to the lifted representation of image points (section 3). The embedding
of the projective plane into ℘5 provides useful geometric insights and shows the
similarities between the different types of sensors.

We proved that in the case of paracatadioptric systems the lifted representation of
a line projection lies in a plane in the dual space ℘5∗. This fact is explored in [20]
in order to calibrate the sensor using the image of lines. A similar approach can
be applied for the estimation of lens distortion. Consider the projection of a line
n′ = (n′

x, n
′

y, n
′

z)
T in a camera with radial distortion. From equation 6 follows that,

if n′ does not go through the distortion center (n′

z 6= 0), then its projection is a
conic curve with lifted representation
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Fig. 5. Estimation of the distorted projection of a line from two image points selected by
hand. The image size is 768 × 1024 and the radial distortion causes a displacement of
273.55 pixels at the image corner. The conic curve Ω

′′, corresponding to the projection of
a line, is estimated from two image points knowing that Ω

′′ must go through the circular
points and satisfies M

′′T
Ω

′′
N

′′ = 0 (equation 27).

ω̃′′ = (ξ, 0, ξ,
n′

x

n′

z

,
n′

y

n′

z

, 1)T . (28)

As for the paracatadioptric camera situation, points ω′′ are the distorted projection
of a line if, and only if, they lie in a certain plane of℘5∗. This plane is a subspace of
the space of all circles, and the distortion can be easily estimated by fitting suitable
circles to a set of line projections. The circles must follow the structure of equation
28 which implicitly encodes the distortion parameter ξ. Fig. 4(a) shows an image
acquired by a camera with significant lens distortion. We applied and edge detector
in order to measure image points x′′ lying on 4 distinct line projections. We fitted
4 consistent circles to the data points using normal least squares (equation 28). The
procedure was repeated for 5 other images acquired by the same camera. The mean
estimation for the radial distortion was ξ = −7.3125 × 10−7.

In [21] we propose an algorithm to robustly estimate the projection of lines in cal-
ibrated paracatadioptric images. In the experiment of Fig. 5 we extend the method
to the case of cameras with radial distortion. This extension is trivial given the ob-
served similarities in the geometry of line projection. In section 4.3 we saw that a
conic curve Ω′′ is the distorted projection of a line if, and only if, it goes through the
circular points I′′ and J′′ and satisfies M′′TΩ′′N′′ = 0. Remark that points M′′ and
N′′ only depend on the distortion parameter ξ that is known (equation 27). Since a
conic curve has 5 degrees of freedom, the line projection Ω′′ is fully constrained
by knowing 2 image points lying on it. Fig. 5 shows the loci where three lines in
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the scene are projected. Each curve was determined using just two image points
selected by hand.

6 Conclusion

In this paper we studied unifying models for central projection systems and rep-
resentations of projections of world points and lines. We first proved that the two
step projection model through the sphere, equivalent to perspective cameras and
all central catadioptric systems, can be extended to cover the division model of
radial lens distortion. Having accommodated all central catadioptric as well as ra-
dial lens distortion models under one formulation, we established a representation
of the resulting image planes in the five-dimensional projective space through the
Veronese mapping. In this space, a collineation of the original plane corresponds
to a collineation of the lifted space. Projections of lines in the world correspond to
points in the lifted space lying in the general case on a quadric surface. However, in
the cases of paracatadioptric and radial lens distortions, liftings of the projections
of world lines lie on hyperplanes. In ongoing work, we study the epipolar geometry
of central camera systems when points are expressed in this lifted space.
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