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Abstract

The paracatadioptric camera is one of the most popular panoramic systems currently avail-
able in the market. It provides a wide field of view by combining a parabolic shaped mirror
with a camera inducing an orthographic projection. Previous work proved that the para-
catadioptric projection of a line is a conic curve, and that the sensor can be fully calibrated
from the image of three or more lines. However, the estimation of the conic curves where
the lines are projected is hard to accomplish because of the partial occlusion. In general only
a small arc of the conic is visible in the image, and conventional conic fitting techniques are
unable to accurately estimate the curve. The present work provides methods to overcome
this problem. We show that in uncalibrated paracatadioptric views a set of conic curves is
a set of line projections if and only if certain properties are verified. These properties are
used to constrain the search space and correctly estimate the curves. The conic fitting is
solved naturally by an eigensystem whenever the camera is skewless and the aspect ratio
is known. For the general situation the line projections are estimated using non-linear opti-
mization. The set of paracatadioptric lines is used in a geometric construction to determine
the camera parameters and calibrate the system. We also propose an algorithm to estimate
the conic locus corresponding to a line projection in a calibrated paracatadioptric image.
It is proved that the set of all line projections is a hyperplane in the space of conic curves.
Since the position of the hyperplane depends only on the sensor parameters, the accuracy of
the estimation can be improved by constraining the search to conics lying in this subspace.
We show that the fitting problem can be solved by an eigensystem, which leads to a robust
and computationally efficient method for paracatadioptric line estimation.
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1 Introduction

The approach of combining mirrors with conventional cameras to enhance the sen-
sor field of view is referred as catadioptric image formation. The use of catadiop-
tric systems to achieve panoramic vision is simple and fast enabling the capture
of dynamic scenes. The entire class of catadioptric configurations satisfying the
fixed viewpoint constraint is derived in [1]. Panoramic central catadioptric systems
can be built by combining an hyperbolic mirror with a perspective camera, and a
parabolic mirror with an orthographic camera (paracatadioptric sensor). The con-
struction of the former requires a careful alignment between the mirror and the
imaging device. The camera projection center must be positioned in the outer focus
of the hyperbolic reflective surface. The paracatadioptric camera is easier to con-
struct being broadly used in applications requiring omnidirectional vision [2–8]. In
[9], Geyer and Daniilidis introduce for the first time a unifying theory for general
central catadioptric image formation. A modified version of this mapping model is
proposed in [10]. It is shown that central catadioptric projection is isomorphic to
a projective mapping from a sphere, centered in the effective viewpoint, to a plane
with a projection center on the perpendicular to the plane. For the particular case of
paracatadioptric sensors the projection center lies on the sphere and the projective
mapping is a stereographic projection. The plane and the final catadioptric image
are related by a collineation depending on the mirror and camera intrinsic parame-
ters. The system is calibrated when this collineation is known. It has already been
proved that the central catadioptric projection of a line is a conic curve [11,9,12],
and that any central panoramic system can be fully calibrated from the image of
three lines in general position [13]. However, since lines are mapped into conic
curves which are only partially visible, the accurate estimation of catadioptric line
images is far from being a trivial task [14,15]. The present work addresses the prob-
lem of accurately estimate paracatadioptric lines using image points.

Several authors have already proposed algorithms to calibrate a paracatadioptric
camera [16–18]. The approach presented in [17] requires a sequence of paracata-
dioptric images. The system is calibrated using the consistency of pair wise tracked
point features across the sequence, based on the characteristics of catadioptric
imaging. In [18], the center and focal length are determined by fitting a circle to the
image of the mirror boundary. The method is simple and can be easily automated,
however it is not very accurate and requires the visibility of the mirror boundary. Its
major drawback is that it is only applicable for the situation of a skewless camera
with unitary aspect ratio. Geyer and Daniilidis propose an algorithm to calibrate
the sensor from an image of at least three lines [16]. They present a closed-form
solution for focal length, image center, and aspect ratio for skewless cameras, and
a polynomial root solution in the presence of skew. Certain properties of parabolic
projection are used in order to get accurate line estimates, but the conic curves ver-
ifying these properties are not necessarily the paracatadioptric projection of lines.
This has an impact in the global performance of the method as will be discussed in
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section 5.

We derive for the first time the necessary and sufficient conditions that must be
satisfied by a set of conic curves to be the paracatadioptric projection of lines. The
derived conditions can be used in order to accurately estimate the line images using
non-linear optimization. Moreover, if the system is skewless and the aspect ratio is
known, then the line projections can be computed by solving an eigensystem. Given
the image of at least three lines the paracatadioptric camera is easily calibrated
using the geometric construction proposed in [13]. The calibration algorithm is
evaluated using both synthetic and real images. The experimental results show that
it out performs the method proposed in [16].

Additionally we present a conic fitting algorithm that copes with the occlusion
problem and accurately estimates the paracatadioptric image of single lines. The
method is specific for line projections in parabolic systems and requires the sen-
sor to be calibrated. We prove that a conic curve is the paracatadioptric image of a
line if and only if the image of the circular points lie on the curve, and two certain
points are harmonic conjugate with respect to the conic. The paracatadioptric cam-
era maps lines in the scene into conic curves lying in a hyperplane in the space of all
conics. Therefore, the line projection can be accurately determined by constraining
the search space. The estimation algorithm is stable and computationally efficient
because the fitting problem can be solved by an eigensystem. The proposed method
is useful for many applications such as 3D reconstruction and visual control of mo-
tion using paracatadioptric images. Experimental results show that the approach is
very robust and the estimation results are much better than the ones obtained by
performing perspective rectification [4].

2 Paracatadioptric Projection of Lines

A general mapping model for central catadioptric systems has been introduced for
the first time in [9]. This section briefly reviews the image formation model for the
particular case of paracatadioptric cameras (for a detailed derivation see [10]). The
equations for paracatadioptric line projection are derived, and it is shown that the
image of a line is a conic curve [9,11]. The estimation of these conic curves is in
general hard to accomplish due to partial occlusion. We compare and discuss the
performance of five standard conic fitting methods.

2.1 Paracatadioptric Projection Model

Assume a paracatadioptric system combining a parabolic mirror, with latus rectum
4p, and an orthographic camera. The principal axis of the camera is aligned with
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Fig. 1. Paracatadioptric projection model. The unitary sphere is centered at point Oc and P

is the point where the projective ray x intersects the sphere. The new projective point x̄ is
defined by Oc and P. The paracatadioptric image point x̂ is related with x̄ by a projective
transformation Hc.

the symmetry axis of the paraboloid. The paracatadioptric projection can be mod-
eled by a stereographic projection from an unitary sphere, centered in the effective
viewpoint, into a plane Π∞ as shown in Fig. 1.

The mapping can be described as follows. Each visible scene point defines an ori-
ented projective ray x = (x, y, z)t, joining the 3D point with the projection center
O. Consider the south pole of the sphere Oc with coordinates (0, 0,−1)t. To each
x corresponds a projective ray x̄ going through Oc and P (the intersection point
of x and the sphere). This mapping } between projective points is non-linear as
shown in equation 1. Function } is equivalent to projecting the scene in the unitary
sphere, followed by a re-projection from the sphere to the plane Π∞ with center
Oc. Points in catadioptric image plane x̂ are obtained after a collineation Hc of the
2D projective points x̄. Equation 2 shows that Hc is always an affine transforma-
tion depending of the camera intrinsic parameters Kc, and the latus rectum of the
parabolic mirror.

}(x) = (x, y, z +
√

x2 + y2 + z2)t (1)

x̂ = Kc

[
2p 0 0
0 2p 0
0 0 1

]

︸ ︷︷ ︸

Hc

x̄ (2)

Consider the plane Π = (n, 0)t going through the effective viewpoint O as depicted
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in Fig. 1 (n = (nx, ny, nz)
t). The paracatadioptric image of any line lying on Π is

the conic curve Ω̂. The line in the scene is projected into a great circle in the sphere
surface. This great circle is the curve of intersection of plane Π, containing both the
line and the projection center O, and the unit sphere. The projective rays x̄, joining
Oc with points in the great circle, form a central cone surface. The central cone,
with vertex in Oc, projects into the conic Ω̄ in plane Π∞ (equation 3). Since the
image plane and Π∞ are related by collineation Hc, the result of equation 4 comes
in a straightforward manner.

Ω̄ =










−n2
z 0 nxnz

0 −n2
z nynz

nxnz nynz n2
z










(3)

Ω̂ =
[

a b d
b c e
d e f

]

= Hc
−tΩ̄Hc

−1 (4)

The paracatadioptric system is calibrated whenever the collineation Hc is known.
Assume that the image center of the orthographic camera is C = (cx, cy)

t, and
that r2

c , fo and sk are respectively the aspect ratio, the focal length and the skew.
Since the matrix of intrinsic parameters Kc is upper triangular, then Hc is always
an affine transformation (equation 2). Matrix Hc is provided in equation 5 where
fc = 2fop is a measurement in pixels of the combined focal length of the camera
and the mirror. As a final remark notice that since Ω̄ is a circle, then the conic curve
Ω̂ is in general an ellipse (equation 3 and 4). Moreover the paracatadioptric image
of a line is a circle if and only if the orthographic camera has unitary aspect ratio
(rc = 1).

Hc =










rcfc sk cx

0 r−1
c fc cy

0 0 1










(5)

2.2 Estimation of Paracatadioptric Line Images using Standard Conic Fitting
Methods

Equation 4 shows that the paracatadioptric projection of a line is a conic curve
which is parameterized by a 3 × 3 symmetric matrix Ω̂. Since a conic has 5 inde-
pendent degrees of freedom (DOF), it can also be represented by a point ω̂ in the
5D projective space ℘

5 (equation 6) [19]. Henceforth we will assume both repre-
sentations without distinction. The present section discusses the problem of fitting
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conic curves to image points in order to estimate the loci where line are projected. A
conic fitting algorithm determines the curve that best fits the data points according
to a certain distance metric. We review some standard conic fitting methods [14,15]
and evaluate their performance in estimating paracatadioptric line projections.

ω̂ = (a, b, c, d, e, f)t (6)

The algebraic distance αi from the image point x̂i = (x̂i, ŷi) to the conic ω̂ is
defined by

αi = ax̂2
i + 2bx̂iŷi + cŷ2

i + 2dx̂i + 2eŷi + f (7)

Consider the set ofN distinct image points x̂1, x̂2 . . . x̂N. The corresponding vector
of algebraic distances is (α1, α2, . . . , αN)t = Aω̂ where A is the following N × 6
matrix

A =













x̂2
1 2x̂1ŷ1 ŷ2

1 2x̂1 2ŷ1 1

x̂2
2 2x̂2ŷ2 ŷ2

2 2x̂2 2ŷ2 1
... ... ... ... ... ...

x̂2
N 2x̂N ŷN ŷ2

N 2x̂N 2ŷN 1













(8)

The sum of the square of the algebraic distances between the data points and the
conic curve ω̂ is

φ(ω̂) =
N∑

i=1

α2
i = ω̂

tAtAω̂. (9)

The algebraic distance αi is zero whenever point x̂i lies in the conic curve ω̂. Thus,
if x̂1, x̂2 . . . x̂N are points in the conic then matrix A is rank deficient and ω̂ is the
respective right null space. In general the data points are noisy and A is full rank.
In this case the square matrix AtA is non-singular and the function φ(ω̂) has a
single root ω̂ = 0. There are several methods that minimize the objective function
of equation 9 in order to fit a a conic to the data points. The solution ω̂ = 0 is a
global minimum of the function that must be avoided. The following algorithms
differ in the way that the search space is constrained.

(1) The Normal Least Squares (LMS) method determines the unit vector ω̂ which
minimizes the sum of the square distances to the data points. The cost func-
tion is φlms(ω̂, λ) = φ(ω̂) + λ(ω̂t

ω̂ − 1) where λ is a Lagrange multiplier.
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The minimizer is the eigenvector corresponding to the smallest eigenvalue of
matrix AtA [20].

(2) The approximate mean square (AMS) metric was introduced by Taubin [21].
The AMS method minimizes the algebraic distance φ under the constraint
ω̂

t(Ax
tAx + Ay

tAy)ω̂ = 1 where Ax and Ay are the partial derivatives
of A. In this case the minimizer is determined by solving the generalized
eigensystem AtAω̂ = λ(Ax

tAx + Ay
tAy)ω̂. The conic curve estimation is

provided by the eigenvector corresponding to the smallest eigenvalue.
(3) In the method proposed by Fitzgibbon and Fisher (FF) the search space is

constrained to the space of the ellipses [22]. The algorithm finds the ellipse ω̂

that minimizes the algebraic distance to the data points. The minimization can
be stated as a generalized eigenproblem with a closed form solution.

The data points are usually obtained using an image processing algorithm (edge
detection, contours, etc). It is reasonable to assume that the action of the noise is
similar for all points and independent from one point to another [14]. Let the error
in a generic point x̂i = (x̂i, ŷi)

t be Gaussian with zero mean and covariance matrix
σ2I (I is the 2 × 2 identity matrix). Therefore the noise variance in the algebraic
distance is σ2

i = ∇iσ
2, with ∇i denoting the scalar Laplacian of αi (equation 7).

The algorithms enumerated above provide the optimal solution in terms of the min-
imum covariance if and only if the N equations αi = 0 have the same variance and
are statistically independent [20,23]. Since the Laplacian ∇i is a function of the
point coordinates, the variances σi are not equal and the estimation results obtained
using LMS, AMS and FF are statistically biased [24]. This problem can be avoided
by applying the following algorithm

(4) The gradient weighted least square fitting algorithm (GRAD) divides the al-
gebraic distances αi by the scalar Laplacian ∇i in order to normalize the vari-
ances σi. The corresponding objective function φgrad is stated below. In this
case the solution can not be found solving an eigensystem and the problem
has no longer a closed form solution. The minimization of φgrad must be per-
formed using iterative gradient descending methods such as Gauss-Newton or
Levenberg-Marquardt [23,25].

φgrad(ω̂) =
N∑

i=1

α2
i

∇i

=
N∑

i=1

α2
i

(
∂αi

∂xi

)2
+

(
∂αi

∂yi

)2

Methods based in algebraic distances, like the LMS, AMS and FF algorithms, have
a closed form solution because the estimation problem can be naturally solved by
an eigensystem. However each data point may contribute differently to the param-
eter estimation depending on its position on the conic. The problem of statistical
bias is avoided in the GRAD method, but the objective function is not invariant un-
der Euclidean transformations which causes undesired effects [14]. The following
algorithm uses the geometric distance and the corresponding estimation results are
invariant to rotation and translation.
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Fig. 2. Comparing the performance of standard conic fitting algorithms using synthetic data.
The arc of the test conic is uniformly sampled by 100 points. Two dimensional Gaussian
noise with zero mean and standard deviation σ is added to each sample point used in the
estimation. The principal points of the estimated curve are compared with the ground truth
and the mean error is computed over 100 runs of each experiment.

(5) The ORTHO method minimizes the sum of the square of the orthogonal dis-
tances βi between the conic and the points (for further details about computing
the orthogonal distances please consult the [14,10]). The objective function is
φortho and the minimum solution is determined using an iterative gradient de-
scending method [25]

φortho(ω̂) =
N∑

i=1

βi

Fig. 2(a) shows the robustness to noise of the described conic fitting methods. The
performance suffers a graceful degradation in the presence of increasing noise. The
GRAD and ORTHO algorithms are clearly more robust than the methods based in
algebraic distances. Among the methods with closed form solution, the FF algo-
rithm seems to be the most robust. In the experiment of Fig 2(a) the data points
are distributed over the the entire conic. Fig. 2(b) shows the performance of the
different algorithms when the conic curve is partially occluded. In this experiment
the noise standard deviation is kept constant (σ = 2 pixel), and the samples are ex-
tracted from a partial arc with a certain amplitude. As expected, an increase in the
angle of occlusion corresponds to a decrease in the performance of the estimators.
All methods perform poorly when the amplitude of the occlusion is above 240◦.
None of the algorithms provide an useful estimation when the visible arc is less
than 100◦.

Section 2.1 proves that a line in the scene is projected into a conic loci in the
paracatadioptric image plane. However, in most real images of lines, only a small
conic arc is actually visible. Taking into account that in average the visible arc of a
paracatadioptric line projection has an amplitude below 45◦, we may conclude that
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Fig. 3. Geometric construction to calibrate a paracatadioptric camera from the projection
of three lines in general position. The lines are mapped into the conics Ω1, Ω2 and Ω3 that
must be accurately determined.

these standard conic fitting techniques are unsuitable to estimate the conic locus
where lines are mapped.

3 Paracatadioptric Camera Calibration Using Lines

Any central catadioptric system can be fully calibrated using the image of a mini-
mum of three lines in general position [13,10,16]. In this work we focus on the par-
ticular case of calibrating a paracatadioptric camera. Given the image of the lines,
matrix Hc (equation 5) can be determined using the geometric construction pro-
posed in [13]. This approach is straightforward whenever the conics corresponding
to the line projections are accurately known. In the previous section we saw that,
due to the partial occlusion, the estimation of the conics using image points is hard
to accomplish. In order to solve this problem, we derive for the first time the nec-
essary and sufficient conditions that must be verified by a set of conic curves to be
the paracatadioptric projection of lines. These conditions can be used to accurately
estimate the line projections using non-linear minimization. Moreover, if the sys-
tem is skewless and the aspect ratio is known, then the lines can be computed by
solving an eigensystem.

3.1 Calibration by Geometric Construction

Tab. 1 summarizes the steps to calibrate a paracatadioptric system from the image
of K lines in general position. Fig. 3 is a scheme of the required geometric con-
struction when the number of lines is minimum (K = 3). Assume that the K lines
are projected into the set of conic curves Ω̂1, Ω̂2, . . . Ω̂K . Any two line projections
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Step 1 Determine the catadioptric line images Ω̂i for i = 1, 2, 3 . . . K

Step 2 For each pair of conics Ω̂i, Ω̂j , compute the intersection points F̂ij, B̂ij

and determine the corresponding line µ̂ij = F̂ij ∧ B̂ij

Step 3 Estimate the image center Ô which is the intersection point of lines µ̂ij .

Step 4 For each conic Ω̂i compute the polar line π̂i of the image center Ô

(i = 1, 2, 3 . . . K).

Step 5 For each conic curve obtain the points Îi and Ĵi where line π̂i intersects
Ω̂i (i = 1, 2, 3 . . . K)

Step 6 Estimate the conic Ω̂∞ going through points Îi, Ĵi (i = 1, 2, 3 . . . K)

Step 7 Perform the Cholesky decomposition of Ω̂∞ to estimate matrix Hc

Table 1
Calibration of a paracatadioptric system using K lines (K ≥ 3). For a detailed proof of the
method please consult [13,10]

Ω̂i, Ω̂j intersect in two real points B̂ij, F̂ij. The image center Ô must always lie
in the line µ̂ij defined by the intersection points B̂ij and F̂ij [16,13]. Consider the
plane Πi containing both the original 3D line and the effective viewpoint O (Fig.
1). If the line is projected into the conic Ω̂i, then the polar line π̂i with respect to
Ô is the image of the vanishing line of Πi. Line π̂i intersects the conic curve Ω̂i

in two points Îi and Ĵi. It can be proved that these two points lie on the conic Ω̂∞,
which is the locus where the absolute conic is mapped by collineation Hc [13].
Conic Ω̂∞ can be estimated using the K pairs of points Îi, Ĵi (K ≥ 3). Since Hc

is an upper triangular matrix (equation 5) and Ω̂∞ = Hc
−tHc

−1, then Hc can be
determined from the Cholesky decomposition of Ω̂∞.

3.2 Properties of a Set of Paracatadioptric Line Images

A conic curve has 5 DOF and it can be represented either by a symmetric matrix
Ω̂, or by a point ω̂ in P 5 (equations 4 and 6). Replacing Ω̄ and Hc in equation 4 by
the results of equations 3 and 5 yields

ω̂ =




















a

b

c

d

e

f




















=




















a

−
rcsk

fc
a

(
r2
cs2

k

f2
c

+ r4
c)a

d

e

−r2
cf

2
c a− cxd− cye




















(10)
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with







a = −
n2

z

r2
cf2

c

d = nxnz

rcfc
−

n2
z(rcskcy−fccx)

r2
cf3

c

e = rcnynz

fc
+ r2

cn2
zcy−sknxnz

f2
c

+ skn2
z(rcskcy−fccx)

rcf4
c

The paracatadioptric image of a line depends both of the system intrinsic parame-
ters and the orientation of the 3D plane Π (Fig. 1). Assume K lines in the scene
that are projected in the set of conic curves ω̂i

ω̂i = (ai, bi, ci, di, ei, fi)
t, i=1,2,3 . . . K (11)

From equation 10 follows that

b1

a1
=
b2

a2
=
b3

a3
= . . . =

bK

aK

= −
rcsk

fc

c1

a1

=
c2

a2

=
c3

a3

= . . . =
cK

aK

=
r2
cs

2
k

f 2
c

+ r4
c

with







a = −
n2

z

r2
cf2

c

d = nxnz

rcfc
−

n2
z(rcskcy−fccx)

r2
cf3

c

e = rcnynz

fc
+ r2

cn2
zcy−sknxnz

f2
c

+ skn2
z(rcskcy−fccx)

rcf4
c

From the first expression follows that ηi = 0 for i = 2, 3 . . .K, with ηi provided
by equation 12. Moreover, using the second expression in a similar manner, comes
that χi = 0 for i = 2, 3 . . .K with χi given by equation 13.

ηi = a1bi − aib1, i=2,3 . . . K (12)

χi = a1ci − aic1, i=2,3 . . . K (13)

From the result of equation 10 follows that each line projection ω̂i verifies r2
cf

2
c ai+

cxdi + cyei + fi = 0. Consider the first three elements ω̂1, ω̂2 and ω̂3, of the set of
line projections. The parameters r2

cf
2
c , cx and cy can be determined by
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








r2
cf

2
c

cx

cy










= −










a1 d1 e1

a2 d2 e2

a3 d3 e3










︸ ︷︷ ︸

Φ−1










f1

f2

f3










︸ ︷︷ ︸

Γ

Therefore each conic curve ω̂i, with i = 4 . . .K, must satisfy the constraint νi = 0
(equation 14).

νi =
[

ai di ei fi

]

.






−Φ−1Γ

1




 , i=4 . . . K (14)

If a set of K conic curves corresponds to the paracatadioptric projection of K lines,
then ηi, χi and νi, provided in equations 12, 13 and 14, must be equal to zero. We
have derived 3K−5 independent conditions that are necessary for a set of K conic
curves to be the paracatadioptric projection of a set ofK lines in the scene. However
it has not been proved that these conditions are also sufficient. By sufficient we
mean that, if a certain set of conic curves satisfies these conditions then it can be
the paracatadioptric projection of a set of lines. Consider the uncalibrated image of
K lines that are mapped in the same number of conics. Since each conic has 5 DOF
then a set of K conics has a total of 5K DOF. Each line introduces 2 unknowns
(DOF), which correspond to the orientation of the associated plane Π (see Fig. 1).
Moreover the 5 parameters of matrix Hc are also unknown (equation 5). Therefore
we have a total of 2K+5 unknowns (DOF). Since 5K > 2K+5 then it is obvious
that there are sets of conic curves that can never be the paracatadioptric projection
of lines. The conics that can correspond to the image of the lines lie in a subspace
of dimension 2K + 5. This means that there are 3K − 5 independent constraints,
which proves the sufficiency of the conditions derived above.

3.3 Estimation of a Set of K Paracatadioptric Line Images

Consider the image of K lines acquired by a non calibrated paracatadioptric sensor.
The lines are mapped into a set of K conic curves ω̂i (equation 11) that we aim to
estimate. To each curve ω̂i corresponds a set of image points x̂i

j, with j = 1, 2 . . .Ni

and Ni ≥ 5. The data points are used to build a matrix B with the sub-matrices Ai

similar to matrix A of equation 8.
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B =

















A1 0 0 · · · 0

0 A2 0 · · · 0

0 0 A3 · · · 0

... ... ... . . . ...

0 0 0 · · · AK

















(15)

The sum of the square of the algebraic distances between the data points and the
set of conics ω̂i is provided by function ε(p) with p = (ω̂1

t, ω̂2
t . . . ω̂K

t)t

ε(p) = ptBtBp (16)

As discussed in section 2.2, the set of conic curves can be estimated by finding
the minimum of function ε. The problem is that in general the conic curves cor-
responding to the paracatadioptric projection of lines are strongly occluded in the
image. The standard conic fitting techniques do not work properly under these cir-
cumstances since the data points do not provide enough information to correctly
estimate the conics. We propose to use the derived necessary and sufficient con-
ditions in order to constrain the search space and improve the estimation results.
.

3.3.1 General Case

In general nothing is known about the system calibration. The skew sk can be non
null and the aspect ratio r2

c can be different from one (equation 5). According to
section 3.2, a set of K conic curves p = (ω̂1

t, ω̂2
t . . . ω̂K

t)t is the paracatadioptric
projection of a set of lines if and only if the constraints of equations 12, 13 and 14
are satisfied. We aim to determine the 6k × 1 vector p, that minimizes function ε,
and satisfies ηi = 0, χi = 0 and νi = 0. The constraints can be introduced using a
Lagrange multiplier λ, and the objective function is

εg(p, λ) = ε(p) + λ(
K∑

i=2

η2
i +

K∑

i=2

χ2
i +

K∑

i=4

ν2
i ) (17)

The minimization of εg can be stated as a nonlinear least squares problem, and the
solution found using Gauss-Newton or Levenberg-Marquardt algorithms [23,25].
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3.3.2 Skewless Images with Known Aspect Ratio

Assume that the orthographic camera is skewless and that the aspect ratio r2
c is

known. Replacing sk by 0 in equation 10 yields b = 0 and c = r4
ca. The constraints

ηi = 0 and χi = 0 for i = 2 . . .K, become bi = 0 and ci−r4
cai = 0 for i = 1 . . .K.

There are two additional constraints because two of the calibration parameters are
known. A new objective function εs is derived from equation 17

εs(p, λ) = ε(p) + λ(
K∑

i=1

b2i +
K∑

i=1

(ci − r4
cai)

2 +
K∑

i=4

ν2
i ) (18)

Each curve in the set has a matrix Ai associated with it (equation 8). Since the
camera is skewless and the aspect ratio is known, then bi = 0 and ci = r4

cai.
Omitting the second column of Ai and adding the third column, multiplied by r4

c ,
to the first column yields

Ȧi =













x̂2
1 + r4

c ŷ
2
1 2x̂1 2ŷ1 1

x̂2
2 + r4

c ŷ
2
2 2x̂2 2ŷ2 1

... ... ... ...

x̂2
Ni

+ r4
c ŷ

2
Ni

2x̂Ni
2ŷNi

1













The sum of the squares of the algebraic distances between the conic curve and the
data points is φ̇i = ω̇i

tȦt
iȦiω̇i with ω̇i = (ai, di, ei, fi)

t. By combining the K
conics we obtain the sum of squares of the algebraic distances between the set of
curves and the data points. This sum is given by the function

ε̇(q) = qtḂtḂq (19)

where matrix Ḃ is obtained by replacing Ai by Ȧi in equation 15, and q = (ω̇t
1, ω̇2

t,

. . . ω̇K
t)t. Since Ḃ implicitly encodes the constraints bi = 0 and ci − r4

cai = 0, the
objective function εs of equation 18 can be rewritten as

ε̇s(q, λ) = ε̇(q) + λ
K∑

i=4

ν2
i (20)

As discussed in section 2.2, the eigenvector corresponding to the smallest eigen-
value of matrix ḂtḂ is the solution q that minimizes ε̇ under the constraint qtq = 1
[20]. If K = 3 then the second term of equation 20 disappears and the minimiza-
tion problem has a closed form solution. If K > 3 then the minimum of function ε̇s
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must be found using an iterative gradient descending method. In this situation the
eigenvector solution can be used as an initial estimate.

4 Direct Least Square Fitting of Paracatadioptric Line Images

The paracatadioptric image of a line is a conic curve that in general is hard to
estimate due to the partial occlusion. Section 3 shows that a set of conic curves
must verify certain properties in order to be a coherent paracatadioptric projection
of a set of lines. The conditions of equations 13 to 15 depend neither of the system
calibration nor the 3D position of the lines. These conditions are used to constrain
the search space and estimate the set of conic curves in the uncalibrated image.
The set of line images is used to calibrate the paracatadioptric camera using the
geometric construction presented in [13,10].

While section 3 focuses in the estimation of a set of line projections in an uncali-
brated paracatadioptric image, the present section discusses the problem of deter-
mining the projection of a single line in a calibrated paracatadioptric view. Consid-
ering the space of all conic curves, it is proved that the paracatadioptric projection
of any line lies in a hyperplane defined by the calibration parameters. The line
image can be estimated by fitting the data points by a conic lying in this linear
subspace. The proposed approach is computationally efficient because the fitting
problem can be solved by an eigensystem.

4.1 The Necessary and Sufficient Conditions

The scheme of Fig. 1 shows the paracatadioptric projection of a line. The line lies in
a plane Π going through the effective viewpoint O. The mapping from the sphere
into the plane Π∞ is a stereographic projection. Plane Π intersects the sphere in a
great circle that is projected into a circle Ω̄ (equation 3). Points in plane Π∞ are
mapped into points in the image by an affine transformation Hc (equation 5). Since
an affine transformation does not change the type of conic, then the paracatadioptric
projection of a line Ω̂ is always a circle/ellipse (equation 4). Consider the following
points lying on plane Π∞:

Ī∞ = (1, i, 0)t

J̄∞ = (1,−i, 0)t

Ḡ∞ = (1, 0,−i)t

H̄∞ = (1, 0, i)t

Assume that the paracatadioptric system is calibrated and the affine transformation
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Hc is known. The above points are mapped in the paracatadioptric image plane in
points:

Î∞ = HcĪ∞ = (ix, iy, iz)
t

Ĵ∞ = HcJ̄∞ = (jx, jy, jz)
t

Ĝ∞ = HcḠ∞ = (gx, gy, gz)
t

Ĥ∞ = HcH̄∞ = (hx, hy, hz)
t

(21)

Using these points we can state the following proposition

Proposition 1: A conic curve Ω̂ is the paracatadioptric image of a line in the scene
if and only if it contains points Î∞ and Ĵ∞ (̂It

∞
Ω̂Î∞ = 0, Ĵt

∞
Ω̂Ĵ∞ = 0), and points

Ĝ∞, Ĥ∞ are conjugate with respect to Ω̂ (Ĝt
∞

Ω̂Ĥ∞ = 0).

Proof: Consider the conic curve Ω̄ = Hc
tΩ̂Hc, lying on plane Π∞ (Fig. 1). Conic

Ω̄ is a function of the normal n to the plane Π (equation 3). Since Ω̄ is a circle,
then it must go through the circular points Ī∞ and J̄∞. Moreover, from equation
3, follows that points Ḡ∞ and H̄∞ are always harmonic conjugate with respect to
conic Ω̄. Remark that these properties are independent of the orientation n of plane
Π. Since collineation Hc preserves incidence and harmonic relations, then conic
Ω̂ must satisfy ÎtΩ̂Î = 0, ĴtΩ̂Ĵ = 0 and ĜtΩ̂Ĥ = 0. The derived conditions are
necessary, nevertheless it is not clear that they are sufficient. By sufficient we mean
that if a conic curve satisfies these three constraints, then it is the locus where a
certain line in the scene is projected. By neglecting the scale factor, the conic curve
Ω̄ of equation 3 is a function of two independent parameters. These two degrees
of freedom (DOF) are associated with the pose of plane Π containing both the
original line and the effective viewpoint (Fig. 1). Since in general a conic curve has
five DOF, then we must be able to find three, and no more than three, independent
constraints. This proves the sufficiency of the statement.

The established proposition has an interesting geometric interpretation. It has al-
ready been stated that any conic curve Ω̂ can be parameterized by a point ω̂ in ℘

5

(equation 6). Consider the 3 × 6 matrix Υ provided in equation 22. The matrix is
defined by points Î∞, Ĵ∞, Ĝ∞ and Ĥ∞ (equation 21). According to Proposition 1,
a conic curve is the paracatadioptric image of a line if and only if the corresponding
6 × 1 vector ω̂ lies in the null space of Υ (Υω̂ = 0). This means that all points ω̂,
parameterizing the paracatadioptric projection of a line, must lie in a certain plane
in the five dimensional projective space. This plane is defined by matrix Υ and
depends exclusively of the camera calibration.
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Υ =










i2x 2ixiy i2y 2ixiz 2iyiz i2z

j2
x 2jxjy j2

y 2jxjz 2jyjz j2
z

gxhx gxgy + hxhy gyhy gxgz + hxhz gygz + hyhz gzhz










(22)

4.2 The Fitting Algorithm

Consider a set of image points x̂i = (x̂i, ŷi)
t with i = 1, 2 . . .N . Our goal is to fit a

conic curve ω̂, corresponding to the paracatadioptric projection of a line, to the set
of data points. From section 2.2 follows that the sum of the squares of the algebraic
distances between the curve and the image points is φ(ω̂) = ω̂

tAtAω̂ (matrix A

is provided in equation 8).

Since a conic has five DOF, the space of all conics has five dimensions. The stan-
dard conic fitting algorithms of section 2.2 search the entire space for the conic that
best fits the data points. However, and according to Proposition 1, not all conics
can be the paracatadioptric projection of a line. The line projection ω̂ must be in
the null space of matrix Υ (equation 22). The null space of Υ is a linear subspace
(hyperplane) in the space of all conic curves. Our approach fits the data by the conic
curve in this hyperplane that minimizes the algebraic distance to the image points.
Consider the singular value decomposition of matrix Υ.

Υ = USVt

Matrices U, S and V have respectively dimension 3 × 3, 3 × 6 and 6 × 6. Matrix
V is full rank and orthonormal (V−1 = Vt). The three last columns of V are an
orthonormal basis of the null space of Υ [23,26]. Consider the change on the base
of representation ω̂v = Vω̂. If ω̂ belongs to the null space of matrix Υ, then the
corresponding ω̂v has the following structure

ω̂v = (0, 0, 0, dv, ev, fv
︸ ︷︷ ︸

ρ

)t (23)

Rewriting the algebraic distance of equation 9 in terms of the new coordinates arises
φ = ω̂v

tVAtAVt
ω̂v. Taking into account the structure of ω̂v (equation 23), the

algebraic distance becomes φ = ρ
tΛtΛρ with Λ the bottom right 3× 3 sub matrix

of VAtAVt. We aim to determine the solution ρ which minimizes the algebraic
distance φ under the constraint ρ

t
ρ = 1. The corresponding objective function is

ψ(ρ, λ) = ρ
tΛtΛρ + λ(ρt

ρ − 1) (24)
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N = 20
Θ = 70°

α = 1.1 ; sk = 0 ; f = 245
(cx,cy) = (330,238)

(a) Test Image (section 5.2)

α = 1.1 ; sk = 20 ; f = 245
(cx,cy) = (330,238)

N = 140
Θ = 140°

(b) Test Image (section 5.3)

Fig. 4. Synthetic generation of 480 × 640 test images.

The minimum of the objective function ψ is the eigenvector of matrix ΛtΛ corre-
sponding to the smallest eigenvalue. The final conic ω̂ is computed by replacing ρ

in equation 24 and making ω̂ = Vt
ω̂v.

5 Performance Evaluation Using Synthetic Data

The performance of the proposed algorithms are evaluated using synthetically gen-
erated images. This section starts by introducing the scheme to generate synthetic
data. In 5.2 a skewless system with unitary aspect ratio is calibrated using just three
lines (K = 3). It is shown that our approach outperforms the method proposed
in [16]. The calibration of a general paracatadioptric system (unknown skew and
aspect ratio) is discussed in 5.3. The section ends with the performance evalua-
tion of the fitting method to estimate the conic locus where a line is projected in a
calibrated paracatadioptric image.

5.1 Simulation Scheme

Assume a paracatadioptric camera with a field of view (FOV) of 180◦, correspond-
ing to a full hemisphere, and predefined intrinsic parameters. The image of a set
of K lines is generated as follows. As depicted in Fig. 1, to each line in the scene
corresponds a plane Π with normal n. The K normals are unitary and randomly
chosen from an uniform distribution in the sphere. Each normal defines a plane
that intersects the unit sphere in a great circle. Notice that half of the great circle
is within the camera field of view (the FOV is 180◦). An angle θ, less or equal to
the FOV, is chosen to be the amplitude of the arc that is actually visible in the para-
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catadioptric image. The arc is randomly and uniformly positioned along the part of
the great circle which is within the FOV. The visible arc is uniformly sampled by
a fixed number N of sample points. The each sample point corresponds a projec-
tive ray x. The sample rays are projected using formula 1, and transformed using
2 with the chosen intrinsic parameters. Two dimensional Gaussian noise with zero
mean and standard deviation σ is added to each image point x̂. Fig. 4 depicts two
simulated images of 3 randomly generated lines. In Fig. 4(a) the visible arc has an
amplitude θ = 70◦ and is sampled by 20 points. The camera intrinsic parameters
appear in the bottom left corner. In Fig. 4(b) the visible arc is θ = 140◦ and the
number of sample points is N = 140. In this case the camera is not skewless. As
a final remark notice that the amplitude of the visible arc is measured in the great
circle where plane Π intersects the sphere, and not in the conic curve where the
line is projected. In general the visible angle of the paracatadioptric line image is
much less than θ.

5.2 Calibration of Skewless Camera with Known Aspect Ratio

Consider a skewless parabolic camera with aspect ratio 1.21 (sk = 0 and rc =
1.21). Both the skew and the aspect ratio are assumed to be known. We aim to de-
termine the focal length (fc = 245) and the image center ((cx, cy) = (330, 238))
using the image of three lines (K = 3). The line projections are estimated by mini-
mizing the sum of the square of the algebraic distances ε̇. The objective function is
provided in equation 19 and the minimization problem has a closed form solution.
The system is calibrated using the algorithm presented in Tab. 1 after estimating the
conic curves where the lines are projected. The data points are synthetically gen-
erated using the simulation scheme explained above. The image of Fig. 4(a) is an
example of a test image. The estimated calibration parameters are compared with
the ground truth and the RMS error is computed over 100 runs of each experiment.

Fig. 5 shows the results for different choices of θ (amplitude of the visible arc) and
N (number of sample points). For each choice of θ and N the standard deviation
of the additive Gaussian noise varies between 0.5 and 6 pixels by increments of
0.5 pixels. For θ = 170◦ the algorithms presents an excellent performance. The
decrease in the number of sample points from 300 to 80 only slightly affects the
robustness to noise. Since we are only using three lines, the decrease in the am-
plitude of the visible arc θ and in the number of points N has a strong impact on
the performance. Even so the calibration using arcs of 90◦ is still practicable. The
situation of θ = 70◦ and N = 20, shown in Fig. 4(a), is very extreme and leads to
a bad estimation of the intrinsic parameters.

An alternative calibration approach is presented in [16]. The authors evaluate the
performance of their algorithm using similar simulation conditions. A direct com-
parison can be made between the results presented in here and the ones presented
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Fig. 5. Calibration of a skewless paracatadioptric camera with known aspect ratio using the
image of three lines. The set of line projections is estimated using the closed form algorithm
of section 3.3.2. The graphics show the root mean square (RMS) error for the focal length
and image center.

in [16]. In general terms they estimate the conic curves by exploiting the fact that
the image center must lie in the line going through the intersection points of any
two line images. As discussed in section 3, this condition is necessary, but not suf-
ficient, for a set of conic curves to be the paracatadioptric projection of lines. Since
the search space is not fully constrained, they need much more than three lines to
calibrate the sensor. The results presented in Fig. 5 are obtained using the minimum
theoretical number of lines for calibration [13,16]. Even so, and as far as we are able
to judge from the results presented in [16], the performance of our approach seems
to be significantly better.

5.3 Calibration of General Paracatadioptric Systems

In this section it is assumed that nothing is known about the calibration parameters.
We aim to determine the aspect ratio, skew, focal length and image center using
the paracatadioptric image of a set of K lines. The test images are generated using
the simulation scheme explained in section 5.1. Fig. 4(b) shows an example of a
test images with the assumed camera intrinsic parameters at the bottom left corner.
The set of line projections is estimated by minimizing the function εg provided in
equation 17. As discussed, the minimization is stated as a nonlinear least squares
problem, and the minimum is found using iterative gradient descend methods (typ-
ically Gauss-Newton or Lenvenberg-Marquardt [23,25]). The initial estimate for
the iterative method is the closed form solution that minimizes function ε (equa-
tion 16). The set of line projections is used to determine the calibration parameters
following the steps enunciated in Tab. 1. The results are compared with the ground
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Fig. 6. Calibration using the projection of three lines (K = 3). The visible arc θ has 170
◦

of amplitude and the number of sample points N is variable (N = 300, 170, 80). For each
choice of θ and N the standard deviation of the additive Gaussian noise varies between 0.5
and 6 pixels by increments of 0.5 pixels.

truth and the median error is computed over 100 runs.

In the first experiment the system calibration is performed using the projection of
three lines (K = 3). The application of gradient descending methods to minimize
function εg can be problematic in many ways [23,25]. The choice of the initial es-
timate is crucial to assure a correct convergence. The iterative process must start
from a point close enough to the global minimum in order to avoid possible lo-
cal minima and saddle points. The objective function has this type of singularities
when there is not enough information and/or the search problem is not properly
constrained. By insufficient information we mean a small number of lines, data
points strongly corrupted with noise and visible arcs with small amplitude or not
sampled enough. Fig. 6(a) shows the failure of convergence over the 100 runs for
each experiment. The run fails when the absolute conic Ω̂∞, determined following
the steps in Tab. 1, is not positive definite and the Cholesky decomposition is not
possible. This can only happen when the set of paracatadioptric line images is far
from being correctly estimated. As expected, the convergence is strongly affected
by the noise. Moreover the decrease in the number of sample points also causes an
increase in the number of failures. Remark that we are using the minimum number
of lines required to calibrate a paracatadioptric system. Therefore it is natural that
often the minimization process does not converge correctly. Fig. 6(b) shows the
median error in the estimation of the focal length with the performance decreasing
with the number N of sample points. The results are not very impressive because
we are using only three line images.
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Fig. 7. Calibration using the projection of K=3, 5, 7 and 9 lines. The amplitude of the visible
arc is θ = 140

◦ and the number of sample points is N = 140. The standard deviation of
the additive Gaussian noise varies between 0.5 and 6 pixels. The graphics show the median
error for the different calibration parameters

The experiment of Fig. 7 compares the performance of the calibration algorithm
when using the projection of 3, 5, 7 and 9 lines. The increase of the number of lines
dramatically improves the robustness of the calibration.

5.4 Estimating Paracatadioptric Line Projections in Calibrated Images

The present section evaluates the performance of the fitting algorithm (CATPARB)
proposed in section 4. The synthetic data is generated using the simulation scheme
explained in section 5.1. Fig. 8 shows the estimation of a paracatadioptric line
projection using AMS, FF (section 2.2) and CATPARB. The standard conic fit-
ting methods perform poorly, but the CATPARB algorithm is able to correctly re-
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ξ = 1
α = 1.1 ; sk = 30 ; f = 240
(cx,cy) = (330,238)

N = 20
Θ = 25°

σ = 5 (pixel)

AMS
FF
CATPARB

Fig. 8. Estimation of the conic curve corresponding to a line projection in a calibrated
paracatadioptric image. The figure compares the estimation results using AMS, FF and
CATPARB. The amplitude of the visible arc is θ = 25

◦, the number of sample points is
N = 20 and the standard deviation of the additive noise is σ = 5 pixels.

cover the conic curve. In a certain extent the comparison of Fig. 8 is not entirely
fair. While AMS and FF are generic methods to fit a conic curve to data points,
CATPARB uses information about the sensor geometry and calibration to perform
the estimation. The CATPARB algorithm is a specific method for the estimation
of paracatadioptric line projections that requires the calibration matrix Hc to be
known.

If the system calibration is known, then the line projection can be easily determined
by performing the perspective rectification of the data points. Consider the image
points x̂i, lying in the paracatadioptric line projection Ω̂, the calibration matrix Hc

(equation 5) and the inverse of function } (equation 1). Since x̄i = Hc
−1x̂i and

xi = }
−1x̄i, then the formula to compute the rectified data points is

xi = }
−1(Hc

−1x̂i) i=1 . . . N (25)

with

}
−1(x̄) = (2x̄z̄, 2ȳz̄, z̄2

− x̄2
− ȳ2)t.

The line projected into conic Ω̂ lies in a plane Π with normal n = (nx, ny, nz)
t

(Fig. 1). The rectified points xi, with i = 1 . . . N , are projective rays in the plane
Π that satisfy ntxi = 0. Therefore the normal n can be estimated from the set of
rectified image points xi using normal least squares. The solution is the eigenvector
of the matrix C (equation 26) corresponding to the smallest eigenvalue. The conic
locus Ω̂ in the image plane is computed from n = (nx, ny, nz)

t and Hc using the
relations established in equations 3 and 4. Henceforth we will refer this approach
as the direct line estimation (DLE) method.
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Fig. 9. Comparing the performance of AMS, FF, DLE and CATPARB algorithms in esti-
mating the conic locus where a line is projected. The data points are synthetically generated
using the simulation scheme of section 5.1. The visible arc has amplitude θ = 80

◦ and is
uniformly sampled by N = 40 points. Each algorithm fits a conic to the synthetic data
points. The estimated conic is compared with the ground truth and the RMS error in the
principal points is computed over 100 runs.

C =













x1 y1 1

x2 y2 1
... ... ...

xN yN 1













(26)

Fig. 9 compares the performances of the AMS, FF, DLE and CATPARB algorithms.
The DLE method performs much better than the standard conic fitting techniques
(AMS and FF). This is explained by the fact that the DLE uses not only the data
points, but also implicit information about the sensor and its calibration. However,
the performance of the DLE is clearly worse than the performance of the CAT-
PARB method. As explained in 2.2, it is reasonable to assume that the noise in the
image points x̂i = (x̂i, ŷi)

t is Gaussian, two dimensional and with zero mean. It
is also reasonable to assume that the error is equal in both directions and uncorre-
lated. Therefore the noise covariance matrix is σ2I, where σ is a scalar and I the
2 × 2 identity matrix. Consider the rectified point xi and the line n, both lying in
the conventional perspective plane. The algebraic distance between the point and
the line is φi = ntxi. Replacing xi by the result of equation 25 and propagating
the variance of the image point x̂i follows that the noise variance in the algebraic
distance is

σ2
i = 4

(n2
x + n2

y)(x̂
2
i + ŷ2

i )
2 + 8nxnyx̂iŷi + 2(n2

x − n2
y)(x̂

2
i − ŷ2

i )

(1 − x̂2
i − ŷ2

i )
4

σ2 (27)
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Fig. 10. Characterization of the performance of the CATPARB algorithm for different am-
plitudes of the visible arc (θ) and number of sample points (N ). As expected the per-
formance is worse when the number of samples and/or the amplitude of the visible arc
decrease. The results provide a general idea of the robustness of the CATPARB algorithm.

The least square estimator computes the line n that minimizes the sum of the
squares of the algebraic distances φi (i = 1 . . .N ). The estimation is optimal when
the algebraic distances φi have the same noise variance and are statistically inde-
pendent [20,23]. From equation 27 follows that the variance σi is a function of the
coordinates of the original image point x̂i. Thus, the variance of the algebraic dis-
tances φi is not constant and the line estimation using least squares is statistically
biased [24]. The effects of the statistical bias are much stronger in the DLE method
than in the CATPARB algorithm, which explains the poorer performance of the
former (Fig. 9).

6 Experimental Results Using Real Images

In this section we apply the calibration method proposed in section 3 in order to
determine the parameters of a real paracatadioptric sensor. Five images were taken
using a paracatadioptric camera. Fig. 11 shows one of those images where a set
of line projections is clearly visible. For each image we used an edge detector and
selected points belonging to 6 different lines. Each one of the five images was
independently calibrated using 4, 5 and 6 lines. The results are summarized in Tab.
2.

In this case the calibration parameters are all unknown. The estimation of the line
projections is performed by finding the solution that minimizes function εg of equa-
tion 17. The initial estimation for the iterative process is obtained using the AMS
algorithm which, among the standard conic fitting methods with closed form so-
lution, is the one that better performs in the presence of occlusion (see 2.2). Fig.
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(a) Initial Estimate (AMS) (b) Final Estimate

Fig. 11. Estimation of a set of line projections in an uncalibrated paracatadioptric image.
The image resolution is 1704 × 2272 and the FOV is 180

◦.

rc fc sk cx cy

4 Lines mean 1.0001 699.37 1.46 1137.6 870.66

std 0.0012 16.00 2.35 22.6 13.42

5 Lines mean 0.9998 701.03 0.57 1143.6 874.36

std 0.0019 13.57 1.41 11.0 8.29

6 Lines mean 0.9996 701.81 -1.95 1147.7 876.64

std 0.0015 10.65 1.39 5.8 5.66
Table 2
Calibration results using the projection of 4, 5 and 6 lines. For each situation we performed
5 independent calibrations using 5 different images. The table shows the mean and standard
deviation for each calibration parameter.

11(a) shows the initial estimates for the paracatadioptric line projections. If the
conic loci were accurately determined then all the lines going through the intersec-
tion points should meet in the image center ([16,13]). Fig. 11(b) exhibits the result
corresponding to the minimum of function εg. The calibration results are summa-
rized in Tab. 2. Notice that the estimated values for the calibration parameters are
more or less the same for the different K (number of lines). The standard deviation
acts as a measure of confidence. If the standard deviation takes high values then
the results obtained for each image are very different and the achieved calibration
is not trustful. As expected the standard deviation decreases when the number of
lines increases. Henceforth we will assume that the camera is calibrated.

The experiment of Fig. 12 uses the CATPARB algorithm to determine the paracata-
dioptric projection of lines. Remark that the estimation results implicitly depend of
the calibration accuracy. Therefore we are simultaneously testing the CATPARB
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Fig. 12. Estimating the projection of lines in a calibrated paracatadioptric image using two
points selected by hand.

a 

b 

c d 

Fig. 13. Estimating the angles between pairs of parallel lines from a paracatadioptric image
of those lines

algorithm and the proposed calibration method. Since a line image has 2 indepen-
dent degrees of freedom (section 4), we select by hand two points lying on the
conic locus where a scene line is projected. Fig. 12 shows the selected points and
the corresponding projected line estimated using CATPARB.

Fig. 13 is the paracatadioptric image of four pairs of parallel lines denote by a, b, c,
d. The polar of the image center with respect to the conic locus where each line is
mapped is the horizon of the corresponding plane Π containing the original 3D line
and the effective viewpoint (see Fig. 1) [13,10]. Moreover if two imaged lines are
parallel then the intersection of the corresponding horizons is the vanishing point
of their common direction. The eight line images, corresponding to the four pairs
of parallel lines, are estimated using the CATPARB algorithm (see Fig. 13). The
vanishing point of each pair is determined in a straightforward manner using the
results of [13,10]. Since the calibration matrix Hc is known, then the image of the
absolute conic can be computed making Ω̂∞ = Hc

−tHc
−1. The estimation of the
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a-b a-c a-d b-c b-d c-d Mean Std

G. Truth 90
◦

30
◦

30
◦

60
◦

60
◦

60
◦

Error CAT 0.85◦ 2.05◦ 1.82◦ 2.99◦ 1.04◦ 3.87◦ 2.10◦
3.87◦

Error PER 0.34◦ 6.64◦ 0.49◦ 2.40◦ 13.71◦ 16.01◦ 6.62◦
6.85◦

Table 3
Recovering the angles between pairs of parallel lines. CAT denotes the results obtained by
estimating the paracatadioptric projection of the lines. PER are the angles estimated after
performing perspective rectification.

angles between the pairs of parallel lines from the vanishing points and the absolute
conic is trivial [27,19]. Tab. 3 shows the errors in estimating these angles.

There is an alternative approach to estimate the angles between the pairs of parallel
lines. We can perform the perspective rectification of the image points, estimate the
lines using normal linear least squares and compute the angles using standard pro-
jective relations. The estimation errors are exhibited in the second line of Tab. 3. As
expected, estimating the lines directly in the paracatadioptric plane presents better
results. We may conclude that the bias introduced by the perspective rectification
has a strong impact on the performance of the DLE method.

7 Conclusions

This article presents an effective way to calibrate a paracatadioptric camera using
the image of three or more lines in general position. It is shown that the accurate
estimation of the conic curves where the lines are projected is hard to accomplish
due to partial occlusion. We propose a strategy to overcome this difficulty. The
necessary and sufficient conditions that must be verified by a set of conic curves to
be the image of a set of lines are derived. These conditions are used to constrain the
search space and accurately estimate the set of conic curves required to calibrate
the paracatadioptric sensor. If the camera is skewless and the aspect ratio is known
then the conic fitting problem is solved naturally by an eigensystem. Otherwise the
estimation is performed using non-linear optimization techniques. Experimental
results show that the proposed calibration method performs much better than the
ones appearing in the literature [16–18].

The second contribution is the CATPARB algorithm to estimate the projection of
a line in a calibrated paracatadioptric plane. It is proved that a conic curve, pa-
rameterized by a point in P5, is the paracatadioptric image of a line if and only
if it lies in a hyperplane defined by the system parameters. Thus, there are three
necessary and sufficient conditions which define a linear subspace in the space of
all conic curves. The line image is estimated within this subspace by solving an
eigensystem. The method is accurate, robust and computationally efficient. Exper-

28



imental results show that this approach performs much better than estimating the
lines using perspective rectification as is often done in robotic applications [4]. The
estimation after perspective rectification is statistically biased [24] which strongly
affects the results.
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