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Abstract Minimally invasive surgeries have become

standard medical procedures. In these surgeries the ac-

cess to the surgical field is made by small surgical ports

through which surgical instruments are inserted under

the visual guidance of an endoscopic camera. Despite

the number of well documented benefits for the patient,

such as faster recovery time and less trauma to sur-

rounding tissues, MIS are considerably more difficult

to execute than their open-body equivalents due to the

limited access to the inner body anatomies. Computer

Assisted Systems (CAS) that use the endoscopic video

as primary source of data have been extensively inves-

tigated to aid the surgeon during navigation. Unfortu-

nately, most CAS invariably rely in recovering the cam-

era motion, which in the context of medical endoscopy

present additional difficulties, such as clutter and de-
formable surfaces, low textured surfaces, difficult illu-

mination conditions, and strong radial distortion. This

article evaluates recent methods for feature detection,

matching, and tracking in the context of medical en-

doscopy structure-from-motion. We give special empha-

sis to methods that compensate for the radial distortion

of medical endoscopes. These methods are evaluated us-

ing a set of benchmark evaluation criteria designed to
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evaluate their impact in terms of repeatability and ac-

curacy of the camera motion estimations.
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1 Introduction

Minimally invasive surgeries have become standard prac-

tices, being preferable to equivalent open-body surg-

eries in a large set of surgeries such as ACL reconstruc-

tion. Wider dissemination of these procedures has prob-

ably been prevented by their degree of difficulty. In MIS

the access to the surgical field is made by small surgical

ports through which surgical instruments are inserted
under visual guidance of an endoscopic camera. From

the patient point-of-view, MIS procedures are highly

advantageous due the faster recovery time, less trauma

to the surrounding tissues and risk of post-operative

complications. However, since the surgeon has limited

access to the anatomical cavity and the visualization

is carried indirectly through the video acquired by an

endoscopic camera, the execution of MIS is more diffi-

cult than the (equivalent) open-surgery. In this context,

systems for CAS that process the endoscopic video can

be very helpful in assisting the doctor during the proce-

dure. The potential of image-based CAS has attracted

several researchers world-wide and lead to significant

advances, namely in the context of single image cam-

era calibration [3], stereo reconstruction [8, 9, 36] and

stereo visual odometry [7, 19], and instrument identifi-

cation and tracking [1].

Image-based CAS invariably rely in recovering the

camera motion, which in the context of medical en-

doscopy present several difficulties, such as clutter and
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Fig. 1 Stucture-from-motion refers to the problem of com-
puting 3D camera motion and scene structure using 2D image
observations as input.

deformable surfaces, low textured surfaces, difficult il-

lumination conditions, and strong radial distortion. Ma-

ture vision-based techniques such as structure-from-motion

(SfM) and simultaneous localization and mapping have

been applied in the context of endoscopic SfM appli-

cations [6, 19, 27, 38], ranging from scene registration

with a pre-operative 3D model [6, 27] to robust esti-

mation methods [38] to deal with the high percentage

of outliers that typically arise when matching low tex-

ture endoscopic images. An early work on structure-

from-motion (SfM) in laparoscopic surgery was devel-

oped by Burschka et al [6] where a rigid environment

was assumed due to the confines of the sinus in order

to compute a 3D scene map for registration with pre-

operative Computed Tomography (CT) patient models.

For procedures targeting soft tissues, non-rigid motion

due to cardiac, respiratory or peristaltic motions make

such rigid SFM impossible. Deformable SfM (DSfM)

[24], motion compensated SLAM [30] and more recently

Non-Rigid SfM [13] have been proposed for overcoming

this problem by using an inspection phase to build a

rigid template of the scene and by assuming strong de-

formation priors . Most if not all of the SfM pipelines

usually apply feature matching/tracking algorithms de-

signed for perspective cameras [4,20,21,38] that do not

account with the radial distortion (RD) effect arising

in medical endoscopy imagery. Typically, this problem

is overcome with a preliminary geometric correction of

the radial distortion through image resampling [6, 27].

This procedure is error prune, and affects the keypoint

sub-pixel accuracy due to additional image blurring in-

troduced by interpolation techniques.

In the past few years, some authors devoted atten-

tion to the feature association problem in images ac-

quired with cameras that do not obey the standard

pinhole camera model [15, 17, 18]. Hansen et al. [15]

proposed to map the spherical Gaussian function to

an equivalent kernel on the stereographic image plane.

Then, the approximate spherical diffusion is defined as

the convolution of the stereographic image with the

stereographic version of the Gaussian kernel. More re-

cently, Lourenço and Barreto [18] proposed improve-

ments to the SIFT detector/descriptors by implicitly

modeling the radial distortion inside the scale-space

representation and image gradient computation. More

recently in [17], they developed an extension of the KLT

tracker for images with strong RD, showing the advan-

tage of using a specialized motion [12] that compensates

the non-linear effect of distortion during tracking.

The main contribution of this study is the evalua-

tion of the algorithms proposed in [15, 17, 18] in endo-

scopic structure-from-motion scenarios [6, 27]. Despite

of the large pool of available options for feature associ-

ation across views [4, 14, 20, 21, 26, 39], we use as com-

parative baseline the performance of the well-known

SIFT [20] and KLT [21] algorithms that are still com-

monly used by the surgical vision community [6,14,27,

34,35,38]. We design a set of experiment that enable to

quantitative evaluate the feature matching techniques

with two experiments: (i) two-view geometry estima-

tion where we evaluate sparse frame feature matching

techniques [15,18,20], and (ii) a visual odometry exper-

iment where we evaluate the continuous tracking algo-

rithms of [17, 21]. As a second contribution we devise

a new evaluation framework in which stereo endoscopy

is used to evaluate monocular SfM pipelines, avoiding

the difficult integration of optotracking devices coupled

with the endoscopic camera [22,27,33]. Since we will be

using rigid SfM pipelines for the evaluation, the non-

rigid physiological motion was compensated by imag-

ing ex-vivo tissues. Finally, a qualitative evaluation is

performed using a visual odometry experiment using

in vivo data collected during an orthopaedic surgery.

These images present low texture and non-rigid struc-

tures.

1.1 Related Work

Image-guided MIS has received significant interest due

the rapid progression in robotic assisted interventions

and the evolution in imaging devices [14, 27, 34, 38, 39].

Closest references to this work are [14,33–35,39].
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In [35] the authors propose an efficient scheme for

matching keypoints detected by SIFT (or other key-

point detector) through the fitting of a local affine trans-

formation. The algorithm starts from a set of putative

matches established with SIFT descriptors according

to the Euclidean distance between descriptors. Then, a

hierarchical decision scheme is used for determine the

affine transformation that best fits the local deforma-

tion of the surface and remove outlier matches. This

work was then extended in [34] by evaluation several

keypoint detectors to access which performs better for

this particular task.

A probabilistic-based approach to track affine co-

variant regions in the context of medical endoscopy is

proposed in [14]. The method starts by extract affine

covariant regions and uses a EKF filter to keep plau-

sible tracking results across time. The evaluation focus

mainly on the tracking performance side and not on

the accuracy of the tracking results for SfM. One key

observation from this paper is that a pyramidal im-

plementation of the KLT tracker achieves comparable

performance to the proposed method [14]. Yip et al [39]

proposed a combination of the STAR feature detector

and binary robust descriptors to enable robust track

features at high frame rates. This study focus on the ca-

pability of keep a tracking repeatability across frames.

However, in SfM the localization precision of the key-

point is as important as the number of correct matches

achieved, since keypoints with low spatial accuracy can

have a negative impact in the camera motion.

To best of the our knowledge this is the first work

that evaluates the reliability of feature matching tech-

niques in recovering structure and motion in medical

endoscopic scenarios. Recently, Souza et al [33] eval-

uate egomotion algorithms in the context of medical

endoscopy applications. Our work focus only on the fea-

ture association step, showing that SfM accuracy can be

highly improved if the non-linear deformation present

on medical endoscopes is properly compensated. Stud-

ies that improve the robust estimation schemes [38],

propose 2D-3D registration techniques [6, 27], or im-

prove matching performance by means of local defor-

mation fitting [34,35] are complementary to ours.

1.2 Article Outline

This paper is organized as follows: Section 2 starts by

reviewing the SIFT and KLT algorithm that are usually

applied in medical endoscopy. This section is extended

in section 2.2 by including the extensions proposed in

the literature to deal with the strong radial distortion

arising in unconventional optics of medical laparoscopes

and endoscopes. Section 3 details the quantitative ex-

periments conducted in this paper, with detailed infor-

mation about the evaluation metrics and datasets used.

Section 4 shows the experimental results, and their dis-

cussion. Finally, we draw some conclusions about the

performed benchmark in section 5.

Notation: Matrices are represented by symbols in

sans serif font, e.g. G, and image signals are denoted

by symbols in typewriter font, e.g. I. Vectors and vec-

tor functions are typically represented by bold sym-

bols, and scalars are indicated by plain letters, e.g x =

(x, y)
T

and f(x) = (fx(x), fy(x))
T

.

2 Overview of Matching Techniques

This section overviews the feature association algorithms

evaluated in this paper. We start by describing the algo-

rithms designed for perspective cameras [20, 21]. Their

extensions for radial distorted images are then summa-

rized in section 2.2

2.1 Baseline feature matching and tracking methods

for perspective images

SIFT algorithm

The SIFT algorithm can be split in two different steps:

keypoint detection and description. The keypoint de-

tection uses a Difference-of-Gaussian [20] operator to

perform the detection of salient points in a scale-space

representation of the image [16]. Let I(x) and G(x;σ)
be respectively an image signal and a 2D Gaussian func-

tion with standard deviation σ. The blurred version of

I(x, y) is obtained by its convolution with the Gaussian

kernel

L(x;σ) = I(x) ∗ G(x;σ) , (1)

and the DoG operator is then computed as the differ-

ence of consecutive filtered images with the standard

deviation differing by a constant multiplicative factor:

DoG(x, kn+1σ) = L(x; kn+1σ)− L(x; knσ) . (2)

Each pixel in the DoG pyramid is compared with its

neighbours in order to find local extrema in scale and

space dimensions. These extrema are subsequently fil-

tered and refined to obtain keypoints. The next step is

the computation of the descriptor vectors using the im-

age gradients of a local patch around each detected key-

point. Scale invariance is achieved by performing all the

computations at the scale of selection in the Gaussian
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Fig. 2 Detection kernels for SIFT and sRD-SIFT. The sRD-SIFT adapts the Gaussian kernels as a functions of the image
radius, enabling to adapt the deformation of the local structures caused by the radial distortion of medical endoscopes.

pyramid. The method starts by finding the dominant

orientation of the local gradients, and uses it for ro-

tating the image patch towards a normalized position.

Finally, the SIFT descriptor is computed by performing

a Gaussian weighting of gradient contributions, quan-

tizing the orientations, and building histograms that

accumulate magnitudes. For further details please see

the original paper by Lowe [20].

Kanade-Lucas-Tomasi algorithm

Feature tracking between temporally adjacent images is

typically formulated as a non-linear optimization prob-

lem whose cost function is the sum of the squared error

between a template T and incoming images I. The goal

is to incrementally update the current motion estimate

by solving:

ε =
∑
x∈N

[
I(w(x; p + δp))− T(x)

]2
, (3)

where p denotes the components of the image warping

function w, and N denotes the integration region of a

feature. For efficiently solve Eq. 3, Baker and Matthews

[2] proposed an inverse compositional alignment method

that switches the roles of T and I

ε =
∑
x∈N

[
I(w(x; p))− T(w(x; δp))

]2
. (4)

After a Taylor expansion on p, the motion vector in-

crements δp can be computed as:

δp = H−1
∑
x∈N

[
∇T∂w(x; 0)

∂p

]T(
I(w(x; p))− T(x)

)
,

(5)

withH =
∑

x∈N

[
∇T∂w(x;0)

∂p

]T[
∇T∂w(x;0)

∂p

]
, and w(x; 0)

being the identity warp. The computation efficiency of

this inverse alignment approach relies on the depen-

dence of H with the gradient templates, which means

that it is constant during the registration procedure [2].

Finally, the warp parameters are updated as follows:

w(x; pi+1) ← w(x; pi) ◦w−1(x; δp). (6)

In this paper we adopt the affine motion model

[2, 17] and a pyramidal tracking framework [5], which

was shown in [14] to provide good tracking results in

endoscopic images.

2.2 Feature Association in Images with RD

sRD-SIFT: separable SIFT for RD images

Lourenço and Barreto proposed to use a model-based

approach for image blurring that compensates for the
spectral modifications caused by radial distortion [18].

The method assumes that the radial distortion can be

described using the division model [11],

x = f(u) = 2(1 +
√

1− 4ξuTu )−1u, (7)

with f being a vector function that maps points from

the undistorted image Iu to its distorted counterpart

I, r =
√

xTx is the point radius with respect to the

image center, and ξ is the distortion model coefficient.

The scale-space image representation used in the sRD-

SIFT detector algorithm [18] is built by using an ap-

proximated distorted Gaussian filter that enables to ef-

ficiently blur the image L̂:

L̂(h;σ) =
∑
x

I(x)G
( h− x

1 + ξr2
;σ
)

(8)

From equation 8 it follows that I is filtered by a Gaus-

sian kernel with a standard deviation that varies with
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the image radius r. To explore the well-known separa-

bility of the Gaussian filter, the authors re-write the

adaptive Gaussian kernel as being defined by:

G̊ = gh(x; (1 + ξr2)σ) ? gv(x; (1 + ξr2)σ) , (9)

with gh and gv being horizontal and vertical 1D Gaus-

sian functions with standard deviations varying with

the radius of the convolution center. As discussed in

[18], convolving the image with G̊ is a good approxima-

tion to Eq. 8. The resulting blurred images are used to

build the scale-space representation for detecting local

image features, like described in section 2.1.

The image gradients for the SIFT descriptor are also

corrected by using a derivative chain-rule:

∇Iu = Jf .∇I (10)

with ∇Iu and ∇I being respectively the gradient vec-

tors in the undistorted Iu and distorted I image sig-

nals, and Jf being the 2 × 2 Jacobian matrix of the

division model function f . The process involves com-

puting the gradients directly in the original distorted

image I, evaluate the Jacobian matrix Jf at every rele-

vant pixel location, and correct the gradient vectors ∇I
using Eq.10. For further details see [18].

pSIFT: Approximated Spherical Diffusion SIFT

Hansen et al [15] proposed to perform the Gaussian

smoothing in the spectral domain. Let IS be the result

of back-projecting the original image I into the sphere.

The spectrum of IS can be found via a discrete spher-

ical Fourier transform (DSFT), and the filtering result

achieved by applying the inverse DSFT to the prod-

uct of the image spectrum with the transform of GS .

Due to computational reasons, they approximate the

spherical diffusion process by mapping the image I via

the sphere into the stereographic plane, and convolve

the result with the stereographic projection of GS . The

projected Gaussian kernel, despite of changing at every

image pixel position, it is always a symmetric function

that is well approximated by successive 1D convolu-

tions along X and Y directions. This enables to achieve

a computational efficiency similar to the original SIFT,

while avoiding the aliasing problems of the spectral ap-

proach. The descriptor is computed by defining a sup-

port region on the sphere and then re-sampling the re-

gion to a canonical patch of size 41×41, where the SIFT

descriptor is computed. For further details see [15,18].

cRD-KLT: calibrated KLT for images with RD

The motion models employed in KLT tracking algo-

rithms are typically meant for perspective cameras [2].

In [17] the authors derived a composition of functions

that enabled to improved the tracking in images with

RD. The RD compensated motion model that relates

two distorted images is expressed as follows:

x′ = vξ(x; p) =
(
f ◦w ◦ f−1

)
(x; p)., (11)

where f is the division model [11] for radial distortion.

Whenever the distortion is known, which is the case

in this paper, the parameter vector p of vξ comprises

the same parameters of the original motion model. Ad-

ditionally, it can be proved that the requirements to

be used inside the efficient inverse compositional KLT

algoritm are verified [2, 17]. Therefore, the cRD-KLT

consists in simply replace the proposed motion model

vξ in the inverse composition KLT, being straightfor-

ward to obtain the closed form solution for δp:

δp = H−1d
∑
x∈N

[
∇T∂vξ(x; 0)

∂p

]T(
I(vξ(x; p))− T(x)

)
(12)

with Hd =
∑

x∈N

[
∇T∂vξ(x;0)∂δp

]T[
∇T∂vξ(x;0)∂p

]
, and the

Jacobian
∂vξ(x;0)

∂p being evaluated at p = 0. Finally,

the motion parameters are updated at each iteration as

follows:

vξ(x; pi+1)← vξ(x; pi) ◦ v−1ξ (x; δp) (13)

= f ◦w(x; pi) ◦w−1(x; δp) ◦ f−1. (14)

3 Evaluation Benchmarks and Endoscopic

Dataset specifications

Up to now, we have summarized the theoretical details

of the feature association algorithms. This section de-

scribes the benchmarks conducted along this article. We

start by describing the experiment conducted, evalua-

tion metrics, and data used for evaluating the different

feature association method.

3.1 Experiment details and data

In this study we conduct two different experiments aim-

ing at evaluating both sparse frame feature matching

(SIFT, sRD-SIFT, and pSIFT) and continuous track-

ing algorithms.

The first experiment concerns sparse feature match-

ing algorithms. For this experiment we consider 30 sparse

image pairs of a scene with depth variation, and esti-

mate the relative camera motion using epipolar geome-

try. The camera is calibrated by employing the method
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Fig. 3 Sample images used in the two experiments. Since we will be using rigid SfM pipelines for the evaluation, the non-rigid
physiological motion was compensated by imaging ex vivo tissues

described in [3]. The rigid camera motion is estimated

by the well known 5-point algorithm [32], that is run in

a robust RANSAC procedure [10]. This experiment is

denominated as two-view geometry (TVG) evaluation.

In the second experiment the objective is to recover

the motion from a sequence of 100 images. The motion

estimation is carried by a sequential SfM pipeline that

uses as input the tracked features obtained by the KLT

[2] and cRD-KLT [17] methods. The visual odometry

pipeline iteratively adds new consecutive frames with a

5-point RANSAC initialization (using 2 views) [32], a

scale factor adjustment (using 3 views) [23], and a final

refinement with a sliding window bundle adjustment.

This experiment is denominated visual odometry (VO)

evaluation.

The datasets herein used were made available by
[29,31]. The images were acquired at 25 frames per sec-

onds (fps), with a resolution of 720 × 576 for the first

experiment (see Fig. 3) and 720 × 288 for the second

experiment. Due the nature of the rigid SfM experi-

ments used in this paper, both datasets were collected

by imaging ex vivo tissues from a porcine, which en-

able to minimize the non-rigid physiological motions

and isolate the principal source of error we aim to eval-

uate, the radial distortion . The dataset used for VO

experiment was collected with a stereo endoscope for

having ground truth measures. Although, the VO algo-

rithm we used is meant for monocular tracking only, we

take full advantage of a pre-calibrated stereo endoscope

to confirm that the two monocular camera motions are

consistent. To best of our knowledge this is the first

work proposing to use stereo for monocular SfM eval-

uation. This permits to obtain ground truth without

using external optotracking devices that require addi-

tional difficult calibration procedures, like the hand-eye

calibration [25,27].

(Re
s, tes)

(Ri
l, t

i
l)

(Rs, ts)

(Ri
r, t

i
r)

Fig. 4 Illustration of the visual odometry experiment. For
validation purposes we use a stereo laparoscope, we compute
the camera motion independently for each channel. The stereo
calibration is used as ground truth for assessing the accuracy
of the camera motion estimations.

3.2 Validation metrics

For case of the TVG experiments we evaluate the sen-

sitivity of motion estimates, computational time of each

approach, and number of inliers retrieved by the RANSAC

algorithm. The sensitivity metrics used in this experi-

ment were the ones introduced in [37]. Given N = 50

trials of the RANSAC plus 5-point algorithm, we com-

pute a mean rotation matrix R̄ [28] and a mean trans-

lation vector t̄ [37], with t̄ being a unitary vector. For

each image pair, the sensitivity in translation is then

computed as follows:√√√√ 1

N − 1

N∑
n=1

[arccos(t̄Ttn)]2. (15)

Like in [37], a difference rotation matrix ∆R = R̄TRn is

used to compute the angular difference between the R̄
and Rn. For each image pair, the sensitivity in rotation

estimates is measured by the standard deviation of the

angular differences for the N RANSAC trials.

For the case of the VO experiment the sequence is

acquired with a stereo endoscope (see Fig. refvo:example
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Fig. 5 Two-view geometry evaluation. The graphics show the rotation 5(a) and translation 5(b) sensitivity analysis. The last
graphic show the number of correct matches provided by each method. It can be seen that sRD-SIFT algorithm provides better
camera motion estimates than the two other approaches.

for reference). The stereo calibration (Rs , ts) was ob-

tained with the well-known Bouguet’s toolbox1 and it is

used as ground truth. At each time instant we compute

(Rl , tl) and (Rr , tr) by applying the VO pipeline inde-

pendently to the left and right channel, respectively. At

each time instant, the computed rotations and transla-

tions are used to compute an estimative of the stereo

calibration (Res , tes). The rotation error is given by the

angular difference between Res and Rs (like in the TVG

case). The translator error is computed through the an-

gle between the ground truth translation and estimated

translated vector as θt = arccos
(

ts
Ttes

|ts||tes|

)
.

4 Experimental Results

In this section we present the results of the quantitative

evaluation on rigid environment and qualitative eval-

uation in vivo data. Since the in vivo experiment is

conducted using continuous video, only the KLT and

cRD-KLT will be evaluated.

4.1 TVG experiments

Figure 5 depicts the results for the TVG using 30 im-

ages pairs. For the sake of visualization we combine the

results of the 30 pairs using a boxplot. It can be seen

in Fig. 5(c) that the sRD-SIFT algorithm enables to

establish more matches than SIFT and pSIFT.

More important than the number of correct corre-

spondences across views is their localization accuracy in

terms of sub-pixel precision for recovering the camera

motion. The sRD-SIFT algorithm provides the more

consistent estimations for rotation and translation (see

Fig. 5(a) and 5(b), respectively). The pSIFT algorithm

1 Online available at http://www.vision.caltech.edu/

bouguetj/calib_doc/.

improves upon SIFT in terms of number of matches ob-

tained. However, the camera motion estimates are not

as consistent as the ones observed with the sRD-SIFT.

We believe this is due to the extra-interpolation step

required to map the image to the stereographic plane

to carry feature detection. This process introduces sig-

nal artefacts that affect the keypoint precision, which

propagates to the camera motion estimation.

In terms of computational time we have observe

that the SIFT algorithm outperforms the competing

approaches, running at ≈ 1.21 fps. The pSIFT takes

≈ 0.67 fps, without taking into account the stereo-

graphic filters computation, which we have performed

offline and took approximately ≈ 10 seconds with the

MATLAB implementation provided by the authors [15].

The sRD-SIFT provides the best trade-off between per-

formance and computational time, running at ≈ 0.97

fps. Both SIFT and sRD-SIFT were implemented in

C code, while the pSIFT algorithm timings were ob-

tained using a C-Mex implementation provided by the

authors [15].

4.2 VO experiments

The objective of this experiment is to recover the mo-

tion of a sparse sequences of 20 frames (sampled uni-

formly from a video sequence with 100 frames). Both

trackers are initialized with 150 local images features,

with feature replacement whenever a feature is lost.

Figure 6 shows that the motion estimation results.

It can be observed that the cRD-KLT tracker provides

better motion estimative in the sequential SfM pipeline

meaning that the extra parameter in the RD compen-

sated motion models permits a better convergence of

the registration process in images presenting significant

amounts of distortion.

Both methods were implemented in MATLAB/MEX

files, with C-Mex files including only operations transver-
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Fig. 6 Visual odometry evaluation. The graphics show the
rotation error 6(a) and translation error 6(b). It can be
seen that the stereo calibration obtained with the cRD-KLT
present lower rotation and translation error, meaning that
the monocular motions are more consistent than the ones ob-
tained with the standard KLT tracker.

sal to both algorithms, such as interpolation routines,

image gradient computation and image pyramid build-

ing. We have observed that KLT algorithm runs at

≈ 4.51 fps, while the cRD-KLT run at ≈ 4.34 fps. The

small difference is probably due to the slightly more

complex image model adopted in cRD-KLT [17], which

requires a few more computations during the template

tracking process.

4.3 In vivo experiments

In this experiment we evaluate the KLT and cRD-KLT

trackers in a visual odometry experiment using orthopaedic

in vivo data. We initialize the trackers with the same

300 local images features, with feature replacement when-

ever a feature is lost. Since the motion is estimated

between temporal adjacent images, it is expected that

the camera trajectory presents smooth transitions be-

tween frames. This data set comprises 300 frames with

1920 × 1080 acquired at 60 fps. The high-frame rate

favours the application of rigid SfM pipelines with a

(a) Example of the in vivo im-
ages

(b) KLT
tracking

(c) cRD-KLT
tracking

−200

0

200

−100
−50

0
50

−200

−150

−100

−50

0

50

100

150

200

Z

Start

Y

X

(d) Camera motion estimation

Fig. 7 Figure 7(a) shows two frames of the in vivo video se-
quences annotated with parts having rigid and non-rigid mo-
tion. Figure 7(b) results at frame 133. Due the higher track-
ing precision, the cRD-KLT tracker enables to segment the
non-rigid motion in the scene (classified as outlier points).
Figure 7(d) shows the recover motion with the KLT (blue)
and cRDKLT (red) trackers in the orthopaedic data set. The
highlighted connection in green shows a smooth motion tran-
sition between frames 132 and 133 of the video sequence. The
motion smoothness typical from continuous video is more con-
sistent with the trajectory obtained for the cRD-KLT. The
3D structure was obtained using the cRD-KLT.

small bundle-adjustment window due the small defor-
mation of the surfaces between consecutive frames.

Figure 7 shows an example of the tracking results

obtained with the KLT and cRD-KLT trackers. The fi-

nal camera trajectory can be seen in Figure 7(d). The

KLT tracked features start to drift due the combined ef-

fect of radial distortion, low-texture and non-rigid mo-

tion, resulting in an inaccurate endoscope trajectory.

Since the tracking with the cRD-KLT is more accurate,

the deforming surfaces and moving tissues are more

consistently removed by the visual odometry pipeline,

enabling to keep a plausible trajectory estimation.

5 Conclusions and final remarks

Structure-from-motion application in MIS is of vital im-

portance for aiding the surgeon during navigation. Up

until now, several studies have focused on such prob-

lem, by proposing robust estimation techniques and 2D-

3D registration pipelines. In this paper, we analysed
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the role of the feature matching algorithms in which

such methods rely. We have observed that due the low-

texture and radial distortion effect arising in medical

imagery, the SIFT and KLT algorithm are not the most

viable options. The sRD-SIFT and cRD-KLT partially

solve the problem of feature association in medical im-

ages, however such methods required the scene to have

some texture variation. It was also observed that by

improving feature tracking, reliable camera motion tra-

jectories can be obtained in environments that combine

rigid and non-rigid structures. Nevertheless, an open

issue is the feature association in purely non-rigid en-

vironments. A topic we intend to investigate as future

work.
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