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Abstract—The article describes a new algorithm for calibrat-
ing a Kinect sensor that achieves high accuracy using only 6
to 10 image-disparity pairs of a planar checkerboard pattern.
The method estimates the projection parameters for both color
and depth cameras, the relative pose between them, and the
function that converts kinect disparity units (kdu) into metric
depth. We build on the recent work of Herrera et. al [8] that
uses a large number of input frames and multiple iterative
minimization steps for obtaining very accurate calibration
results. We propose several modifications to this estimation
pipeline that dramatically improve stability, usability, and
runtime. The modifications consist in: (i) initializing the relative
pose using a new minimal, optimal solution for registering
3D planes across different reference frames; (ii) including a
metric constraint during the iterative refinement to avoid a
drift in the disparity to depth conversion; and (iii) estimating
the parameters of the depth distortion model in an open-loop
post-processing step. Comparative experiments show that our
pipeline can achieve a calibration accuracy similar to [8] while
using less than 1/6 of the input frames and running in 1/30
of the time.

Keywords-Kinect; Camera Calibration, RGB-Depth Camera
Pair

I. INTRODUCTION

Nowadays, the joint information provided by cameras
and depth sensors has applications in areas including scene
reconstruction, indoor mapping, and mobile robotics. The
Kinect is a camera pair capable of providing such informa-
tion. Its depth sensor consists of a projector that emits a dot
pattern which is detected by an infrared (IR) camera. The
Kinect has been used for multiple purposes including 3D
modeling of indoor environments [6], and Structure from
Motion [12]. Most of these applications require the camera
pair to be calibrated both intrinsically and extrinsically. The
intrinsic calibration consists in determining the parameters
that enable to convert measurement units into metric units.
The extrinsic calibration consists in locating the sensors in a
common coordinate frame, for them to function as a whole.

The literature about color camera calibration is vast with
the methods that use a planar checkerboard pattern being
specially popular because they are stable, accurate, and
the calibration rig is easy to build [15], [1]. For depth
sensors, calibration methods depend on the technology used,

whether they are time-of-flight (ToF) cameras, laser range
scanners, or structured light scanners. Methods which use
color discontinuities [4], or planar surfaces [14], [12], [7],
[8], [13] have been developed.

In this work, we build on the recent work of Herrera
et. al [8] that uses image-disparity map pairs of planes
to accurately calibrate a Kinect device. They use tens of
images to estimate the intrinsic parameters of the color and
depth cameras, as well as their relative pose. The method
relies on multiple iterative optimization steps that take min-
utes to complete. We propose several modifications to this
calibration pipeline that improve stability, and dramatically
decrease the number of input images and runtime. The
experiments show that our method is able to accomplish
similar accuracy to [8], using as few as 6-10 images, as
opposed to 60 images, and running in 20-30 sec, instead of
15 min.

A. Related work

Kinect is a device for the consumer market of games
and entertainment. The intrinsic parameters of both depth
and color cameras, as well as their relative pose, are pre-
calibrated in factory and recorded in the firmware. Average
values for these parameters are known by the community and
commonly used in robotic applications [3]. However, it is
well known that these parameters vary from device to device,
and that the factory presets are not accurate enough for
many applications [6], [12]. This justifies the development
of calibration methods for the Kinect, or of methods to refine
and improve the accuracy of the factory presets.

Authors have tried to independently calibrate the intrinsics
of the depth sensor and color camera, and then register both
in a common reference frame [11], [13]. As pointed out by
Herrera et. al [8], the depth and the color camera must be
calibrated together both because the accuracy in the color
camera propagates to the depth camera, and because all
available information is being used.

Depth sensors may present depth distortions which de-
creases their accuracy. This is the case of the Kinect device
which has shown radially symmetric distortions [12] that
are not corrected in the manufacturer’s calibration. Herrera



et. al [7] firstly proposed an algorithm that calibrates not
only the cameras’ intrinsics, but also the parameters that
convert kdu into meters. Zhang and Zhang extend this work
by considering point correspondences between color and
depth images, showing improved accuracy. However, neither
methods deal with the depth distortion.

Smisek et. al [12] observed that the Kinect exhibited
residuals for close range measurements, and were the first
to propose considering both distortion in the projection and
in the depth estimation. The depth distortion was estimated
for each pixel by averaging the metric error, after carrying
the intrinsic and extrinsic calibrations of the device. More
recently, another depth distortion correction procedure was
proposed by Herrera et. al [8], which leads to improved
accuracy. They initially estimate the intrinsics and the plane
pose, from homographies computed using plane-to-image
correspondences. The extrinsic calibration is carried by
registering the 3D planes estimated in color and depth
camera coordinates. Due to the high number of parameters
to be optimized, they use an iterative refinement step that
optimizes the parameters alternately. Unfortunately, in order
to effectively model the depth camera parameters, including
the distortion term, it requires many images (≥ 20). Also,
its iterative optimization step is highly time consuming.

B. Overview of the approach

Since the recent work of Herrera et. al [8] is the one that
reports better accuracies, we build on their contribution and
downsize the calibration pipeline to improve the usability.

As in [8], the color camera is calibrated from plane-to-
image homographies which enable to know the pose of
the calibration plane in the color camera reference frame.
Concerning the depth camera, we use the preset values to
reconstruct 3D points, and compute the calibration plane
pose using a standard fitting algorithm. Computation of the
extrinsic calibration is accomplished by performing plane
registration. While Herrera carries the registration using a
sub-optimal linear algorithm, we describe a new method
based on [10]. It is a minimal solution that is included in
a random sample consensus (RANSAC) framework. This
provides better initializations of the relative pose, which fa-
cilitate the subsequent steps. All parameters are optimized in
a bundle adjustment step which considers metric information
in order to avoid a drift in the disparity to depth conversion.
We use the depth distortion model presented in [8], which
has shown to yield good accuracy. However, unlike Herrera’s
method, we estimate the model’s parameters in an open-
loop, making our approach much less time consuming.

This pipeline leads to improvements in usability without
sacrificing the final accuracy. The improvements are both in
terms of decreasing the number of input images by a factor
of 6, and reducing the computational time by a factor of
30. Our method, as Herrera’s method, can be used with
more than one color camera. However, in this work, we

only consider the Kinect’s color camera in the experiments.

Notation: Scalars are represented by plain letters, e.g. x,
vectors are indicated by bold symbols, e.g. x, and matrices
are denoted by letters in sans serif font, e.g. R. Planes are
represented by a 4D homogeneous vector that is indicated
by an uppercase Greek letter, e.g. Π. Sets of intrinsic
parameters are defined by uppercase calligraphic letters, e.g.
I. Subscripts c and d attached to symbols refer to the color
and depth cameras, respectively.

II. BACKGROUND

A. Projection model

In this work, the intrinsic parameters of the color camera
are modeled as in [5], where both radial and tangential
distortions are considered. Let Xc = [Xc, Yc, Zc]

T be a 3D
point in the camera reference frame. The normalized image
projection of Xc is xn = [xn, yn]T, with xn = Xc/Zc and
yn = Yc/Zc. Including lens distortion, it comes that

xk = (1 + kc1r
2 + kc2r

4 + kc5r
6)xn + dx, (1)

where r2 = x2n+y2n and dx is the tangential distortion. The
pixel coordinates xc = [xc, yc]

T of the projection of Xc on
the image plane are[

xc
yc

]
=

[
fcx 0
0 fcy

] [
xk
yk

]
+

[
ccx
ccy

]
, (2)

where fc = [fcx, fcy] are the focal lengths, and cc =
[ccx, ccy] is the principal point. We refer to the set of intrinsic
parameters of the color camera by Ic = {fc, cc,kc}.

The pixel coordinates of the projection of the 3D point
Xd in depth camera coordinates can be obtained using a
model similar to the color camera’s one. The parameters fd
and cd are the focal length and the principal point of the
depth camera, respectively. Considering the distortion in the
depth camera does not improve accuracy significantly. Thus,
kd is set to zero.

B. Depth measurements

The Kinect’s depth sensor consists of an IR camera which
detects a constant pattern emitted by a projector. It delivers
depth information in disparity units (kdu) which must be
converted into metric units (meters). This can be done by
using a scaled inverse of the format

z =
1

c1du + c0
, (3)

where c0 and c1 are part of the depth camera’s intrinsics.
Depth z is obtained from du, which is the undistorted
disparity, i.e., after performing distortion correction. The
Kinect’s depth sensor presents a depth distortion which has
been modeled by Herrera et. al [8]:

du = d+ D(xd, yd)e
α0−α1d, (4)



Figure 1. The color and depth cameras are related by a rigid transfor-
mation (R, t). Both sensors observe the same planar surface, allowing the
computation of the extrinsic calibration.

where d is the disparity returned by the Kinect in pixel
[xd, yd], D contains the spatial distortion pattern, and α =
[α0, α1] models the decay of the distortion effect. We refer
to the set of intrinsic parameters of the depth camera by
Id = {fd, cd,kd, c0, c1,D, α}.

C. Herrera’s method

Herrera et. al [8] recently proposed a new method for
calibrating a color-depth camera pair, as well as a new ex-
plicit distortion correction term for the Kinect device, which
significantly improves accuracy. They use a setup identical
to Figure 1, where all cameras observe a planar checkerboard
pattern from multiple views, which are used for calibrating
the sensors. In this section, we review Herrera’s method for
which we show a diagram in Figure 2. It can be seen that
the initialization steps can be performed by two different
methods, yielding two versions of the method to which we
refer by Herrera and Herrera I. The remaining steps do
not depend on how the initial estimate was obtained, and
constitute the non-linear minimization.

1) Initial estimation: The color camera intrinsics can be
initialized using Zhang’s method [15]. The checkerboard
corners are extracted from the intensity images and, using
known corner positions in the checkerboard reference frame,
both the intrinsic parameters and the plane to image homo-
graphies can be estimated. This leads to the initialization of
Ic and T

(i)
c , for all input images i.

The same method can be applied to estimate the depth
camera parameters and homographies using plane corners
[8]. From these initial parameters, it is possible to obtain
an estimate for the expected depth of each selected corner.
The corresponding measured disparities can be used for
determining an initial guess for c0 and c1, using equation
3. Thus, by setting D and α to zero, an initialization of Id
and T

(i)
d is obtained. This initialization procedure is used

in Herrera’s method, as depicted in Figure 2. However,
it produces a very rough initial estimate, especially if the
number of calibration planes is small. Thus, since there
exist publicly available values for the intrinsics of the Kinect
device, in method Herrera I these are used, and the extrinsic

calibration step is skipped since estimates for Id and T are
known.

2) Extrinsic calibration: In method Herrera, it is nec-
essary to explicitly compute the relative pose between the
sensors T. From Figure 1, it is evident that the checkerboard
and calibration plane reference frames are not aligned, and
thus there is not a common reference frame between the
two sensors. This means that is it not possible to find T by
simply chaining transformations T

(i)
c and T

(i)
d . However, T

can be found through plane registration, since it is known
that both planes are coplanar.

Given T
(i)
c , Π

(i)
c can be obtained by computing

Π(i)
c =

[
rc3
rTc3tc

]
, (5)

where rc3 is the third column of matrix R
(i)
c . For finding

Π
(i)
d , we proceed similarly. The registration problem is the

one of estimating R and t such that

Π
(i)
d ∼

[
R 0
−tTR 1

]
︸ ︷︷ ︸

T−T

Π(i)
c , i = 1, 2, 3 (6)

verifies. Herrera et. al use a linear sub-optimal algorithm to
carry this estimation.

3) Non-linear minimization: The non-linear minimization
of Herrera’s method consists of 3 steps, as shown in the
diagram of Figure 2. It aims to minimize the weighted sum
of squares of the measurement reprojection errors over all
parameters (Ic, Id, T, and Tc for all calibration images).
For the color camera, the error is the Euclidean distance
between the measured corner position x̂ and its reprojected
position x (first term of equation 7). For the depth camera it
is the difference between the measured disparity d̂ and the
predicted disparity d. The errors are normalized using each
measurement variance σ2. It comes that the cost function is

c =

∑
||x̂c − xc||2

σ2
c

+

∑
(d̂− d)2

σ2
d

. (7)

The optimization process is divided into three steps: firstly,
only Id and T are optimized to account for the fact that
they are poorly initialized; secondly, equation 7 is minimized
over all the parameters, except for D; lastly, D is optimized
independently for each pixel. The two last steps are repeated
until convergence is reached.

III. CALIBRATION METHOD

We propose a new calibration method that consists of four
main consecutive steps: an initial estimation of the intrinsic
and extrinsic parameters, a non-linear minimization, and a
depth distortion model estimation. Figure 2 shows a block
diagram of our method, which presents a simpler framework
than Herrera’s. Our optimization procedure consists of only
one step, and a depth distortion model is estimated using
the optimized parameters.



Figure 2. Calibration algorithms: two versions of Herrera’s method (named Herrera and Herrera I), and our method.

A. Initialization of intrinsic calibration

For the color camera, the initial estimation of Ic and
T
(i)
c for all calibration images is done as described in

section II-C1, for which we use Bouguet’s toolbox [2]. We
redefine the intrinsic parameters of the depth camera as
I ′d = {fd, cd,kd, c0, c1} because we do not consider depth
distortion terms. They are initialized using preset values,
which are publicly available for the Kinect [3].

B. Initialization of extrinsic calibration

For each input disparity map i, the plane corners are
extracted, defining a polygon. For each point xd inside
the polygon, the corresponding disparity d is used for
computing a depth value zd using equation 3, where
d = du since the measured disparities are used. The
correspondences (xd, yd, zd) are used for computing 3D
points Xc originating a 3D point cloud. To each 3D point
cloud, a plane is fitted using a standard total least squares
algorithm.

Plane registration in the dual space
Consider two sets of three planes Π

(i)
c and Π

(i)
d , i = 1, 2, 3,

in color and depth camera reference frames, respectively,
in homogeneous representation Π

(i)
c ∼ [nci 1]T (and

equivalent for Π
(i)
d ). Knowing that points and planes are

dual entities in 3D - a plane in the projective space P3 is
represented as a point in the dual space P3∗, and vice-versa
- equation (6) can be seen as a projective transformation
in P3∗ that maps points Π

(i)
c into points Π

(i)
d . Figure 3

illustrates the problem in the dual space P3∗ with origin O∗
. The transformation T−T can be factorized into a rotation

Figure 3. Interpretation of the registration problem in the dual projective
space P3∗. The factorization T−T ∼ SM allows the rotation and
translation components to be computed separately.

transformation M, mapping points Π
(i)
c into points Π′

(i)
c , and

a projective scaling S that maps points Π′
(i)
c into points Π

(i)
d :

λiΠ
(i)
d =

[
I3 0
−tT 1

]
︸ ︷︷ ︸

S

[
R 0
0 1

]
︸ ︷︷ ︸

M

Π(i)
c , (8)

where I3 is the 3× 3 identity matrix and λi is an unknown
scale factor. M can be computed from N = 2 point-
point correspondences, but S requires N = 3 point-point
correspondences to be estimated. An easy two-step process
to perform the registration is presented:

1) Since the length of a vector is not changed by rotation,
we normalize nci and ndi, obtaining ~nci and ~ndi. The
normalized vectors are represented by the vectors in
Figure 3 inside the sphere of radius 1. Next, we apply
the algorithm from [9] for computing a transformation
between two sets of unitary vectors.



Figure 4. The problem of occurring a drift in scale. The pose of grid
in the color camera reference frame is fixed, while the depth camera may
observe the calibration plane at different depths.

2) From equation 8 we can write

nT
dindin

T
ciR

Tt− nT
dindi + nT

diRnci = 0. (9)

Each pair Π
(i)
c , Π

(i)
d gives rise to a linear constraint

in the entries of the translation vector t, which can be
computed by t = A−1b with

A =

n
T
d1nd1n

T
c1

nT
d2nd2n

T
c2

nT
d3nd3n

T
c3

RT,b =

n
T
d1nd1 − nT

d1Rnc1
nT
d2nd2 − nT

d2Rnc2
nT
d3nd3 − nT

d3Rnc3

 .
(10)

This plane registration algorithm provides the extrinsic cali-
bration of a camera and a depth sensor in the case of N = 3
correspondences. For N > 3 pairs of planes, each triplet of
plane-plane correspondences gives rise to one solution, and
the best estimation can be found using an hypothesize-and-
test framework:

1) For each possible triplet of pairs of planes Π
(i)
c , Π

(i)
d ,

find transformation T.
2) For each solution T, compute the depth camera coor-

dinates Πdj for all Π
(i)
c using (6), and determine the

euclidean distance lj in the dual space between the
computed Πdj and Π

(i)
d .

3) Each T is ranked by rank(T) =
∑
j max(t, lj), where

t is a predefined threshold. The correspondences for
which lj < t are considered as inliers and T for which
rank(T) is minimum is the pose estimation.

Only the inlier correspondences are used for optimization.

C. Non-linear minimization

We observed experimentally that under poor initialization
and a small number of images, Herrera’s method tends to
drift in depth. After careful analysis, we came up with
an hypothesis for this observation. Figure 4 depicts the
problem. From equation 3, it can be seen that if c0 and
c1 are affected by a scale component, this will reveal in
a depth scaling, which consequently originates a shift in

the z component of td. Note that the rotation component
is not affected, i.e., R′d = Rd in Figure 4. This does not
change the reprojection error in a given pixel because the
expected disparity in that pixel is the same. Since Tc remains
unchanged, the translation between the two sensors t is also
shifted, originating an error in the extrinsic calibration.

Thus, we change the cost function 7 by adding a term that
accounts for the difference between the Euclidean distances
between points of an object λ and the measured distances
between those points λ̂. Our objective function is, then,

min
Ic,I′d,T,Tci

e =

∑
||x̂c − xc||2

σ2
c

+

∑
(d̂− d)2

σ2
d

+ β|λ̂− λ|2,

(11)
where β is a weighting factor which should be sufficiently
high. This information could be included as a hard con-
straint. However, since we do not know how accurate the
measurements are, we decided to include it as a penalty
term. This means that our algorithm requires at least one
image of an object with known dimensions, for avoiding
the calibration to drift in scale.

D. Depth distortion model estimation

The optimized intrinsic and extrinsic calibrations can be
used for estimating the depth distortion model of equation
4. Note that it can be rewritten as

du = d+ W(xd, yd)e
−α1d, (12)

where W(xd, yd) = D(xd, yd)e
α0 .

For a pair of disparity maps where a given pixel xd belongs
to the calibration plane in both maps, there are two corre-
spondences (d̃1, d1) and (d̃2, d2), where d is the measured
disparity and d̃ is the expected disparity computed by
knowing the plane equation. Using the two correspondences,
we can write the system of equations{

d̃1 − d1 = W(xd, yd)e
−α1d1

d̃2 − d2 = W(xd, yd)e
−α1d2

(13)

and find α1 by

α1 =
ln d̃1−d1

d̃2−d2
d2 − d1

. (14)

For every possible pair of correspondences, we compute an
estimate for α1 and consider their average as the final result.

Knowing α1, W can directly be estimated for the pixels
which belong to a known plane. For pixel (xd, yd), if
more than one value is found, the average of all values is
considered. Although it is not possible to find individual
estimates for α0 and D, this method allows to recover the
whole depth distortion function. Like Smisek et. al [12], we
perform the estimation in open-loop. However, since we use
Herrera’s model, we obtained better accuracy.



Figure 5. Average RMS reprojection errors in kdu obtained with the
validation set of 10 images. All calibrations were performed without
distortion correction (DC), except for one using a data set with 60 plane
poses (pseudo ground truth).

(a) Translation error (b) Rotation error

(c) Error in c0 (d) Error in c1

Figure 6. Errors relative to the pseudo ground truth obtained without
performing distortion correction.

IV. EXPERIMENTAL RESULTS

Two sets of experiments were conducted in order to
compare the accuracy of Herrera’s method, which has been
released as a toolbox, and our method. The first one uses the
data set included in the toolbox, and shows extensive results
with a varying number of calibration images. The second set
uses a small number of images acquired by another Kinect,
in order to further validate the results.

A. Herrera’s data set

The dataset comprises image-disparity map pairs for 70
distinct plane poses, with the images being both acquired by

Figure 7. Average run times obtained with our method, for increasing
number of calibration images.

the Kinect’s color camera and an external high resolution
camera. We selected 10 image-disparity map pairs acquired
by the Kinect (validation set) and used the rest of the data
as input to the original Herrera algorithm, that was executed
with and without distortion correction (DC). Figure 5 shows
the reprojection error measured for the validation set, where
it can be seen that the latter is substantially more accurate
than the former. We will consider this last calibration result
as being close to the ground truth, and refer to it as pseudo
ground truth, given the large amount of data and the use of
a high resolution camera. However, it is merely indicative,
since we do not know how exact the calibration is. The
estimations by the different methods are compared against
this one. From the test set we selected 20 image-disparity
map pairs acquired by the Kinect. These pairs were grouped
in sets of K = 4, 5, . . . , 15, and we randomly picked 50
sets for each value of K. For each group of input images,
we ran the calibration using Herrera I and our method. The
initial values were sampled from a uniform distribution with
amplitude equal to 5% of the original value. The idea was
to evaluate the robustness to poor initialization.

For each trial, we evaluated the result in terms of repro-
jection error, using the 10 validation images, and in terms of
extrinsics, by comparing with the pseudo ground truth. Fig-
ures 5 and 6 show the average errors for increasing number
of K input images. Results clearly show that under the same
conditions, our method systematically outperforms Herrera’s
method, which is not capable of producing acceptable results
with small data sets (≤ 8 calibration images). Our method,
on the other hand, yields good results with only 6 calibration
images. Although the initial estimates are very poor, both
methods are capable of converging during the optimization
phase. Figure 7 shows the average run times of our method,
when using fixed initial parameters or parameters sampled
from a uniform distribution. When the parameters are not
fixed, a poorer initial estimation may be obtained, leading
to higher run times in the optimization step. However, this
is a low time consuming method since it never exceeds 30
seconds.

Using the results obtained with calibration sets of more
than 7 images, we estimated the depth distortion model
with 2 images of a wall at different depths. The average



(a) Average results (b) Our without DC (c) Our with DC (d) Pseudo Ground Truth

Figure 8. Results obtained with Herrera’s data set. (a) Average and per-pixel RMS reprojection errors obtained with the validation set for (b) our method
without distortion correction (DC), (c) our method with DC, and (d) the pseudo groud truth.

Figure 9. Image (acquired with
our Kinect) of the stairs used for
3D reconstruction.

Our Method
method Herrera I

No DC 0.495° 0.743°
DC 0.369° 0.602°

Table I
AVERAGE ANGULAR ERROR

BETWEEN ALL POSSIBLE PAIRS
OF 10 RECONSTRUCTED PLANES.

RMS reprojection errors for the validation images are shown
in Figure 8(a). It can be seen that the model was cor-
rectly estimated since the reprojection errors significantly
decreased. This can be confirmed in Figure 8 where the
average reprojection errors obtained in each pixel, for the
10 validation images, are shown. It can be seen that before
correcting the distortion, a radial pattern of the residuals
is observed. After applying the distortion correction, the
reprojection errors significantly decrease, and the pattern
obtained becomes very similar to the pseudo ground truth’s.
The estimation of the model with 2 images takes about 10
seconds, so that the overall run time is of about 30 seconds
for 15 calibration images. Herrera’s method, however, is
much more time consuming, taking about 3 minutes with
20 images.

B. Our data set

In this set of experiments, we acquired a data set of 14
images, of which 8 were used for calibration and 6 for
validation. We used the 8-image data set for calibrating
the camera pair with ours and Herrera I method, both with
and without distortion correction. Note that our estimation
of the depth distortion model is done with the 8 images
of the calibration set. The quality of the depth camera’s
intrinsic calibration is assessed by reconstructing the planes
of a flight of perpendicular stairs (Figure 9), and computing
the angles between all possible pairs of planes. These are
compared with 90° if the planes are orthogonal, and 0° if

Our method Method Herrera I
No DC 1.54 kdu 4.08 kdu

With DC 1.20 kdu 3.61 kdu

Table II
AVERAGE RMS REPROJECTION ERRORS OBTAINED WITH THE

VALIDATION SET OF 6 IMAGES ACQUIRED BY OUR KINECT.

they are parallel. Results in Table I show that, although both
methods perform well, ours yields smaller angular errors
in average. Applying distortion correction leads to a more
accurate reconstruction in both cases.

Average RMS reprojection errors were computed for the
validation set and results are shown in Table II. As expected,
our method outperforms Herrera’s since the calibration set
is not large enough for it to produce good results. Although
using distortion correction leads to an improvement in the
accuracy for both methods, Figure 10 shows that in Herrera’s
method, it leads to a poorer extrinsic calibration. The 3D
points computed from the disparity image are represented
in color camera coordinates, to which colors are assigned.
A correct calibration should align the intensity image with
the depth map. Results with our method show that the
misalignment is very slight, while for Herrera’s method it
is significant, and is larger when using distortion correction.
This indicates that Herrera’s method is not able to properly
model the depth distortion with small data sets.

V. CONCLUSION

We present a new method for calibrating a color-depth
camera pair which outperforms one of the state-of-the-art
methods, when using small data sets. Our main contributions
are a new optimization step that prevents the calibration to
suffer from a drift in scale, as well as a method for estimating
a depth distortion model which significantly improves the
calibration accuracy. Since this model is estimated in open-
loop, the overall method has low run times (≈ 30sec for 15
images). Moreover, we present a new minimal solution for
the problem of registering two sets of corresponding planes.



(a) Our method with DC (b) Herrera’s method without DC (c) Herrera’s method with DC

Figure 10. Image of an object with holes acquired by our Kinect. The RGB image is overlaid with the depth map to show the misalignment.
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