
Near-LSPA Performance at MSA Complexity
Joao Andrade, Gabriel Falcao, Vitor Silva

Instituto de Telecomunicações
Dept. of Electrical & Computer Engineering

University of Coimbra, Portugal
Email: {jandrade,gff,vitor}@co.it.pt

Joao P. Barreto, Nuno Goncalves
Institute of Systems and Robotics

Dept. of Electrical & Computer Engineering
University of Coimbra, Portugal

Email: {jpbar,nunogon}@isr.uc.pt

Valentin Savin
CEA-LETI

MINATEC Campus
38054 Grenoble, France

Email: valentin.savin@cea.fr

Abstract—The tradeoff between error-correcting performance
and numerical complexity of LDPC decoding algorithms is a
well-known problem. In this paper we depict the unseen error-
floor performance of the Self-Corrected Min-Sum algorithm for
long length DVB-S2 codes. We developed a massively parallel
simulation using GPUs which allowed a comprehensive BER
characterization either in the waterfall or in the error-floor
region. We show that the self-correction technique increases
the BER performance by 0.5 and 0.2 dB, in the waterfall and
error-floor region, when compared to the Min-Sum algorithm.
Furthermore, it reaches within 0.2 dB to the Logarithmic
Sum-Product BER performance and it also outperforms the
Normalized Min-Sum at high SNR, a low complexity decoding
algorithm which yields good BER performance.

Index Terms—LDPC codes; Self-Corrected Min-Sum; BER
Performance; DVB-S2

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes were introduced
in 1962 [1] and recaptured the attention of the scientific
community in 1996 [2], providing a very powerful alternative
to Turbo codes due to their capacity-approaching character-
istics [3]. They have since been adopted in several digital
communication standards. However, even by today’s stan-
dards, the problem of LDPC decoding still poses a very
complex numerical problem. Such complexity combined with
bandwidth and QoS requirements compelled engineers and the
information theory community to investigate more efficient
decoding solutions, such as new LDPC code structures and
decoding algorithms capable of achieving very fast decoding
times. The project and development of real-time field decoders
using Application-Specific Integrated Circuit (ASIC) and
Field-Programmable Gate Array (FPGA) technologies pro-
vides limited hardware resources. Therefore, strategies need
to be adopted that balance a trade-off between decoding
complexity and error-correcting capabilities. Typically, sub-
optimal decoding, and thus lower error-correcting capabilities,
is tolerated if faster decoding is achieved, around a trade-off
that is application specific.

The Min-Sum Algorithm (MSA) [4], [5] is a very popular
soft-decoding algorithm that presents a fair tradeoff between
sub-optimal decoding and numerical complexity. This lat-
ter characteristic can be dealt with by addressing the sub-
optimality through offset and normalization corrections [4],
[5]. However, another promising strategy can be adopted,
namely through the self-correction technique, which addresses
the MSA sub-optimality by introducing erasure messages into

the decoding algorithm [6].
In this paper, we analyse how self-correction can outperform

the MSA and reach within a negligible gap of the benchmark
decoding algorithm in terms of error-correction for long length
irregular LDPC codes. We analyse the numerical complexity of
the Self-Corrected Min-Sum Algorithm (SCMSA) against the
Logarithmic Sum-Product Algorithm (LSPA), the MSA and
the Normalized Min-Sum Algorithm (NMSA). Moreover, we
have conducted an error-floor characterization of the SCMSA
with a coherent statistical significance.

II. LDPC CODES

LDPC codes are linear block codes characterized by sparse
parity-check matrices, which verify the following condition:

c×HT = 0, c ∈ C, (1)

where c is a codeword from the set C of possible codewords.
In (1), the codeword set C is defined as the null-space of H.

H also defines a bipartite graph, as shown in Figure 1,
where rows and columns constitute a node type and the non-
null elements, i.e. the bits or Bit Nodes (BNs) participating in
a parity-check equation or Check Node (CN), constitute the
graph’s edges. The following notation will be used throughout
the paper regarding LDPC codes:
• N is the coded block length;
• K represents information bits length;
• M=N −K is the number of parity-check equations;
• R = K/N is the coding rate;
• a BN corresponds to a bit in the codeword;
• a CN corresponds to a parity-check equation;
• dv and db are the degree of CNs and BNs respectively, or

alternatively the number of non-null elements CNs and
BNs possess in the parity-check matrix H;

• edges are associated with non-null elements in H and
connect BNs to CNs;

• γn a-priori reliability (LLR) BN n;
• αnm message sent by BN n to CN m;
• βmn message sent by CN m to BN n;
• α̂n a-posteriori LLR of BN n.

A. DVB-S2 LDPC Codes

The Digital Video Broadcasting - Satellite 2 (DVB-S2)
digital communication standard is one of numerous protocols
relying on LDPC codes for their Forward Error Correcting
(FEC) systems. These codes define particularly long block

BN3

c1+c4+c7=0

c0+c3+c6=0

c0+c1+c2=0

c3+c4+c5=0

Parity-check
Equations

CN0 CN1 CN2 CN3

1

0

1

0

1

0

0

1

1

0

0

0

0

1

1

0

0

1

0

1

0

1

0

0

0

0

1

0

0

0

0

1

H =

BN Processing

CN0

CN3

CN Proc
es

sin
g

BN 0 1 2 3 4 5 6 7
CN

0

1

2

3

CN1

BN0 BN1 BN2 BN4 BN5 BN6 BN7
BN1

BN4

BN5

BN3

�0 �1 �2 �3 �4 �5 �6 �7

↵
(i�1)
14

↵
(i�1)
15

↵
(i�1)
13

�
(i)
14

�
(i)
31

�
(i)
01↵

(i)
01

Fig. 1. Example LDPC code, defined by the depicted parity-check restric-
tions, its corresponding Tanner graph and the message-passing procedure for
CN1 and BN1.

lengths, with 16200 and 64800 bits for short and normal
frame modes, which elects them as suitable candidates for
long length case studies. Moreover, they belong to the LDPC
Irregular Repeat and Accumulate (LDPC-IRA) class which is
prone to fast encoding, and their parity-check matrices exhibit
periodical properties which can be exploited to efficiently map
the BNs and CNs adjacency to memory [7], [8].

III. SOFT-DECODING ALGORITHMS

Soft-decoding algorithms are the elected methods to decode
LDPC codes [1], [2], [4], [5] and follow graph-based message-
passing algorithms between BNs and CN of the Tanner
graph, as illustrated in Figure 1. The Sum-Product Algorithm
(SPA) [1], [2] has practical implementation issues related to
quantization errors due to the massive use of multiplications,
and is too complex for Very Large Scale Integration (VLSI)
technology, the prime target of LDPC decoders. Hence, vari-
ations of the SPA have been proposed that ameliorate the
decoding complexity and ease the decoder project.

A. Logarithmic Sum-Product
The LSPA operates on the log-likelihood domain, since

multiplications become additions, and its formalization is
presented in Algorithm 1. Approaches i-iii) [1], [9], [10] are
variations which present different decoding complexities. All
of them show dependencies on transcendental functions as
seen in Algorithm 1. Approach iii) allows the introduction
of forward-backward techniques which minimize the number
of instructions issued [10] and a sub-optimal approximation
of the � function leads to the MSA.

B. Min-Sum Algorithm
The MSA formalization iv), dismisses the transcendental

component of the � operator in (2), thereby introducing a
sub-optimal approximation to the CN processing. This leads
to an overestimation of the β messages, due to the log term
in (2) being strictly positive.

u� v = sign (uv)×min {|u|, |v|})− log

[
1 + e−|u+v|

1 + e−|u−v|

]
(2)

Algorithm 1 Variants of the LSPA and MSA CN processing
and BN processing.

CN processing:
i) Gallager approach (φ-LSPA):

β(i)
mn = φ

 ∑
n′∈N(m)\n

φ
(
α
(i−1)
n′m

)× ∏
n′∈N(m)\n

sign
(
α
(i−1)
n′m

)
,

φ(x) = log

(
exp |x|+ 1

exp |x| − 1

)
(3)

ii) tanh approach (tanh-LSPA):

β(i)
mn = 2 atanh

 ∑
n′∈N(m)\n

tanh

(
α
(i−1)
n′m

2

) (4)

iii) Jacobian approach (�-LSPA):

β(i)
mn = �n′∈N(m)\nα

(i)

n′m
(5)

iv) (MSA):

β(i)
mn =

∏
n′∈N(m)\n

sign
(
α
(i−1)
n′m

)
× min

n′∈N(m)\n
|α(i−1)

n′m
| (6)

v) (NMSA):

β(i)
mn =

∏
n′∈N(m)\n

sign
(
α
(i−1)
n′m

)
× min

n′∈N(m)\n
|α(i−1)

n′m
| ×Θ

(7)

BN processing:
i-v):

α(i)
nm = γn +

∑
m′∈M(n)\m

β
(i)

m′n
(8)

This problem has been previously addressed by offset and
normalization corrections [4].

C. Normalized Min-Sum Algorithm

The NMSA addresses the sub-optimality introduced by
the negligence of the second term in (2), by multiplying
the minimum term with a normalization factor. The optimal
normalization factor is Signal to Noise Ratio (SNR) depen-
dent [11], although a considerable Bit Error Rate (BER)
performance gain can be achieved by fixing a constant Θ [4]
or alternatively by fixing Θ1 = 0.75 for the absolute minimum
and Θ2 = 0.875 for the second minimum [12]. Alternatively,
a strategy that also aims towards the correction of such
overestimation can be achieved by self-correction [6].

D. Self-Corrected Min-Sum Algorithm

The SCMSA [6] addresses the β messages overestimation at
the BN processing side of the algorithm. Whereas β messages
are computed through (8) in the LSPA and MSA-variants, the
SCMSA BN processing is defined by (9). The rationale behind
the SCMSA is that the overestimation of the β messages

TABLE I
NUMERICAL COMPLEXITY OF THE LSPA-VARIANTS, MSA AND SCMSA

FOR CN AND BN PROCESSING.

CN Processing
Algorithm Mult. Additions XOR Transcendental
φ-LSPA in (3) - 2dv dv 2dvφ
tanh-LSPA (4) 2dv - - dv{tanh, atanh}
�-LSPA (5) - dv − 1 - 3(dv − 2)�
MSA (6) - dv + log dv − 2 dv−1 -
NMSA (7) dv dv + log dv − 2 dv−1 -
SCMSA (6) - dv + log dv − 2 dv−1 -

BN Processing
Algorithm Mult. Additions XOR Transcendental
SCMSA (9) - db db -
all others - db - -

is not critical unless any given α, through the natural MSA
decoding process, goes through a signal change, which in the
log-likelihood ratio domain corresponds to a bit state change.
Thus, in the SCMSA, an α message signal change is followed
by the introduction of an erasure (9).

α̃(i)
mn = γn +

∑
m′∈M(n)\m

β
(i)

m′n

α(i)
mn =

{
0, sign{α̃(i)

mn} × sign{α(i−1)
mn } < 0 ∧ α(i−1)

mn 6= 0

α̃
(i)
mn, otherwise.

(9)

An erasure in the log-likelihood ratio domain is expressed by
a zero message, i.e. bit states 0 and 1 are equiprobable, and
due to the CN processing nature, which will update erasures
to adjacent BNs, several erased messages will be given to BNs
adjacent to the CN that received the erasure. Upon receiving
an erased message, the SCMSA acts similarly to the MSA,
i.e. messages erased do not remain erased for more than
one iteration as the SCMSA processes β messages differently
according to their magnitude, as formalized in (9).

IV. NEAR-OPTIMAL BER PERFORMANCE AT LOW
NUMERICAL COMPLEXITY

The BER performance improvement achieved by the
SCMSA is very promising regarding its implementation effort.

A. LDPC Decoding Numerical Complexity

The different numerical complexities of the CN and BN
processing of the LSPA-variants and the MSA-variants are
highlighted in Table I [5]. The MSA is very appealing, due
to the non-dependence on transcendental functions. However,
the degrading BER performance is severe enough to justify the
use of offset or normalized variations of the MSA [5]. These
variants would imply dv subtractions or dv multiplications per
CN. On the other hand, the proposed SCMSA solution requires
only an additional db exclusive-or operations and a comparator
to properly introduce the erasure as seen in Figure 2.

B. Practical Implementation

Figure 2 depicts a schematic that illustrates the differences
between the MSA and the SCMSA datapaths. The SCMSA

Self-Corrected CN

Self-Corrected BN

Z bits X bits X bits

sg
n{

↵
(
i�

1
)

m
n

}

X bits
sgn{↵̃(i)

mn}
↵̃(i)

mn

↵̃(i)
mn

X bits

s
1 bit X bits

Z bits

↵(i)
mn

X bits

�(i)
n

�(i)
mn

�̂(i)
mn

X bits CN MSA
X bitsX bits �̂(i)

mn

Z bits

↵(i�1)
mn

�(i)
mn

�(i)
mn

(0)

sgn{↵(i�1)
mn }

e
1 bit

sg
n
{↵

(
i�

1
)

m
n

}
er

as
u
re

er
as

u
re

era
su

re

Min-Sum and Self-Corrected Min-Sum data path
Self-Corrected Min-Sum exclusive data path

↵(i�1)
mn

X bits

↵(i�1)
mn == 0

Fig. 2. Memory-efficient computation of the self-corrected CN and BN
processing for a possible hardware implementation. The datapaths of both the
MSA and the SCMSA are presented. In the top figure the BN processing is
depicted, where the self-correction takes place. As shown, only Z = X + 2

bits per computed α(i)
mn have to be loaded, since the β̂(i)

mn message contains
both the relevant β(i)

mn message, sign{α(i−1)
mn } and the information regarding

whether an erasure has been introduced in the previous iteration. This is
possible because the self-corrected CN processing variant has packed both
sign{α(i−1)

mn } and the erasure bit e into β̂(i)
mn. This allows the SCMSA to be

implemented for the same memory requirements of the MSA, if the former
employs Y bits fixed-precision for the α and β messages and the latter (Y −1)
bits for α messages and (Y + 1) bits for β messages.

dependency of the sign{α(i−1)
mn } in (9) can be dealt with in

different ways for software or hardware decoders. The former,
targeted at simulation and prototyping, are less constrained by
memory impediments as opposed to hardware-based decoders.
Thus, equation (9) can be evaluated by loading the actual
α
(i−1)
mn message from memory. In the hardware, memory bot-

tlenecks seriously compromise the decoding execution time,
and thus a packed message β̂

(i)
mn is proposed, which stores

sign{α(i−1)
mn }, β(i)

mn and an erasure bit e together in the same
message. The latter is used in the BN processing to inform
whether an erasure has been introduced or not, thus avoiding
the loading of α(i−1)

mn messages.
Thus, an efficient implementation, for both software or

hardware platforms, of the SCMSA requires only two extra
bits when compared to other LSPA- or MSA-variants.

V. EXPERIMENTAL RESULTS

A. Apparatus

The experiments conducted simulated an Additive White
Gaussian Noise (AWGN) channel under Quadrature Phase-

Shift Keying (QPSK) modulation for the DVB-S2 normal
frame code with N = 64800 bits and R = 1/2. The MSA,
NMSA and SCMSA simulations were carried out on Nvidia
Tesla M2050 Graphics Processing Unit (GPU) platforms using
the Compute Unified Device Architecture (CUDA) program-
ming model [13]. The LSPA decoder was simulated using the
Simulink Communication Blockset. This allowed not only to
provide the BER performance benchmark, but also to provide
a benchmark simulation time to illustrate the potential of using
GPU engines in the LDPC BER simulation.

B. Simulation Environment

Simulating on the GPU represents a tremendous improve-
ment in simulation time. Namely, the SCMSA GPU single
precision floating-point decoder can compute the BER for a
given SNR in about 5 hours for 104 simulated codewords,
whereas the equivalent LSPA Simulink decoder takes 22 hours
to complete on a ubiquitous Intel Pentium M T2330 in double
precision floating-point. We have employed 7.2 and 8.2 fixed-
point data representations (x.y fixed-point data representation
should be read as (x − y) bits allocated for signal and
magnitude representation and y bits for the decimal part). The
considerable decoding throughputs (120 to 180 MBit/s) are
obtained due to the high levels of data-parallelism and task-
parallelism that the massively multithreaded GPU-decoder
exploits. Data-parallelism has been exploited by the use of
128-bit vector data types which optimize the GPU achieved
memory bandwidth and allows to decode 16 codewords at
once. Furthermore, we have employed a Two-Phased Message
Passing (TPMP) decoding schedule which allows to express
a fine-grained level of parallelism, where each thread is
responsible to process a BN or a CN.

Naturally, for the error-floor region, 104 codewords cannot
provide statistical significance and in many cases it is not
deep enough to observe any errors at all. Thus, the error-floor
region was tested for 5×108 codewords, which is equivalent to
3.2×1013 bits of data. In order to simulate such large datasets
we have employed 30 GPU engines to collaboratively and
concurrently speed up the decoding time. Each data point is
simulated by a group of 10 GPUs. The same random sequence
can be sampled starting at any given k-th sample due to
the employed Random Number Generator (RNG) XORWOW,
available in the CUDA CURAND library [14], and thus each
GPU can be allocated to process the corresponding portion of
the sequence. Furthermore, the XORWOW RNG presents a
period of 2190 ≈ 1057. This allowed the simulation time to be
reduced from a colossal one and a half month to just over one
and a half day per data point in the error-floor region.

C. Waterfall BER Performance

The decoding performance, expressed in BER, on the
waterfall region is shown in Figure 3 for several decoding
algorithms and data representations. The LSPA obtains the
best decoding performance, since it is an “optimal” decoding
algorithm in the sense that no sub-optimality is introduced,
besides the one inherent to the cycle effect, and it is used as a

0.5 1 1.5

10
−5

10
−4

10
−3

10
−2

10
−1

E
S
/N

0
 (dB)

B
E

R

LSPA (fp)

MSA (8.2)

SMSA (8.2)

SCMSA (fp)

SCMSA (7.2)

SCMSA (8.2)

Fig. 3. LSPA, MSA, NMSA and SCMSA BER performance on the waterfall
region. The self-correction technique used by the SCMSA allows an approach
of just ∼ 0.2 and ∼ 0.05 dB away from LSPA and the NMSA BER
performance, respectively. It should be noted that losing one bit in the
precision does not carry any performance penalty on the BER, as seen with
the tested 7.2 and 8.2 fixed-point implementation of the SCMSA, where x.y
designates (x − y) bits for signal and integer representation and y bits for
decimal representation. Therefore, the curves for 7.2 and 8.2 bits are hardly
distinguishable from one another.

benchmark to the remaining algorithms. Namely, the SCMSA
yielded a BER which approaches that of the LSPA by ∼ 0.2
dB. The MSA presents a performance degradation of ∼ 0.8dB,
which is the result of the overestimation introduced in (2).
Consequently, the SCMSA is ∼ 0.6dB better than the MSA
and worse by ∼ 0.2dB than the LSPA. It should be noted
that there is no significant penalty in BER performance on the
waterfall region between the 7- and 8- bit precision fixed-
point data representation for the SCMSA. Hence, the two
bits saved in the 7-bit representation, one per each αmn and
βmn message when compared to the 8-bit fixed-point, can be
used for the erasure e and signal sign{α(i−1)

mn } representation,
meaning that the actual memory requirements of the 8-bit
MSA and the 7-bit SCMSA are the same. Another expected
result is the ability of the SCMSA decoder in floating-point
data representation to outperform by 0.05 dB the 7- and
8-bit fixed-point decoders, and reach within a 0.15 dB of
the LSPA BER performance. In fact, arguably 0.15 dB is a
negligibly small penalty to incur when numerical complexity
is tremendously lowered and decoding times reduced by a
considerable factor. However, the ability to capitalize on this
result is at most limited as VLSI technology for LDPC
decoding is better targeted for fixed-point data representations.
Furthermore, the SCMSA floating-point decoder has a similar
BER performance than the NMSA, albeit the latter performing
0.05 dB better than the fixed-point SCMSA decoders.

D. Error-floor BER Performance

The error-floor region is depicted in Figure 4. Given the
constraints on the GPU available timeslots, we were able to

0.5 1 1.5 2

10
−11

10
−10

10
−9

10
−8

10
−7

E
S
/N

0
 (dB)

B
E

R

LSPA (fp)

MSA (8.2)

SMSA (8.2)

SCMSA (fp)

SCMSA (7.2)

SCMSA (8.2)

Fig. 4. Captured MSA and SCMSA error-floor BER. Both the decoding
algorithms converge to a BER of 10−11, with the SCMSA reaching its error-
floor 0.5 dB earlier than the MSA. The NMSA starts degrading its decoding
performance at 1.2 dB and is outperformed by the fixed-point SCMSA.

find at least 3 error-floor points for the SCMSA and 2 for
the MSA algorithm, each using 8-bit data representation. We
have shown that the SCMSA lowers to its error-floor 0.5 dB
earlier than the non-self-corrected MSA. Such a feature is
particularly interesting as it indicates that the SCMSA does
not degrade its performance along the waterfall and maintains
the same capacity up to the error-floor region. Regarding the
NMSA BER curve, it is observed that the fixed-point SCMSA
is able to outperform it when the BER falls beyond 10−7

and while the NMSA worsens its decoding performance at a
SNR of 1.2 dB, the SCMSA enters its error-floor at a BER
of 10−11. Despite employing Θ values that were optimized
for this particular LDPC code [12], the NMSA correcting
performance degrades for a SNR above 1.2 dB. The alternative
of employing Θ values depending on the SNR would further
add to the complexity of the FEC system, since in the log-
likelihood domain the decoding algorithms are independent of
the channel SNR.

VI. CONCLUSIONS

We have shown that a practical and memory efficient
implementation of the SCMSA is feasible and achieves near-
LSPA performance, 0.1 dB away for floating-point precision
and 0.2 dB away for 7- and 8-bit fixed-point representation.
Furthermore, the SCMSA also significantly outperforms the
NMSA at high SNRs. The proposed implementation requires
only two extra bits per β̂mn message. Moreover, in order
to demonstrate the promising SCMSA BER performance, we
have developed a massively parallel channel simulator and de-
coder for the N = 64800 bits, R = 1/2 DVB-S2 LDPC code.
The developed SCMSA fixed-point decoding solution was
able to simulate the error-floor region of long length DVB-S2

LDPC codes in an acceptable timespan, guaranteeing statistical
significance for the obtained results. Aided by a higher-level
of data-parallelism provided by several GPU engines, we were
able to execute a one and a half month simulation time in just
over one day. The developed simulators are available to the
scientific community at http://montecristo.co.it.pt/decoder.

In the near future, we intend to port the developed simu-
lators to a generic parallel programming model, which would
allow these simulators to be executed on a wide range of Cen-
tral Processing Units (CPUs), GPUs and other accelerators, as
it has been shown with good performance for the particular
case of regular LDPC decoding [15].

ACKNOWLEDGMENT

This work was supported by Instituto de Telecomunicações
and by Fundação para a Ciência e Tecnologia grants
PEst-OE/EEI/LA0008/2011 and SFRH/BD/78238/2011 under
the European structural programmes POPH-QREN, FSE and
national MEC funding.

REFERENCES

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions
on Information Theory, vol. 8, no. 1, pp. 21–28, jan 1962.

[2] D. MacKay and R. Neal, “Near Shannon limit performance of low
density parity check codes,” Electronics Letters, vol. 32, pp. 1645–1646,
1996.

[3] S.-Y. Chung, J. Forney, G.D., T. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,” Communications Letters, IEEE, vol. 5, no. 2, pp. 58
–60, feb 2001.

[4] J. Chen and M. P. C. Fossorier, “Near optimum universal belief
propagation based decoding of low-density parity check codes,” IEEE
Transactions on Communications, vol. 50, no. 3, pp. 406–414, 2002.

[5] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-Complexity Decoding of LDPC Codes,” Communications,
IEEE Transactions on, vol. 53, no. 7, p. 1232, july 2005.

[6] V. Savin, “Self-corrected Min-Sum decoding of LDPC codes,” in In-
formation Theory. ISIT 2008, IEEE International Symposium on, july
2008, pp. 146 –150.

[7] F. Kienle, T. Brack, and N. Wehn, “A Synthesizable IP Core for DVB-
S2 LDPC Code Decoding,” in DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 100–105.

[8] G. Falcao, J. Andrade, V. Silva, and L. Sousa, “GPU-based DVB-S2
LDPC decoder with high throughput and fast error floor detection,”
Electronics Letters, vol. 47, no. 9, pp. 542–543, April 2011.

[9] W. Leung, W. Lee, A. Wu, and L. Ping, “Efficient implementation
technique of LDPC decoder,” Electronics Letters, vol. 37, no. 20, pp.
1231 –1232, sep 2001.

[10] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient
implementations of the sum-product algorithm for decoding LDPC
codes,” in Global Telecommunications Conference, 2001. GLOBECOM
’01. IEEE, vol. 2, 2001, pp. 1036 –1036E vol.2.

[11] R. Lucas, M. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-
step majority logic deductible codes based on belief propagation,” IEEE
Transactions on Communications, vol. 48, no. 6, pp. 931–937, 2000.

[12] C.-j. Tsai and M.-c. Chen, “Efficient LDPC decoder implementation
for DVB-S2 system,” Proceedings of 2010 International Symposium on
VLSI Design, Automation and Test, pp. 37–40, Apr. 2010.

[13] NVIDIA, CUDA C Programming Guide 5.0. NVIDIA, 2012.
[14] NVIDIA, CUDA Toolkit 4.2 CURAND Guide. NVIDIA, 2012.
[15] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable LDPC Decoding

on Multicores Using OpenCL [Applications Corner],” IEEE Signal
Processing Magazine, vol. 29, no. 4, pp. 81–109, 2012.

