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Abstract. Stereoscopic laparoscopy provides the surgeon with the depth
perception at the surgical site to facilitate fine micro-manipulation of
soft-tissues. The technology also enables computer-assisted laparoscopy
where patient specific models can be overlaid onto laparoscopic video
in real-time to provide image guidance. To maintain graphical overlay
alignment of image-guides it is essential to recover the camera motion
and scene geometry during the procedure. This can be performed using
the image data itself, however, despite of the mature state of structure-
from-motion techniques, their application in minimally invasive surgery
remains a challenging problem due non-rigid scene deformation. In this
paper, we propose a method for recovering the camera motion of stereo
endoscopes through a multi-model fitting approach which segments rigid
and non-rigid structures at the surgical site. The method jointly opti-
mizes the segmentation of image and uses the rigid structure to robustly
estimate the motion of the laparoscope. Synthetic and in-vivo experi-
ments show that the proposed algorithm outperforms RANSAC-based
stereo visual odometry in non-rigid laparoscopic surgery scenes.

1 Introduction

Stereo laparoscopes are becoming increasingly popular in Minimally Invasise
Surgey (MIS). The main reason behind their wide adoption is the possibility
of recovering the 3D structure of the surgical site to provide the surgeon with
depth perception of the operating field. Despite of being a difficult problem
due to the dynamics of the medical environment that combine occlusions from
the surgical instruments with strong specularities, several authors have already
proposed efficient solutions for real-time computation of depth maps in medical
endoscopy [1–3]. The obtained 3D structure can be used to align multimodal
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information [4] within a global reference 3D coordinate system [5] and enhance
robotic instrument control.

An early work on structure-from-motion (SfM) in laparoscopic surgery was
developed by Burschka et al. [5] where a rigid environment was assumed due to
the confines of the sinus in order to compute a 3D scene map for registration
with pre-operative Computed Tomography (CT) patient models. For procedures
targeting soft-tissue anatomies non-rigidity due to cardiac, respiratory or peri-
staltic motions can make such SfM impossible. Deformable SfM (DSfM) [3],
motion compensated SLAM [6] and more recently Non-Rigid SfM [7] have been
proposed for overcoming this problem but an inspection phase to build a rigid
template of the scene and strong priors deformation are not always feasible.
For example motion and anatomical deformation due to instrument interactions
cannot be reliably modelled prior to surgery and significant practical challenges
remain for robust SfM in MIS. It is also possible to incorporate position sen-
sors for additional constraints but this involves difficult integration solutions [8].
Close work to ours was proposed by Roussos et al. [9] that propose a multi-body
segmentation framework with a direct hill climbing approach that alternates the
estimation of region segmentation, camera motion, and depth. This results in
a computationally heavy batch algorithm that requires a quite large number of
frames to become feasible. Our paper shows that by recovering depth with stereo
laparoscopy the problem is considerably simplified, and the region segmentation
and camera motion estimation can be performed online as new data arrives.

This paper presents a solution to effectively segment non-rigid or piecewise
rigid structures from the surgical site by using multi-model fitting [10]. To solve
for the camera relative pose, we use a temporal clustering scheme to better dis-
tinguish which scene part should be used to anchor the camera motion estima-
tion. When compared with the state-of-the-art in previously proposed solutions,
our method does not require the entire scene to be rigid at an early inspec-
tion phase [11], being robust to parts that undergo non-rigid deformation while
avoiding priors on these deformations [6]. Quantitative validation is performed
with synthetic data [1] to illustrate the numerical stability and performance of
the proposed method when the camera motion is accurately known. Qualitative
validation in a long in-vivo video sequence shows that the proposed method is
more effective in recovering the camera motion that the RANSAC-based state-
of-the-art in stereo visual odometry [12].

2 Methods

Our method can be split in three main steps: (i) computing dense correspon-
dences between two consecutive images; (ii) generating motion hypothesis using
clustering of the motion field with a multi-model fitting approach; (iii) temporal
consistency based segmentation of rigid structures that enable the recovery of
the camera motion. These steps are described in detail in the sections below.
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2.1 Disparity Computation and Pixel-to-Pixel Association

The stereo endoscopic images are assumed to be rectified for disparity map
computation and the device is calibrated to determine the intrinsic and extrinsic
camera parameters. Given a point xl = (xl, yl)

T
on the left image Il, the goal is

to compute the projection of the same point on the right image Ir that is given
by xr = (xl+d, yl). Ideally, the disparity map D is built by computing d for every
image pixel. For the disparity map computation we use the method proposed
by Geiger et al. [2] that builds a prior over the disparity space by forming a
triangulation on a set of robustly matched support points, and subsequently
propagates structure into neighbouring image points.

For associating the disparity maps between two consecutive time instants
Dl ↔ D′

l we use a standard optical flow method [13] in 2D image space Il ↔ I′l.
For computational reasons we do not compute the flow for every image pixel
with a valid disparity and instead we sample the image space by using an equally
spaced grid. Our criteria for sampling the grid is defined as function of image
resolution to obtain ≈ 4000 point associations between frames.

2.2 Motion Hypothesis Clustering and Refinement with PEaRL

After computing the putative matches xl ↔ x′
l, the correspondence in 3D space

X ↔ X′ are obtained by using the corresponding disparity values. For reg-
istration of the 3D point clouds we use the absolute orientation method [14].
Because different motions can be present at the surgical non-rigid site, we apply
the energy-based PEaRL algorithm for labelling the data points with the cor-
responding motion [10, 15]. This procedure involves three steps: (i) generate an
initial set of motion hypotheses, (ii) inlier classification by using an assigned a
label (rigid motion) to the putative matches, and (iii) motion refinement using
the discrete label assignment.

We start by generating camera motion hypothesis T =
[
R t
]

by sampling
sets of 3 neighbouring points (minimal case for [14]) without repetition. Up to
500 motion hypothesis with support larger than 1% the number of pixels on the
sample grid are used. Given the set of motion hypothesis T , the goal is to expand
the models and estimate their support. This is achieved by applying PEaRL [10]
to minimize the energy function

E(T) =
∑
x

D(x,Tx)︸ ︷︷ ︸
Data cost

+λ
∑

(x,y)∈N

w(x,y)δ(Tx,Ty)

︸ ︷︷ ︸
Smoothness term

+ β|TT |︸ ︷︷ ︸
Label cost

, (1)

where T = {Tx|x ∈ P} is an assignment of rigid motion models to data points
x = {xl,x

′
l}. The data cost term D(x,Tx) is the reprojection error [16] that

enables to measure the error in 2D, which is more robust than directly compute
the data cost in the 3D point clouds [12]. The second terms is a smoothness
term that encourages the assignment of the same label (rigid motion) to spa-
tially close points. For each data point x only its 10 nearest neighbours y are
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Fig. 1. Rigid segmentation algorithm. At each frame, one label is assigned to a point
correspondence (same color represent the same label, and magenta represent the outlier
label). While rigid structures tend to be classified with same labels in different views,
piecewise rigid or non-rigid parts tend to fragment into different labels or be classified
as outliers.

considered to compute the weight w(x,p). Since we want to enforce spatial con-
sistency in the segmentation we consider that closer points are more likely to
be described by the same rigid motion, with the weight being inversely pro-
portional to their euclidean distance. This achieved with the Gaussian function
w(x,y) = exp (−||x− y||2/σ2). δ(.) represent the Potts model, being 1 when
Tx 6= Ty, and 0 otherwise [10, 15]. The label cost penalizes the number of dif-
ferent labels being assigned to the data points to avoid excessive fragmentation.
To the possible set of rigid motions T we add an empty label ∅, which as a
constant data cost of 1.5 pixels for all data point and label cost equal to zero.
Occlusions and non-rigid tool-tissue interactions will be intrinsically handled by
the outlier. The outlier label also enables to handle erroneous flow estimation
and disparity values, avoiding the need to perform the flow (section 2.1) on a
temporal window.

After the first label expand, the motion parameters are refined by using the
inliers of each label. This is accomplished by minimizing the reprojection er-
ror [16] with the Levenberg-Marquardt algorithm [10,16], with the empty labels
being discarded. The new set of labels is then used in a new expansion step with
the algorithm iterating between labelling and motion refinement until the opti-
mization does not decrease the energy of Eq. 1 or a certain number of iterations
is reached. The constants λ and β were set to λ = 1 and β = 200. These values
were empirically obtained, and were used across all the experiments.

2.3 Segmenting Multi-View Consistently Labelled Parts

The minimization of the energy function of Eq. 1 guaranties that a label is
assigned to each data point x. Since between two consecutive frames the non-
rigid or piecewise rigid structures can be subtle and easily confused with the
rigid ones, we adopt a window-based system where several frames are used to
effectively distinguish between rigid and non-rigid scene parts.
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Given a temporal window (see Fig. 1), we build a label-based descriptor for
each pixel by concatenating the labels assigned in the frame-to-frame PEaRL
optimization. Pixel descriptors with the outlier label assigned in one or more
frames are discarded from further processing. The temporal segmentation is car-
ried by clustering pixels with the exact same descriptor. In case of existing more
than one cluster, the one with largest spatial support is selected as dominant
rigid region and it is used to anchor the relative camera motion. Intuitively, we
explore the fact that rigid structures tend to be classified with same labels in
different views, while the piecewise rigid or non-rigid parts tend to fragment into
different labels or be classified as outliers by the PEaRL algorithm.

Finally, bundle adjustment [16] is used to refine both the camera motion and
the scene structure by using only the dominant rigid part of the scene. This step
is necessary because non-rigid regions can contribute on a frame-to-frame basis
(locally rigid) to the optimization with PEaRL. Ideally, the temporal segmen-
tation could be computed in automatic manner for adapting to the magnitude
of the deformation present in the scene, but this is means deterministic running
times would be difficult to guarantee. In practice, we found that the 4/5 frames
are sufficient to deal with large deformations and more subtle deformations.

3 Experiments and Results

For validation of the proposed method we conduct experiments with synthetic
and in-vivo data. The proposed method was fully implemented in MATLAB,
with exception of PEaRL which is implemented in C++ code [10]. The single
core implementation of the algorithm runs at 0.5 fps in 960× 540 images on an
Intel i7-3630QM CPU @ 2.40GHz processor. Our method is compared with the
RANSAC-based approach of [12] which is among the state-of-the art in visual
odometry. This method is implemented in C++ and it runs at 2.5 fps after tuning
the method parameters to obtain the best possible camera motion estimations.

3.1 Experiments in synthetic data

Camera and scene motion ground truth is difficult to obtain for in-vivo MIS video
and therefore, the proposed method is validated in a synthetic environment for
which the camera motion is precisely known. While simulation sequences cannot
render the full complexity of the surgical environment they allow to test the
accuracy of the proposed method against different levels of white image noise to
illustrate the numerical properties of the method. This sequence comprises 90
frames with the largest part of the scene (> 60%) presenting strong deformation.
Figure 2(b) shows the camera motion estimation in the noise free case. It can be
seen that our trajectory closely follows the ground truth one, enabling accurate
camera estimation in case of such large deformation, while Geiger’s method [12]
tends to follow the non-rigid deformation motion. Figures 2(c) and 2(d) shows
the translation and rotation errors for increasing levels of image noise, showing
that our method is numerically stable under moderate amounts of image noise.
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(a) Sample images (b) Camera trajectory
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(c) Our method
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(d) Geiger’s method [12]

Fig. 2. Simulation results under increasing level of image noise. (a) show the simu-
lation images with large deformation between them. (b) show the camera trajectory
estimation for the zero noise case. Green curve represent the ground truth, blue is ours,
and red is obtained with Geiger’s method. (c,d) show the performance of both methods
under increasing amount of additive white noise. For each method, the left graphics
show the translation error as a function of the camera translation motion and level of
noise. The same is done for the rotation on the right. It can be seen that our method
is numerically stable under moderate levels of image noise.

3.2 Experiments in in-vivo data

The data used in this experiment was recorded with da Vinci Si surgical robot
during a robotically assisted prostatectomy surgery. Our and Geiger’s meth-
ods [12] were used to recover the camera motion and also the dense 3D scene
reconstruction. This sequence of 500 frames is particularly challenging due to
the presence of non-rigid motion, strong specularities, bleeding and physiologi-
cal motion due to large vascular structures in the view. At the end the sequence
the camera approximately returns to the starting point performing a loop-closure
which can be used for qualitative assessment.

Figure 3 shows the results for camera motion estimation using our and
Geiger’s methods. Since our solution effectively segments the non-rigid parts
of the scene, the camera motion is reliably recovered. Geiger’s method employs
a conventional frame-to-frame RANSAC-based approach that is less suitable for
the challenges in MIS images with the trajectory clearly drifting in the pres-
ence of non-rigid motion. To provide a quantitative measure of the quality of
the motion estimation, we compute the reprojection error of the reconstruted
3D points, where it can be seen that our method enables more accurate recon-
struction and camera motion estimation. It can also be seen that our method is
considerably more closer to perform the loop closing, with an error in position
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(a) Motion segmentation at frame 98 and 99
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Fig. 3. Results in the in-vivo sequence. (a) shows two instants with the overlay seg-
mentation. Magenta represent the outlier label that increases with larger deformation.
(b) shows the reprojection error obtained with each pixel in frame-by-frame basis. (c,d)
show the results of our method and the method of [12] for the camera motion recovery.
Our method is capable of performing reliable long-term camera motion estimation,
while [12] tends to deteriorate the estimations due to the presence the non-rigid parts.

of 0.6mm and an orientation error of 5.2 degrees, while the Geiger’s method has
an error in position of 28mm and an orientation error of 24.34 degrees.

4 Discussion and Conclusions

We have presented a method for rigid structure segmentation and camera motion
estimation during stereoscopic MIS. The proposed method relies on PEaRL [10]
for segmenting the scene rigid structures to anchor the camera motion estima-
tion. Temporal consistency is enforced by clustering the segmented scene struc-
tures according to the labelling assigned in the PEaRL step. Quantitative and
qualitative validation in simulation and in-vivo data show that our solution en-
ables to keep accurate camera motion estimation in the presence of significant
non-rigid deformation, outperforming a RANSAC-based state-of-the-art method
in stereo visual odometry [12]. Future work includes the implementation of our
solution for real-time stereo visual odometry using parallelization with GPGPU,
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and investigation of more suitable solutions for performing the correspondences
directly in the 3D space by exploring stereoscopic flow [1].
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