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ABSTRACT

Endoscopes consisting of a probe mounted with a camera
head, are frequently used in medicine for inspection and vi-
sualization of human body cavities (knee and shoulder articu-
lations, bronchi, nose, brain, etc). However the images often
suffer from strong lens distortions. Estimation and correction
of image distortion is important not only to improve the prac-
titioner’s perception of the inspected area but also to develop
systems for 3D navigation and computer assisted surgery.

In this paper we compare various conventional calibration
methods against the new parameter free method proposed by
Hartley and Kang. We believe the non-parametric method
is more suitable for endoscopic imaging. We present nu-
merical analysis of the goodness of fit of other conventional
approaches as well as calibration results on real images. It
should be noted that our results are directly applicable to all
vision applications using wide-angle lenses.

Index Terms— Calibration, lens distortion, radial distor-
tions, non-perspective, endoscope.

1. INTRODUCTION

Endoscopic imaging is increasingly becoming standard prac-
tice as minimally invasive surgery gains acceptance. This is a
relatively simple approach to imaging the interior of the body
for both surgical as well as preventive care. The acquired
image is typically directly relayed to the surgeons for visual-
ization. However, the images suffer from strong lens distor-
tions. Physical constraints on the size of the probe, the tubular
structure as well as the need to visualize a large field of view
necessitate the use of wide-angle lenses leading to lens distor-
tions [1] as seen in Fig.1.

Lens distortions, affect the spatial perception of the inte-
riors visualized by the users. While humans are accustomed
to “seeing” the world around perspectively, these distorted
images do not adhere to the laws of perspective projection.
Moreover, any geometric analysis of the imagery such as build-
ing 3D models, or computing the pose of the probe relies
on first estimating (calibrating for) the lens distortion. This
means that the relation between pixels in the image and pro-
jective rays in the 3D space must be estimated.

Fig. 1. Endoscopic image exhibiting strong non-linear lens
distortions. User selects grid points (red) for calibration.

The calibration of perspective cameras is a well studied
subject (see [2]). Similarly many approaches have been de-
veloped for wide-angle lens distortion correction (see [3,4, 5,
6, 7]). These methods typically rely on choosing a distortion
model whose parameters are then estimated. In endoscopes
and arthroscopes, such a distortion model choice is not al-
ways obvious. We therefore propose to use a non-parametric
method proposed by Hartley and Sing-Bing Kang [8].

In this paper we present initial results of applying the
non-parametric calibration [8] to endoscopic images. We also
present a comparison with conventional calibration methods
such as Bouguet [9] and the division model [10]. Further-
more, we show how conventional radial distortion models fail
to fit distortion profiles of the endoscopic images. We finally
present a comparison of methods applied to real images.

2. METHOD

We use a planar pattern with points on a known grid for distor-
tion calibration. Also we assume the lens to have only radial
distortions, about an unknown center of distortion. We use
a non-parametric approach [8], initially proposed by Hart-
ley and Kang, to estimate the center of distortione as well



as the radial distortion across the image. Since the approach
is non-parametric, for every pointxd

i
along the radial direc-

tion we compute the undistorting “scale” factorλi, given by:
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2.1. Computing the Distortion Center

Hartley and Kang used the relationship between the grid points
and the distorted image points, as two views of an unknown
scene under camera motion. Thus, the planar pattern itself is
considered as one view, while the distorted image is another
view. Distortions typically pull the image points towards a
distortion center. This is similar to the camera moving away
from the scene. Thus, the image epipole actually corresponds
to the center of distortion.

We useN = 43 images of the calibration grid. In ev-
ery image the user selectsMi (1 ≤ i ≤ N ) pointsx

d that
correspond to the known grid pointsxc. For every image we
then compute the fundamental matrixFi as well as the image
epipole (distortion center)ei ((xd

i
)T

Fix
c

i
= 0). Since all the

images share the same distortion center, we can estimate a sin-
gle effective distortion centere using all the fundamental ma-
trices in a least squares sense:[F1

T ;F2
T ; . . . ;FN

T ] · e = 0

2.2. Computing Radial Distortions

We use the distortion center computed earlier to now compute
the radial distortion component. We first note that the calibra-
tion grid used is planar. Therefore, for every imagei, there
exists anhomography Hi that maps the grid pointsxc

i
to the

undistorted image pointsxu

i
:

x
u

i = Hi.x
c

i (1)

We first enforce the epipole (distortion center) of every
image to lie at the origin(0, 0, 1)T . After transforming the im-
age points appropriately, we recompute the fundamental ma-
trices of the form̂F = [f1

T ; f2
T ;0]. Then the desired homog-

raphy per image is given by:Hi = [f2
T ;−f1

T ;vi
T ], where

vi
T is unknown. The estimation of the exact radial distortion

essentially reduces to estimating the correctvi
T for every im-

age. As pointed out by Hartley and Kang, this was solved in
[11] assuming a parameterized distortion model. However,
in the non-parametric case it can also be solved under the as-
sumption that: (1) distortion is radial and symmetric aboutthe
center of distortion (thus assuming square pixels), and (2)that
the distortion is monotonic increasing. It should be pointed
out that the method is completely linear and extremely effi-
cient. For further details we direct the reader to [8].

3. EXPERIMENTAL EVALUATION

In this section we present experimental results of applying
the calibration method to images acquired with an endoscope.

More importantly we present comparisons between the non-
parametric approach and other conventional model based meth-
ods. Furthermore, we present results on the “goodness of fit”
of various conventional models to the measured radial distor-
tions.

3.1. Estimation of Distortion Center

The first step to estimating radial distortions is to determine
the center of distortione. Referring to the algorithm presented
in section 2, we estimate the center of distortion using43 im-
ages. Due to noise in user selected points, these estimates
vary a lot as seen in Fig.2. We also show here the effective
distortion center estimated using all the fundamental matrices
simultaneously as well as the principal point estimate using
the conventional Conrady model[12]. Note that the principal
point, computed using the Bouguet calibration toolkit, [9]is
very close to the effective distortion center. The slight varia-
tion can be attributed to noise.

3.2. Estimating Radial Distortions.

Using the Hartley-Kang method we can compute the radial
distortion present at every user clicked image grid point (blue
point cloud in Fig.1). Thus, in some sense we “measure” di-
rectly the radial distortion at points at various distancesfrom
the distortion center. We now compare results obtained using
the parameter free approach and model based conventional
methods.
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Fig. 2. Plot showing the variance in the estimated center of
distortion across the set of acquired images. The centers are
individually estimated by decomposing the individual funda-
mental matrices as described in Section2. Also shown are
the effective distortion center computed using all theF ma-
trices simultaneously and the principal point estimated using
Bouguet[9].



In Fig. 3 (a,b) we show a plot of the distorted radial dis-
tances against the estimated undistorted distances acrossthe
image (blue dots). We first test the goodness of fit of con-
ventional radial distortion models (see Tab.1[12, 3]) to the
estimated radial distortion profile computed using the non-
parametric approach. As seen in Fig 3(a), the conventional
models (see Tab.1 for details) do not fit the data well.

In Fig 3(b), we compare standard calibration techniques
to the non-parametric approach. Again it is clear from the
plots that both these methods do not perform well with this
imaging sensor. While Bouguet, under fits the distortion, the
division model performs over estimation. In contrast, a simple
1 parameter quadratic model provides a much better fit. This
suggests that the polynomial model used for radial distortions
greatly influences calibration.

To better visualize the deficiency of conventional calibra-
tion methods we now compare the undistorted images. We
begin by first comparing the results using the Hartley-Kang
method (non-parametric undistortion using the estimated ho-
mographiesHi) against the Bouguet toolkit. Fig. 4 shows
a region of the imaged grid points and their undistorted po-
sitions using both approaches. As seen, Bouguet underes-
timates the distortion which is visible by the fact that the
“undistorted” points do not lie on a straight line. In contrast,
the non-parametric approach estimates the distortion moreac-
curately.

Method Model
Radial3rd Order rd = ru + ξ1r

3
u

Radial5th Order rd = ru + ξ1r
3
u + ξ2r

5
u

Bouguet (Conrady [12]) rd = ru + ξ1r
3
u + ξ2r

5
u

Radial2nd Order rd = ru + ξ1r
2
u

Division Model ru = rd

1+ξ1r2

d

Table 1. Models used for the distortion curve fitting.

Finally the real image (Fig. 1) is undistorted as shown in
Fig. 5 using (a) Bouguet calibration, (b) the division model
and (c) the Hartley-Kang non-parametric method (using the
polynomial fitting). While Bouguet(a) under-estimates the
distortions, the division model seems to over-estimate them.
Surprisingly, the quadratic model fitted to the distortion pro-
file computed using the Hartley-Kang approach does a much
better at distortion modeling.

4. CONCLUSION

We compared traditional distortion calibration methods (Bouguet
and division model) against a non-parametric approach [8].
We found that these conventional methods failed to estimate
distortions in endoscopic images robustly. We therefore per-
formed goodness of fit tests using conventional polynomial
models for the radial distortion component. Surprisingly,these
models did not fit the distortion profile of endoscopic images.
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Fig. 3. Fitting of various distortion models to the estimated
distortion curve. In (a) we fit the standard3rd order, and5th

order radial distortion models to the distortion profile. In(b)
we compare between the radial model used in the Bouguet
toolbox, the division model and a simple quadratic model.
From these plots it is clear that conventional models do not fir
the radial distortion profile well.

Hence we recommend a two step approach to lens distortion
calibration consisting of first performing non-parametricdis-
tortion estimation and followed by “appropriate” model fit-
ting. Although we address endoscopic imaging, our results
are directly applicable to any vision application using wide-
angle lenses.
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Fig. 4. Undistortion performed to user selected points in the
acquired image using Bouguet calibration (using radial dis-
tortions) as well as the non-parametric approach. Bouguet
underestimates the distortions and consequently the points do
not lie on a straight line. In contrast the non-parametric ap-
proach performs better.
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Fig. 5. Results of image undistortion using (a) Bouguet–
clearly, (b) the division model and (c) quadratic model fit-
ted to the distortion profile. Surprisingly the unconventional
quadratic model fitted to estimates from the Hartley-Kang
method outperforms traditional methods.


