The OpenGL® Graphics System:

A Specification
(Version 1.2.1)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2, 1.2.1): Jon Leech

Version 1.2.1 - April 1, 1999

Copyright (© 1992-1999 Silicon Graphics, Inc.

This document contains unpub/rshecl information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.
The X" device and X Windows System are trademarks of
The Open Group.

Version 1.2.1 - April 1, 1999

Contents

1 Introduction 1
1.1 Formatting of Optional Features 1
1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 TImplementor’s View of OpenGL 2
1.5 Our View e 3

2 OpenGL Operation 4
2.1 OpenGL Fundamentals 4

2.1.1 Floating-Point Computation 6
2.2 GL State 6
2.3 GL Command Syntax 7
2.4 Basic GL Operation 9
25 GLErrors 11
2.6 Begin/End Paradigm, 12
2.6.1 Begin and End Objects 15
2.6.2 Polygon Edges, 18
2.6.3 GL Commands within Begin/End 19
2.7 Vertex Specification 19
2.8 Vertex Arrays 21
2.9 Rectangles. L 28
2.10 Coordinate Transformations 28
2.10.1 Controlling the Viewport 30
2.10.2 Matrices Lo 31
2.10.3 Normal Transformation 34
2.10.4 Generating Texture Coordinates 36
2,11 ClppIng . . « v v v ot e e 38
2.12 Current Raster Position 40
2.13 Colors and Coloring 43
i

Version 1.2.1 - April 1, 1999

ii CONTENTS
2.13.1 Lighting 44
2.13.2 Lighting Parameter Specification 49
2.13.3 ColorMaterial 51
2.13.4 Lighting State 53
2.13.5 Color Index Lighting, 53
2.13.6 Clamping or Masking 54
2.13.7 Flatshading 54
2.13.8 Color and Texture Coordinate Clipping 55
2.13.9 Final Color Processing 56

3 Rasterization 57

3.1 Imvariance 59
3.2 Antialiasing L 59
3.3 Points 60
3.3.1 Point Rasterization State 62
3.4 Line Segments 62
3.4.1 Basic Line Segment Rasterization 64
3.4.2 Other Line Segment Features 66
3.4.3 Line Rasterization State 69
35 Polygons. 70
3.5.1 Basic Polygon Rasterization 70
3.5.2 Stippling 72
3.5.3 Antialiasing L L 72
3.5.4 Options Controlling Polygon Rasterization 73
355 Depth Offset 73
3.5.6 Polygon Rasterization State 75
3.6 Pixel Rectangles 75
3.6.1 Pixel Storage Modes 75
3.6.2 The Imaging Subset 76
3.6.3 Pixel Transfer Modes 78
3.6.4 Rasterization of Pixel Rectangles 88
3.6.5 Pixel Transfer Operations 100
3.7 Bitmaps 110
3.8 Texturing 111
3.8.1 Texture Image Specification 112
3.8.2 Alternate Texture Image Specification Commands . . 118
3.8.3 Texture Parameters 123
3.8.4 Texture Wrap Modes 124
3.8.5 Texture Minification 125
3.8.6 Texture Magnification 131

Version 1.2.1 - April 1, 1999

CONTENTS iii

3.8.7 Texture State and Proxy State 131
3.8.8 Texture Objects 132
3.8.9 Texture Environments and Texture Functions 135
3.8.10 Texture Application 138

3.9 Color Sum 138
3.10 Fog o . 138
3.11 Antialiasing Application 140
4 Per-Fragment Operations and the Framebuffer 141
4.1 Per-Fragment Operations 142
4.1.1 Pixel Ownership Test 142
4.1.2 Scissortest 143
4.1.3 Alphatesto 143
4.1.4 Stenciltest 144
4.1.5 Depth buffertest 145
416 Blending. oL Lo 146
4.1.7 Ditheringo 149
4.1.8 Logical Operation 150

4.2 Whole Framebuffer Operations 150
4.2.1 Selecting a Buffer for Writing 150
4.2.2 Fine Control of Buffer Updates 152
4.2.3 Clearing the Buffers, 153
4.2.4 The Accumulation Buffer 155

4.3 Drawing, Reading, and Copying Pixels 156
4.3.1 Writing to the Stencil Buffer 156
4.3.2 ReadingPixels o0, 156
4.3.3 Copying Pixels 0oL 162
434 Pixel Draw/Read state. 162

5 Special Functions 164
5.1 Ewvaluators. 164
5.2 Selection oo 170
5.3 Feedback 173
54 Display Lists o 175
5.5 Flushand Finish 179
56 Hints 179
6 State and State Requests 181
6.1 Querying GL State oL 181
6.1.1 Simple Queries 181

Version 1.2.1 - April 1, 1999

CONTENTS

6.1.2 Data Conversions 182
6.1.3 Enumerated Queries L. 182
6.1.4 Texture Queries 184
6.1.5 Stipple Query oL 185
6.1.6 Color Matrix Query 185
6.1.7 Color Table Query 185
6.1.8 Convolution Query 186
6.1.9 Histogram Query 187
6.1.10 Minmax Query 188
6.1.11 Pointer and String Queries 189
6.1.12 Saving and Restoring State 189
6.2 State Tables oL 193
Invariance 218
A.1 Repeatability L 218
A.2 Multi-pass Algorithms 219
A3 Invariance Rules 219
A.4 What All This Means 221
Corollaries 222
Version 1.1 225
C.1 Vertex Array o 225
C.2 Polygon Offset 226
C.3 Logical Operation 226
C.4 Texture Image Formats 226
C.5 Texture Replace Environment 226
C.6 Texture Proxies 227
C.7 Copy Texture and Subtexture 227
C.8 Texture Objects 227
C.9 Other Changes 227
C.10 Acknowledgements 228
Version 1.2 230
D.1 Three-Dimensional Texturing 230
D.2 BGRA Pixel Formats 230
D.3 Packed Pixel Formats 230
D.4 Normal Rescaling, 231
D.5 Separate Specular Color 231
D.6 Texture Coordinate Edge Clamping 231

Version 1.2.1 - April 1, 1999

CONTENTS v

D.7 Texture Level of Detail Control 232
D.8 Vertex Array Draw Element Range 232
D.9 Imaging Subset L. 232
D.9.1 Color Tables 232
D.9.2 Convolution 233
D.9.3 Color Matrix 233
D.9.4 Pixel Pipeline Statistics 234
D.9.5 Constant Blend Color 234
D.9.6 New Blending Equations 234
D.10 Acknowledgements L 234
E Version 1.2.1 238
F ARB Extensions 239
F.1 Naming Conventions 239
F.2 Multitexture 240
F.2.1 Dependencies 240
F22 Issues 240
F.2.3 Changes to Section 2.6 (Begin/End Paradigm) 240
F.2.4 Changes to Section 2.7 (Vertex Specification) 241
F.2.,5 Changes to Section 2.8 (Vertex Arrays) 243
F.2.6 Changes to Section 2.10.2 (Matrices) 244
F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-
dinates) 245
F.2.8 Changes to Section 2.12 (Current Raster Position) . . 246
F.2.9 Changes to Section 3.8 (Texturing) 246
F.2.10 Changes to Section 3.8.5 (Texture Minification) 248
F.2.11 Changes to Section 3.8.8 (Texture Objects) 248
F.2.12 Changes to Section 3.8.10 (Texture Application) . . . 249
F.2.13 Changes to Section 5.1 (Evaluators) 249
F.2.14 Changes to Section 5.3 (Feedback) 249
F.2.15 Changes to Section 6.1.2 (Data Conversions) 251

F.2.16 Changes to Section 6.1.12 (Saving and Restoring State)251

Index of OpenGL Commands 256

Version 1.2.1 - April 1, 1999

List of Figures

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

5.1
5.2

Block diagram of the GL. 9
Creation of a processed vertex from a transformed vertex and

current values. Lo oL 13
Primitive assembly and processing. 13
Triangle strips, fans, and independent triangles. 16
Quadrilateral strips and independent quadrilaterals. 17
Vertex transformation sequence. 28
Current raster position. 41
Processing of RGBA colors. 43
Processing of color indices. 43
ColorMaterial operation. 51
Rasterization. 57
Rasterization of non-antialiased wide points. 61
Rasterization of antialiased wide points. 61
Visualization of Bresenham’s algorithm. 64
Rasterization of non-antialiased wide lines. 67
The region used in rasterizing an antialiased line segment. . . 69
Operation of DrawPixels. 88
Selecting a subimage from an image 93
A bitmap and its associated parameters. 110
A texture image and the coordinates used to access it. 118
Per-fragment operations. oL 142
Operation of ReadPixels. 156
Operation of CopyPixels. 162
Map Evaluation. 166
Feedback syntax. 176

vi

Version 1.2.1 - April 1, 1999

LIST OF FIGURES vii

F.1

F.2
F.3

Creation of a processed vertex from a transformed vertex and

current values.o L 241
Current raster position. 246
Multitexture pipeline. 249

Version 1.2.1 - April 1, 1999

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15

3.16

GL command suffixes 0oL
GL data types L
Summary of GL errors oL
Vertex array sizes (values per vertex) and data types
Variables that direct the execution of Interleaved Arrays.

Component conversions oo
Summary of lighting parameters.
Correspondence of lighting parameter symbols to names. . . .
Polygon flatshading color selection.

PixelStore parameters pertaining to one or more of Draw-

Pixels, TexImagelD, TexImage2D, and TexImage3D. .
PixelTransfer parameters.
PixelMap parameters.
Color table names.
DrawPixels and ReadPixels types
DrawPixels and ReadPixels formats.
Swap Bytes Bit ordering. oL
Packed pixel formats.. L.
UNSIGNED BYTE formats. Bit numbers are indicated for each

component. L Lo e
UNSIGNED_SHORT formats
UNSIGNED_INT formats
Packed pixel field assignments
Color table lookup.
Computation of filtered color components.
Conversion from RGBA pixel components to internal texture,

table, or filter components.
Correspondence of sized internal formats to base internal for-

Version 1.2.1 - April 1, 1999

76
78

LIST OF TABLES ix

3.17
3.18
3.19

4.1

4.2

4.3
4.4
4.5

4.6
4.7

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Texture parameters and their values. 124
Replace and modulate texture functions. 136
Decal and blend texture functions. 137

Values controlling the source blending function and the source
blending values they compute. f = min(4,,1— Ag). 148
Values controlling the destination blending function and the
destination blending values they compute. 148
Arguments to LogicOp and their corresponding operations. . 151
Arguments to DrawBuffer and the buffers that they indicate.152
PixelStore parameters pertaining to ReadPixels,
GetTexImagelD, GetTexImage2D, GetTexImage3D,
GetColorTable, GetConvolutionFilter, GetSeparable-

Filter, GetHistogram, and GetMinmax. 158
ReadPixels index masks. 160
ReadPixels GL Data Types and Reversed component con-

version formulas.o 161
Values specified by the target to Mapl. 165
Correspondence of feedback type to number of values per vertex.174
Texture, table, and filter return values. 185
Attribute groups Lo 191
State variable types oL 192
GL Internal begin-end state variables (inaccessible) 194
Current Values and Associated Data 195
Vertex Array Data 196
Transformation state 197
Coloring 198
Lighting (see also Table 2.7 for defaults) 199
Lighting (cont.) 200
Rasterization o 201
Texture Objects 202
Texture Objects (cont.) 203
Texture Environment and Generation 204
Pixel Operations L. 205
Framebuffer Control 206
Pixels o 207
Pixels (cont.) 208
Pixels (cont.) 209

Version 1.2.1 - April 1, 1999

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

F.1
F.2
F.3
F4

LIST OF TABLES

Pixels (cont.) 210
Pixels (cont.) 211
Evaluators (GetMap takes a map name) 212
Hints o 213
Implementation Dependent Values 214
More Implementation Dependent Values 215
Implementation Dependent Pixel Depths 216
Miscellaneous 217
Changes to State Tables 252
Changes to State Tables (cont.) 253
New State Introduced by Multitexture 254
New Implementation-Dependent Values Introduced by Mul-

titexture Lo Lo 255

Version 1.2.1 - April 1, 1999

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has
at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are
considered optional; an OpenGL implementation may or may not choose to
provide them (see section 3.6.2).

Portions of the specification which are optional are so labelled where
they are defined. Additionally, those portions are typeset in gray, and state
table entries which are optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, specifically color images
of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a frame-
buffer. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such
as when antialiasing or texturing is enabled) relies on the existence of a

Version 1.2.1 - April 1, 1999

2 CHAPTER 1. INTRODUCTION

framebuffer. Further, some of OpenGL is specifically concerned with frame-
buffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specifi-
cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebuffer.
For the most part, OpenGL provides an immediate-mode interface, mean-
ing that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-
text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others affect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user’s
two- or three-dimensional model space to the two-dimensional screen. There
are also calls to effect direct control of the framebuffer, such as reading and
writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the opera-
tion of graphics hardware. If the hardware consists only of an addressable
framebuffer, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-
dimensional lines and polygons to sophisticated floating-point processors
capable of transforming and computing on geometric data. The OpenGL
implementor’s task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This
state controls how objects are drawn into the framebuffer. Some of this
state is directly available to the user: he or she can make calls to obtain its
value. Some of it, however, is visible only by the effect it has on what is
drawn. One of the main goals of this specification is to make OpenGL state

Version 1.2.1 - April 1, 1999

1.5. OUR VIEW 3

information explicit, to elucidate how it changes, and to indicate what its
effects are.

1.5 Our View

We view OpenGL as a state machine that controls a set of specific draw-
ing operations. This model should engender a specification that satisfies
the needs of both programmers and implementors. It does not, however,
necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the specified methods, but
there may be ways to carry out a particular computation that are more
efficient than the one specified.

Version 1.2.1 - April 1, 1999

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a
framebuffer (and reading values stored in that framebuffer). There is no
support for other peripherals sometimes associated with graphics hardware,
such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Each mode
may be changed independently; the setting of one does not affect the settings
of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other
GL operations described by sending commands in the form of function or
procedure calls.

Primitives are defined by a group of one or more vertices. A vertex
defines a point, an endpoint of an edge, or a corner of a polygon where
two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is
processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive fits within a specified region; in this case vertex data may be
modified and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received,
although there may be an indeterminate delay before the effects of a com-
mand are realized. This means, for example, that one primitive must be

Version 1.2.1 - April 1, 1999

2.1. OPENGL FUNDAMENTALS 5

drawn completely before any subsequent one can affect the framebuffer. It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-
eral, the effects of a GL command on either GL modes or the framebuffer
must be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the
command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no effect on the
GL (unless the same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D
and 2D graphics. This includes specification of such parameters as trans-
formation matrices, lighting equation coefficients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-
eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted
and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is “network-
transparent.” A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state. A client may choose to connect to
any one of these contexts. Issuing GL commands when the program is not
connected to a contert results in undefined behavior.

The effects of GL commands on the framebuffer are ultimately controlled
by the window system that allocates framebuffer resources. It is the window
system that determines which portions of the framebuffer the GL may access
at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to configure the
framebuffer or initialize the GL. Similarly, display of framebuffer contents
on a CRT monitor (including the transformation of individual framebuffer
values by such techniques as gamma correction) is not addressed by the GL.
Framebuffer configuration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window
system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we
specify ideal behavior instead of actual behavior for certain GL operations.

Version 1.2.1 - April 1, 1999

6 CHAPTER 2. OPENGL OPERATION

In cases where deviation from the ideal is allowed, we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL
(by gl, GL_, and GL, respectively in C) to reduce name clashes with other
packages. The prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the
course of its operation. We do not specify how floating-point numbers are
to be represented or how operations on them are to be performed. We require
simply that numbers’ floating-point parts contain enough bits and that their
exponent fields are large enough so that individual results of floating-point
operations are accurate to about 1 part in 10°. The maximum representable
magnitude of a floating-point number used to represent positional or normal
coordinates must be at least 232; the maximum representable magnitude for
colors or texture coordinates must be at least 2!°. The maximum repre-
sentable magnitude for all other floating-point values must be at least 232.
-0 =02 =0 for any non-infinite and non-NaN z. 1.z =z -1 = z.
r+0=0+z==x. 0°=1. (Occasionally further requirements will be speci-
fied.) Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command
that requires floating-point data. The result of providing a value that is not
a floating-point number to such a command is unspecified, but must not
lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL command yields
predictable results, while providing a NaN or an infinity yields unspecified
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspecified result but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state
variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their

Version 1.2.1 - April 1, 1999

2.3. GL COMMAND SYNTAX 7

function. Although we describe the operations that the GL performs on the
framebuffer, the framebuffer is not a part of GL state.

We distinguish two types of state. The first type of state, called GL
server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the
GL client. Unless otherwise specified, all state referred to in this document
is GL server state; GL client state is specifically identified. Each instance of
a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server
state.

While an implementation of the GL may be hardware dependent, this
discussion is independent of the specific hardware on which a GL is imple-
mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands
perform the same operation but differ in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for
describing commands and their arguments.

GL commands are formed from a name followed, depending on the par-
ticular command, by up to 4 characters. The first character indicates the
number of values of the indicated type that must be presented to the com-
mand. The second character or character pair indicates the specific type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
floating-point, or double-precision floating-point. The final character, if
present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two specific
examples come from the Vertex command:

void Vertex3f(float z, float y, float 2z);
and
void Vertex2sv(short v/2]);

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form?

!The declarations shown in this document apply to ANSI C. Languages such as C++

Version 1.2.1 - April 1, 1999

8 CHAPTER 2. OPENGL OPERATION

‘ Letter ‘ Corresponding GL Type ‘

b byte

S short

i int

f float

d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types.
Refer to Table 2.2 for definitions of the GL types.

rtype Name{e1234}{¢ b s i f d ub us ui}{ev}
([args ,] T argl , ..., T argN [, args]);

rtype is the return type of the function. The braces ({}) enclose a series
of characters (or character pairs) of which one is selected. € indicates no
character. The arguments enclosed in brackets (/args ,/ and [, args/) may
or may not be present. The IV arguments arg! through argN have type T,
which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments’ type is given explic-
itly). If the final character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is fixed). If the final
character is v, then only arg! is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).
For example,

void Normal3{fd}(T arg);
indicates the two declarations

void Normal3f(float argl, float arg2, float arg3);
void Normal3d(double argl, double arg2, double arg3);

while

and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.

Version 1.2.1 - April 1, 1999

2.4. BASIC GL OPERATION 9

void Normal3{fd}v(T arg);
means the two declarations

void Normal3fv(float arg/3/);
void Normal3dv(double arg/3/);

Arguments whose type is fixed (i.e. not indicated by a suffix on the
command) are of one of 14 types (or pointers to one of these). These types
are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL
on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most
commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are effectively sent through a processing
pipeline.

The first stage provides an efficient means for approximating curve and
surface geometry by evaluating polynomial functions of input values. The
next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they finally alter the framebuffer.
These operations include conditional updates into the framebuffer based
on incoming and previously stored depth values (to effect depth buffering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations, eventually causing a block of pixels to be written to the frame-
buffer; values may also be read back from the framebuffer or copied from
one portion of the framebuffer to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to

Version 1.2.1 - April 1, 1999

10 CHAPTER 2. OPENGL OPERATION

GL Type | Minimum Number of Bits ‘ Description

boolean 1 Boolean
byte 8 signed 2’s complement binary inte-
ger
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary inte-
ger
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary inte-
ger
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to
0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to
0,1]

Table 2.2: GL data types. GL types are not C types. Thus, for example,
GL type int is referred to as GLint outside this document, and is not
necessarily equivalent to the C type int. An implementation may use more
bits than the number indicated in the table to represent a GL type. Correct
interpretation of integer values outside the minimum range is not required,
however.

Version 1.2.1 - April 1, 1999

2.5. GL ERRORS 11

- Display
List
Per-Vertex
- Y Operations Rasteriz— Per-
- i R
Evaluator Primitive ation '>Fragmv_3nt = Framebuffer
Assembly Operations
! i
Texture
Memory
- Y > Pixel
Operations |~
Figure 2.1. Block diagram of the GL.

organize the various operations of the GL. Objects such as curved surfaces,
for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered
errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a
numeric code. When an error is detected, a flag is set and the code is
recorded. Further errors, if they occur, do not affect this recorded code.
When GetError is called, the code is returned and the flag is cleared,
so that a further error will again record its code. If a call to GetError
returns NO_ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-
code pairs. In this case, after a call to GetError returns a value other
than NO_ERROR each subsequent call returns the non-zero code of a distinct
flag-code pair (in unspecified order), until all non-NO_ERROR codes have been

Version 1.2.1 - April 1, 1999

12 CHAPTER 2. OPENGL OPERATION

returned. When there are no more non-NO_ERROR error codes, all flags are
reset. This scheme requires some positive number of pairs of a flag bit and
an integer. The initial state of all flags is cleared and the initial value of all
codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set,
results of GL operation are undefined only if QUT_OF _MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has
no effect on GL state or framebuffer contents. If the generating command
returns a value, it returns zero. If the generating command modifies values
through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in
the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every
GL command. First, if a command that requires an enumerated value is
passed a symbolic constant that is not one of those specified as allowable for
that command, the error INVALID ENUM results. This is the case even if the
argument is a pointer to a symbolic constant if that value is not allowable
for the given command. Second, if a negative number is provided where an
argument of type sizei is specified, the error INVALID VALUE results. Finally,
if memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-
nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated
line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addi-
tion, a current normal, current terture coordinates, and current color may
be used in processing each vertex. Normals are used by the GL in light-
ing calculations; the current normal is a three-dimensional vector that may
be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive.

Primary and secondary colors are associated with each vertex (see sec-

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 13

Error Description Offending com-
mand ignored?
INVALID ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of | Yes
range
INVALID OPERATION || Operation illegal in current | Yes
state
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK_UNDERFLOW Command would cause a stack | Yes
underflow
OUT_OF_MEMORY Not enough memory left to ex- | Unknown
ecute command
TABLE TOO_LARGE The specified table is too large | Yes

Table 2.3: Summary of GL errors

tion 3.9). These associated colors are either based on the current color
or produced by lighting, depending on whether or not lighting is enabled.
Texture coordinates are similarly associated with each vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to
produce a processed vertex.

The current values are part of GL state. Vertices and normals are trans-
formed, colors may be affected or replaced by lighting, and texture coordi-
nates are transformed and possibly affected by a texture coordinate genera-
tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors
are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex’s coordinates, the current normal, the current edge flag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the current texture coordinates. Because color assignment is done vertex-
by-vertex, a processed vertex comprises the vertex’s coordinates, its edge
flag, its assigned colors, and its texture coordinates.

Figure 2.3 shows the sequence of operations that builds a primitive
(point, line segment, or polygon) from a sequence of vertices. After a primi-

Version 1.2.1 - April 1, 1999

CHAPTER 2. OPENGL OPERATION

Vertex
Coordinates In
vertex / normal Transformed
o transformation 1)
Coordinates
Current
Normal -
Processed
Vertex
| / Out
Current lighting ——] Associated
Color and T> T Data
Materials (Colors, Edge Flag,
o and Texture
(Coordinates)
Current
Texture texgen [QeI 1:12:::5
Coords —| T
Current
Edge Flag
Figure 2.2. Association of current values with a vertex. The heavy lined
boxes represent GL state.

Point culling;
Line Segment
Coordinates Point, - or Polygon
Line Segment, or o ippi »
Processed N Clipping L
Verti Polygon Rasterization
ertices Associated » (Primitive) >
Data Assembly Color

Processing

Begin/End
State

Figure 2.3. Primitive assembly and processing.

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 15

tive is formed, it is clipped to a viewing volume. This may alter the primitive
by altering vertex coordinates, texture coordinates, and colors. In the case
of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices defining a primitive to be rasterized have texture coordinates
and colors associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for
each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands
are

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be specified between
a Begin and an End.

Points. A series of individual points may be specified by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous
and following points.

Line Strips. A series of one or more connected line segments is specified
by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE_STRIP. In this case, the first vertex specifies
the first segment’s start point while the second vertex specifies the first
segment’s endpoint and the second segment’s start point. In general, the
ith vertex (for i > 1) specifies the beginning of the ith segment and the end
of the ¢ — 1st. The last vertex specifies the end of the last segment. If only
one vertex is specified between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean flag indicating if the current vertex is
the first vertex.

Line Loops. Line loops, specified with the LINE_LOOP argument value to
Begin, are the same as line strips except that a final segment is added from
the final specified vertex to the first vertex. The additional state consists of
the processed first vertex.

Separate Lines. Individual line segments, each specified by a pair of
vertices, are generated by surrounding vertex pairs with Begin and End

Version 1.2.1 - April 1, 1999

16 CHAPTER 2. OPENGL OPERATION

when the value of the argument to Begin is LINES. In this case, the first
two vertices between a Begin and End pair define the first segment, with
subsequent pairs of vertices each defining one more segment. If the number
of specified vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used differently: a vertex holding the first
vertex of the current segment, and a boolean flag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line
segments are specified in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or filling its interior. A polygon described with
fewer than three vertices does not generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL.
If a specified polygon is nonconvex when projected onto the window, then
the rendered polygon need only lie within the convex hull of the projected
vertices defining its boundary.

The state required to support polygons consists of at least two processed
vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices
arrive, before all of them have been specified. The order of the vertices is sig-
nificant in lighting and polygon rasterization (see sections 2.13.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges. A triangle strip is specified by giving a series of defining ver-
tices between a Begin/End pair when Begin is called with TRIANGLE STRIP.
In this case, the first three vertices define the first triangle (and their order is
significant, just as for polygons). Each subsequent vertex defines a new tri-
angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE_STRIP
has been supplied to Begin, produces no primitive. See Figure 2.4.

The state required to support triangle strips consists of a flag indicating
if the first triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
will be replaced with the next vertex. After a Begin (TRIANGLE STRIP),
the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the first vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 17

NN 2 N7

(a) (b) (c)

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that in (a) and (b) triangle edge ordering is determined by the first
triangle, while in (c) the order of each triangle’s edges is independent of the
other triangles.

exception: each vertex after the first always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are specified by placing ver-
tices between Begin and End when the value of the argument to Begin
is TRIANGLES. In this case, The 3i + 1st, 3i + 2nd, and 3¢ + 3rd vertices (in
that order) determine a triangle for each i = 0,1,...,n — 1, where there are
3n+ k vertices between the Begin and End. k is either 0, 1, or 2; if k is not
zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3¢ and vertex B is vertex 3i + 1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-
sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD_STRIP. If the m vertices between the Begin
and End are vy, ..., vy, where v; is the jth specified vertex, then quad ¢ has
vertices (in order) vg;, v2i41, V2i+3, and ve; 4o with ¢ = 0,...,|m/2]. The
state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the first new vertex) of
the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

Version 1.2.1 - April 1, 1999

18 CHAPTER 2. OPENGL OPERATION

2 :4 > 6 > 6 -
A A A A
A Yl \/ B A/ B |
1 3 5 1 4 5 8
(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices specified for a quadrilateral strip between Begin and
End is odd, the final vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips ex-
cept that each group of four vertices, the 45 + 1st, the 45+ 2nd, the 45 + 3rd,
and the 45 + 4th, generate a single quad, for j = 0,1,...,n — 1. The total
number of vertices between Begin and End is 4n + k, where 0 < k < 3; if
k is not zero, the final k vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, trian-
gle fan, separate triangle set, quadrilateral strip, or separate quadrilateral
set, is flagged as either boundary or non-boundary. These classifications
are used during polygon rasterization; some modes affect the interpreta-
tion of polygon boundary edges (see section 3.5.4). By default, all edges are
boundary edges, but the flagging of polygons, separate triangles, or separate
quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to
FALSE; if flag is non-zero, then the flag bit is set to TRUE.

Version 1.2.1 - April 1, 1999

2.7. VERTEX SPECIFICATION 19

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair
begins an edge. If the edge flag bit is TRUE, then each specified vertex begins
an edge that is flagged as boundary. If the bit is FALSE, then induced edges
are flagged as non-boundary.

The state required for edge flagging consists of one current flag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled
polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coor-
dinates, and texture coordinates (Vertex, Color, Index, Normal, Tex-
Coord), the ArrayElement command (see section 2.8), the EvalCoord
and EvalPoint commands (see section 5.1), commands for specifying light-
ing material parameters (Material commands; see section 2.13.2), display
list invocation commands (CallList and CallLists; see section 5.4), and
the EdgeFlag command. Executing any other GL command between the
execution of Begin and the corresponding execution of End results in the
error INVALID_OPERATION. Executing Begin after Begin has already been
executed but before an End is executed generates the INVALID OPERATION
error, as does executing End without a previous corresponding Begin.

Execution of the commands EnableClientState, Dis-
ableClientState, PushClientAttrib, PopClientAttrib, EdgeFlag-
Pointer, TexCoordPointer, ColorPointer, IndexPointer, Normal-
Pointer, VertexPointer, Interleaved Arrays, and PixelStore, is not
allowed within any Begin/End pair, but an error may or may not be gen-
erated if such execution occurs. If an error is not generated, GL operation
is undefined. (These commands are described in sections 2.8, 3.6.1, and
Chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(T coords);

Version 1.2.1 - April 1, 1999

20 CHAPTER 2. OPENGL OPERATION

A call to any Vertex command specifies four coordinates: z, y, z, and w.
The z coordinate is the first coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the x and y coordinates; the z coordinate is
implicitly set to zero and the w coordinate to one. Vertex3 sets z, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,
allowing the specification of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-
fined behavior.

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.

The TexCoordl family of commands set the s coordinate to the provided

single argument while setting ¢t and r to 0 and ¢ to 1. Similarly, TexCoord2

sets s and t to the specified values, r to 0 and ¢ to 1; TexCoord3 sets s, t,

and r, with ¢ set to 1, and TexCoord4 sets all four texture coordinates.
The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(T coords);

Byte, short, or integer values passed to Normal are converted to floating-
point values as indicated for the corresponding (signed) type in Table 2.6.

Finally, there are several ways to set the current color. The GL stores
both a current single-valued color indez, and a current four-valued RGBA
color. One or the other of these is significant depending as the GL is in color
index mode or RGBA mode. The mode selection is made when the GL is
initialized.

The command to set RGBA colors is

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(T components);

The Color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer
color components (R, G, B, and A) to floating-point values is discussed in
section 2.13.)

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 21

Versions of the Color command that take floating-point values accept
values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.13 on colors and
coloring). Values outside [0, 1] are not clamped.

The command

void Index{sifd ub}(T indez);
void Index{sifd ub}v(T indez);

updates the current (single-valued) color index. It takes one argument, the
value to which the current color index should be set. Values outside the
(machine-dependent) representable range of color indices are not clamped.

The state required to support vertex specification consists of four
floating-point numbers to store the current texture coordinates s, t, r, and
q, three floating-point numbers to store the three coordinates of the current
normal, four floating-point values to store the current RGBA color, and
one floating-point value to store the current color index. There is no notion
of a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial
value of ¢ is one. The initial current normal has coordinates (0,0,1). The
initial RGBA color is (R, G,B,A) = (1,1,1,1). The initial color index is 1.

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in
almost any format, but their use requires many command executions to spec-
ify even simple geometry. Vertex data may also be placed into arrays that
are stored in the client’s address space. Blocks of data in these arrays may
then be used to specify multiple geometric primitives through the execution
of a single GL command. The client may specify up to six arrays: one each
to store edge flags, texture coordinates, colors, color indices, normals, and
vertices. The commands

void EdgeFlagPointer(sizei stride, void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

Version 1.2.1 - April 1, 1999

22 CHAPTER 2. OPENGL OPERATION

‘ Command ‘ Sizes ‘ Types ‘
VertexPointer 2,3,4 | short, int, float, double
NormalPointer 3 byte, short, int, float, double
ColorPointer 3,4 byte, ubyte, short, ushort, int,

uint, float, double
IndexPointer 1 ubyte, short, int, float, double
TexCoordPointer | 1,2,3,4 | short, int, float, double
EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

void IndexPointer(enum type, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

void VertexPointer(int size, enum type, sizei stride,
void *pointer);

describe the locations and organizations of these arrays. For each com-
mand, type specifies the data type of the values stored in the array. Because
edge flags are always type boolean, EdgeFlagPointer has no type argu-
ment. size, when present, indicates the number of values per vertex that
are stored in the array. Because normals are always specified with three
values, NormalPointer has no size argument. Likewise, because color in-
dices and edge flags are always specified with a single value, IndexPointer
and EdgeFlagPointer also have no size argument. Table 2.4 indicates
the allowable values for size and type (when present). For type the values
BYTE, SHORT, INT, FLOAT, and DOUBLE indicate types byte, short, int, float,
and double, respectively; and the values UNSIGNED_BYTE, UNSIGNED_SHORT, and
UNSIGNED_INT indicate types ubyte, ushort, and uint, respectively. The er-
ror INVALID VALUE is generated if size is specified with a value other than
that indicated in the table.

The one, two, three, or four values in an array that correspond to a single
vertex comprise an array element. The values within each array element are
stored sequentially in memory. If stride is specified as zero, then array
elements are stored sequentially as well. Otherwise pointers to the ith and
(i 4+ 1)st elements of an array differ by stride basic machine units (typically

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 23

unsigned bytes), the pointer to the (i + 1)st element being greater. For each
command, pointer specifies the location in memory of the first value of the
first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
INDEX _ARRAY, NORMAL_ARRAY, or VERTEX ARRAY, for the edge flag, texture coor-
dinate, color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i);

For each enabled array, it is as though the corresponding command from sec-
tion 2.7 or section 2.6.2 were called with a pointer to element i. For the ver-
tex array, the corresponding command is Vertex[size|[type]v, where size is
one of [2,3,4], and type is one of [s,i,f,d], corresponding to array types short,
int, float, and double respectively. The corresponding commands for
the edge flag, texture coordinate, color, color index, and normal arrays are
EdgeFlagv, TexCoord[size][type]v, Color|size|[type]v, Index[type|v,
and Normal[type]v, respectively. If the vertex array is enabled, it is as
though Vertex|[size|[type]v is executed last, after the executions of the
other corresponding commands.

Changes made to array data between the execution of Begin and the
corresponding execution of End may affect calls to ArrayElement that are
made within the same Begin/End period in non-sequential ways. That is,
a call to ArrayElement that precedes a change to array data may access
the changed data, and a call that follows a change to array data may access
original data.

The command

void DrawArrays(enum mode, int first, sizei count);

constructs a sequence of geometric primitives using elements first through
first+count—1 of each enabled array. mode specifies what kind of primitives
are constructed; it accepts the same token values as the mode parameter of
the Begin command. The effect of

DrawArrays (mode, first, count) ;

Version 1.2.1 - April 1, 1999

24 CHAPTER 2. OPENGL OPERATION

is the same as the effect of the command sequence

if (mode or count is invalid)
generate appropriate error
else {
int 1i;
Begin (mode) ;
for (i=0; i < count ; i++)
ArrayElement (first+ i) ;
EndQ;

}

with one exception: the current edge flag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution of
DrawArrays, if the corresponding array is enabled. Current values corre-
sponding to disabled arrays are not modified by the execution of DrawAr-
rays.

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the values in indices are
indices of GL type ubyte, ushort, or uint respectively. mode specifies
what kind of primitives are constructed; it accepts the same token values as
the mode parameter of the Begin command. The effect of

DrawElements (mode, count, type,indices) ;
is the same as the effect of the command sequence

if (mode, count, or type is invalid)
generate appropriate error

else {
int i;
Begin (mode) ;
for (i=0; i < count ; i++)

ArrayElement (indices[i]) ;

End Q) ;

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 25

with one exception: the current edge flag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution
of DrawElements, if the corresponding array is enabled. Current val-
ues corresponding to disabled arrays are not modified by the execution of
DrawElements.

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices
match the corresponding arguments to DrawElements, with the additional
constraint that all values in the array indices must lie between start and end
inclusive.

Implementations denote recommended maximum amounts of vertex and
index data, which may be queried by calling GetIntegerv with the symbolic
constants MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end—start+1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end]
be referenced. However, the implementation may partially process unused
vertices, reducing performance from what could be achieved with an optimal
index set.

The error INVALID VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding
call to DrawElements. It is an error for indices to lie outside the range
[start, end], but implementations may not check for this. Such indices will
cause implementation-dependent behavior.

The command

void InterleavedArrays(enum format, sizei stride,
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 configura-
tions. format must be one of 14 symbolic constants: V2F, V3F, C4UB_V2F,
C4UB_V3F, C3F_V3F, N3F_V3F, C4F N3F_V3F, T2F_V3F, T4F_V4F, T2F_C4UB_V3F,
T2F_C3F_V3F, T2F_N3F_V3F, T2F_C4F N3F_V3F, or T4F_C4F _N3F_V4F.

The effect of

Interleaved Arrays (format, stride, pointer) ;

is the same as the effect of the command sequence

Version 1.2.1 - April 1, 1999

26

CHAPTER 2. OPENGL OPERATION

‘ format ‘ e ‘ e ‘ en ‘ S¢ ‘ Se ‘ Sy te
V2F False | False | False 2
V3F False | False | False 3
C4UB_V2F False | True | False 4 | 2 | UNSIGNED BYTE
C4UB_V3F False | True | False 4 | 3 | UNSIGNEDBYTE
C3F_V3F False | True | False 3| 3 FLOAT
N3F_V3F False | False | True 3
C4F N3F_V3F False | True | True 4 |1 3 FLOAT
T2F_V3F True | False | False | 2 3
T4F _V4F True | False | False | 4 4
T2F_C4UB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED_BYTE
T2F_C3F_V3F True | True | False | 2 | 3 | 3 FLOAT
T2F _N3F_V3F True | False | True | 2 3
T2F_C4F N3F_V3F | True | True | True | 2 | 4 | 3 FLOAT
TAF _C4F_N3F_V4F | True | True | True | 4 | 4 | 4 FLOAT
| format | pc [pn| po | s
V2F 0 2f
V3F 0 3f
C4UB_V2F 0 c c+2f
CAUB_V3F 0 c c+3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
CAF N3F_V3F 0 | 4f f 10f
T2F_V3F 2f 5f
T4F _V4F 4f 8f
T2F _C4UB_V3F 2f c+2f | c+5f
T2F_C3F_V3F 2f 5f 8f
T2F N3F_V3F 2f 5f 8f
T2F_C4F N3F_V3F | 2f | 6f 9f 12f
T4F_C4F N3F_V4F | 4f | 8f | 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f
is sizeof (FLOAT). c is 4 times sizeof (UNSIGNED BYTE), rounded up to
the nearest multiple of f. All pointer arithmetic is performed in units of
sizeof (UNSIGNED BYTE).

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS

if (format or stride is invalid)
generate appropriate error
else {
int str;
set e, ec, en, St, Sc, Su, tes Pe, Pns Pu, and s as a function
of Table 2.5 and the value of format.
str = stride;
if (str is zero)
str = s;
DisableClientState (EDGE_FLAG_ARRAY);
DisableClientState (INDEX_ARRAY);
if (er) {
EnableClientState (TEXTURE_COORD_ARRAY);
TexCoordPointer (s;, FLOAT, str, pointer);
} else {
DisableClientState (TEXTURE_COORD_ARRAY);
}

if (eo) {
EnableClientState (COLOR_ARRAY);
ColorPointer (s, t., str, pointer + p.);
} else {
DisableClientState (COLOR_ARRAY);
}
if (ep) {
EnableClientState (NORMAL_ARRAY);
NormalPointer (FLOAT, str, pointer + p,);
} else {
DisableClientState (NORMAL_ARRAY);
}
EnableClientState (VERTEX_ARRAY);
VertexPointer (s,, FLOAT, str, pointer + py);

The client state required to implement vertex arrays consists of six
boolean values, six memory pointers, six integer stride values, five symbolic
constants representing array types, and three integers representing values
per element. In the initial state the boolean values are each disabled, the
memory pointers are each null, the strides are each zero, the array types are
each FLOAT, and the integers representing values per element are each four.

Version 1.2.1 - April 1, 1999

27

28 CHAPTER 2. OPENGL OPERATION

2.9 Rectangles

There is a set of GL commands to support efficient specification of rectangles
as two corner vertices.

void Rect{sifd}(T z1, T yI, T 22, T y2);
void Rect{sifd}v(T vi1/2], T v2[2]);

Each command takes either four arguments organized as two consecutive
pairs of (z,y) coordinates, or two pointers to arrays each of which contains
an x value followed by a y value. The effect of the Rect command

Rect (:Ula Y1, T2, y2) 5
is exactly the same as the following sequence of commands:

Begin (POLYGON) ;
Vertex2 (1‘1, yl) H
Vertex2 (x2,y1) ;
Vertex2 (1‘2, y2) H
Vertex2 (x1,y2) ;

End(Q);

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their
coordinates are used to produce an image in the framebuffer. We begin
with a description of how vertex coordinates are transformed and how this
transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these coordinates to
yield eye coordinates. Then another matrix, called the projection matrix, is
applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
final viewport transformation is applied to convert these coordinates into
window coordinates.

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 29

Perspective
Division

Normalized
Device

Object Model-View Eye Projection

Coordinates Matrix Coordinates Matrix Coordinates Coordinates

Viewport Window

Transformation Coordinates

Figure 2.6. Vertex transformation sequence.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of z, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4 x 4.
Lo
Yo

o
Wo
matrix is M, then the vertex’s eye coordinates are found as

If a vertex in object coordinates is given by and the model-view

Te To
Ye | _ M Yo
Ze 2o
We Wo

Similarly, if P is the projection matrix, then the vertex’s clip coordinates
are

Te Te
Ye | _ P Ye
Zc Ze
We We

The vertex’s normalized device coordinates are then

Tq Te/we
Yd =1 Ye / We
24 Ze/We

Version 1.2.1 - April 1, 1999

30 CHAPTER 2. OPENGL OPERATION

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and
height in pixels, p, and py, respectively, and its center (og,oy) (also in
Tw
pixels). The vertex’s window coordinates, (yw), are given by
2w

Tw (px/Q)xd + 0g
(yw) = ((py/2)yd+0y) .
Zuw [(f =n)/2]za + (n + f)/2

The factor and offset applied to z; encoded by n and f are set using
void DepthRange(clampd n, clampd f);

Each of n and fare clamped to lie within [0, 1], as are all arguments of type
clampd or clampf. z, is taken to be represented in fixed-point with at least
as many bits as there are in the depth buffer of the framebuffer. We assume
that the fixed-point representation used represents each value k/(2™ — 1),
where k € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a
string of all ones).

Viewport transformation parameters are specified using

void Viewport(int z, int y, sizei w, sizei h);

where z and y give the z and y window coordinates of the viewport’s lower-
left corner and w and h give the viewport’s width and height, respectively.
The viewport parameters shown in the above equations are found from these
values as 0, = +w/2 and oy = y + h/2; p, = w, py = h.

Viewport width and height are clamped to implementation-dependent
maximums when specified. The maximum width and height may be found
by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either w or A
is negative.

The state required to implement the viewport transformation is 6 inte-
gers. In the initial state, w and h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. o, and o, are set to
w/2 and h/2, respectively. n and f are set to 0.0 and 1.0, respectively.

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 31

2.10.2 Matrices

The projection matrix and model-view matrix are set and modified with
a variety of commands. The affected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR,
or PROJECTION as the argument value. TEXTURE is described later in sec-
tion 2.10.2, and COLORis described in section 3.6.3. If the current matrix
mode is MODELVIEW, then matrix operations apply to the model-view matrix;
if PROJECTION, then they apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(T m/16]);
void MultMatrix{fd}(T m/16]);

LoadMatrix takes a pointer to a 4 X 4 matrix stored in column-major order
as 16 consecutive floating-point values, i.e. as

ar as a9 0413
az ae aip 0aiq
a3 ar air ais
as ag ai12 Qaie

(This differs from the standard row-major C ordering for matrix elements. If
the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to.
MultMatrix takes the same type argument as LoadMatrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product. If C is the current matrix and M is the matrix pointed
to by MultMatrix’s argument, then the resulting current matrix, C’, is

C'=C-M.
The command

void Loadldentity(void);

Version 1.2.1 - April 1, 1999

32 CHAPTER 2. OPENGL OPERATION
effectively calls LoadMatrix with the identity matrix:

0 00
1 00
010
0 0 1

OO O

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-
trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotate{fd}(TH, Tz, Ty, Tz);

0 gives an angle of rotation in degrees; the coordinates of a vector v are given
by v = (z y 2)T. The computed matrix is a counter-clockwise rotation about
the line through the origin with the specified axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The
matrix is thus

then
R =uu” + cos (I — uu?) +sinhS.

The arguments to

void Translate{fd}(Tz, Ty, T z);

give the coordinates of a translation vector as (z y z)T. The resulting matrix
is a translation by the specified vector:

1 0 0 «
0 1 0 y
0 01 =z
0 0 0 1

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 33

void Scale{fd}(Tz, Ty, Tz);

produces a general scaling along the z-, y-, and z- axes. The corresponding

matrix is
z 0 0 O
0 yv 00
0 0 2 O
0 0 0 1
For

void Frustum(double [/, double r, double b, double ¢,
double n, double f);

the coordinates (I b —n)T and (r t — n)T specify the points on the near
clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)T). f
gives the distance from the eye to the far clipping plane. If either n or f is
less than or equal to zero, [is equal to r, b is equal to ¢, or n is equal to f,
the error INVALID VALUE results. The corresponding matrix is

2n r+l 0
L i
n
0 = 0
0 o _—ftn _2fn
f—n f-n
0 0 —1 0

void Ortho(double [, double r, double b, double ¢,

double n, double f);
describes a matrix that produces parallel projection. (I b —n)T and (rt —n)”
specify the points on the near clipping plane that are mapped to the lower-
left and upper-right corners of the window, respectively. fgives the distance
from the eye to the far clipping plane. If [is equal to 7, b is equal to ¢, or n
is equal to f, the error INVALID VALUE results. The corresponding matrix is
o -

P

t+b
0 —i%
2 _fin

n f-n

0 =
0 0 1

There is another 4 x 4 matrix that is applied to texture coordinates. This
matrix is applied as

Version 1.2.1 - April 1, 1999

34 CHAPTER 2. OPENGL OPERATION

3
3
3
3
S &+ o

m4 Mg Mi2 Mie q

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32
model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix off a stack with only one entry generates the error STACK_UNDERFLOW;
pushing a matrix onto a full stack generates STACK_OVERFLOW.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, a stack of at least two
4 x 4 matrices for each of COLOR, PROJECTION, and TEXTURE with associated
stack pointers, and a stack of at least 32 4 x 4 matrices with an associated
stack pointer for MODELVIEW. Initially, there is only one matrix on each stack,
and all matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state
affect normals. Before use in lighting, normals are transformed to eye co-
ordinates by a matrix derived from the model-view matrix. Rescaling and
normalization operations are performed on the transformed normals to make

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 35

them unit length prior to use in lighting. Rescaling and normalization are
controlled by

void Enable(enum target);
and

void Disable(enum target);
with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M, then the normal is transformed to eye
coordinates by:

(nm Ny Ny q,):(nx Ny Ny Q)'Mil

where, if are the associated vertex coordinates, then

E e 8

0, w =0,

=93 —(ny ny nz)() (2.1)

- , w#0

Implementations may choose instead to transform (n, n, n,) toeye
coordinates using

N ey

(na' ny' n')=(ny ny nz)-M,f1

where M, is the upper leftmost 3x3 matrix taken from M.
Rescale multiplies the transformed normals by a scale factor

(nxll nyll nzll) — f (nxl nyl nzl)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is com-
puted as (m;; denotes the matrix element in row ¢ and column j of M1,
numbering the topmost row of the matrix as row 1 and the leftmost column
as column 1)

1

Vmg12 + msa? + mss?

Version 1.2.1 - April 1, 1999

36 CHAPTER 2. OPENGL OPERATION

Note that if the normals sent to GL were unit length and the model-view
matrix uniformly scales space, then rescale makes the transformed normals
unit length.

Alternatively, an implementation may chose f as

1
2 2 2
\/an + nyl + TLZI

recomputing f for each normal. This makes all non-zero length normals
unit length regardless of their input length and the nature of the model-
view matrix.

After rescaling, the final transformed normal used in lighting, ny, is
computed as

f=

If normalization is disabled, then m = 1. Otherwise
1
\/an/2 + ny//2 + nzn2

Because we specify neither the floating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-
conditioned (nearly singular) model-view matrix M. In case of an exactly
singular matrix, the transformed normal is undefined. If the GL implementa-
tion determines that the model-view matrix is uninvertible, then the entries
in the inverted matrix are arbitrary. In any case, neither normal transfor-
mation nor use of the transformed normal may lead to GL interruption or

m =

termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, T params);

controls texture coordinate generation. coord must be one of the constants
S, T, R, or Q, indicating that the pertinent coordinate is the s, t, r, or ¢

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 37

coordinate, respectively. In the first form of the command, param is a sym-
bolic constant specifying a single-valued texture generation parameter; in the
second form, params is a pointer to an array of values that specify texture
generation parameters. pname must be one of the three symbolic constants
TEXTURE_GEN_MODE, 0BJECT_PLANE, or EYE_PLANE. If pname is TEXTURE_GEN_MODE,
then either params points to or param is an integer that is one of the symbolic
constants OBJECT_LINEAR, EYE_LINEAR, or SPHERE MAP.

If TEXTURE_GEN_MODE indicates O0BJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = P1%o + P2Yo + P3Z0 + PaWo.

Zo, Yo, 20, and w, are the object coordinates of the vertex. pi,...,ps are
specified by calling TexGen with pname set to 0BJECT_PLANE in which case
params points to an array containing pi,...,ps. There is a distinct group of
plane equation coefficients for each texture coordinate; coord indicates the
coordinate to which the specified coefficients pertain.

If TEXTURE GEN_MODE indicates EYE_LINEAR, then the function is

g = PiTe + PhYe + Pi2e + PywWe

where

(py Py Py Pi)=(p1 p2 p3s pa)M*

Te, Ye, Ze, and w, are the eye coordinates of the vertex. pi,...,ps are
set by calling TexGen with pname set to EYE PLANE in correspondence with
setting the coefficients in the 0BJECT PLANE case. M is the model-view matrix
in effect when p1,...,ps are specified. Computed texture coordinates may
be inaccurate or undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen
with TEXTURE_GEN_MODE indicating SPHERE MAP can simulate the reflected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates
are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-
formation to eye coordinates, by n’. Let r = (1, ry, 7,)T, the reflection
vector, be given by

r=u-—2n" (n'u),

and let m = 2\/7“% +ri+(r. + 1)2. Then the value assigned to an s coor-

dinate (the first TexGen argument value is S) is s = ry/m + %; the value

Version 1.2.1 - April 1, 1999

38 CHAPTER 2. OPENGL OPERATION

assigned to a t coordinate is t = r,/m + % Calling TexGen with a co-
ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID_ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN_S, TEXTURE GEN_T,
TEXTURE GEN R, or TEXTURE GEN_Q (each indicates the corresponding texture
coordinate). When enabled, the specified texture coordinate is computed
according to the current EYE LINEAR, 0BJECT LINEAR or SPHERE MAP specifica-
tion, depending on the current setting of TEXTURE GEN _MODE for that coordi-
nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-
valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state
has the texture generation function disabled for all texture coordinates. The
initial values of p; for s are all 0 except p; which is one; for ¢ all the p; are
zero except po, which is 1. The values of p; for r and ¢ are all 0. These values
of p; apply for both the EYE LINEAR and 0BJECT LINEAR versions. Initially all
texture generation modes are EYE LINEAR.

2.11 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the wview
volume is defined by

—wWe < e < We

—We < Ye S We -

—we < 2¢ < We

This view volume may be further restricted by as many as n client-defined
clip planes to generate the clip volume. (n is an implementation dependent
maximum that must be at least 6.) Each client-defined plane specifies a
half-space. The clip volume is the intersection of all such half-spaces with
the view volume (if there no client-defined clip planes are enabled, the clip
volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enum p, double eqn[{/);

Version 1.2.1 - April 1, 1999

2.11. CLIPPING 39

The value of the first argument, p, is a symbolic constant, CLIP_PLANE:, where
i is an integer between 0 and n — 1, indicating one of n client-defined clip
planes. egn is an array of four double-precision floating-point values. These
are the coefficients of a plane equation in object coordinates: pi, po, p3, and
p4 (in that order). The inverse of the current model-view matrix is applied
to these coeflicients, at the time they are specified, yielding

(py Py Py Pi)=(p1 p2 ps pa)M*

(where M is the current model-view matrix; the resulting plane equation is
undefined if M is singular and may be inaccurate if M is poorly-conditioned)
to obtain the plane equation coefficients in eye coordinates. All points with
eye coordinates (. Ye 2e We)T that satisfy

Py b oy pu)| % | =0

lie in the half-space defined by the plane; points that do not satisfy this
condition do not lie in the half-space.

Client-defined clip planes are enabled with the generic Enable com-
mand and disabled with the Disable command. The value of the argument
to either command is CLIP_PLANE; where ¢ is an integer between 0 and n;
specifying a value of ¢ enables or disables the plane equation with index ¢.
The constants obey CLIP_PLANE; = CLIP_PLANEO + .

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume.

This clipping produces a value, 0 < t < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates
are P; and Py, then ¢ is given by

P=tP; + (1 — t)PQ.

The value of ¢ is used in color and texture coordinate clipping (sec-
tion 2.13.8).

Version 1.2.1 - April 1, 1999

40 CHAPTER 2. OPENGL OPERATION

If the primitive is a polygon, then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-
gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume’s boundary. Thus, clipping may
require the introduction of new vertices into a polygon. Edge flags are asso-
ciated with these vertices so that edges introduced by clipping are flagged
as boundary (edge flag TRUE), and so that original edges of the polygon that
become cut off at these vertices retain their original flags.

If it happens that a polygon intersects an edge of the clip volume’s
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have w, values of differing signs
may generate multiple connected components after clipping. GL implemen-
tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of w, > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coefficients (p] ph p5 p}) (or a
number of similarly specified clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respecified with co-
efficients (—p] —p5y —p5 —pj) (and correspondingly for any other clip
planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

The state required for clipping is at least 6 sets of plane equations (each
consisting of four double-precision floating-point coefficients) and at least 6
corresponding bits indicating which of these client-defined plane equations
are enabled. In the initial state, all client-defined plane equation coefficients
are zero and all planes are disabled.

2.12 Current Raster Position

The current raster position is used by commands that directly affect pixels in
the framebuffer. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster
position, however, shares some of the characteristics of a vertex.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 41

The state required for the current raster position consists of three window
coordinates &, Yy, and z,, a clip coordinate w,. value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and texture
coordinates. It is set using one of the RasterPos commands:

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(T coords);

RasterPos4 takes four values indicating z, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only z, y, and z with w implicitly set
to 1 (or only = and y with z implicitly set to 0 and w implicitly set to 1).

The coordinates are treated as if they were specified in a Vertex com-
mand. The z, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-
rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace
the color and texture coordinates stored in the current raster position’s as-
sociated data. The distance from the origin of the eye coordinate system
to the vertex as transformed by only the current model-view matrix re-
places the current raster distance. This distance can be approximated (see
section 3.10).

The transformed coordinates are passed to clipping as if they represented
a point. If the “point” is not culled, then the projection to window coor-
dinates is computed (section 2.10) and saved as the current raster position,
and the valid bit is set. If the “point” is culled, the current raster position
and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires five single-precision floating-point
values for its x, Yw, and z, window coordinates, its w, clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0,0,0, 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1,1,1,1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

Version 1.2.1 - April 1, 1999

CHAPTER 2. OPENGL OPERATION

|
Rasterpos In — . Clip = Project : I
' Raster |
" ——
Curront _ | Vertex/Normal I Position I
=] Transformation ' I
Normal L : I
|
|
Raster I
o | Distance >
Current Lighting |
O—2 -—6\0_ | |
Color & ~|- L I |
Materials i I |
Associated '
J’_ - —8~_] Texture Data _>||
Current L o exgen T Matrix +| I
|
. Te(>j<_ture | Current |
oordinates : Raster I
| Position
Figure 2.7. The current raster position and how it is set.
[0,2k—1] Convert to -
[0.0,1.0] Current |-
RGBA Clamp to
Color (0.0, 1.0]
[—Zk,2k—l] Convert to - .
[-1.0,1.0]
float

Color T —— <,
Clipping

Convert to J Flatshade?

fixed—point :

i Primitive
v i Clipping

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate
both primary and secondary vertex colors, which are processed in the same
fashion. See Table 2.6 for the interpretation of k.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 43

[0,2N-1] —p= Convertto L g d current

float Color Mask to

float 1 Index Lighting O [0.0, 2"-1]

‘ Color
Clipping -
Convert to J Flatshade?

fixed—point o
xedTpoin Primitive

v i Clipping

Figure 2.9. Processing of color indices. n is the number of bits in a color
index.

2.13 Colors and Coloring

Figures 2.8 and 2.9 diagram the processing of RGBA colors and color in-
dices before rasterization. Incoming colors arrive in one of several formats.
Table 2.6 summarizes the conversions that take place on R, G, B, and A com-
ponents depending on which version of the Color command was invoked to
specify the components. As a result of limited precision, some converted
values will not be represented exactly. In color index mode, a single-valued
color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and
secondary colors. If lighting is disabled, the current color index or color
is used in further processing (the current color is the primary color, and
the secondary color is (0,0,0,0)). After lighting, RGBA colors are clamped
to the range [0,1]. A color index is converted to fixed-point and then its
integer portion is masked (see section 2.13.6). After clamping or masking,
a primitive may be flatshaded, indicating that all vertices of the primitive
are to have the same color. Finally, if a primitive is clipped, then colors
(and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

Version 1.2.1 - April 1, 1999

44 CHAPTER 2. OPENGL OPERATION

‘ GL Type ‘ Conversion ‘

ubyte c/(28 —1)

byte (2c+1)/(28 — 1)
ushort c/(2'6 — 1)
short (2c+1)/(215 —1)
uint c/(2% —1)

int (2c+1)/(23% — 1)
float c

double c

Table 2.6: Component conversions. Color, normal, and depth components,
(¢), are converted to an internal floating-point representation, (f), using the
equations in this table. All arithmetic is done in the internal floating point
format. These conversions apply to components specified as parameters to
GL commands and to components in pixel data. The equations remain the
same even if the implemented ranges of the GL data types are greater than
the minimum required ranges. (Refer to table 2.2)

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accom-
plished by applying an equation defined by a client-specified lighting model
to a collection of parameters that can include the vertex coordinates, the
coordinates of one or more light sources, the current normal, and parameters
defining the characteristics of the light sources and a current material. The
following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.13.5.)

Lighting may be in one of two states:

1. Lighting Off. In this state, the current color is assigned to the vertex
primary color. The secondary color is (0,0, 0,0).

2. Lighting On. In this state, the vertex primary and secondary colors
are computed from the current lighting parameters.

Lighting is turned on or off using the generic Enable or Disable commands
with the symbolic value LIGHTING.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 45

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real,
or boolean. A color parameter consists of four floating-point values, one
for each of R, G, B, and A, in that order. There are no restrictions on the
allowable values for these parameters. A position parameter consists of four
floating-point coordinates (x, y, z, and w) that specify a position in object
coordinates (w may be zero, indicating a point at infinity in the direction
given by z, y, and z). A direction parameter consists of three floating-point
coordinates (z, y, and z) that specify a direction in object coordinates. A
real parameter is one floating-point value. The various values and their
types are summarized in Table 2.7. The result of a lighting computation is
undefined if a value for a parameter is specified that is outside the range
given for that parameter in the table.

There are n light sources, indexed by i = 0,...,n—1. (n is an implemen-
tation dependent maximum that must be at least 8.) Note that the default
values for d.;; and s.; differ for ¢ = 0 and 7 > 0.

Before specifying the way that lighting computes colors, we introduce
operators and notation that simplify the expressions involved. If ¢; and
cy are colors without alpha where ¢; = (r1,91,b1) and co = (re, g2, b2),
then define ¢; *x co = (r172,9192,b1b2). Addition of colors is accomplished
by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If d; and ds are directions, then
define

d1 ®© d2 = max{d1 . dg, 0}

(Directions are taken to have three coordinates.) If P; and P5 are (homoge-
neous, with four coordinates) points then let P;P5 be the unit vector that
points from P; to P». Note that if P2 has a zero w coordinate and P has
non-zero w coordinate, then P1P5 is the unit vector corresponding to the
direction specified by the z, y, and z coordinates of Ps; if P; has a zero w
coordinate and Ps has a non-zero w coordinate then P1P5 is the unit vector
that is the negative of that corresponding to the direction specified by P;.
If both Py and Ps have zero w coordinates, then P1P5 is the unit vector
obtained by normalizing the direction corresponding to P2 — P;.

If d is an arbitrary direction, then let d be the unit vector in d’s direction.
Let ||P1Ps|| be the distance between Py and P5. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.
Let P, be the eyepoint ((0,0,0,1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color ¢, and a
secondary color Cs.. The values of cp; and cge. depend on the light model

Version 1.2.1 - April 1, 1999

46 CHAPTER 2. OPENGL OPERATION

‘ Parameter H ‘ Default Value ‘ Description ‘

Type
Material Parameters

Aem color (0.2,0.2,0.2,1.0) | ambient color of material
dem color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm real 0.0 specular exponent (range:
[0.0,128.0])
am real 0.0 ambient color index
dm real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
Ay color (0.0,0.0,0.0,1.0) | ambient intensity of light ¢
dgi(i =0) color (1.0,1.0,1.0,1.0) | diffuse intensity of light 0
de;(i > 0) color (0.0,0.0,0.0,1.0) | diffuse intensity of light 7
Sei(i = 0) color (1.0,1.0,1.0,1.0) | specular intensity of light 0
Sqi(t > 0) color (0.0,0.0,0.0,1.0) | specular intensity of light ¢
P position | (0.0,0.0,1.0,0.0) | position of light i
Sdli direction | (0.0,0.0,—1.0) | direction of spotlight for light
i
Spli real 0.0 spotlight exponent for light ¢
(range: [0.0,128.0])
Crli real 180.0 spotlight cutoff angle for
light ¢ (range: [0.0,90.0],
180.0)
koi real 1.0 constant attenuation factor
for light i (range: [0.0, c0))
ki; real 0.0 linear attenuation factor for
light i (range: [0.0,00))
ko; real 0.0 quadratic attenuation factor
for light i (range: [0.0, c0))
Lighting Model Parameters
Acs color (0.2,0.2,0.2,1.0) | ambient color of scene
Ups boolean FALSE viewer assumed to be at
(0,0,0) in eye coordinates
(TRUE) or (0,0, 00) (FALSE)
Ces enum SINGLE_COLOR controls computation of col-
ors
tys boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color
components is (—oo, +00).

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 47

color control, ces. If ces = SINGLE_COLOR, then the equations to compute c¢pp;
and cge. are

Cori = €cm
+ acm * acs
n—1
+ Z (att;)(spot;) [acm * acy;
=0 + (no Wpli)dcm * deg;

+ (fz)(n ® 1jlz')swnscm * Scli]
Csec = (07 0: 07 0)

If ces = SEPARATE_SPECULAR_COLOR, then

Cpri = €cm

l’

Acm * Acs

n—1

Z (attl)(spotl) [acm * acl;

i=0 + (n® Wpli)dcm s d g
n—1

Csec = Z(atti)(SPOti)(fi)(n © fli)srmscm * Sl
=0

l’

where

£ = {1, n@\ﬁplﬁéo,

2.2
0, otherwise, (22)
V_P;li + V_PZ, vps = TRUE,
h;, = 7P T B (2.3)
wii +(0 0 1)°, vy, = FALSE,
1 5, if Py’s w # 0,
att; = koi + k1l VPpull + k2il[VP il (2.4)
1.0, otherwise.

Version 1.2.1 - April 1, 1999

48 CHAPTER 2. OPENGL OPERATION

(Ppli‘_) © 8q13)°r, cpp F 180-0,sz¢_) ® 8q1i > cos(crii),
spot; = 0.0, Crii 180.0,Pplﬂ O 8q1 < COS(Crli),(2-5)
1.0, cr1i = 180.0.
(2.6)

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with
dem. A is always associated with the primary color ¢,,;; the alpha compo-
nent of cge is 0. Results of lighting are undefined if the w, coordinate (w
in eye coordinates) of V is zero.

Lighting may operate in two-sided mode (tys = TRUE), in which a front
color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with —n. If ¢;; = FALSE,
then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line
segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon’s signed
area computed in window coordinates. One way to compute this area is

1 n—1 o))
0= Tl T Y (2.7)
=0

where z, and y!, are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and ¢ @ 1 is (¢ + 1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the
projected polygon in window coordinates) indicates that if a < 0, then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if @ > 0, then the front color is selected. If dir is CW, then
a is replaced by —a in the above inequalities. This requires one bit of state;
initially, it indicates CCW.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 49

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.7). Sets
of lighting parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enum pname, T params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, T params);
void LightModel{if}(enum pname, T param);

void LightModel{if}v(enum pname, T params);

pname is a symbolic constant indicating which parameter is to be set (see
Table 2.8). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of
values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If
param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT_AND BACK, indicating that the property name of the front or back ma-
terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHT:, indicating that light ¢ is to have the
specified parameter set. The constants obey LIGHT; = LIGHTO + .

Table 2.8 gives, for each of the three parameter groups, the correspon-
dence between the pre-defined constant names and their names in the light-
ing equations, along with the number of values that must be specified with
each. Color parameters specified with Material and Light are converted
to floating-point values (if specified as integers) as indicated in Table 2.6
for signed integers. The error INVALID VALUE occurs if a specified lighting
parameter lies outside the allowable range given in Table 2.7. (The sym-
bol “c0” indicates the maximum representable magnitude for the indicated
type.)

The current model-view matrix is applied to the position parameter indi-
cated with Light for a particular light source when that position is specified.
These transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the
upper leftmost 3x3 portion of the model-view matrix. That is, if M, is the
upper left 3x3 matrix taken from the current model-view matrix M, then

Version 1.2.1 - April 1, 1999

50 CHAPTER 2. OPENGL OPERATION

‘ Parameter H Name ‘ Number of values ‘
Material Parameters (Material)
Acm AMBIENT 4
dem DIFFUSE 4
acm, dem AMBIENT_AND DIFFUSE 4
Sem SPECULAR 4
€cm EMISSION 4
Srm SHININESS 1
Am s Ay Sm COLOR_INDEXES 3
Light Source Parameters (Light)
a.y AMBIENT 4
doi DIFFUSE 4
Scli SPECULAR 4
P POSITION 4
Sdli SPOT_DIRECTION 3
Srii SPOT_EXPONENT 1
Cril; SPOT_CUTOFF 1
ko CONSTANT_ATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATIC_ATTENUATION 1
Lighting Model Parameters (LightModel)
Acs LIGHT MODEL_AMBIENT 4
Ups LIGHT MODEL_LOCAL_VIEWER 1
tys LIGHT_MODEL_TWO_SIDE 1
Ces LIGHT_MODEL_COLOR_CONTROL 1

Table 2.8: Correspondence of lighting parameter symbols to names.
AMBIENT_AND_DIFFUSE is used to set a.;, and d., to the same value.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 51

the spotlight direction

de
dy
d,
is transformed to
dl, dg
d; =M, | dy
d., d,

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHT; (¢ is in the range 0 to n — 1, where n is the
implementation-dependent number of lights). If light ¢ is disabled, the ith
term in the lighting equation is effectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color,
so that they continuously track its component values. This behavior is
enabled and disabled by calling Enable or Disable with the symbolic value
COLOR_MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND BACK, indicating whether the front
material, back material, or both are affected by the current color. mode
is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT AND DIFFUSE and
specifies which material property or properties track the current color. If
mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of egpn,
acm, dem Or Sem, respectively, will track the current color. If mode is
AMBIENT _AND DIFFUSE, both a., and d., track the current color. The re-
placements made to material properties are permanent; the replaced values
remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that
particular value. When COLDR_MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial (FRONT, AMBIENT)

while COLORMATERIAL is enabled sets the front material a.,, to the value of
the current color.

Version 1.2.1 - April 1, 1999

CHAPTER 2. OPENGL OPERATION

Color#() =========* > gulrrent To subsequent vertex operations
olor

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

’Ko’ Front Ambient L 1, lighting equations

Material(FRONT AMBIENT) ~ =======ss=sssssfaaaeas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

- 'K: »| Front Diffuse [————> 7o lighting equations

Material(FRONT DIFFUSE) ~ ============sssfaansus »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

’Ko. Front Specular | . lighting equations

Material*(FRONT,SPECULAR) ~ ===========ssfecauss »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

’Ko. Front Emission s 7, jopsing equations

Material"(FRONT,EMISSION) == ======s==ssasaasaas »0 Color

"""" > State values flow along this path only when a command is issued

= State values flow continuously along this path

Figure 2.10. ColorMaterial operation. Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode. Only the front material properties are included in this
figure. The back material properties are treated identically, except that face
must be BACK or FRONT_AND_BACK.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 53

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the
front color should be computed, at least 8 bits to indicate which lights are
enabled, a five-valued variable indicating the current ColorMaterial mode,
a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all
lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT_AND_BACK and AMBIENT_AND DIFFUSE,
and both lighting and COLOR MATERIAL are disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA
material parameters. First, the RGBA diffuse and specular intensities of
light ¢ (dy; and s, respectively) determine color index diffuse and specular
light intensities, dj; and s;; from

dy; = (30)R(dch) + (59)G(dcl,) + (.ll)B(dcli)

and
s1i = ((30)R(sei) + (:59)G(scrs) + (\11)B(sc)-
R(x) indicates the R component of the color x and similarly for G(x) and
B(x).
Next, let

n

s =Y (att;)(spot;)(su)(f:)(n © hy)*rm

i=0

where att; and spot; are given by equations 2.4 and 2.5, respectively, and f;
and h; are given by equations 2.2 and 2.3, respectively. Let s’ = min{s, 1}.
Finally, let

n

d = (att;)(spot;)(di;)(n © Wpli)'

i=0

Then color index lighting produces a value ¢, given by

c=am+d(1—35)dn — amn) + 5 (sm — am).

The final color index is
¢ = min{e, s }.

Version 1.2.1 - April 1, 1999

54 CHAPTER 2. OPENGL OPERATION

The values a,, d, and s, are material properties described in Tables 2.7
and 2.8. Any ambient light intensities are incorporated into a,,. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of ¢, and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting.

The values an,, dp, and s, are set with Material using a pname of
COLOR_INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-
ditional state consists of three floating-point values. These values have no
effect on RGBA lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and
secondary colors are clamped to the range [0, 1].

For a color index, the index is first converted to fixed-point with an
unspecified number of bits to the right of the binary point; the nearest
fixed-point value is selected. Then, the bits to the right of the binary point
are left alone while the integer portion is masked (bitwise ANDed) with
2" — 1, where n is the number of bits in a color in the color index buffer
(buffers are discussed in chapter 4).

2.13.7 Flatshading

A primitive may be flatshaded, meaning that all vertices of the primitive are
assigned the same color index or the same primary and secondary colors.
These colors are the colors of the vertex that spawned the primitive. For a
point, these are the colors associated with the point. For a line segment, they
are the colors of the second (final) vertex of the segment. For a polygon, they
come from a selected vertex depending on how the polygon was generated.
Table 2.9 summarizes the possibilities.
Flatshading is controlled by

void ShadeModel(enum mode);

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode
is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, flatshading is turned on. ShadeModel thus requires one bit of state.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 55

Primitive type of polygon i ‘ Vertex ‘

single polygon (i = 1) 1
triangle strip 1+ 2
triangle fan v+ 2
independent triangle 3t
quad strip 2t +2
independent quad 47

Table 2.9: Polygon flatshading color selection. The colors used for flatshad-
ing the ith polygon generated by the indicated Begin/End type are derived
from the current color (if lighting is disabled) in effect when the indicated
vertex is specified. If lighting is enabled, the colors are produced by lighting
the indicated vertex. Vertices are numbered 1 through n, where n is the
number of vertices between the Begin/End pair.

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are
clipped. Those colors associated with a vertex that lies within the clip
volume are unaffected by clipping. If a primitive is clipped, however, the
colors assigned to vertices produced by clipping are clipped colors.

Let the colors assigned to the two vertices Py and P2 of an unclipped
edge be ¢; and co. The value of ¢ (section 2.11) for a clipped point P is
used to obtain the color associated with P as

c=tc; + (1 —t)ca.

(For a color index color, multiplying a color by a scalar means multiplying
the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar. Both primary and secondary colors are treated
in the same fashion.) Polygon clipping may create a clipped vertex along an
edge of the clip volume’s boundary. This situation is handled by noting that
polygon clipping proceeds by clipping against one plane of the clip volume’s
boundary at a time. Color clipping is done in the same way, so that clipped
points always occur at the intersection of polygon edges (possibly already
clipped) with the clip volume’s boundary.

Texture coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

Version 1.2.1 - April 1, 1999

56 CHAPTER 2. OPENGL OPERATION

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies in [0, 1]) is converted
(by rounding to nearest) to a fixed-point value with m bits. We assume
that the fixed-point representation used represents each value k/(2™ — 1),
where k € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the
corresponding component of the framebuffer. m must be at least 2 for A if
the framebuffer does not contain an A component, or if there is only 1 bit
of A in the framebuffer. A color index is converted (by rounding to nearest)
to a fixed-point value with at least as many bits as there are in the color
index portion of the framebuffer.

Because a number of the form £/(2™ —1) may not be represented exactly
as a limited-precision floating-point quantity, we place a further requirement
on the fixed-point conversion of RGBA components. Suppose that lighting
is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When
these conditions are satisfied, an RGBA component must convert to a value
that matches the component as specified in the Color command: if m is less
than the number of bits b with which the component was specified, then the
converted value must equal the most significant m bits of the specified value;
otherwise, the most significant b bits of the converted value must equal the
specified value.

Version 1.2.1 - April 1, 1999

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as
color and depth. Thus, rasterizing a primitive consists of two parts. The
first is to determine which squares of an integer grid in window coordinates
are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the
next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebuffer. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment’s associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations
also refer to a fragment’s center, which is offset by (1/2,1/2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not affected by the actual aspect ratio of the grid squares. Display of
non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simplifies antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled.
Points may be given differing diameters and line segments differing widths.
A point, line segment, or polygon may be antialiased.

57

Version 1.2.1 - April 1, 1999

CHAPTER 3. RASTERIZATION

Point
Rasterization

From
Primitive
Assembly

Line

Rasterization Texturing

Polygon
Rasterization

Color Sum

Pixel
DrawPixels —®1 Rectangle ‘

Rasterization

Bitmap
. Fo ’
Bitmap — 9% Rasterization ’

Fragments

Figure 3.1. Rasterization.

Version 1.2.1 - April 1, 1999

3.1. INVARIANCE 59

3.1 Invariance

Consider a primitive p’ obtained by translating a primitive p through an
offset (z,y) in window coordinates, where x and y are integers. As long
as neither p’ nor p is clipped, it must be the case that each fragment f’
produced from p’ is identical to a corresponding fragment f from p except
that the center of f' is offset by (z,y) from the center of f.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways de-
pending on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are
left unaffected, but the A value is multiplied by a floating-point value in
the range [0,1] that describes a fragment’s screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebuffer.

In color index mode, the least significant b bits (to the left of the binary
point) of the color index are used for antialiasing; b = min{4, m}, where
m is the number of bits in the color index portion of the framebuffer. The
antialiasing process sets these b bits based on the fragment’s coverage value:
the bits are set to zero for no coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed
are difficult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebuffer are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the
coverage value computed for a fragment of some primitive may depend on
the primitive’s relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment’s grid square.
Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity. The square is called a fragment square and has
lower left corner (x,y) and upper right corner (xz + 1,y + 1). We recognize

Version 1.2.1 - April 1, 1999

60 CHAPTER 3. RASTERIZATION

that this simple box filter may not produce the most favorable antialiasing
results, but it provides a simple, well-defined model.

A GL implementation may use other methods to perform antialiasing,
subject to the following conditions:

1. If f1 and f5 are two fragments, and the portion of f; covered by some
primitive is a subset of the corresponding portion of fy covered by
the primitive, then the coverage computed for f; must be less than or
equal to that computed for fs.

2. The coverage computation for a fragment f must be local: it may
depend only on f’s relationship to the boundary of the primitive being
rasterized. It may not depend on f’s ¢ and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-
ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies
along window edges.

In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeoff.

3.3 Points

The rasterization of points is controlled with
void PointSize(float size);

size specifies the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT_SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its x,, and y,
coordinates (recall that the subscripts indicate that these are and y window
coordinates) to integers. This (z,y) address, along with data derived from
the data associated with the vertex corresponding to the point, is sent as a
single fragment to the per-fragment stage of the GL.

Version 1.2.1 - April 1, 1999

3.3. POINTS 61

The effect of a point width other than 1.0 depends on the state of point
antialiasing. If antialiasing is disabled, the actual width is determined by
rounding the supplied width to the nearest integer, then clamping it to
the implementation-dependent maximum non-antialiased point width. This
implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer
value, and in any event no less than 1. If rounding the specified width results
in the value 0, then it is as if the value were 1. If the resulting width is odd,

then the point
1

(:9) = (L2w) + 55 Lyl + 3)

is computed from the vertex’s z,, and y,,, and a square grid of the odd width
centered at (z,y) defines the centers of the rasterized fragments (recall that
fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

1

L e + 1)

(x,y)z({xw+2 D)

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (z,y). See figure 3.2.

All fragments produced in rasterizing a non-antialiased point are as-
signed the same associated data, which are those of the vertex corresponding
to the point, with texture coordinates s, t, and r replaced with s/q, t/q, and
r/q, respectively. If ¢ is less than or equal to zero, the results are undefined.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point’s
(Zw,Yw) (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corre-
sponding fragment square (but see section 3.2). This value is saved and
used in the final step of rasterization (section 3.11). The data associated
with each fragment are otherwise the data associated with the point being
rasterized, with texture coordinates s, ¢, and r replaced with s/q, t/q, and
r/q, respectively. If g is less than or equal to zero, the results are undefined.

Not all widths need be supported when point antialiasing is on, but
the width 1.0 must be provided. If an unsupported width is requested, the
nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation
dependent. The range and gradations may be obtained using the query

Version 1.2.1 - April 1, 1999

62 CHAPTER 3. RASTERIZATION

1
1
-——Fr-=--F-=-=Fk-=--pF=-=--
1
1
1
——F-=--F -k - ===
1
1
1
' T
O 3
X
1
X
1
1
v
1
N
()]

B Rt SR X
05 15 25 35 45 55 05 15 25 35 45 55
Odd Width Even Width

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region. The dotted grid lines lie on half-integer coordinates.

mechanism described in Chapter 6. If, for instance, the width range is from
0.1 to 2.0 and the gradation width is 0.1, then the widths 0.1,0.2,...,1.9,2.0
are supported.

3.3.1 Point Rasterization State

The state required to control point rasterization consists of the floating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled
by several variables. Line width, which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of ras-
terized line segments. The default width is 1.0. Values less than or equal

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS

63

6.0

..

5.0

...........................

4.0

.......

3.0

: 7

5%
_

2.0

....... - [

1.0

............................

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the specified width.
The X marks indicate those fragment centers produced by rasterization. A
fragment’s computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

Version 1.2.1 - April 1, 1999

64 CHAPTER 3. RASTERIZATION

to 0.0 generate the error INVALID VALUE. Antialiasing is controlled with En-
able and Disable using the symbolic constant LINE_SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that
sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
z-major or y-major. x-major line segments have slope in the closed inter-
val [—1,1]; all other line segments are y-major (slope is determined by the
segment’s endpoints). We shall specify rasterization only for z-major seg-
ments except in cases where the modifications for y-major segments are not
self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with
center at window coordinates xy and ys, define a diamond-shaped region
that is the intersection of four half planes:

Ry ={(z,y) | |lz —z¢| + |y —ys| <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those
fragments f for which the segment intersects Ry, except if p, is contained
in Ry. See figure 3.4.

To avoid difficulties when an endpoint lies on a boundary of Ry we (in
principle) perturb the supplied endpoints by a tiny amount. Let p, and
pp have window coordinates (z4,y,) and (zp,yp), respectively. Obtain the
perturbed endpoints p/, given by (4, ys) — (€, €%) and p}, given by (zp, yp) —
(¢,€%). Rasterizing the line segment starting at p, and ending at p, produces
those fragments f for which the segment starting at p/, and ending on pj
intersects Ry, except if pj is contained in Ry. € is chosen to be so small
that rasterizing the line segment produces the same fragments when § is
substituted for € for any 0 < § <.

When p, and pj lie on fragment centers, this characterization of frag-
ments reduces to Bresenham’s algorithm with one modification: lines pro-
duced in this description are “half-open,” meaning that the final fragment
(corresponding to pp) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only
once rather than twice (as would occur with Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may
be difficult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 65

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line
segment is shown. A diamond shaped region of height 1 is placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

1. The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either # or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ
from that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the
same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either z-major (both left-to-right or both right-to-left) or y-major
(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-
ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment
center be given by p, = (z4,y4) and let p, = (24, y,) and py = (zp,yp). Set

Version 1.2.1 - April 1, 1999

66 CHAPTER 3. RASTERIZATION

(pr — pa) : (pb — pa) .

t=
1Py — Pall®

(3.1)

(Note that ¢ =0 at p, and ¢t = 1 at py.) The value of an associated datum
f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, ¢, or r texture coordinate (the depth
value, window z, must be found using equation 3.3, below), is found as

(1 - t)fa/wa + tfb/wb
(1 — t)aa/wa + tab/wb

f= (3.2)
where f, and f3 are the data associated with the starting and ending end-
points of the segment, respectively; w, and wy are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. a, = ap = 1
for all data except texture coordinates, in which case o, = ¢q, and ap = qp
(gq and g, are the homogeneous texture coordinates at the starting and end-
ing endpoints of the segment; results are undefined if either of these is less
than or equal to 0). Note that linear interpolation would use

f= (1 - t)fa/aa + tfb/ab- (33)

The reason that this formula is incorrect (except for the depth value) is
that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to find the corresponding value when
interpolated in clip space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion effects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFFig. We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern);

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 67

defines a line stipple. pattern is an unsigned short integer. The line stipple is
taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is
used to modify the effective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1,256]. Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE_STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The
masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b= |s/r] mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced
otherwise. The bits of p are numbered with 0 being the least significant and
15 being the most significant. The initial value of s is zero; s is incremented
after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending
point). s is reset to 0 whenever a Begin occurs, and before every line
segment in a group of independent segments (as specified when Begin is
invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning
of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the sup-
plied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased line width. This implementation-
dependent value must be no less than the implementation-dependent max-
imum antialiased line width, rounded to the nearest integer value, and in
any event no less than 1. If rounding the specified width results in the value
0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized
by offsetting them in the minor direction (for an z-major line, the minor
direction is y, and for a y-major line, the minor direction is z) and replicating
fragments in the minor direction (see figure 3.5). Let w be the width rounded
to the nearest integer (if w = 0, then it is as if w = 1). If the line segment has
endpoints given by (zg,yo) and (z1,y1) in window coordinates, the segment
with endpoints (29, yo — (w—1)/2) and (21, y1 — (w—1)/2) is rasterized, but

Version 1.2.1 - April 1, 1999

68 CHAPTER 3. RASTERIZATION

width = 2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments
are shown. The heavy line segment is the one specified to be rasterized; the
light segment is the offset segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.

instead of a single fragment, a column of fragments of height w (a row of
fragments of length w for a y-major segment) is produced at each z (y for
y-major) location. The lowest fragment of this column is the fragment that
would be produced by rasterizing the segment of width 1 with the modified
coordinates. The whole column is not produced if the stipple bit for the
column’s z location is zero; otherwise, the whole column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. T'wo of the edges
are parallel to the specified line segment; each is at a distance of one-half the
current width from that segment: one above the segment and one below it.
The other two edges pass through the line endpoints and are perpendicular
to the direction of the specified line segment. Coverage values are computed
for each fragment by computing the area of the intersection of the rectangle
with the fragment square (see figure 3.6; see also section 3.2). Equation 3.2
is used to compute associated data values just as with non-antialiased lines;
equation 3.1 is used to find the value of ¢ for each fragment whose square
is intersected by the line segment’s rectangle. Not all widths need be sup-

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 69

Figure 3.6. The region used in rasterizing and finding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

ported for line segment antialiasing, but width 1.0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the
last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where “fragment” is replaced
with “rectangle.” Each rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating
whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or off. In addition, during rasterization, an integer stipple
counter must be maintained to implement line stippling. The initial value
of the line width is 1.0. The initial value of the line stipple is FFF Fy4 (a
stipple of all ones). The initial value of the line stipple repeat count is one.

Version 1.2.1 - April 1, 1999

70 CHAPTER 3. RASTERIZATION

The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-
lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is
controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON_SMOOTH. The analog
to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is
back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.7 of section 2.13.1 (including the
possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL_FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if
either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained
by taking the x and y window coordinates of the polygon’s vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-
tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either
side of a common edge (with identical endpoints) on which a fragment cen-
ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 71

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments
in a triangle. Define barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and ¢, each in the range [0, 1],
with a + b+ ¢ = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle’s boundary as

P = apg + bpy + cpe,

where p,, pp, and p. are the vertices of the triangle. a, b, and ¢ can be found
as
_ A(ppbpc) h— A(ppapc) _ A(ppapb)

A(papepc)’ A(papvpe)’ A(papope)’
where A(Ilmn) denotes the area in window coordinates of the triangle with
vertices [, m, and n.
Denote a datum at ps, pp, or p. as fa, fp, Or f¢, respectively. Then the

value f of a datum at a fragment produced by rasterizing a triangle is given
by

afa/wa + bfb/wb + Cfc/wc
aog/wge + bag fwp + coe fwe

f= (3.4)
where w,, wy and w, are the clip w coordinates of p,, pp, and p., respectively.
a, b, and ¢ are the barycentric coordinates of the fragment for which the data
are produced. a, = ap = a, = 1 except for texture s, ¢, and r coordinates,
for which a4 = qa, @ = @b, and a. = ¢, (if any of g, gp, or g are less
than or equal to zero, results are undefined). a, b, and ¢ must correspond
precisely to the exact coordinates of the center of the fragment. Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment’s center.

Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa/aa +bfb/ab +Cfc/ac;

this may yield acceptable results for color values (it must be used for depth
values), but will normally lead to unacceptable distortion effects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon’s vertices can be used
to obtain the value assigned to each fragment produced by the rasterization

Version 1.2.1 - April 1, 1999

72 CHAPTER 3. RASTERIZATION

algorithm. That is, it must be the case that at every fragment

£=> aifi
i=1

where n is the number of vertices in the polygon, f; is the value of the f at
vertex ¢; for each ¢ 0 < a; < 1 and > 7' ;a; = 1. The values of the a; may
differ from fragment to fragment, but at vertex ¢, a; = 0,7 # ¢ and a; = 1.

One algorithm that achieves the required behavior is to triangulate a
polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satisfies the restrictions (in this case,
the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple(ubyte *pattern);

pattern is a pointer to memory into which a 32 x 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given
in section 3.6.4 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format
were COLOR_INDEX. The unpacked values (before any conversion or arithmetic
would have been performed) form a stipple pattern of zeros and ones.

If z,, and y,, are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern (z,, mod 32,y,, mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON_STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment’s square. A coverage

Version 1.2.1 - April 1, 1999

3.5. POLYGONS

value is computed at each such fragment, and this value is saved to be applied
as described in section 3.11. An associated datum is assigned to a fragment
by integrating the datum’s value over the region of the intersection of the
fragment square with the polygon’s interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment’s center may be
used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not. The polygon point sampling rule defined in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,
respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the
beginning of the first rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to
the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
affect only the final rasterization of polygons: in particular, a polygon’s
vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-

tively, apply.

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon
may be offset by a single value that is computed for that polygon. The

Version 1.2.1 - April 1, 1999

73

74 CHAPTER 3. RASTERIZATION

function that determines this value is specified by calling
void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation dependent constant that relates to the usable resolution of
the depth buffer. The resulting values are summed to produce the polygon
offset value. Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m= () () &

where (24, Yw, 2w) is a point on the triangle. m may be approximated as

P | |02
0Ty | | OYw

m:max{ ,

} . (3.6)

If the polygon has more than three vertices, one or more values of m may be
used during rasterization. Each may take any value in the range [min,maz],
where min and max are the smallest and largest values obtained by evaluat-
ing Equation 3.5 or Equation 3.6 for the triangles formed by all three-vertex
combinations.

The minimum resolvable difference r is an implementation constant. It
is the smallest difference in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth buffer.
All pairs of fragments generated by the rasterization of two polygons with
otherwise identical vertices, but z,, values that differ by r, will have distinct
depth values.

The offset value o for a polygon is

o =m x factor + r % units. (3.7)

m is computed as described above, as a function of depth values in the range
[0,1], and o is applied to depth values in the same range.

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET LINE, and
POLYGON_OFFSET FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state val-
ues are enabled and disabled as argument values to the commands Enable
and Disable. If POLYGON_OFFSET_POINT is enabled, o is added to the depth
value of each fragment produced by the rasterization of a polygon in POINT
mode. Likewise, if POLYGON_OFFSET LINE or POLYGON OFFSET FILL is enabled, o

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 75

is added to the depth value of each fragment produced by the rasterization
of a polygon in LINE or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by
clamping after offset addition is performed (preferred), or by clamping the
vertex values used in the rasterization of the polygon.

3.5.6 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-
tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode
setting for each of front and back facing polygons, whether point, line, and
fill mode polygon offsets are enabled or disabled, and the factor and bias
values of the polygon offset equation. The initial stipple pattern is all ones;
initially stippling is disabled. The initial setting of polygon antialiasing is
disabled. The initial state for PolygonMode is FILL for both front and
back facing polygons. The initial polygon offset factor and bias values are
both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command (described in section 3.6.4).
Some of the parameters and operations governing the operation of Draw-
Pixels are shared by ReadPixels (used to obtain pixel values from the
framebuffer) and CopyPixels (used to copy pixels from one framebuffer
location to another); the discussion of ReadPixels and CopyPixels, how-
ever, is deferred until Chapter 4 after the framebuffer has been discussed
in detail. Nevertheless, we note in this section when parameters and state
pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in client mem-
ory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebuffer (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,
PixelTransfer, and PixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of

Version 1.2.1 - April 1, 1999

76 CHAPTER 3. RASTERIZATION

‘ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

UNPACK_SWAP BYTES | boolean FALSE TRUE /FALSE
UNPACK_LSB_FIRST | boolean FALSE TRUE /FALSE
UNPACK_ROW_LENGTH | integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP PIXELS | integer 0 [0, 00)
UNPACK_ALIGNMENT | integer 4 1,2/4,8
UNPACK_IMAGE HEIGHT | integer 0 [0, 00)
UNPACK_SKIP_IMAGES | integer 0 [0, 00)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPix-
els, TexImagelD, TexImage2D, and TexImage3D.

these commands is issued. This may differ from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param
is the value to set it to. Table 3.1 summarizes the pixel storage parameters,
their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a floating-point value may be
used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0.0 and TRUE otherwise, while if the
parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the
passed value is 0 and TRUE otherwise, while if the parameter is a floating-
point value, then the passed value is converted to floating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in
GL implementations which incorporate the optional imaging subset. The
imaging subset includes both new commands, and new enumerants allowed
as parameters to existing commands. If the subset is supported, all of these

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 7

calls and enumerants must be implemented as described later in the GL spec-
ification. If the subset is not supported, calling any of the new commands
generates the error INVALID OPERATION, and using any of the new enumerants
generates the error INVALID_ENUM.

The individual operations available only in the imaging subset are de-
scribed in section 3.6.3, except for blending features, which are described in
chapter 4. Imaging subset operations include:

1.

Color tables, including all commands and enumerants described in
subsections Color Table Specification, Alternate Color Table
Specification Commands, Color Table State and Proxy State,
Color Table Lookup, Post Convolution Color Table Lookup,
and Post Color Matrix Color Table Lookup, as well as the query
commands described in section 6.1.7.

. Convolution, including all commands and enumerants described in

subsections Convolution Filter Specification, Alternate Con-
volution Filter Specification Commands, and Convolution, as
well as the query commands described in section 6.1.8.

. Color matrix, including all commands and enumerants described in

subsections Color Matrix Specification and Color Matrix Trans-
formation, as well as the simple query commands described in sec-
tion 6.1.6.

. Histogram and minmax, including all commands and enumerants de-

scribed in subsections Histogram Table Specification, Histogram
State and Proxy State, Histogram, Minmax Table Specifica-
tion, and Minmax, as well as the query commands described in sec-
tion 6.1.9 and section 6.1.10.

. The subset of blending features described by Blend-

Equation, BlendColor, and the BlendFunc modes
CONSTANT_COLOR, ONE_MINUS_CONSTANT_COLOR, CONSTANT_ALPHA, and
ONE_MINUS_CONSTANT ALPHA. These are described separately in sec-
tion 4.1.6.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "ARB imaging". Querying EXTENSIONS is described in sec-
tion 6.1.11.

If the imaging subset is not supported, the related pixel transfer opera-
tions are not performed; pixels are passed unchanged to the next operation.

Version 1.2.1 - April 1, 1999

78 CHAPTER 3. RASTERIZATION

‘ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘
MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (—o0,00)
INDEX_OFFSET integer 0 (—00,00)
z_SCALE float 1.0 (—o0,00)
DEPTH_SCALE float 1.0 (—o0,00)
z_BIAS float 0.0 (—00,00)
DEPTH BIAS float 0.0 (—00,00)
POST_CONVOLUTION z_SCALE float 1.0 (—00,0)
POST_CONVOLUTION z_BIAS float 0.0 (—00,0)
POST_COLOR MATRIX z_SCALE | float 1.0 (—00,0)
POST_COLOR_MATRIX_ z_BIAS float 0.0 (—o0,00)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 3.6.4),
ReadPixels (section 4.3.2), and CopyPixels (section 4.3.3) at the time
when one of these commands is executed (which may differ from the time
the command is issued). Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters
that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist
as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.
The pixel map lookup tables are set with

void PixelMap{ui us f}v(enum map, sizei size, T values);

map is a symbolic map name, indicating the map to set, size indicates the
size of the map, and wvalues is a pointer to an array of size map values.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 79

Map Name H Address ‘ Value ‘ Init. Size ‘ Init. Value ‘
PIXEL MAP_I_TO_I color idx color idx 1 0.0
PIXEL_MAP_S_T0_S || stencil idx | stencil idx 1 0
PIXEL MAP_I_TOR || color idx R 1 0.0
PIXEL MAP_I_TOG || color idx G 1 0.0
PIXEL MAP_I_TOB || color idx B 1 0.0
PIXELMAP_I_TOA || color idx A 1 0.0
PIXEL_MAP R_TOR R R 1 0.0
PIXEL_MAP_G_T0_G G G 1 0.0
PIXEL_MAP B_TO_B B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 3.3: PixelMap parameters.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depend-
ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is specified. An entry giving a
color component value is converted according to table 2.6. An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The
various tables and their initial sizes and entries are summarized in table 3.3.
A table that takes an index as an address must have size = 2" or the error
INVALID_VALUE results. The maximum allowable size of each table is specified
by the implementation dependent value MAX_PIXEL MAP_TABLE, but must be at
least 32 (a single maximum applies to all tables). The error INVALID_VALUE
is generated if a size larger than the implemented maximum, or less than
one, is given to PixelMap.

Color Table Specification

Color lookup tables are specified with

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be one of the regular color table names listed in table 3.4 to
define the table. A prozy table name is a special case discussed later in

Version 1.2.1 - April 1, 1999

80 CHAPTER 3. RASTERIZATION

Table Name H Type ‘

COLOR_TABLE regular
POST_CONVOLUTION_COLOR_TABLE
POST_COLOR_MATRIX_COLOR_TABLE
PROXY_COLOR_-TABLE proxy
PROXY_POST_CONVOLUTION_COLOR_TABLE
PROXY_POST_COLOR_MATRIX_COLOR_TABLE

Table 3.4: Color table names. Regular tables have associated image data.
Proxy tables have no image data, and are used only to determine if an image
can be loaded into the corresponding regular table.

this section. width, format, type, and datae specify an image in memory with
the same meaning and allowed values as the corresponding arguments to
DrawPixels (see section 3.6.4), with height taken to be 1. The maximum
allowable width of a table is implementation-dependent, but must be at least
32. The formats COLOR_INDEX, DEPTH_COMPONENT, and STENCIL_INDEX and the
type BITMAP are not allowed.

The specified image is taken from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the
four COLOR_TABLE_SCALE parameters, biased by the four COLOR_TABLE_BIAS pa-
rameters, and clamped to [0,1]. These parameters are set by calling Col-
orTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format specified by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The color lookup table is redefined to have width entries, each with the
specified internal format. The table is formed with indices 0 through width—
1. Table location i is specified by the ith image pixel, counting from zero.

The error INVALID VALUE is generated if wedth is not zero or a non-negative
power of two. The error TABLE_TO0_LARGE is generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target,
enum pname, T params);

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 81

target must be a regular color table name. pname is one of COLOR_TABLE_SCALE
or COLOR_TABLEBIAS. params points to an array of four values: red, green,
blue, and alpha, in that order.

A GL implementation may vary its allocation of internal component
resolution based on any ColorTable parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. Allocations must be invariant; the same allocation must be
made each time a color table is specified with the same parameter values.
These allocation rules also apply to proxy color tables, which are described
later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the
framebuffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enum target, enum internalformat,
int z, int y, sizei width);

defines a color table in exactly the manner of ColorTable, except that table
data are taken from the framebuffer, rather than from client memory. target
must be a regular color table name. z, y, and width correspond precisely to
the corresponding arguments of CopyPixels (refer to section 4.3.3); they
specify the image’s width and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly
as if these arguments were passed to CopyPixels with argument type set
to COLOR and height set to 1, stopping after the final expansion to RGBA.
Subsequent processing is identical to that described for ColorTable, be-
ginning with scaling by COLOR_TABLE_SCALE. Parameters target, internalfor-
mat and width are specified using the same values, with the same meanings,
as the equivalent arguments of ColorTable. format is taken to be RGBA.
Two additional commands,

void ColorSubTable(enum target, sizei start,
sizei count, enum format, enum type, void *data);

void CopyColorSubTable(enum target, sizei start,
int z, int y, sizei count);

respecify only a portion of an existing color table. No change is made to the
internalformat or width parameters of the specified color table, nor is any

Version 1.2.1 - April 1, 1999

82 CHAPTER 3. RASTERIZATION

change made to table entries outside the specified portion. target must be a
regular color table name.

ColorSubTable arguments format, type, and data match the corre-
sponding arguments to ColorTable, meaning that they are specified using
the same values, and have the same meanings. Likewise, CopyColorSub-
Table arguments z, y, and count match the z, y, and width arguments of
CopyColorTable. Both of the ColorSubTable commands interpret and
process pixel groups in exactly the manner of their ColorTable counter-
parts, except that the assignment of R, G, B, and A pixel group values to
the color table components is controlled by the internalformat of the table,
not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSub-
Table specify a subregion of the color table starting at index start and
ending at index start 4+ count — 1. Counting from zero, the nth pixel group
is assigned to the table entry with index count+n. The error INVALID_VALUE
is generated if start 4+ count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For
each of the three tables, there is an array of values. Each array has associated
with it a width, an integer describing the internal format of the table, six
integer values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the table, and two groups of four
floating-point numbers to store the table scale and bias. Each initial array
is null (zero width, internal format RGBA, with zero-sized components). The
initial value of the scale parameters is (1,1,1,1) and the initial value of the
bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color
lookup tables are maintained. Each proxy table includes width and internal
format state values, as well as state for the red, green, blue, alpha, lumi-
nance, and intensity component resolutions. Proxy tables do not include
image data, nor do they include scale and bias parameters. When Col-
orTable is executed with target specified as one of the proxy color table
names listed in table 3.4, the proxy state values of the table are recomputed
and updated. If the table is too large, no error is generated, but the proxy
format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corre-
sponding regular table name (COLOR_TABLE is the regular name corresponding
to PROXY_COLOR_TABLE, for example), the proxy state values are set exactly as

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES

though the regular table were being specified. Calling ColorTable with a
proxy target has no effect on the image or state of any actual color table.
There is no image associated with any of the proxy targets. They can-
not be used as color tables, and they must never be queried using GetCol-
orTable. The error INVALID ENUM is generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum target,
enum internalformat, sizei width, sizei height,
enum format, enum type, void *data);

target must be CONVOLUTION_2D. width, height, format, type, and data spec-
ify an image in memory with the same meaning and allowed values as
the corresponding parameters to DrawPixels. The formats COLOR_INDEX,
DEPTH_COMPONENT, and STENCIL_INDEX and the type BITMAP are not allowed.

The specified image is extracted from memory and processed just as
if DrawPixels were called, stopping after the final expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the four
two-dimensional CONVOLUTION FILTER_SCALE parameters and biased by the
four two-dimensional CONVOLUTION FILTER BIAS parameters. These parame-
ters are set by calling ConvolutionParameterfv as described below. No
clamping takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format specified by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The red, green, blue, alpha, luminance, and/or intensity components of
the pixels are stored in floating point, rather than integer format. They form
a two-dimensional image indexed with coordinates ¢, j such that ¢ increases
from left to right, starting at zero, and j increases from bottom to top, also
starting at zero. Image location i, j is specified by the Nth pixel, counting
from zero, where

N =i+ j x width

The error INVALID VALUE is generated if width or height is greater than
the maximum supported value. These values are queried with GetCon-
volutionParameteriv, setting target to CONVOLUTION 2D and pname to
MAX_CONVOLUTION_WIDTH or MAX_CONVOLUTION_HEIGHT, respectively.

Version 1.2.1 - April 1, 1999

84 CHAPTER 3. RASTERIZATION

The scale and bias parameters for a two-dimensional filter are specified
by calling

void ConvolutionParameter{if}v(enum target,
enum pname, T params);

with target CONVOLUTION 2D. pname is one of CONVOLUTION FILTER SCALE or
CONVOLUTION FILTER BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target,
enum internalformat, sizei width, enum format,
enum type, void *data);

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional
counterparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if Con-
volutionFilter2D were called with a height of 1, except that it is
scaled and biased by the one-dimensional CONVOLUTION FILTER_SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are specified ex-
actly as the two-dimensional parameters, except that ConvolutionParam-
eterfv is called with target CONVOLUTION_1D.

The image is formed with coordinates ¢ such that ¢ increases from left to
right, starting at zero. Image location i is specified by the ith pixel, counting
from zero.

The error INVALID.VALUE is generated if width is greater than the
maximum supported value. This value is queried using GetConvo-
lutionParameteriv, setting target to CONVOLUTION 1D and pname to
MAX_CONVOLUTION_WIDTH.

Special facilities are provided for the definition of two-dimensional sep-
arable filters — filters whose image can be represented as the product of
two one-dimensional images, rather than as full two-dimensional images. A
two-dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 85

target must be SEPARABLE 2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points
to a wedth pixel wide image of the specified format and type. column points
to a height pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if
ConvolutionFilter1D were called separately for each, except that
each image is scaled and biased by the two-dimensional separable
CONVOLUTION FILTER SCALE and CONVOLUTION FILTER BIAS parameters. These
parameters are specified exactly as the one-dimensional and two-dimensional
parameters, except that ConvolutionParameteriv is called with target
SEPARABLE_2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken
directly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int z, int y, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFil-
ter2D, except that image data are taken from the framebuffer, rather than
from client memory. target must be CONVOLUTION 2D. z, y, width, and height
correspond precisely to the corresponding arguments of CopyPixels (refer
to section 4.3.3); they specify the image’s width and height, and the lower left
(z,y) coordinates of the framebuffer region to be copied. The image is taken
from the framebuffer exactly as if these arguments were passed to CopyP-
ixels with argument type set to COLOR, stopping after the final expansion to
RGBA.

Subsequent processing is identical to that described for Convolution-
Filter2D, beginning with scaling by CONVOLUTION FILTER_SCALE. Parameters
target, internalformat, width, and height are specified using the same values,
with the same meanings, as the equivalent arguments of ConvolutionFil-
ter2D. format is taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int z, int y, sizei width);

Version 1.2.1 - April 1, 1999

86 CHAPTER 3. RASTERIZATION

defines a one-dimensional filter in exactly the manner of ConvolutionFil-
terlD, except that image data are taken from the framebuffer, rather than
from client memory. target must be CONVOLUTION_1D. z, y, and width cor-
respond precisely to the corresponding arguments of CopyPixels (refer to
section 4.3.3); they specify the image’s width and the lower left (z,y) co-
ordinates of the framebuffer region to be copied. The image is taken from
the framebuffer exactly as if these arguments were passed to CopyPixels
with argument type set to COLOR and height set to 1, stopping after the final
expansion to RGBA.

Subsequent processing is identical to that described for Convolution-
Filter1D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, and width are specified using the same values, with
the same meanings, as the equivalent arguments of ConvolutionFilter2D.
format is taken to be RGBA.

Convolution Filter State

The required state for convolution filters includes a one-dimensional image
array, two one-dimensional image arrays for the separable filter, and a two-
dimensional image array. The two-dimensional array has associated with
it a height. Each array has associated with it a width, an integer describ-
ing the internal format of the table, and six integer values describing the
resolutions of each of the red, green, blue, alpha, luminance, and intensity
components of the table. Each filter (one-dimensional, two-dimensional,
and two-dimensional separable) also has associated with it two groups of
four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal
format RGBA, with zero-sized components). The initial value of all scale
parameters is (1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described
in section 2.10.2 to apply to the top matrix on the color matrix stack. All
matrix operations have the same effect on the color matrix as they do on
the other matrices.

Histogram Table Specification

The histogram table is specified with

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 87

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be specified. target
value PROXY_HISTOGRAM is a special case discussed later in this section. width
specifies the number of entries in the histogram table, and internalformat
specifies the format of each table entry. The maximum allowable width of the
histogram table is implementation-dependent, but must be at least 32. sink
specifies whether pixel groups will be consumed by the histogram operation
(TRUE) or passed on to the minmax operation (FALSE).

If no error results from the execution of Histogram, the specified his-
togram table is redefined to have width entries, each with the specified inter-
nal format. The entries are indexed 0 through width — 1. Each component
in each entry is set to zero. The values in the previous histogram table, if
any, are lost.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of 2. The error TABLE_TO0_LARGE is generated if the specified histogram
table is too large for the implementation. The error INVALID ENUM is gener-
ated if internalformat is not one of the values accepted by the correspond-
ing parameter of TexImage2D, or is 1, 2, 3, 4, INTENSITY, INTENSITY4,
INTENSITY8, INTENSITY12, or INTENSITY16.

A GL implementation may vary its allocation of internal component
resolution based on any Histogram parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. In particular, allocations must be invariant; the same allocation
must be made each time a histogram is specified with the same parameter
values. These allocation rules also apply to the proxy histogram, which is
described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which
is associated a width, an integer describing the internal format of the his-
togram, five integer values describing the resolutions of each of the red,
green, blue, alpha, and luminance components of the table, and a flag in-
dicating whether or not pixel groups are consumed by the operation. The
initial array is null (zero width, internal format RGBA, with zero-sized com-
ponents). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy his-
togram table is maintained. It includes width, internal format, and red,

Version 1.2.1 - April 1, 1999

88 CHAPTER 3. RASTERIZATION

green, blue, alpha, and luminance component resolutions. The proxy table
does not include image data or the flag. When Histogram is executed
with target set to PROXY_HISTOGRAM, the proxy state values are recomputed
and updated. If the histogram array is too large, no error is generated, but
the proxy format, width, and component resolutions are set to zero. If the
histogram table would be accomodated by Histogram called with target
set to HISTOGRAM, the proxy state values are set exactly as though the ac-
tual histogram table were being specified. Calling Histogram with target
PROXY_HISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The
error INVALID _ENUM results if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. ¢nternalformat specifies the format of the table en-
tries. sink specifies whether pixel groups will be consumed by the minmax
operation (TRUE) or passed on to final conversion (FALSE).

The error INVALID ENUM is generated if internalformat is not one of the
values accepted by the corresponding parameter of TexImage2D, or is 1, 2,
3, 4, INTENSITY, INTENSITY4, INTENSITY8, INTENSITY12, or INTENSITY16. The
resulting table always has 2 entries, each with values corresponding only to
the components of the internal format.

The state necessary for minmax operation is a table containing two el-
ements (the first element stores the minimum values, the second stores the
maximum values), an integer describing the internal format of the table, and
a flag indicating whether or not pixel groups are consumed by the operation.
The initial state is a minimum table entry set to the maximum representable
value and a maximum table entry set to the minimum representable value.
Internal format is set to RGBA and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
figure 3.7. We describe the stages of this process in the order in which they
occur.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES

byte, short, int, or float pixel
data stream (index or component)

convert
to float
convert
L to RGB

scale shift
and bias and offset

index to RGBA index to index
lookup lookup

color table i
lookup ;

convolution

scale and bias

post » color table

color table
lookup

histogram

. "
convolution

lookup

minmax

color matrix
scale and bias

clamp final mask to
to [0,1] conversion (2” -1
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes
may be enabled or disabled. RGBA and color index pixel paths are shown;
depth and stencil pixel paths are not shown.

Version 1.2.1 - April 1, 1999

90 CHAPTER 3. RASTERIZATION

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel
rectangle to be drawn. data is a pointer to the data to be drawn. These
data are represented with one of seven GL data types, specified by type.
The correspondence between the twenty type token values and the GL data
types they indicate is given in table 3.5. If the GL is in color index mode
and format is not one of COLOR_INDEX, STENCIL_INDEX, or DEPTH_COMPONENT,
then the error INVALID_OPERATION occurs. If type is BITMAP and format is
not COLOR_INDEX or STENCIL_INDEX then the error INVALID ENUM occurs. Some
additional constraints on the combinations of format and type values that
are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (GL data types int
and uint), or floating point values (GL data type float). These elements
are grouped into sets of one, two, three, or four values, depending on the
format, to form a group. Table 3.6 summarizes the format of groups obtained
from memory; it also indicates those formats that yield indices and those
that yield components.

By default the values of each GL data type are interpreted as they would
be specified in the language of the client’s GL binding. If UNPACK_SWAP BYTES
is enabled, however, then the values are interpreted with the bit orderings
modified as per table 3.7. The modified bit orderings are defined only if the
GL data type ubyte has eight bits, and then for each specific GL data type
only if that type is represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the first element of the first group
of the first row pointed to by the pointer passed to DrawPixels. If the
value of UNPACK ROW_LENGTH is not positive, then the number of groups in
a row is width; otherwise the number of groups is UNPACK ROW_LENGTH. If p
indicates the location in memory of the first element of the first row, then
the first element of the Nth row is indicated by

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 91

type Parameter Corresponding Special
Token Name GL Data Type | Interpretation

UNSIGNED BYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
FLOAT float No
UNSIGNED BYTE 3_3_2 ubyte Yes
UNSIGNED BYTE_2_3_3_REV ubyte Yes
UNSIGNED_SHORT 5.6_5 ushort Yes
UNSIGNED_SHORT_5_6_5_REV ushort Yes
UNSIGNED_SHORT 4.4 4 4 ushort Yes
UNSIGNED_SHORT 4.4 4 4 REV ushort Yes
UNSIGNED SHORT 5551 ushort Yes
UNSIGNED_SHORT_1.5_5_5_REV ushort Yes
UNSIGNED_INT 8_.8.8_8 uint Yes
UNSIGNED_INT_8_8_8_8_REV uint Yes
UNSIGNED_INT_10.10_.10_2 uint Yes
UNSIGNED_INT 2_10_10_10_REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the
corresponding GL data types. Refer to table 2.2 for definitions of GL data
types. Special interpretations are described near the end of section 3.6.4.

Version 1.2.1 - April 1, 1999

92 CHAPTER 3. RASTERIZATION

Format Name H Element Meaning and Order ‘ Target Buffer ‘

COLOR_INDEX Color Index Color
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
RED R Color

GREEN G Color
BLUE B Color
ALPHA A Color

RGB R, G, B Color

RGBA R, G, B, A Color

BGR B, G, R Color

BGRA B,G,R, A Color
LUMINANCE Luminance Color
LUMINANCE_ALPHA Luminance, A Color

Table 3.6: DrawPixels and ReadPixels formats. The second column gives
a description of and the number and order of elements in a group. Unless
specified as an index, formats yield components.

Element Size | Default Bit Ordering | Modified Bit Ordering
8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements when UNPACK_SWAP BYTES is
enabled. These reorderings are defined only when GL data type ubyte has
8 bits, and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the
least significant.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 93

ROW_LENGTH

SKIP_PIXELS

SKIP_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated parameter
names are prefixed by UNPACK_ for DrawPixels and by PACK._ for ReadPix-
els.

p+ Nk (3.8)

where N is the row number (counting from zero) and k is defined as

nl s> a,
k= { a/s[snl/a] s<a (3:9)

where n is the number of elements in a group, [is the number of groups
in the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of
GL ubytes, of an element. If the number of bits per element is not 1, 2, 4,
or 8 times the number of bits in a GL ubyte, then k£ = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-
eters: UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP PIXELS. Before
obtaining the first group from memory, the pointer supplied to DrawPixels
is effectively advanced by (UNPACK_SKIP _PIXELS)n + (UNPACK_SKIP ROWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory
(without advancing the pointer), after which the pointer is advanced by &
elements. height sets of width groups of values are obtained this way. See
figure 3.8.

Calling DrawPixels with a type of UNSIGNED BYTE 3 3.2,
UNSIGNED BYTE_2_3_3_REV, UNSIGNED_SHORT_5_6_5, UNSIGNED_SHORT_ 5_6_5_REV,

Version 1.2.1 - April 1, 1999

94 CHAPTER 3. RASTERIZATION

type Parameter GL Data | Number of Matching
Token Name Type Components | Pixel Formats
UNSIGNED BYTE_3_3_2 ubyte 3 RGB
UNSIGNED BYTE 2_3_3_REV ubyte 3 RGB
UNSIGNED_SHORT_5_6_5 ushort 3 RGB
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB
UNSIGNED_SHORT 4.4 4 4 ushort 4 RGBA,BGRA
UNSIGNED_SHORT 4.4 4 4 REV ushort 4 RGBA,BGRA
UNSIGNED_SHORT 5.5.5_1 ushort 4 RGBA,BGRA
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA,BGRA
UNSIGNED_INT_ 8.8_8_8 uint 4 RGBA,BGRA
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA,BGRA
UNSIGNED_INT_10.10_10_2 uint 4 RGBA,BGRA
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

UNSIGNED_SHORT 4_4_4_4, UNSIGNED_SHORT 4 4_4_4 REV, UNSIGNED_SHORT 5.5_5_1,
UNSIGNED_SHORT_1_5_5_5_REV, UNSIGNED_INT_8_8_8_8, UNSIGNED_INT_8_8_8_8_REV,
UNSIGNED_INT_10.10_10_2, or UNSIGNED_INT_2_10_10_10_REV is a special case in
which all the components of each group are packed into a single unsigned
byte, unsigned short, or unsigned int, depending on the type. The number of
components per packed pixel is fixed by the type, and must match the num-
ber of components per group indicated by the format parameter, as listed in
table 3.8. The error INVALID_OPERATION is generated if a mismatch occurs.
This constraint also holds for all other functions that accept or return pixel
data using type and format parameters to define the type and format of that
data.

Bitfield locations of the first, second, third, and fourth components of
each packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each
bitfield is interpreted as an unsigned integer value. If the base GL type is
supported with more than the minimum precision (e.g. a 9-bit byte) the
packed components are right-justified in the pixel.

Components are normally packed with the first component in the most
significant bits of the bitfield, and successive component occupying progres-
sively less significant locations. Types whose token names end with REV
reverse the component packing order from least to most significant loca-
tions. In all cases, the most significant bit of each component is packed in

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 95

the most significant bit location of its location in the bitfield.

UNSIGNED BYTE_3_3_2:

7 6 5 4 3 2 1]

1st Component 2nd 3rd

UNSIGNED BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

‘ 3rd ‘ 2nd ‘ 1st Component ‘

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each com-
ponent.

Version 1.2.1 - April 1, 1999

96 CHAPTER 3. RASTERIZATION

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_SHORT_5_6_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1]

3rd 2nd 1st Component

UNSIGNED_SHORT 4.4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT 4_4_4_4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_SHORT_5.5.5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1]

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNED_SHORT_1_5_5_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.10: UNSIGNED_SHORT formats

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 97

UNSIGNED_INT_8_8_8_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_INT_8_8_8_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_10.10_10_2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNED_INT_2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.11: UNSIGNED_INT formats

Version 1.2.1 - April 1, 1999

98 CHAPTER 3. RASTERIZATION
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments

The assignment of component to fields in the packed pixel is as described
in table 3.12

Byte swapping, if enabled, is performed before the component are ex-
tracted from each pixel. The above discussions of row length and image
extraction are valid for packed pixels, if “group” is substituted for “compo-
nent” and the number of components per group is understood to be one.

Calling DrawPixels with a type of BITMAP is a special case in which the
data are a series of GL ubyte values. Each ubyte value specifies 8 1-bit ele-
ments with its 8 least-significant bits. The 8 single-bit elements are ordered
from most significant to least significant if the value of UNPACK LSB_FIRST is
FALSE; otherwise, the ordering is from least significant to most significant.
The values of bits other than the 8 least significant in each ubyte are not
significant.

The first element of the first row is the first bit (as defined above) of the
ubyte pointed to by the pointer passed to DrawPixels. The first element
of the second row is the first bit (again as defined above) of the ubyte at
location p + k, where k is computed as

=l

There is a mechanism for selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the first element from mem-
ory, the pointer supplied to DrawPixels is effectively advanced by
UNPACK_SKIP_ROWS * k ubytes. Then UNPACK_SKIP_PIXELS 1-bit elements are
ignored, and the subsequent width 1-bit elements are obtained, without ad-
vancing the ubyte pointer, after which the pointer is advanced by k ubytes.
height sets of width elements are obtained this way.

(3.10)

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 99

Conversion to floating-point

This step applies only to groups of components. It is not performed on in-
dices. Each element in a group is converted to a floating-point value accord-
ing to the appropriate formula in table 2.6 (section 2.13). For packed pixel
types, each element in the group is converted by computing ¢ / (2V — 1),
where ¢ is the unsigned integer value of the bitfield containing the element
and N is the number of bits in the bitfield.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a
group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE_ALPHA, then
each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the first original element into each of the first three
new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group
is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer opera-
tions are performed equivalently during the drawing, copying, and reading of
pixels, and during the specification of texture images (either from memory or
from the framebuffer), they are described separately in section 3.6.5. After
the processing described in that section is completed, groups are processed
as described in the following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index
to the left of the binary point by 2™ — 1, where n is the number of bits in an
index buffer. For RGBA components, each element is clamped to [0, 1]. The

Version 1.2.1 - April 1, 1999

100 CHAPTER 3. RASTERIZATION

resulting values are converted to fixed-point according to the rules given in
section 2.13.9 (Final Color Processing).

For a depth component, an element is first clamped to [0,1] and then
converted to fixed-point as if it were a window z value (see section 2.10.1,
Controlling the Viewport).

Stencil indices are masked by 2" — 1, where n is the number of bits in
the stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom(float z,, float 2y);

Let (xrp,yrp) be the current raster position (section 2.12). (If the current
raster position is invalid, then DrawPixels is ignored; pixel transfer opera-
tions do not update the histogram or minmax tables, and no fragments are
generated. However, the histogram and minmax tables are updated even if
the corresponding fragments are later rejected by the pixel ownership (sec-
tion 4.1.1) or scissor (section 4.1.2) tests.) If a particular group (index or
components) is the nth in a row and belongs to the mth row, consider the
region in window coordinates bounded by the rectangle with corners

(Trp + 22M, Yrp + 2ym) and (Trp + 22(n + 1), Ypp + 2y(m + 1))

(either z, or z, may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-
respondence with this particular group of elements.

A fragment arising from a group consisting of color data takes on the
color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position’s associated data. A frag-
ment arising from a depth component takes the component’s depth value;
the color and texture coordinates are given by those associated with the
current raster position. In both cases texture coordinates s, ¢, and r are re-
placed with s/q, t/q, and r/q, respectively. If ¢ is less than or equal to zero,
the results are undefined. Groups arising from DrawPixels with a format
of STENCIL_INDEX are treated specially and are described in section 4.3.1.

3.6.5 Pixel Transfer Operations
The GL defines four kinds of pixel groups:

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 101

1. RGBA component: Each group comprises four color components: red,
green, blue, and alpha.

2. Depth component: Each group comprises a single depth component.
3. Color index: Each group comprises a single color index.
4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of
certain kinds; if an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups.
Each component is multiplied by an appropriate signed scale factor:
RED_SCALE for an R component, GREEN_SCALE for a G component, BLUE_SCALE
for a B component, and ALPHA SCALE for an A component, or DEPTH SCALE
for a depth component. Then the result is added to the appropriate signed
bias: RED_BIAS, GREEN_BIAS, BLUE_BIAS, ALPHA BIAS, or DEPTH_BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the in-
dex is a floating-point value, it is converted to fixed-point, with an un-
specified number of bits to the right of the binary point and at least
[log,(MAX_PIXEL MAP_TABLE)] bits to the left of the binary point. Indices that
are already integers remain so; any fraction bits in the resulting fixed-point
value are zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if
MAP_COLOR is FALSE. First, each component is clamped to the range [0, 1].
There is a table associated with each of the R, G, B, and A component
elements: PIXEL MAP R_TOR for R, PIXEL MAP G_TOG for G, PIXEL MAP B_TOB
for B, and PIXEL MAP A T0O A for A. Each element is multiplied by an integer
one less than the size of the corresponding table, and, for each element, an

Version 1.2.1 - April 1, 1999

102 CHAPTER 3. RASTERIZATION

address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that
invokes the pixel transfer operation requires that RGBA component pixel
groups be generated, then a conversion is performed at this step. RGBA
component pixel groups are required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL_MAP_I_TOR,
PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TOB, and PIXEL_MAP_I_TO_A. Each of these ta-
bles must have 2" entries for some integer value of n (n may be different
for each table). For each table, the index is first rounded to the nearest
integer; the result is ANDed with 2" — 1, and the resulting value used as an
address into the table. The indexed value becomes an R, G, B, or A value,
as appropriate. The group of four elements so obtained replaces the index,
changing the group’s type to RGBA component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXEL MAP_I_TO_I table (otherwise, the
index is not looked up). Again, the table must have 2" entries for some
integer n. The index is first rounded to the nearest integer; the result is
ANDed with 2™ — 1, and the resulting value used as an address into the
table. The value in the table replaces the index. The floating-point table
value is first rounded to a fixed-point value with unspecified precision. The
group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP_STENCIL is enabled,
then the index is looked up in the PIXEL MAP_S_TO_S table (otherwise, the
index is not looked up). The table must have 2™ entries for some integer n.
The integer index is ANDed with 2" — 1, and the resulting value used as an
address into the table. The integer value in the table replaces the index.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 103

Base Internal Format ‘ R ‘ G ‘ B ‘ A ‘

ALPHA A
LUMINANCE L; | L | Ly
LUMINANCE_ALPHA Ly | Ly | Ly | Ay
INTENSITY L | I | I; | I
RGB R: | Gy | B
RGBA R; | Gy | By | As

Table 3.13: Color table lookup. R;, G¢, B¢, A¢, L, and I; are color table
values that are assigned to pixel components R, G, B, and A depending on
the table format. When there is no assignment, the component value is left
unchanged by lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is
only done if COLOR_TABLE is enabled. If a zero-width table is enabled, no
lookup is performed.

The internal format of the table determines which components of the
group will be replaced (see table 3.13). The components to be replaced
are converted to indices by clamping to [0, 1], multiplying by an integer
one less than the width of the table, and rounding to the nearest integer.
Components are replaced by the table entry at the index.

The required state is one bit indicating whether color table lookup is
enabled or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D is
enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passed to TexImagelD, TexSubImagelD,
CopyTexImagelD, and CopyTexSubImagelD, and returned by Get-
TexImage (see section 6.1.4) with target TEXTURE_1D. If CONVOLUTION_2D
is enabled, the two-dimensional convolution filter is applied only to the
two-dimensional images passed to DrawPixels, CopyPixels, ReadPix-
els, TexImage2D, TexSubImage2D, CopyTexImage2D, CopyTex-
SubImage2D, and CopyTexSubImage3D, and returned by GetTexIm-
age with target TEXTURE_2D. If SEPARABLE_2D is enabled, and CONVOLUTION_2D
is disabled, the separable two-dimensional convolution filter is instead ap-

Version 1.2.1 - April 1, 1999

104 CHAPTER 3. RASTERIZATION

Base Filter Format ‘ R ‘ G ‘ B ‘ A ‘
ALPHA R, G By Agx Ay
LUMINANCE Ryx Ly | Ggx Ly | Bgx Ly | A
LUMINANCE_ALPHA RyxLy | Gogx Ly | Bgx Ly | Ay x Af
INTENSITY RoxIy | Goxly | Boxlp | Agx Iy
RGB R,xR; | Gox Gy | By By | A

RGBA RyxRy | GoxGy | Byx By | Ag x Af

Table 3.14: Computation of filtered color components depending on filter
image format. C % F' indicates the convolution of image component C' with
filter F'.

plied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components:
red, green, blue, and alpha, denoted in the equations below as R, G, Bs,
and A;. Filter pixels may be stored in one of five formats, with 1, 2, 3, or
4 components. These components are denoted as Ry, Gy, By, Ay, Ly, and
I; in the equations below. The result of the convolution operation is the
4-tuple R,G,B,A. Depending on the internal format of the filter, individual
color components of each source image pixel are convolved with one filter
component, or are passed unmodified. The rules for this are defined in
table 3.14.

The convolution operation is defined differently for each of the three
convolution filters. The variables Wy and H refer to the dimensions of the
convolution filter. The variables W, and H; refer to the dimensions of the
source pixel image.

The convolution equations are defined as follows, where C' refers to the
filtered result, C'; refers to the one- or two-dimensional convolution filter,
and Cpoy and Cepiymn refer to the two one-dimensional filters comprising
the two-dimensional separable filter. C} depends on the source image color
Cs and the convolution border mode as described below. C,, the filtered
output image, depends on all of these variables and is described separately
for each border mode. The pixel indexing nomenclature is decribed in the
Convolution Filter Specification subsection of section 3.6.3.

One-dimensional filter:

Wi—1
Cli'] = Z Cili" + n] * C¢[n]
n=0

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 105

Two-dimensional filter:

Wi—1Hp—1
Cli',j'] = Z Z Cyli" + n, j' + m] x Cg[n,m]
n=0 m=0

Two-dimensional separable filter:

W;—1H;1
Cli', '] = Z Z CLli" +n,j" + m] * Crow[n] * Ceotumn|[m]

n=0 m=0

If Wy of a one-dimensional filter is zero, then C[i] is always set to zero.
Likewise, if either W¢ or Hy of a two-dimensional filter is zero, then C[i, j]
is always set to zero.

The convolution border mode for a specific convolution filter is specified
by calling

void ConvolutionParameter{if}(enum target,
enum pname, T param);

where target is the name of the filter, pname is CONVOLUTION_BORDER_MODE,
and param is one of REDUCE, CONSTANT BORDER or REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE
are reduced by Wy — 1 and Hy — 1, respectively. If this reduction would
generate a resulting image with zero or negative width and/or height, the
output is simply null, with no error generated. The coordinates of the
image that results from a convolution with border mode REDUCE are zero
through Wy — Wy in width, and zero through Hs; — Hy in height. In cases
where errors can result from the specification of invalid image dimensions,
it is these resulting dimensions that are tested, not the dimensions of the
source image. (A specific example is TexImagelD and TexImage2D,
which specify constraints for image dimensions. Even if TexImagelD or
TexImage2D is called with a null pixel pointer, the dimensions of the
resulting texture image are those that would result from the convolution of
the specified image).

When the border mode is REDUCE, C} equals the source image color Cj
and C, equals the filtered result C.

For the remaining border modes, define Cy, = |W¢/2]| and Cp, = [Hy/2].
The coordinates (Cy,, Cp,) define the center of the convolution filter.

Version 1.2.1 - April 1, 1999

106 CHAPTER 3. RASTERIZATION

Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT BORDER, the output image has
the same dimensions as the source image. The result of the convolution is
the same as if the source image were surrounded by pixels with the same
color as the current convolution border color. Whenever the convolution fil-
ter extends beyond one of the edges of the source image, the constant-color
border pixels are used as input to the filter. The current convolution border
color is set by calling ConvolutionParameterfv or ConvolutionParam-
eteriv with pname set to CONVOLUTION BORDER COLOR and params containing
four values that comprise the RGBA color to be used as the image border.
Integer color components are interpreted linearly such that the most positive
integer maps to 1.0, and the most negative integer maps to -1.0. Floating
point color components are not clamped when they are specified.
For a one-dimensional filter, the result color is defined by

Crli] = Cli — Cy]
where C[i'] is computed using the following equation for C’[¢']:

v [G, 0< i < Wy
Cilil = { C., otherwise

and C, is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result
color is defined by

Cr[la]] = C[l - Cw,j - Ch]

where C[i’, j'] is computed using the following equation for C.[i’, j']:

Cl[il]I] _ Cs[ilajl]) OSZI <'Wsa0§jl <Hs
se Ce, otherwise

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE BORDER also produces an output
image with the same dimensions as the source image. The behavior of
this mode is identical to that of the CONSTANT_BORDER mode except for the
treatment of pixel locations where the convolution filter extends beyond the
edge of the source image. For these locations, it is as if the outermost one-
pixel border of the source image was replicated. Conceptually, each pixel in

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 107

the leftmost one-pixel column of the source image is replicated C, times to
provide additional image data along the left edge, each pixel in the rightmost
one-pixel column is replicated C,, times to provide additional image data
along the right edge, and each pixel value in the top and bottom one-pixel
rows is replicated to create C}, rows of image data along the top and bottom
edges. The pixel value at each corner is also replicated in order to provide
data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

C,i] = Cfi - Gy

where C[¢'] is computed using the following equation for C[']:

Ci[i"] = Cs[clamp(i’, Wy)]
and the clamping function clamp(val, maz) is defined as

0, val <0
clamp(val, mazx) = { wal, 0 < wal < maz
mazr — 1, wval >= mazx

For a two-dimensional or two-dimensional separable filter, the result
color is defined by

Cr[iaj] = C[l - Cwaj - Ch]

where C[i, j'] is computed using the following equation for C.[i’, j']:

C.li',j'] = Cs[clamp(i’, W), clamp(j', Hy)]

After convolution, each component of the resulting image is scaled by
the corresponding PixelTransfer parameters: POST_CONVOLUTION RED _SCALE
for an R component, POST_CONVOLUTION GREEN_SCALE for a G com-
ponent, POST_CONVOLUTIONBLUE.SCALE for a B component, and

POST_CONVOLUTION_ALPHA SCALE for an A component. The result
is added to the corresponding bias: POST_CONVOLUTION RED_BIAS,
POST_CONVOLUTION GREEN BIAS, POST_CONVOLUTION BLUE BIAS, or

POST_CONVOLUTION_ALPHA BIAS.

The required state is three bits indicating whether each of one-
dimensional, two-dimensional, or separable two-dimensional convolution is
enabled or disabled, an integer describing the current convolution border
mode, and four floating-point values specifying the convolution border color.
In the initial state, all convolution operations are disabled, the border mode
is REDUCE, and the border color is (0,0, 0,0).

Version 1.2.1 - April 1, 1999

108 CHAPTER 3. RASTERIZATION

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST_CONVOLUTION_COLOR_TABLE. The post convo-
lution table is defined by calling ColorTable with a target argument of
POST_CONVOLUTION_COLOR_TABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in section 3.6.5.

The required state is one bit indicating whether post convolution table
lookup is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST_COLOR MATRIX RED _SCALE
for an R component, POST_COLORMATRIX_GREEN_SCALE for a G com-
ponent, POST_COLORMATRIX BLUE.SCALE for a B component, and
POST_COLOR_MATRIX_ALPHA SCALE for an A component. The result is added to
a signed bias: POST_COLOR_MATRIX_RED BIAS, POST_COLOR MATRIX_GREEN BIAS,
POST_COLOR MATRIX BLUE BIAS, or POST_COLOR MATRIX_ALPHA BIAS. The result-
ing components replace each component of the original group.

That is, if M. is the color matrix, a subscript of s represents the scale
term for a component, and a subscript of b represents the bias term, then
the components

R

G

B

A

are transformed to

R Ry, 0 0 0 R Ry
G| |0 G 0 O G Gy
|~ lo o B ol|M|B|*]|B5
A 0 0 0 A, A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 109

with the symbolic constant POST_COLOR_MATRIX_COLOR_TABLE. The post color
matrix table is defined by calling ColorTable with a target argument of
POST_COLOR_MATRIX_COLOR_TABLE. In all other respects, operation is identical
to color table lookup, as defined in section 3.6.5.

The required state is one bit indicating whether post color matrix lookup
is enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant HISTOGRAM.

If the width of the table is non-zero, then indices R;, G;, B;, and A;
are derived from the red, green, blue, and alpha components of each pixel
group (without modifying these components) by clamping each component
to [0, 1] , multiplying by one less than the width of the histogram table, and
rounding to the nearest integer. If the format of the HISTOGRAM table includes
red or luminance, the red or luminance component of histogram entry R;
is incremented by one. If the format of the HISTOGRAM table includes green,
the green component of histogram entry G; is incremented by one. The blue
and alpha components of histogram entries B; and A; are incremented in
the same way. If a histogram entry component is incremented beyond its
maximum value, its value becomes undefined; this is not an error.

If the Histogram sink parameter is FALSE, histogram operation has no
effect on the stream of pixel groups being processed. Otherwise, all RGBA
pixel groups are discarded immediately after the histogram operation is
completed. Because histogram precedes minmax, no minmax operation is
performed. No pixel fragments are generated, no change is made to texture
memory contents, and no pixel values are returned. However, texture object
state is modified whether or not pixel groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant MINMAX.

If the format of the minmax table includes red or luminance, the red
component value replaces the red or luminance value in the minimum table
element if and only if it is less than that component. Likewise, if the format
includes red or luminance and the red component of the group is greater

Version 1.2.1 - April 1, 1999

110 CHAPTER 3. RASTERIZATION

than the red or luminance value in the maximum element, the red group
component replaces the red or luminance maximum component. If the for-
mat of the table includes green, the green group component conditionally
replaces the green minimum and/or maximum if it is smaller or larger, re-
spectively. The blue and alpha group components are similarly tested and
replaced, if the table format includes blue and/or alpha. The internal type
of the minimum and maximum component values is floating point, with at
least the same representable range as a floating point number used to repre-
sent colors (section 2.1.1). There are no semantics defined for the treatment
of group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel
groups are discarded immediately after the minmax operation is completed.
No pixel fragments are generated, no change is made to texture memory
contents, and no pixel values are returned. However, texture object state is
modified whether or not pixel groups are discarded.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of

fragments to be produced. Each of these fragments has the same associated

data. These data are those associated with the current raster position.
Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xp,, £loat Yp,
float xp;, float yp;, ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap,
respectively. (Zpo, Yso) gives the floating-point and y values of the bitmap’s
origin. (zy;, yp;) gives the floating-point = and y increments that are added
to the raster position after the bitmap is rasterized. datae is a pointer to a
bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according
to the procedure given in section 3.6.4 for DrawPixels; it is as if the width
and height passed to that command were equal to w and h, respectively, the
type were BITMAP, and the format were COLOR_INDEX. The unpacked values
(before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones. See figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the cur-
rent raster position is invalid (the valid bit is reset), the bitmap is ignored.

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 111

5 5

nee

A
\j

Figure 3.9. A bitmap and its associated parameters. z;; and y;; are not
shown.

Otherwise, a rectangular array of fragments is constructed, with lower left
corner at
(zus yu) = ([2Zrp — Tools [Yrp — Ybo))

and upper right corner at (z; + w, y; + h) where w and h are the width and
height of the bitmap, respectively. Fragments in the array are produced if
the corresponding bit in the bitmap is 1 and not produced otherwise. The
associated data for each fragment are those associated with the current raster
position, with texture coordinates s, ¢, and r replaced with s/q, t/q, and r/q,
respectively. If ¢ is less than or equal to zero, the results are undefined. Once
the fragments have been produced, the current raster position is updated:

(xT‘pa yrp) «— (xrp + Zpi, Yrp + ybi)-

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a specified image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of

Version 1.2.1 - April 1, 1999

112 CHAPTER 3. RASTERIZATION

an image at the location indicated by a fragment’s (s,¢,r) coordinates to
modify the fragment’s primary RGBA color. Texturing does not affect the
secondary color.

Texturing is specified only for RGBA mode; its use in color index mode
is undefined.

The GL provides a means to specify the details of how texturing of a
primitive is effected. These details include specification of the image to be
texture mapped, the means by which the image is filtered when applied
to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

3.8.1 Texture Image Specification

The command

void TexImage3D(enunm target, int level,
int internalformat, sizei width, sizei height,
sizei depth, int border, enum format, enum type,
void *data);

is used to specify a three-dimensional texture image. target must be either
TEXTURE_3D, or PROXY_TEXTURE_3D in the special case discussed in section 3.8.7.
format, type, and data match the corresponding arguments to DrawPixels
(refer to section 3.6.4); they specify the format of the image data, the type
of those data, and a pointer to the image data in host memory. The formats
STENCIL_INDEX and DEPTH_COMPONENT are not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by the width and height parameters to TexIm-
age3D. The values of UNPACK ROW_LENGTH and UNPACK_ALIGNMENT control the
row-to-row spacing in these images in the same manner as DrawPixels. If
the value of the integer parameter UNPACK_IMAGE HEIGHT is not positive, then
the number of rows in each two-dimensional image is height; otherwise the
number of rows is UNPACK_IMAGE HEIGHT. Each two-dimensional image com-
prises an integral number of rows, and is exactly adjacent to its neighbor
images.

The mechanism for selecting a sub-volume of a three-dimensional image
relies on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 113

memory. Then depth two-dimensional images are processed, each having a
subimage extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping
just before final conversion. Each R, G, B, and A value so generated is
clamped to [0, 1].

Components are then selected from the resulting R, G, B, and A values
to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.15 summarizes the mapping of R, G, B, and
A values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the six base
internal format symbolic constants listed in table 3.15, or as one of the sized
internal format symbolic constants listed in table 3.16. internalformat may
(for backwards compatibility with the 1.0 version of the GL) also take on
the integer values 1, 2, 3, and 4, which are equivalent to symbolic constants
LUMINANCE, LUMINANCE ALPHA, RGB, and RGBA respectively. Specifying a value
for internalformat that is not one of the above values generates the error
INVALID VALUE.

The internal component resolution is the number of bits allocated to
each value in a texture image. If internalformat is specified as a base in-
ternal format, the GL stores the resulting texture with internal component
resolutions of its own choosing. If a sized internal format is specified, the
mapping of the R, G, B, and A values to texture components is equivalent
to the mapping of the corresponding base internal format’s components, as
specified in table 3.15, and the memory allocation per texture component is
assigned by the GL to match the allocations listed in table 3.16 as closely
as possible. (The definition of closely is left up to the implementation. Im-
plementations are not required to support more than one resolution for each
base internal format.)

A GL implementation may vary its allocation of internal component res-
olution based on any TexImage3D, TexImage2D (see below), or TexIm-
agelD (see below) parameter (except target), but the allocation must not be
a function of any other state, and cannot be changed once it is established.
Allocations must be invariant; the same allocation must be made each time a
texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.7.

The image itself (pointed to by data) is a sequence of groups of values.
The first group is the lower left back corner of the texture image. Subse-
quent groups fill out rows of width width from left to right; height rows are
stacked from bottom to top forming a single two-dimensional image slice;
and depth slices are stacked from back to front. When the final R, G, B,

Version 1.2.1 - April 1, 1999

114

CHAPTER 3. RASTERIZATION

Base Internal Format ‘ RGBA Values ‘ Internal Components ‘

ALPHA A A
LUMINANCE R L
LUMINANCE ALPHA R,A L,A
INTENSITY R I

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA pixel components to internal texture,
table, or filter components. See section 3.8.9 for a description of the texture
components R, G, B, A, L, and 1.

and A components have been computed for a group, they are assigned to
components of a tezel as described by table 3.15. Counting from zero, each
resulting Nth texel is assigned internal integer coordinates (3, j, k), where

i = (N mod width) — by

j = (LwidthJ mod height) — bs

N
k =
(Lwidth x height

| mod depth) — b

and b, is the specified border width. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a fixed-
point value with n bits, where n is the number of bits of storage allocated to
that component in the image array. We assume that the fixed-point repre-
sentation used represents each value k/(2" —1), where k € {0,1,...,2" —1},
as k (e.g. 1.0 is represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number.
Levels of detail are discussed below, under Mipmapping. The main texture
image has a level of detail number of 0. If a level-of-detail less than zero is
specified, the error INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The signifi-
cance of borders is described below. The border width affects the required
dimensions of the texture image: it must be the case that

ws = 2" + 2b, (3.11)

Version 1.2.1 - April 1, 1999

3.8. TEXTURING

115

Sized Base R G B A L I
Internal Format Internal Format | bits | bits | bits | bits | bits | bits
ALPHA4 ALPHA 4

ALPHAS8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16
LUMINANCE4 LUMINANCE 4
LUMINANCES LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4_ALPHA4 LUMINANCE_ALPHA 4 4
LUMINANCE6_ALPHA2 LUMINANCE_ALPHA 2 6
LUMINANCE8_ALPHA8 LUMINANCE_ALPHA 8 8
LUMINANCE12_ALPHA4 LUMINANCE_ALPHA 4 12
LUMINANCE12_ALPHA12 | LUMINANCE_ALPHA 12 12
LUMINANCE16_ALPHA16 | LUMINANCE_ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITYS8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3_G3_B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGBS RGB 5 5 5

RGB8 RGB 8 8 8

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5_A1 RGBA 5 5 5 1

RGBAS8 RGBA 8 8 8 8

RGB10_A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal for-
mats, and desired component resolutions for each sized internal format.

Version 1.2.1 - April 1, 1999

116 CHAPTER 3. RASTERIZATION

hs = 2™ + 2b, (3.12)

dy = 2! + 2b, (3.13)

for some integers n, m, and [, where ws, hs, and ds are the specified image
width, height, and depth. If any one of these relationships cannot be satisfied,
then the error INVALID VALUE is generated.

Currently, the maximum border width b; is 1. If b, is less than zero, or
greater than b, then the error INVALID VALUE is generated.

The maximum allowable width, height, or depth of a three-dimensional
texture image is an implementation dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 28 ~/°d +
2b; for image arrays of level-of-detail 0 through k, where k is the log base
2 of MAX_3D_TEXTURE SIZE, lod is the level-of-detail of the image array, and
b is the maximum border width. It may be zero for image arrays of any
level-of-detail greater than k. The error INVALID_VALUE is generated if the
specified image is too large to be stored under any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least 25714 4 2b, for image arrays of
level 0 through k, where k is the log base 2 of MAX_TEXTURE_SIZE.

Furthermore, an implementation may allow a one-, two-, or three-
dimensional image array of level 1 or greater to be created only if a complete’
set of image arrays consistent with the requested array can be supported.
Likewise, an implementation may allow an image array of level 0 to be cre-
ated only if that single image array can be supported.

The command

void TexImage2D(enunm target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must be ei-
ther TEXTURE_2D, or PROXY_TEXTURE 2D in the special case discussed in sec-
tion 3.8.7. The other parameters match the corresponding parameters of
TexImage3D.

!For this purpose the definition of “complete”, as provided under Mipmapping, is aug-
mented as follows: 1) it is as though TEXTURE BASE_LEVEL is 0 and TEXTURE_MAX_LEVEL
is 1000. 2) Excluding borders, the dimensions of the next lower numbered array are all
understood to be twice the corresponding dimensions of the specified array.

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 117

For the purposes of decoding the texture image, TexImage2D is equiv-
alent to calling TexImage3D with corresponding arguments and depth of
1, except that

e The depth of the image is always 1 regardless of the value of border.

e Convolution will be performed on the image (possibly changing its
width and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

e UNPACK_SKIP_IMAGES is ignored.
Finally, the command

void TexImagelD(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data);

is used to specify a one-dimensional texture image. target must be ei-
ther TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.8.7.)

For the purposes of decoding the texture image, TexImagelD is equiv-
alent to calling TexImage2D with corresponding arguments and height of
1, except that

e The height of the image is always 1 regardless of the value of border.

e Convolution will be performed on the image (possibly changing its
width) only if CONVOLUTION_1D is enabled.

An image with zero width, height (TexImage2D and TexImage3D
only), or depth (TexImage3D only) indicates the null texture. If the null
texture is specified for the level-of-detail specified by TEXTURE BASE_LEVEL, it
is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL’s internal memory. This copying effectively places the
decoded image inside a border of the maximum allowable width b; whether
or not a border has been specified (see figure 3.10) 2. If no border or a
border smaller than the maximum allowable width has been specified, then
the image is still stored as if it were surrounded by a border of the maximum
possible width. Any excess border (which surrounds the specified image,

Figure 3.10 needs to show a three-dimensional texture image.

Version 1.2.1 - April 1, 1999

118 CHAPTER 3. RASTERIZATION

including any border) is assigned unspecified values. A two-dimensional
texture has a border only at its left, right, top, and bottom ends, and a
one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the
texture array. A three-dimensional texture array has width, height, and
depth

Wt = 2n +2bt
hy = 2m + 2b;
dy = 2" + 2b,

where b; is the maximum allowable border width and n, m, and [are defined
in equations 3.11, 3.12, and 3.13. A two-dimensional texture array has depth
d; = 1, with height h; and width w; as above, and a one-dimensional texture
array has depth d; = 1, height h; = 1, and width w; as above.

An element (7,7,k) of the texture array is called a texel (for a two-
dimensional texture, k is irrelevant; for a one-dimensional texture, 7 and
k are both irrelevant). The texture value used in texturing a fragment is
determined by that fragment’s associated (s,t,r) coordinates, but may not
correspond to any actual texel. See figure 3.10.

If the data argument of TexImagelD, TexImage2D, or TexImage3D
is a null pointer (a zero-valued pointer in the C implementation), a one-,
two-, or three-dimensional texture array is created with the specified target,
level, internalformat, width, height, and depth, but with unspecified image
contents. In this case no pixel values are accessed in client memory, and
no pixel processing is performed. Errors are generated, however, exactly as
though the data pointer were valid.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be speci-
fied using image data taken directly from the framebuffer, and rectangular
subregions of existing texture images may be respecified.

The command

void CopyTexImage2D(enunm target, int level,
enum internalformat, int z, int y, sizei width,
sizei height, int border);

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 119

10

-1.0 u 9.0

0.0 s 1.0

Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. a and (3, values used in blending
adjacent texels to obtain a texture value, are also shown.

Version 1.2.1 - April 1, 1999

120 CHAPTER 3. RASTERIZATION

defines a two-dimensional texture array in exactly the manner of TexIm-
age2D, except that the image data are taken from the framebuffer rather
than from client memory. Currently, target must be TEXTURE 2D. z, y, width,
and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image’s width and height,
and the lower left (z,y) coordinates of the framebuffer region to be copied.
The image is taken from the framebuffer exactly as if these arguments were
passed to CopyPixels, with argument type set to COLOR, stopping after pixel
transfer processing is complete. Subsequent processing is identical to that
described for TexImage2D, beginning with clamping of the R, G, B, and
A values from the resulting pixel groups. Parameters level, internalformat,
and border are specified using the same values, with the same meanings, as
the equivalent arguments of TexImage2D, except that internalformat may
not be specified as 1, 2, 3, or 4. An invalid value specified for internalfor-
mat generates the error INVALID ENUM. The constraints on width, height, and
border are exactly those for the equivalent arguments of TexImage2D.
The command

void CopyTexImagelD(enunm target, int level,
enum internalformat, int z, int y, sizei width,
int border);

defines a one-dimensional texture array in exactly the manner of TexIm-
agelD, except that the image data are taken from the framebuffer, rather
than from client memory. Currently, target must be TEXTURE 1D. For the
purposes of decoding the texture image, CopyTexImagelD is equivalent
to calling CopyTexImage2D with corresponding arguments and height of
1, except that the height of the image is always 1, regardless of the value
of border. level, internalformat, and border are specified using the same val-
ues, with the same meanings, as the equivalent arguments of TexImagelD,
except that internalformat may not be specified as 1, 2, 3, or 4. The con-
straints on width and border are exactly those of the equivalent arguments
of TexImagelD.
Six additional commands,

void TexSublmage3D(enum target, int level, int zoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, void *data);

void TexSublmage2D(enum target, int level, int zoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 121

void TexSubImagelD(enum target, int level, int zoffset,
sizei width, enum format, enum type, void *data);
void CopyTexSubImage3D(enum target, int level,
int zoffset, int yoffset, int zoffset, int z, int y,
sizei width, sizei height);
void CopyTexSubImage2D(enum target, int level,
int zoffset, int yoffset, int z, int y, sizei width,
sizei height);
void CopyTexSubImagelD(enum target, int level,
int zoffset, int z, int y, sizei width);

respecify only a rectangular subregion of an existing texture array. No
change is made to the internalformat, width, height, depth, or border pa-
rameters of the specified texture array, nor is any change made to texel
values outside the specified subregion. Currently the target arguments of
TexSubImagelD and CopyTexSubImagelD must be TEXTURE_1D, the
target arguments of TexSubImage2D and CopyTexSubImage2D must
be TEXTURE 2D, and the target arguments of TexSubImage3D and Copy-
TexSubImage3D must be TEXTURE_3D. The level parameter of each com-
mand specifies the level of the texture array that is modified. If level is
less than zero or greater than the base 2 logarithm of the maximum texture
width or height, the error INVALID VALUE is generated.

TexSubImage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that
they are specified using the same values, and have the same meanings. Like-
wise, TexSubImage2D arguments width, height, format, type, and data
match the corresponding arguments to TexImage2D, and TexSubIm-
agelD arguments width, format, type, and data match the corresponding
arguments to TexImagelD.

CopyTexSubImage3D and CopyTexSublImage2D arguments z, y,
width, and hetght match the corresponding arguments to CopyTexIm-
age2D?. CopyTexSubImagelD arguments z, y, and width match the cor-
responding arguments to CopyTexImagelD. Each of the TexSubImage
commands interprets and processes pixel groups in exactly the manner of its
TexImage counterpart, except that the assignment of R, G, B, and A pixel
group values to the texture components is controlled by the internalformat
of the texture array, not by an argument to the command.

®Because the framebuffer is inherently two-dimensional, there is no CopyTexIm-
age3D command.

Version 1.2.1 - April 1, 1999

122 CHAPTER 3. RASTERIZATION

Arguments zoffset, yoffset, and zoffset of TexSubImage3D and Copy-
TexSubImage3D specify the lower left texel coordinates of a width-wide by
height-high by depth-deep rectangular subregion of the texture array. The
depth argument associated with CopyTexSubImage3D is always 1, be-
cause framebuffer memory is two-dimensional - only a portion of a single s, ¢
slice of a three-dimensional texture is replaced by CopyTexSubImage3D.

Negative values of zoffset, yoffset, and zoffset correspond to the coor-
dinates of border texels, addressed as in figure 3.10. Taking ws, hs, ds,
and b; to be the specified width, height, depth, and border width of the
texture array, (not the actual array dimensions wy, h¢, dy, and b;), and tak-
ing z, y, z, w, h, and d to be the zoffset, yoffset, zoffset, width, height, and
depth argument values, any of the following relationships generates the error
INVALID_VALUE:

r < —by
T+ w > ws — b
y < —bs
y+h>hs—bs
z < —by
z+d>ds— b

(Recall that ds, ws, and hg include twice the specified border width bs.)
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [7, j, k], where

i =2+ (n mod w)
n
j = — dh
j=y+ (] modh)
n

Lwidth x height

Arguments zoffset and yoffset of TexSubImage2D and CopyTex-
SubImage2D specify the lower left texel coordinates of a width-wide by
height-high rectangular subregion of the texture array. Negative values of
zoffset and yoffset correspond to the coordinates of border texels, addressed
as in figure 3.10. Taking ws, hs, and b; to be the specified width, height,
and border width of the texture array, (not the actual array dimensions wy,
ht, and by), and taking z, y, w, and h to be the zoffset, yoffset, width, and

k=z+(| mod d

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 123

height argument values, any of the following relationships generates the error
INVALID VALUE:
r < —by
T+ w > ws — by
y < —bs
y+h>h;—bs

(Recall that ws and hg include twice the specified border width bs.) Counting
from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [z, j], where

i =z + (n mod w)

j=y+ () mod b)

The =zoffset argument of TexSublImagelD and CopyTexSubIm-
agelD specifies the left texel coordinate of a width-wide subregion of the
texture array. Negative values of zoffset correspond to the coordinates of
border texels. Taking ws and b, to be the specified width and border width
of the texture array, and = and w to be the zoffset and width argument val-
ues, either of the following relationships generates the error INVALID VALUE:

r < —by
T+ w > ws — by
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i], where

i =2+ (n mod w)

3.8.3 Texture Parameters

Various parameters control how the texture array is treated when applied
to a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pname,
T param);

void TexParameter{if}v(enum target, enum pname,
T params);

Version 1.2.1 - April 1, 1999

124 CHAPTER 3. RASTERIZATION

Name Type ‘ Legal Values ‘
TEXTURE _WRAP_S integer | CLAMP, CLAMP_T0_EDGE, REPEAT
TEXTURE_WRAP_T integer | CLAMP, CLAMP_T0_EDGE, REPEAT
TEXTURE WRAP R integer | CLAMP, CLAMP_TO_EDGE, REPEAT

TEXTURE MIN FILTER | integer | NEAREST,
LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,
TEXTURE MAG FILTER | integer | NEAREST,
LINEAR
TEXTURE_BORDER_COLOR | 4 floats | any 4 values in [0, 1]
TEXTURE PRIORITY float | any value in [0, 1]
TEXTURE MIN_LOD float | any value
TEXTURE MAX_LOD float | any value
TEXTURE BASE LEVEL | integer | any non-negative integer
TEXTURE MAX_LEVEL integer | any non-negative integer

Table 3.17: Texture parameters and their values.

target is the target, either TEXTURE 1D, TEXTURE 2D, or TEXTURE_3D. pname is
a symbolic constant indicating the parameter to be set; the possible con-
stants and corresponding parameters are summarized in table 3.17. In the
first form of the command, param is a value to which to set a single-valued
parameter; in the second form of the command, params is an array of pa-
rameters whose type depends on the parameter being set. If the values for
TEXTURE _BORDER_COLOR are specified as integers, the conversion for signed in-
tegers from table 2.6 is applied to convert the values to floating-point. Each
of the four values set by TEXTURE BORDER_COLOR is clamped to lie in [0, 1].

3.8.4 Texture Wrap Modes

If TEXTURE WRAP_S, TEXTURE _WRAP_T, or TEXTURE_WRAP R is set to REPEAT, then
the GL ignores the integer part of s, ¢, or r coordinates, respectively, using
only the fractional part. (For a number f, the fractional part is f — | f],
regardless of the sign of f; recall that the floor function truncates towards
—00.) CLAMP causes s, t, or r coordinates to be clamped to the range [0, 1].

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 125

The initial state is for all of s, ¢, and r behavior to be that given by REPEAT.
CLAMP_TO_EDGE clamps texture coordinates at all mipmap levels such that
the texture filter never samples a border texel. The color returned when
clamping is derived only from texels at the edge of the texture image.
Texture coordinates are clamped to the range [min, maz]. The mini-
mum value is defined as

1
2N
where N is the size of the one-, two-, or three-dimensional texture image in
the direction of clamping. The maximum value is defined as

min =

mazr =1 — min

so that clamping is always symmetric about the [0,1] mapped range of a
texture coordinate.

3.8.5 Texture Minification

Applying a texture to a primitive implies a mapping from texture image
space to framebuffer image space. In general, this mapping involves a recon-
struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebuffer space, then a filtering, followed fi-
nally by a resampling of the filtered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one
of two simple filtering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebuffer space is deemed to
magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor p(z,y) and the level of detail pa-
rameter \(z,y), defined as

N (z,y) = logs[p(z, y)]

TEXTURE MAX_LOD, A’ > TEXTURE MAX_LOD

)\ = N, TEXTURE_MIN_LOD <)\’ < TEXTURE_MAX_LOD (3.14)
~ | TEXTUREMIN_LOD, M\ < TEXTURE_MIN_LOD '
undefined, TEXTURE MIN_LOD > TEXTURE_MAX_LOD

Version 1.2.1 - April 1, 1999

126 CHAPTER 3. RASTERIZATION

If A(z,y) is less than or equal to the constant ¢ (described below in
section 3.8.6) the texture is said to be magnified; if it is greater, the texture
is minified.

The initial values of TEXTURE MIN_LOD and TEXTURE_MAX_LOD are chosen so
as to never clamp the normal range of \. They may be respecified for a
specific texture by calling TexParameter|if].

Let s(z,y) be the function that associates an s texture coordinate with
each set of window coordinates (x,y) that lie within a primitive; define
t(z,y) and r(z,y) analogously. Let u(z,y) = 2"s(z,y), v(z,y) = 2™t(z,y),
and w(z,y) = 2'r(z,y), where n, m, and [are as defined by equations 3.11,
3.12, and 3.13 with ws, hs, and ds equal to the width, height, and depth
of the image array whose level is TEXTURE BASE_LEVEL. For a one-dimensional
texture, define v(z,y) = 0 and w(z,y) = 0; for a two-dimensional texture,
define w(z,y) = 0. For a polygon, p is given at a fragment with window
coordinates (z,y) by

= (32) + (3) + (3) W G) () + (5)
P= oz oz or) "\ \ 9y oy oy
(3.15)
where Ou/0z indicates the derivative of u with respect to window z, and

similarly for the other derivatives.
For a line, the formula is

ou ou 2 ov ov 2 ow ow 2
= —A —A —A —A —A —A
p \/(8:}0 T dy y) * (8:}0 T dy y) * (8:70 T dy y) /l’
(3.16)

where Az = z9 — 21 and Ay = y2 — y; with (z1,y1) and (x2,y2) being the
segment’s window coordinate endpoints and | = \/Az?2 + Ay2. For a point,
pixel rectangle, or bitmap, p = 1.

While it is generally agreed that equations 3.15 and 3.16 give the best
results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal p with a function f(z,y)
subject to these conditions:

1. f(z,y) is continuous and monotonically increasing in each of |Qu/dz|,

|0u/dyl, |0v/0x], |0v/By|, |[Ow/dz|, and |dw/Dy|

2. Let
ou }

ou
M, = Max{ |—

ay

)

ox

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 127

}

)
oy)~

Then max{my, m,, mqy} < f(2,y) < my + my + my,.

@
oz

2
Oy

)

My = max{

ow
oz

)

My :max{‘

When A indicates minification, the value assigned to TEXTURE MIN_FILTER
is used to determine how the texture value for a fragment is selected.
When TEXTURE MIN FILTER is NEAREST, the texel in the image array of level
TEXTURE BASE _LEVEL that is nearest (in Manhattan distance) to that specified
by (s,t,r) is obtained. This means the texel at location (i, j, k) becomes the
texture value, with ¢ given by

. U], s<1

(Recall that if TEXTURE WRAP_S is REPEAT, then 0 < s < 1.) Similarly, j is
found as

j:{LML t<1 (3.18)

and k is found as

w), r<l
k:{%lJ_l re 1 (3.19)

For a one-dimensional texture, 7 and k are irrelevant; the texel at location
7 becomes the texture value. For a two-dimensional texture, k is irrelevant;
the texel at location (¢,) becomes the texture value.

When TEXTUREMIN FILTER is LINEAR, a 2 X 2 X 2 cube of texels in the
image array of level TEXTURE BASE_LEVEL is selected. This cube is obtained by
first clamping texture coordinates as described above under Texture Wrap
Modes (if the wrap mode for a coordinate is CLAMP or CLAMP_TO_EDGE) and
computing

i |u —1/2| mod 2", TEXTURE WRAP_S is REPEAT
"7 [uw—1/2], otherwise

Version 1.2.1 - April 1, 1999

128 CHAPTER 3. RASTERIZATION

i { |v —1/2] mod 2™, TEXTURE WRAP_T is REPEAT
0 p—y

lv —1/2], otherwise
and
b — |w —1/2] mod 2!, TEXTURE WRAP R is REPEAT
"7 |w—1/2], otherwise
Then
i (o + 1) mod 2™, TEXTURE WRAP_S is REPEAT
7Y i+ 1, otherwise
.) (jo+1) mod 2™, TEXTURE_WRAP_T is REPEAT
= Jo + 1, otherwise
and
(ko + 1) mod 2!, TEXTURE WRAP R is REPEAT
ki = .
ko + 1, otherwise
Let

a = frac(u —1/2)
B = frac(v — 1/2)
v = frac(w — 1/2)

where frac(z) denotes the fractional part of .
For a three-dimensional texture, the texture value 7 is found as

T = (1=a)1—=B)1 —)Tigjoko + (1 = B)(L — V) Tirjoko
+ (1 = @)B(1 = ¥)Tigjrke + B(L = V) Tiyjiko
+ (1 = a@)(L = B)VTigjoks + (1 = B)YTiyjoky
+ (1 = @)BYTigjuky + BYTirjiks
where 7;;;, is the texel at location (4,4, k) in the three-dimensional texture
image.
For a two-dimensional texture,

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 129

T = (1 — a)(l — ﬂ)TinO + a(l — ,6)7’2'1]'0 + (1 — Oz)ﬂTinl + OéﬂTiU'l (3.20)

where 7;; is the texel at location (7, j) in the two-dimensional texture image.
And for a one-dimensional texture,

T=(1—-a)n, +an

where 7; is the texel at location i in the one-dimensional texture.

If any of the selected 71, 73, or 7; in the above equations refer to a
border texel with ¢ < —bs, 7 < —bs, k < —bg, © > ws — b, j > hs — by,
or j > ds — bs, then the border color given by the current setting of
TEXTURE_BORDER_COLOR is used instead of the unspecified value or values. The
RGBA values of the TEXTURE BORDER_COLOR are interpreted to match the tex-
ture’s internal format in a manner consistent with table 3.15.

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR_MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of a
mipmap. A mipmap is an ordered set of arrays representing the same image;
each array has a resolution lower than the previous one. If the image array of
level TEXTURE_BASE_LEVEL, excluding its border, has dimensions 2" x 2™ x 2,
then there are max{n,m,l} + 1 image arrays in the mipmap. Each array
subsequent to the array of level TEXTURE BASE_LEVEL has dimensions

o(i—1)xo(j—1)xo(k—1)

where the dimensions of the previous array are

o(i) x o(j) x o(k)

and

o(z) = { 2% x>0
1 =<0
until the last array is reached with dimension 1 x 1 x 1.

Each array in a mipmap is defined using TexImage3D, TexImage2D,
CopyTexImage2D, TexImagelD, or CopyTexImagelD; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array

Version 1.2.1 - April 1, 1999

130 CHAPTER 3. RASTERIZATION

through p = max{n,m,l} + TEXTURE BASE LEVEL with each unit increase
indicating an array of half the dimensions of the previous one as already
described. If texturing is enabled (and TEXTURE MIN FILTER is one that re-
quires a mipmap) at the time a primitive is rasterized and if the set of
arrays TEXTURE BASE_LEVEL through ¢ = min{p, TEXTURE MAX_LEVEL} is incom-
plete, then it is as if texture mapping were disabled. The set of arrays
TEXTURE BASE LEVEL through ¢ is incomplete if the internal formats of all
the mipmap arrays were not specified with the same symbolic constant, if
the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX_LEVEL < TEXTURE_BASE_LEVEL, or if TEXTURE_BASE_LEVEL > p.
Array levels k& where k < TEXTURE BASE LEVEL or k& > ¢ are insignificant.

The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL may be re-
specified for a specific texture by calling TexParameter[if]. The error
INVALID_VALUE is generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approxi-
mate the application of an appropriately filtered texture to a fragment. Let
¢ be the value of A at which the transition from minification to magnification
occurs (since this discussion pertains to minification, we are concerned only
with values of A where A > ¢). In the following equations, let

b = TEXTURE_BASE_LEVEL

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR MIPMAP NEAREST,
the dth mipmap array is selected, where

b, A<t
d={ [b+A+3i]-1, A>Lb+r<g+i (3.21)
q, A> 2 b+A>q+ 3
The rules for NEAREST or LINEAR filtering are then applied to the selected

array.
For mipmap filters NEAREST MIPMAP _LINEAR and LINEAR MIPMAP LINEAR, the
level d; and dy mipmap arrays are selected, where

_) 4% b+A=>q
di = { |b+ \|, otherwise (3.22)

_J 4 b+A=gq
d> = { dy + 1, otherwise (3.23)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 7 and 75. The
final texture value is then found as

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 131

7 = [1 — frac(A\)]m + frac(A) 7.

3.8.6 Texture Magnification

When A indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible val-
ues for TEXTURE_MAG _FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER (equations 3.17, 3.18, and 3.19 are used);
LINEAR behaves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.20 is
used). The level-of-detail TEXTURE BASE LEVEL texture array is always used
for magnification.

Finally, there is the choice of ¢, the minification vs. magnification switch-
over point. If the magnification filter is given by LINEAR and the minification
filter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then ¢ =
0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise ¢ = 0.

3.8.7 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First,
there are the three sets of mipmap arrays (one-, two-, and three-dimensional)
and their number. Each array has associated with it a width, height (two-
or three-dimensional only), and depth (three-dimensional only), a border
width, an integer describing the internal format of the image, and six inte-
ger values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the image. Each initial texture
array is null (zero width, height, and depth, zero border width, internal
format 1, with zero-sized components). Next, there are the two sets of
texture properties; each consists of the selected minification and magnifi-
cation filters, the wrap modes for s, ¢t (two- and three-dimensional only),
and r (three-dimensional only), the TEXTURE BORDER_COLOR, two integers de-
scribing the minimum and maximum level of detail, two integers describing
the base and maximum mipmap array, a boolean flag indicating whether
the texture is resident and the priority associated with each set of prop-
erties. The value of the resident flag is determined by the GL and may
change as a result of other GL operations. The flag may only be queried,
not set, by applications. See section 3.8.8). In the initial state, the value
assigned to TEXTURE MIN_FILTER is NEAREST MIPMAP LINEAR, and the value for
TEXTURE_MAG_FILTER is LINEAR. s, ¢, and r wrap modes are all set to REPEAT.

Version 1.2.1 - April 1, 1999

132 CHAPTER 3. RASTERIZATION

The values of TEXTURE_MIN_LOD and TEXTURE MAX_LOD are -1000 and 1000 re-
spectively. The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL are 0
and 1000 respectively. TEXTURE_PRIORITY is 1.0, and TEXTURE BORDER_COLOR is
(0,0,0,0). The initial value of TEXTURE RESIDENT is determined by the GL.

In addition to the one-, two-, and three-dimensional sets of image ar-
rays, partially instantiated one-, two-, and three-dimensional sets of proxy
image arrays are maintained. Each proxy array includes width, height (two-
and three-dimensional arrays only), depth (three-dimensional arrays only),
border width, and internal format state values, as well as state for the red,
green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties.
When TexImage3D is executed with target specified as PROXY_TEXTURE_3D,
the three-dimensional proxy state values of the specified level-of-detail are
recomputed and updated. If the image array would not be supported by
TexImage3D called with target set to TEXTURE_3D, no error is generated,
but the proxy width, height, depth, border width, and component resolu-
tions are set to zero. If the image array would be supported by such a call to
TexImage3D, the proxy state values are set exactly as though the actual
image array were being specified. No pixel data are transferred or processed
in either case.

One- and two-dimensional proxy arrays are operated on in the same way
when TexImagelD is executed with target specified as PROXY_TEXTURE_1D,
or TexImage2D is executed with target specified as PROXY_TEXTURE_2D.

There is no image associated with any of the proxy textures. Therefore
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, and PROXY_TEXTURE_3D cannot be used
as textures, and their images must never be queried using GetTexImage.
The error INVALID ENUM is generated if this is attempted. Likewise, there
is no nonlevel-related state associated with a proxy texture, and GetTex-
Parameteriv or GetTexParameterfv may not be called with a proxy
texture target. The error INVALID ENUM is generated if this is attempted.

3.8.8 Texture Objects

In addition to the default textures TEXTURE_1D, TEXTURE 2D, and TEXTURE_3D
named one-, two-, and three-dimensional texture objects can be created and
operated upon. The name space for texture objects is the unsigned integers,
with zero reserved by the GL.

A texture object is created by binding an unused name to TEXTURE_1D,
TEXTURE_2D, or TEXTURE_3D. The binding is effected by calling

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 133

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused
name. The resulting texture object is a new state vector, comprising all
the state values listed in section 3.8.7, set to the same initial values. If
the new texture object is bound to TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D
respectively, it is and remains a one-, two-, or three-dimensional texture
until it is deleted.

BindTexture may also be used to bind an existing texture object to
either TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D. The error INVALID OPERATION
is generated if an attempt is made to bind a texture object of different
dimensionality than the specified target. If the bind is successful no change
is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which
it is bound affect the bound object, and queries of the target to which it
is bound return state from the bound object. If texture mapping of the
dimensionality of the target to which a texture object is bound is enabled,
the state of the bound texture object directs the texturing operation.

In the initial state, TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D have one-,
two-, and three-dimensional texture state vectors associated with them. In
order that access to these initial textures not be lost, they are treated as
texture objects all of whose names are 0. The initial one-, two-, or three-
dimensional texture is therefore operated upon, queried, and applied as
TEXTURE_1D, TEXTURE 2D, or TEXTURE_3D respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

textures contains n names of texture objects to be deleted. After a texture
object is deleted, it has no contents or dimensionality, and its name is again
unused. If a texture that is currently bound to one of the targets TEXTURE_1D,
TEXTURE 2D, or TEXTURE_3D is deleted, it is as though BindTexture had been
executed with the same target and texture zero. Unused names in tertures
are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *textures);

Version 1.2.1 - April 1, 1999

134 CHAPTER 3. RASTERIZATION

returns n previously unused texture object names in textures. These names
are marked as used, for the purposes of GenTextures only, but they acquire
texture state and a dimensionality only when they are first bound, just as
if they were unused.

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher performance.
A texture object that is currently part of the working set is said to be
resident. The command

boolean AreTexturesResident(sizei n, uint *teztures,
boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident,
or if the implementation does not distinguish a working set. If at least one
of the texture objects named in textures is not resident, then FALSE is re-
turned, and the residence of each texture object is returned in residences.
Otherwise the contents of residences are not changed. If any of the names in
tertures are unused or are zero, FALSE is returned, the error INVALID_VALUE is
generated, and the contents of residences are indeterminate. The residence
status of a single bound texture object can also be queried by calling Get-
TexParameteriv or GetTexParameterfv with target set to the target
to which the texture object is bound, and pname set to TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is cur-
rently resident, not whether it could not be made resident. An implemen-
tation may choose to make a texture object resident only on first use, for
example. The client may guide the GL implementation in determining which
texture objects should be resident by specifying a priority for each texture
object. The command

void PrioritizeTextures(sizei n, uint *teztures,
clampf *priorities);

sets the priorities of the n texture objects named in textures to the values
in priorities. Each priority value is clamped to the range [0,1] before it is
assigned. Zero indicates the lowest priority, with the least likelihood of being
resident. One indicates the highest priority, with the greatest likelihood of
being resident. The priority of a single bound texture object may also be
changed by calling TexParameteri, TexParameterf, TexParameteriv,
or TexParameterfv with target set to the target to which the texture
object is bound, pname set to TEXTUREPRIORITY, and param or params

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 135

specifying the new priority value (which is clamped to the range [0,1] before
being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

3.8.9 Texture Environments and Texture Functions

The command

void TexEnv{if}(enum target, enum pname, T param);
void TexEnv{if}v(enum target, enum pname, T params);

sets parameters of the texture environment that specifies how texture values
are interpreted when texturing a fragment. target must currently be the
symbolic constant TEXTURE ENV. pname is a symbolic constant indicating the
parameter to be set. In the first form of the command, param is a value
to which to set a single-valued parameter; in the second form, params is a
pointer to an array of parameters: either a single symbolic constant or a
value or group of values to which the parameter should be set. The pos-
sible environment parameters are TEXTURE_ENV_MODE and TEXTURE_ENV_COLOR.
TEXTURE ENV_MODE may be set to one of REPLACE, MODULATE, DECAL, or BLEND;
TEXTURE ENV_COLOR is set to an RGBA color by providing four single-precision
floating-point values in the range [0, 1] (values outside this range are clamped
to it). If integers are provided for TEXTURE ENV_COLOR, then they are converted
to floating-point as specified in table 2.6 for signed integers.

The value of TEXTURE ENV_MODE specifies a texture function. The result
of this function depends on the fragment and the texture array value. The
precise form of the function depends on the base internal formats of the
texture arrays that were last specified. In the following two tables, R, G,
By, and Ay are the primary color components of the incoming fragment;
Ry, Gy, By, Ay, Ly, and I; are the filtered texture values; R., G, B¢, and A,
are the texture environment color values; and R,, G, B,, and A, are the
primary color components computed by the texture function. All of these
color values are in the range [0,1]. The REPLACE and MODULATE texture func-
tions are specified in table 3.18, and the DECAL and BLEND texture functions
are specified in table 3.19.

The state required for the current texture environment consists of the
four-valued integer indicating the texture function and four floating-point
TEXTURE ENV_COLOR values. In the initial state, the texture function is given
by MODULATE and TEXTURE ENV_COLOR is (0,0, 0,0).

Version 1.2.1 - April 1, 1999

136

CHAPTER 3. RASTERIZATION

Base REPLACE MODULATE
Internal Format | Texture Function | Texture Function
ALPHA R, = Rf R, = Rf

Gy, =Gy Gy, =Gy

B, = By B, = By
A, = A Ay = ApAy
LUMINANCE R, =1L; R, =R;L
(OI‘ 1) Gy, =L Gy, = Gth
B, =1L; B, = ByLy

A, = Ay A, = Af
LUMINANCE_ALPHA R, =1L; Ry = RyL;
(OI' 2) G, =Ly G, = Gth
B, =1L; B, = ByL;
A, = A Ay = ApAy

INTENSITY R, =1, R, = Ryl;
G,=1; Gy, =Grly

B, =1, B, = Byl

A, =1; A, = Asly
RGB R, = R; R, = Rth
(OI' 3) Gy, = Gy G, = GfGt
B, =5B; B, = ByB;

Ay, = Ag Ay = Ag
RGBA R, =R; R, = Rth
(OI‘ 4) G, = Gy G, = GfGt
B, =5B; B, = By By
A, = A; A, =AfA;

Table 3.18: Replace and modulate texture functions.

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 137

Base DECAL BLEND
Internal Format Texture Function Texture Function
ALPHA undefined R, = Ry
Gy, =Gy
B, = By
A, = Af Ay
LUMINANCE undefined Ry, = Ry(1 — L¢) + R.Ly
(OI' 1) Gv = Gf(]. - Lt) + GCLt
B, = B¢(1 — Ly) + B.L;
Ay, = Ay
LUMINANCE_ALPHA undefined R, = Rs(1 — L¢) + Rc Ly
(or 2) Gy =Gf(1—Ls)+G.Ly
B, = Bf(1 — L¢) + B.Ly
A, = Af Ay
INTENSITY undefined R, = R¢(1 —I) + RcIy
Gy =Gl —I;) + Gl
B, = B¢(1 —I}) + B.I;
Ay = Af(— It) + Acly
RGB R, = R; R, = Rf(l — Rt) + R.R;
(or 3) G, = Gy Gy, =Gf(1 - Gy) + GGy
B, = B; B, = Bf(1 — B;) + B.B;
A, = Ay A, =Af
RGBA R, = Rf(l — At) + RiA; | Ry, = Rf(l — Rt) + R.R;
(OI' 4) Gy :Gf(l—At)+GtAt Gy :Gf(l—Gt)+GcGt
B, = B¢(1 — A;) + B{A; | By, = Bf(1 — By) + BBy
Ay, = Ag Ay, = Ap Ay

Table 3.19: Decal and blend texture functions.

Version 1.2.1 - April 1, 1999

138 CHAPTER 3. RASTERIZATION

3.8.10 Texture Application

Texturing is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constants TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D to enable the one-, two-, or three-dimensional texture, respec-
tively. If both two- and one-dimensional textures are enabled, the two-
dimensional texture is used. If the three-dimensional and either of the
two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-
tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.5 and 3.8.6. This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment’s primary R, G, B, and A values.
These are the color values passed to subsequent operations. Other data
associated with the incoming fragment remain unchanged, except that the
texture coordinates may be discarded.

The required state is three bits indicating whether each of one-, two-, or
three-dimensional texturing is enabled or disabled. In the initial state, all
texturing is disabled.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary
color ¢,p; (Which texturing, if enabled, may have modified) and a secondary
color cse.. The components of these two colors are summed to produce a
single post-texturing RGBA color ¢. The components of ¢ are then clamped
to the range [0, 1].

Color sum has no effect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing
color using a blending factor f. Fog is enabled and disabled with the Enable
and Disable commands using the symbolic constant F0G.

This factor f is computed according to one of three equations:

f=exp(—d-z), (3.24)

Version 1.2.1 - April 1, 1999

3.10. FOG 139

f =exp(—(d-z)?),or (3.25)
f= Z:z (3.26)

(z is the eye-coordinate distance from the eye, (0,0,0,1) in eye coordinates,
to the fragment center). The equation, along with either d or e and s, is
specified with

void Fog{if}(enum pname, T param);
void Fog{if}v(enum pname, T params);

If pname is FOG_MODE, then param must be, or params must point to an integer
that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.24, 3.25, or 3.26, respectively, is selected for the fog calculation (if,
when 3.26 is selected, e = s, results are undefined). If pname is FOG_DENSITY,
FOG_START, or FOG_END, then param is or params points to a value that is d,
s, or e, respectively. If d is specified less than zero, the error INVALID_VALUE
results.

An implementation may choose to approximate the eye-coordinate dis-
tance from the eye to each fragment center by |z¢|. Further, f need not
be computed at each fragment, but may be computed at each vertex and
interpolated as other data are.

No matter which equation and approximation is used to compute f, the
result is clamped to [0, 1] to obtain the final f.

f is used differently depending on whether the GL is in RGBA or color
index mode. In RGBA mode, if C, represents a rasterized fragment’s R, G,
or B value, then the corresponding value produced by fog is

C=fC+(1-[)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R,
G, B, and A values of Cy are specified by calling Fog with pname equal to
FOG_COLOR; in this case params points to four values comprising Cy. If these
are not floating-point values, then they are converted to floating-point using
the conversion given in table 2.6 for signed integers. Each component of C
is clamped to [0, 1] when specified.

In color index mode, the formula for fog blending is

I=i,+ (1 f)if

where i, is the rasterized fragment’s color index and iy is a single-precision
floating-point value. (1 — f)is is rounded to the nearest fixed-point value

Version 1.2.1 - April 1, 1999

140 CHAPTER 3. RASTERIZATION

with the same number of bits to the right of the binary point as ¢, and the
integer portion of I is masked (bitwise ANDed) with 2" — 1, where n is the
number of bits in a color in the color index buffer (buffers are discussed in
chapter 4). The value of i is set by calling Fog with pname set to FOG_INDEX
and param being or params pointing to a single value for the fog index. The
integer part of i; is masked with 2" — 1.

The state required for fog consists of a three valued integer to select the
fog equation, three floating-point values d, e, and s, an RGBA fog color and
a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, FOG_MODE is EXP, d = 1.0, e = 1.0, and
s =0.0; C¢ = (0,0,0,0) and iy = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized
fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment’s alpha
(A) value to yield a final alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.

Version 1.2.1 - April 1, 1999

Chapter 4

Per-Fragment Operations
and the Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional
array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the
framebuffer is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GL implementation or
context.

Corresponding bits from each pixel in the framebuffer are grouped to-
gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical buffers. These are the color,
depth, stencil, and accumulation buffers. The color buffer actually consists
of a number of buffers: the front left buffer, the front right buffer, the back
left buffer, the back right buffer, and some number of auziliary buffers. Typ-
ically the contents of the front buffers are displayed on a color monitor while
the contents of the back buffers are invisible. (Monoscopic contexts display
only the front left buffer; stereoscopic contexts display both the front left
and the front right buffers.) The contents of the auxiliary buffers are never
visible. All color buffers must have the same number of bitplanes, although
an implementation or context may choose not to provide right buffers, back
buffers, or auxiliary buffers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B,
and, optionally, A unsigned integer values. The number of bitplanes in each
of the color buffers, the depth buffer, the stencil buffer, and the accumulation
buffer is fixed and window dependent. If an accumulation buffer is provided,

141

Version 1.2.1 - April 1, 1999

142CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Fragment Pixel . Alpha
- € > Scissor
+ Ownership > Test
Associated Test Test (RGBA Only)
Data

Depth buffer - Stencil E—
Test Test

Framebuffer J Framebuffer 4}

g Blending gt pipering B Logicop [—®e- TO
(RGBA Only) Framebuffer

Il 4

Figure 4.1. Per-fragment operations.

Framebuffer Framebuffer

it must have at least as many bitplanes per R, G, and B color component
as do the color buffers.
The initial state of all provided bitplanes is undefined.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (2, Yw)
modifies the pixel in the framebuffer at that location based on a number of
parameters and conditions. We describe these modifications and tests, dia-
grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (2, ¥y,) in the frame-
buffer is currently owned by the GL (more precisely, by this GL context). If
it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the
subsequent per-fragment operations are applied to the fragment. This test

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 143

allows the window system to control the GL’s behavior, for instance, when
a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (z,,, ¥y,) lies within the scissor rectangle defined
by four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left < zy < left + width and bottom < y,, < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.
The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR_TEST. When disabled, it is as if the scissor test always passes.
If either width or height is less than zero, then the error INVALID_VALUE is
generated. The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the
GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the
next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment’s alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA_TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a refer-
ence value. ref is clamped to lie in [0, 1], and then converted to a fixed-point
value according to the rules given for an A component in section 2.13.9. For
purposes of the alpha test, the fragment’s alpha value is also rounded to
the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning
pass the fragment never, always, if the fragment’s alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not
equal to the reference value, respectively.

Version 1.2.1 - April 1, 1999

144CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value
to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil buffer at location (x4, v,) and
a reference value. The test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with the Enable and Disable commands, us-
ing the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

ref is an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0,2° — 1], where s is the number of bits
in the stencil buffer. func is a symbolic constant that determines the stencil
comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test
passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked
stored value in the stencil buffer. The s least significant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The
ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass. sfail
indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZEROD, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of
increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same
symbolic values are given to indicate the stencil action if the depth buffer
test (below) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-
cilOp, and a bit indicating whether stencil testing is enabled or disabled.

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 145

In the initial state, stenciling is disabled, the stencil reference value is zero,
the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil buffer, no
stencil modification can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth buffer test

The depth buffer test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth buffer
value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modified as indicated below as if the depth buffer
test passed. If enabled, the comparison takes place and the depth buffer and
stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer test
passes never, always, if the incoming fragment’s z,, value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal
to the depth value stored at the location given by the incoming fragment’s
(Zw, yw) coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The
stencil value at the fragment’s (z,,,y,) coordinates is updated according to
the function currently in effect for depth buffer test failure. Otherwise, the
fragment continues to the next operation and the value of the depth buffer
at the fragment’s (z,, ¥,) location is set to the fragment’s z,, value. In this
case the stencil value is updated according to the function currently in effect
for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the
function is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

Version 1.2.1 - April 1, 1999

146CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

4.1.6 Blending

Blending combines the incoming fragment’s R, G, B, and A values with the
R, G, B, and A values stored in the framebuffer at the incoming fragment’s
(Zw, yw) location.

This blending is dependent on the incoming fragment’s alpha value and
that of the corresponding currently stored pixel. Blending applies only in
RGBA mode; in color index mode it is bypassed. Blending is enabled or
disabled using Enable or Disable with the symbolic constant BLEND. If it
is disabled, or if logical operation on color values is enabled (section 4.1.8),
proceed to the next stage.

In the following discussion, Cs refers to the source color for an incoming
fragment, Cy refers to the destination color at the corresponding framebuffer
location, and C, refers to a constant color in the GL state. Individual
RGBA components of these colors are denoted by subscripts of s, d, and ¢
respectively.

Destination (framebuffer) components are taken to be fixed-point values
represented according to the scheme given in section 2.13.9 (Final Color Pro-
cessing), as are source (fragment) components. Constant color components
are taken to be floating point values.

Prior to blending, each fixed-point color component undergoes an implied
conversion to floating point. This conversion must leave the values 0 and
1 invariant. Blending computations are treated as if carried out in floating
point.

The commands that control blending are

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);
void BlendEquation(enum mode);

void BlendFunc(enum src, enum dst);

Using BlendColor

The constant color C. to be used in blending is specified with BlendColor.
The four parameters are clamped to the range [0,1] before being stored.
The constant color can be used in both the source and destination blending
factors.

BlendColor is an imaging subset feature (see section 3.6.2), and is only
allowed when the imaging subset is supported.

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 147

Using BlendEquation

Blending capability is defined by the blend equation. BlendEquation mode
FUNC_ADD defines the blending equation as

C=0CsS+CyD

where Cg and Cj are the source and destination colors, and S and D are
quadruplets of weighting factors as specified by BlendFunc.
If mode is FUNC_SUBTRACT, the blending equation is defined as

C=0C,S—-Cy4D

If mode is FUNC_REVERSE SUBTRACT, the blending equation is defined as

C=C4D—-C,S

If mode is MIN, the blending equation is defined as

C = min(Cs, Cy)

Finally, if mode is MAX, the blending equation is defined as

C = maz(Cs, Cy)

The blending equation is evaluated separately for each color component
and the corresponding weighting factors.

BlendEquation is an imaging subset feature (see section 3.6.2). If
the imaging subset is not available, then blending always uses the blending
equation FUNC_ADD.

Using BlendFunc

BlendFunc src indicates how to compute a source blending factor, while
dst indicates how to compute a destination factor. The possible arguments
and their corresponding computed source and destination factors are sum-
marized in Tables 4.1 and 4.2. Addition or subtraction of quadruplets means
adding or subtracting them component-wise.

The computed source and destination blending quadruplets are applied
to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination
blending quadruplets be S and D, respectively. Then a quadruplet of values
is computed using the blend equation specified by BlendEquation. Each

Version 1.2.1 - April 1, 1999

148CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

‘ Value ‘ Blend Factors ‘

ZERO (0,0,0,0)

ONE (1,1,1,1)

DST_COLOR (Rgq,Gq, B, Ag)
ONE_MINUS_DST_COLOR (1,1,1,1) — (Rgq, G4, By, Ag)
SRC_ALPHA (A, Ag, Ag, As)
ONE_MINUS_SRC_ALPHA (1,1,1,1) — (As, As, Ag, Ag)
DST_ALPHA (Ag, Ay, Ag, Ag)
ONE_MINUS_DST_ALPHA (1,1,1,1) — (Ag, Ag, Ag, Ag)
CONSTANT_COLOR (R¢,Ge, B, A,)
ONE_MINUS_CONSTANT COLOR | (1,1,1,1) — (R., G¢, B, Ae)
CONSTANT_ALPHA (Ac, A, A Al)
ONE_MINUS_CONSTANT ALPHA | (1,1,1,1) — (A, 4., A, Al)
SRC_ALPHA_SATURATE (£, 1, 1,1

Table 4.1: Values controlling the source blending function and the source
blending values they compute. f = min(A, 1 — Ay).

‘ Value ‘ Blend factors

ZERD (0,0,0,0)

ONE (1,1,1,1)

SRC_COLOR (Rs,Gs, Bs, Ay)
ONE_MINUS_SRC_COLOR (1,1,1,1) — (Rs, Gs, Bs, Ay)
SRC_ALPHA (Ag, Ag, Ag, As)

ONE MINUS_SRC_ALPHA (1,1,1,1) — (Aq, Ag, Ag, Ag)
DST_ALPHA (Ag, Ag, Ag, Ag)

ONE MINUS DST_ALPHA (1,1,1,1) — (Ag, Ag, Ag, Ag)
CONSTANT_COLOR (R¢, G, B, A,)
ONE_MINUS_CONSTANT COLOR | (1,1,1,1) — (R, G, Be, A¢)
CONSTANT_ALPHA (A, Al Al Ae)
ONE_MINUS_CONSTANT ALPHA | (1,1,1,1) — (4., Ae, Ac, Al)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 149

floating-point value in this quadruplet is clamped to [0,1] and converted
back to a fixed-point value in the manner described in section 2.13.9. The
resulting four values are sent to the next operation.

BlendFunc arguments CONSTANT_COLOR, ONE_MINUS_CONSTANT_COLOR,
CONSTANT_ALPHA, and ONE MINUS_CONSTANT ALPHA are imaging subset features
(see section 3.6.2), and are only allowed when the imaging subset is provided.

Blending State

The state required for blending is an integer indicating the blending equa-
tion, two integers indicating the source and destination blending functions,
four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blending
equation is FUNC_ADD. The initial blending functions are ONE for the source
function and ZERO for the destination function. The initial constant blend
color is (R, G,B,A) = (0,0,0,0). Initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing
(section 4.2.1) using each buffer’s color for C;. If a color buffer has no A
value, then A, is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-
sider the value of any of the color components as a fixed-point value with m
bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebuffer; call each such value c¢. For each c,
dithering selects a value ¢; such that ¢; € {max{0, [¢] — 1}, [c]} (after this
selection, treat c¢; as a fixed point value in [0,1] with m bits). This selec-
tion may depend on the z,, and y,, coordinates of the pixel. In color index
mode, the same rule applies with ¢ being a single color index. ¢ must not be
larger than the maximum value representable in the framebuffer for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment’s z
and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a fixed-point value with as many bits as there are in the
corresponding component in the framebuffer; a color index is rounded to the
nearest integer representable in the color index portion of the framebuffer.

Dithering is enabled with Enable and disabled with Disable using the

Version 1.2.1 - April 1, 1999

150CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color
or index values and the color or index values stored at the corresponding
location in the framebuffer. The result replaces the values in the framebuffer
at the fragment’s (x,y) coordinates. The logical operation on color indices
is enabled or disabled with Enable or Disable using the symbolic constant
INDEX_LOGIC_OP. (For compatibility with GL version 1.0, the symbolic con-
stant LOGIC_OP may also be used.) The logical operation on color values is
enabled or disabled with Enable or Disable using the symbolic constant
COLOR_LOGIC_OP. If the logical operation is enabled for color values, it is as if
blending were disabled, regardless of the value of BLEND.
The logical operation is selected by

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding opera-
tions are enumerated in Table 4.3. In this table, s is the value of the incoming
fragment and d is the value stored in the framebuffer. The numeric values
assigned to the symbolic constants are the same as those assigned to the
corresponding symbolic values in the X window system.

Logical operations are performed independently for each color index
buffer that is selected for writing, or for each red, green, blue, and alpha
value of each color buffer that is selected for writing. The required state is
an integer indicating the logical operation, and two bits indicating whether
the logical operation is enabled or disabled. The initial state is for the logic
operation to be given by COPY, and to be disabled.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebuffer. This section describes operations
that control or affect the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are
written. This is accomplished with

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 151

Argument value | Operation
CLEAR 0

AND sAd
AND_REVERSE s A ~d
COPY s
AND_INVERTED —sAd
NOOP d

XOR s xor d

OR sVd

NOR —(sVd)
EQUIV —(s xor d)
INVERT —d
OR_REVERSE sV —d
COPY_INVERTED -8
OR_INVERTED —sVd
NAND —(s A d)
SET all 1’s

Table 4.3: Arguments to LogicOp and their corresponding operations.

void DrawBuffer(enum buf);

buf is a symbolic constant specifying zero, one, two, or four buffers for writ-
ing. The constants are NONE, FRONT_LEFT, FRONT _RIGHT, BACK_LEFT, BACK_RIGHT,
FRONT, BACK, LEFT, RIGHT, FRONT_AND_BACK, and AUXO through AUXn, where n+1
is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffers front_left,
front_right, back_left, and back_right, and to the auziliary buffers. Argu-
ments other than AUX: that omit reference to LEFT or RIGHT refer to both left
and right buffers. Arguments other than AUX: that omit reference to FRONT
or BACK refer to both front and back buffers. AUX: enables drawing only to
auziliary buffer i. Each AUX; adheres to AUXi = AUXO + ¢. The constants and
the buffers they indicate are summarized in Table 4.4. If DrawBuffer is
is supplied with a constant (other than NONE) that does not indicate any of
the color buffers allocated to the GL context, the error INVALID OPERATION
results.

Indicating a buffer or buffers using DrawBuffer causes subsequent pixel
color value writes to affect the indicated buffers. If more than one color
buffer is selected for drawing, blending and logical operations are computed

Version 1.2.1 - April 1, 1999

152CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic front | front | back | back | aux
constant left | right | left | right | ¢
NONE

FRONT_LEFT °

FRONT_RIGHT °

BACK_LEFT °

BACK_RIGHT °

FRONT ° °

BACK ° °

LEFT ° °

RIGHT ° °
FRONT_AND_BACK ° ° ° °

AUX: °

Table 4.4: Arguments to DrawBuffer and the buffers that they indicate.

and applied independently for each buffer. Calling DrawBuffer with a
value of NONE inhibits the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts
include both left and right buffers. Likewise, single buffered contexts include
only front buffers, while double buffered contexts include both front and back
buffers. The type of context is selected at GL initialization.

The state required to handle buffer selection is a set of up to 4 + n bits.
4 bits indicate if the front left buffer, the front right buffer, the back left
buffer, or the back right buffer, are enabled for color writing. The other n
bits indicate which of the auxiliary buffers is enabled for color writing. In
the initial state, the front buffer or buffers are enabled if there are no back
buffers; otherwise, only the back buffer or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical
framebuffers after all per-fragment operations have been performed. The
commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,
boolean a);

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 153

control the color buffer or buffers (depending on which buffers are currently
indicated for writing). The least significant n bits of mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index buffer (or buffers) is
written; where a 0 appears, the bit is not written. This mask applies only in
color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color buffer or buffers. r, g, b, and a indicate
whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all
bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.

The depth buffer can be enabled or disabled for writing z,, values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is
disabled. In the initial state, the depth buffer is enabled for writing.
The command

void StencilMask(uint mask);

controls the writing of particular bits into the stencil planes. The least
significant s bits of mask comprise an integer mask (s is the number of bits
in the stencil buffer), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and
a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular
buffer to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which buffers
are to be cleared. The values are COLOR_BUFFER BIT, DEPTH BUFFER BIT,

Version 1.2.1 - April 1, 1999

154CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

STENCIL_BUFFER BIT, and ACCUM_BUFFER_BIT, indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accu-
mulation buffer (see below), respectively. The value to which each buffer is
cleared depends on the setting of the clear value for that buffer. If the mask
is not a bitwise OR of the specified values, then the error INVALID_VALUE is
generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped to [0,1] and converted to fixed-point according to
the rules of section 2.13.9.

void ClearIndex(float indez);

sets the clear color index. ¢ndex is converted to a fixed-point value with
unspecified precision to the left of the binary point; the integer part of this
value is then masked with 2™ — 1, where m is the number of bits in a color
index value stored in the framebuffer.

void ClearDepth(clampd d);

takes a floating-point value that is clamped to the range [0,1] and con-
verted to fixed-point according to the rules for a window z value given in
section 2.10.1. Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil
buffer. sis masked to the number of bitplanes in the stencil buffer.

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which
to set the R, G, B, and A values of the accumulation buffer (see the next
section). These values are clamped to the range [—1, 1] when they are spec-
ified.

When Clear is called, the only per-fragment operations that are applied
(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also effective. If
a buffer is not present, then a Clear directed at that buffer has no effect.

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 155

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, the stencil buffer, and the accumulation buffer. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the
stencil buffer and accumulation buffer clear values are all 0. The depth
buffer clear value is initially 1.0.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one
for each of R, G, B, and A. The accumulation buffer is controlled exclusively
through the use of

void Accum(enum op, float value);

(except for clearing it). op is a symbolic constant indicating an accumula-
tion buffer operation, and value is a floating-point value to be used in that
operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pix-
els within the current scissor box are updated by any Accum operation;
otherwise, all pixels in the window are updated. The accumulation buffer
operations apply identically to every affected pixel, so we describe the effect
of each operation on an individual pixel. Accumulation buffer values are
taken to be signed values in the range [—1,1]. Using ACCUM obtains R, G,
B, and A components from the buffer currently selected for reading (sec-
tion 4.3.2). Each component, considered as a fixed-point value in [0, 1]. (see
section 2.13.9), is converted to floating-point. Each result is then multiplied
by walue. The results of this multiplication are then added to the corre-
sponding color component currently in the accumulation buffer, and the
resulting color value replaces the current accumulation buffer color value.

The LOAD operation has the same effect as ACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being
added to them.

The RETURN operation takes each color value from the accumulation
buffer, multiplies each of the R, G, B, and A components by walue, and
clamps the results to the range [0,1] The resulting color value is placed
in the buffers currently enabled for color writing as if it were a fragment
produced from rasterization, except that the only per-fragment operations
that are applied (if enabled) are the pixel ownership test, the scissor test
(section 4.1.2), and dithering (section 4.1.7). Color masking (section 4.2.2)
is also applied.

Version 1.2.1 - April 1, 1999

156 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The MULT operation multiplies each R, G, B, and A in the accumulation
buffer by value and then returns the scaled color components to their corre-
sponding accumulation buffer locations. ADD is the same as MULT except that
value is added to each of the color components.

The color components operated on by Accum must be clamped only if
the operation is RETURN. In this case, a value sent to the enabled color buffers
is first clamped to [0, 1]. Otherwise, results are undefined if the result of an
operation on a color component is out of the range [—1,1]. If there is no
accumulation buffer, or if the GL is in color index mode, Accum generates
the error INVALID_OPERATION.

No state (beyond the accumulation buffer itself) is required for accumu-
lation buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a
block of pixels from one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation of DrawPixels was described in section 3.6.4, except if the
format argument was STENCIL_INDEX. In this case, all operations described for
DrawPixels take place, but window (z, y) coordinates, each with the corre-
sponding stencil index, are produced in lieu of fragments. Each coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing
the texture, fog, and antialiasing application stages of rasterization. Each
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebuffer, subject
to the current setting of StencilMask.
The error INVALID OPERATION results if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Pixels are read using

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS

157

RGBA pixel color index pixel
data in data in
convert
to float
scale
and bias
index to RGBA
lookup
color table
post color table histogram
convolution lookup

color matrix
scale and bias

convert
RGB to L

byte, short, int, or float pixel
data stream (index or component)

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be
enabled or disabled. RGBA and color index pixel paths are shown; depth

and stencil pixel paths are not shown.

shift
and offset

index to index
lookup

Version 1.2.1 - April 1, 1999

158CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

‘ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

PACK_SWAP_BYTES | boolean FALSE TRUE/FALSE
PACK LSB_FIRST | boolean FALSE TRUE/FALSE
PACK ROW_LENGTH | integer 0 [0, 00)
PACK_SKIP_ROWS integer 0 [0, 00)
PACK_SKIP PIXELS | integer 0 [0, 00)
PACK_ALIGNMENT | integer 4 1,248
PACK_IMAGE HEIGHT | integer 0 [0, 00)
PACK_SKIP_IMAGES | integer 0 [0, c0)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetTex-
ImagelD, GetTexImage2D, GetTexImage3D, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, and Get-
Minmax.

void ReadPixels(int z, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after z and y to ReadPixels correspond to those of Draw-
Pixels. The pixel storage modes that apply to ReadPixels and other
commands that query images (see section 6.1) are summarized in Table 4.5.

Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth
buffer. If there is no depth buffer, the error INVALID_OPERATION occurs.
If the format is STENCIL_INDEX, then values are taken from the stencil
buffer; again, if there is no stencil buffer, the error INVALID OPERATION occurs.
For all other formats, the buffer from which values are obtained is one of
the color buffers; the selection of color buffer is controlled with ReadBuffer.
The command

void ReadBuffer(enum src);

takes a symbolic constant as argument. The possible values are FRONT_LEFT,
FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, FRONT, BACK, LEFT, RIGHT, and AUXO
through AUXn. FRONT and LEFT refer to the front left buffer, BACK refers
to the back left buffer, and RIGHT refers to the front right buffer. The other
constants correspond directly to the buffers that they name. If the requested

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 159

buffer is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBuffer is FRONT if there is no back buffer and BACK
otherwise.

ReadPixels obtains values from the selected buffer from each pixel with
lower left hand corner at (z + i,y + j) for 0 < ¢ < width and 0 < j <
height; this pixel is said to be the ¢th pixel in the jth row. If any of these
pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are undefined. Results are also undefined
for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected buffer, regardless of how those
values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE_ALPHA, then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained
is 1.0. If format is COLOR_INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is
not DEPTH_COMPONENT or STENCIL_INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format
is neither STENCIL_INDEX nor DEPTH_COMPONENT. The R, G, B, and A values
form a group of elements. Each element is taken to be a fixed-point value in
[0, 1] with m bits, where m is the number of bits in the corresponding color
component of the selected buffer (see section 2.13.9).

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT. An element is taken to
be a fixed-point value in [0,1] with m bits, where m is the number of bits in
the depth buffer (see section 2.10.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in
section 3.6.5. After the processing described in that section is completed,
groups are processed as described in the following sections.

Version 1.2.1 - April 1, 1999

160CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

‘ type Parameter ‘ Index Mask ‘

UNSIGNEDBYTE | 28 —1

BITMAP 1
BYTE 2T —1
UNSIGNED_SHORT | 216 —1
SHORT 215 1
UNSIGNED_INT | 232 —1
INT 231 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not
masked.

Conversion to L

This step applies only to RGBA component groups, and only if the format
is either LUMINANCE or LUMINANCE_ALPHA. A value L is computed as

L=R+G+B

where R, GG, and B are the values of the R, G, and B components. The
single computed L component replaces the R, G, and B components in the

group.

Final Conversion

For an index, if the type is not FLOAT, final conversion consists of masking
the index with the value given in Table 4.6; if the type is FLOAT, then the
integer index is converted to a GL float data value.

For an RGBA color, each component is first clamped to [0,1]. Then the
appropriate conversion formula from table 4.7 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from mem-
ory for DrawPixels. That is, the ith group of the jth row (corresponding
to the ith pixel in the jth row) is placed in memory just where the ith group
of the jth row would be taken from for DrawPixels. See Unpacking un-
der section 3.6.4. The only difference is that the storage mode parameters
whose names begin with PACK_ are used instead of those whose names be-
gin with UNPACK_. If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE,

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 161

type Parameter GL Data Type | Component
Conversion Formula
UNSIGNED BYTE ubyte c=028-1)f
BYTE byte c=[28-1)f —1]/2
UNSIGNED_SHORT ushort c= (218 —1)f
SHORT short c=[21 -1)f —1]/2
UNSIGNED_INT uint c= (22 -1)f
INT int c=[(2%-1)f —1]/2
FLOAT float c=f
UNSIGNED BYTE 3 3.2 ubyte c=02N-1)f
UNSIGNED BYTE 2 3_3 REV ubyte c=02N-1)f
UNSIGNED SHORT 565 ushort c=02N -1)f
UNSIGNED_SHORT 5_6_5_REV ushort c=02N -1)f
UNSIGNED_SHORT 4 4 4 4 ushort c=02N -1)f
UNSIGNED_SHORT 4 4 4 4 REV ushort c=02N -1)f
UNSIGNED _SHORT 5.5 5_1 ushort c=02N -1)f
UNSIGNED _SHORT_1.5_5_5 REV ushort c=02N -1)f
UNSIGNED INT 8 8 8 8 uint c=02N -1)f
UNSIGNED_INT_8_8_8_8_REV uint c=02N -1)f
UNSIGNED_INT_10_10_10_2 uint c=02N-1)f
UNSIGNED_INT 2_10_10_10_REV uint c=02N -1)f

Table 4.7: Reversed component conversions - used when component data
are being returned to client memory. Color, normal, and depth components
are converted from the internal floating-point representation (f) to a datum
of the specified GL data type (c) using the equations in this table. All arith-
metic is done in the internal floating point format. These conversions apply
to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even
if the implemented ranges of the GL data types are greater than the mini-
mum required ranges. (See Table 2.2.) Equations with N as the exponent
are performed for each bitfield of the packed data type, with NV set to the
number of bits in the bitfield.

Version 1.2.1 - April 1, 1999

162CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

only the corresponding single element is written. Likewise if the format is
LUMINANCE ALPHA, RGB, or BGR, only the corresponding two or three elements
are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebuffer to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels(int z, int y, sizei width, sizei height,
enum type);

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,
indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The first four arguments have the same interpretation
as the corresponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate),
then subjected to the pixel transfer operations described in section 3.6.5,
just as if ReadPixels were called with the corresponding arguments. If the
type is STENCIL or DEPTH, then it is as if the format for ReadPixels were
STENCIL_INDEX or DEPTH COMPONENT, respectively. If the type is COLOR, then if
the GL is in RGBA mode, it is as if the format were RGBA, while if the GL
is in color index mode, it is as if the format were COLOR_INDEX.

The groups of elements so obtained are then written to the framebuffer
just as if DrawPixels had been given width and height, beginning with
final conversion of elements. The effective format is the same as that already
described.

4.3.4 Pixel Draw/Read state

The state required for pixel operations consists of the parameters that are
set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of ReadBuffer,
an integer, is also required, along with the current raster position (sec-
tion 2.12). State set with PixelStore is GL client state.

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 163

RGBA pixel color index pixel
data from framebuffer } data from framebuffer

convert
to float

scale shift
and bias and offset

index to RGBA ndex to index
lookup lookup

color table
lookup

convolution color table
scale and bias lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion (2” -1
RGBA pixel |—> color index pixel |—>
data out data out

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be
enabled or disabled. Index-to-RGBA lookup is currently never performed.
RGBA and color index pixel paths are shown; depth and stencil pixel paths
are not shown.

Version 1.2.1 - April 1, 1999

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily
into any of the preceding chapters. This functionality consists of evalua-
tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-
ization), display lists (used to designate a group of GL commands for later
execution by the GL), flushing and finishing (used to synchronize the GL
command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-
ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not affected by the use
of evaluators.

Consider the R¥-valued polynomial p(u) defined by

p(w) = Y Bl (WR: 51)

with R; € RF and
B} (u) = (") u (1 =),
i
the ith Bernstein polynomial of degree n (recall that 0° = 1 and (§) = 1).
Each R; is a control point. The relevant command is

164

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 165

‘ target ‘ k ‘ Values
MAP1 VERTEX_3 3 | z, y, z vertex coordinates
MAP1 VERTEX 4 4 | x,y, z, w vertex coordinates
MAP1_INDEX 1 | color index
MAP1_COLOR_4 4| R,G,B, A
MAP1_NORMAL 3 | x, y, z normal coordinates
MAP1_TEXTURE COORD_1 | 1 | s texture coordinate
MAP1_TEXTURE_COORD_2 | 2 | s, t texture coordinates
MAP1_TEXTURE_COORD_.3 | 3 | s, t, r texture coordinates
MAP1_TEXTURE COORD 4 | 4 | s, t, 7, q texture coordinates

Table 5.1: Values specified by the target to Mapl. Values are given in the
order in which they are taken.

void Mapl{fd}(enum type, T u1, T uz, int stride,
int order, T points);

type is a symbolic constant indicating the range of the defined polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n + 1; The error INVALID VALUE is generated
if order is less than one or greater than MAX EVAL_ORDER. points is a pointer
to a set of n + 1 blocks of storage. Each block begins with k single-precision
floating-point or double-precision floating-point values, respectively. The
rest of the block may be filled with arbitrary data. Table 5.1 indicates how
k depends on type and what the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate)
in each block of storage. The error INVALID_VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

uy and ug give two floating-point values that define the endpoints of the
pre-image of the map. When a value u' is presented for evaluation, the
formula used is

u —uy
p'(u) = p(

U2 — Uy .

The error INVALID_VALUE results if u; = us.
Map?2 is analogous to Map1, except that it describes bivariate polyno-

Version 1.2.1 - April 1, 1999

166 CHAPTER 5. SPECIAL FUNCTIONS

Integers Reals
Vertices
k [uguo] Normal
EvalMesh > - - [0,1] TER ormals '
EvalPoint | [0,1] Texture Coordinates
vyval Colors
MapGrid Map
EvalCoord

Figure 5.1. Map Evaluation.

mials of the form

p(u,v) = > > BP(u)B"(v)Ry;.

i=0 j=0
The form of the Map2 command is

void Map2{fd}(enum target, T ui, T uz, int ustride,
int worder, T vy, T ve, int vstride, int vorder, T points);

target is a range type selected from the same group as is used for Mapl,
except that the string MAP1 is replaced with MAP2. points is a pointer to
(n + 1)(m + 1) blocks of storage (uorder = n + 1 and vorder = m + 1; the
error INVALID VALUE is generated if either worder or vorder is less than one
or greater than MAX_EVAL_ORDER). The values comprising R;; are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past
the first value pointed to by points. uq, uo, v1, and ve define the pre-image
rectangle of the map; a domain point (u’,v') is evaluated as

u—u v —u

! ! !
(0) = ot 2,
The evaluation of a defined map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The error INVALID_VALUE results if either ustride or vstride is less than k, or
if uq is equal to us, or if vy is equal to wvs.
Figure 5.1 describes map evaluation schematically; an evaluation of en-
abled maps is effected in one of two ways. The first way is to use

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 167

void EvalCoord{12}{fd}(T arg);
void EvalCoord{12}{fd}v(T arg);

EvalCoordl causes evaluation of the enabled one-dimensional maps. The
argument is the value (or a pointer to the value) that is the domain coor-
dinate, u'. EvalCoord2 causes evaluation of the enabled two-dimensional
maps. The two values specify the two domain coordinates, u’ and v’, in that
order.

When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,
it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important difference. The difference is that when an
evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current values
are used). The order of the effective commands is immaterial, except that
Vertex (for vertex coordinate evaluation) must be issued last. Use of eval-
uators has no effect on the current color, normal, or texture coordinates. If
ColorMaterial is enabled, evaluated color values affect the result of the
lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indi-
cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1_TEXTURE_COORD_1 and MAP1_TEXTURE_CO0RD_2),
then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2 VERTEX_3 or MAP2 VERTEX 4 is enabled, then the
normal to the surface is computed. Analytic computation, which sometimes
yields normals of length zero, is one method which may be used. If auto-
matic normal generation is enabled, then this computed normal is used as
the normal associated with a generated vertex. Automatic normal gener-
ation is controlled with Enable and Disable with symbolic the constant
AUTO_NORMAL. If automatic normal generation is disabled, then a correspond-
ing normal map, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map are enabled, then no normal is sent
with a vertex resulting from an evaluation (the effect is that the current
normal is used).

For MAP_VERTEX 3, let q = p. For MAP_VERTEX 4, let q = (z/w, y/w, z/w),
where (z,y,z,w) = p. Then let

_0q _0q

m—%X%

Version 1.2.1 - April 1, 1999

168 CHAPTER 5. SPECIAL FUNCTIONS

Then the generated analytic normal, n, is given by n = m/||m||.

The second way to carry out evaluations is to use a set of commands
that provide for efficient specification of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The first step is to define
a grid in the domain. This is done using

void MapGrid1l{fd}(int n, T u}, T u});
for a one-dimensional map or

void MapGrid2{fd}(int n,, T v}, T uy, int n,, T v},
T vh);

for a two-dimensional map. In the case of MapGridl v} and u) describe
an interval, while n describes the number of partitions of the interval. The
error INVALID_VALUE results if n < 0. For MapGrid2, (u},v}) specifies one
two-dimensional point and (ub, v4) specifies another. n, gives the number of
partitions between v} and uj, and n, gives the number of partitions between
vy and v). If either n, < 0 or n, < 0, then the error INVALID_VALUE occurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMeshl(enum mode, int p;, int py);

mode is either POINT or LINE. The effect is the same as performing the fol-
lowing code fragment, with Au' = (u), — u})/n:

Begin (type) ;
for ¢ = p; to py step 1.0
EvalCoord1 (i * Au' + u});
End();

where EvalCoord1f or EvalCoordld is substituted for EvalCoordl as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type
is LINE STRIP. The one requirement is that if either ¢ = 0 or ¢ = n, then the
value computed from 7 * Au’ + v is precisely u} or uj, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p;, int py, int ¢,
int g2);

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 169

mode must be FILL, LINE, or POINT. When mode is FILL, then these commands
are equivalent to the following, with Au' = (u) — u})/n and Av' = (v} —

vy)/m:

for i = ¢ to g0 — 1 step 1.0
Begin (QUAD_STRIP) ;
for j = py to po step 1.0
EvalCoord2(j * Au' + u} , i * Av' + v]);
EvalCoord2(j * Au' + u} , (i+1) * Ad + v]);
End(Q);

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = ¢1 to qo step 1.0
Begin (LINE_STRIP) ;
for j = p1 to po step 1.0
EvalCoord2(j * Au' + u} , i * Av' + v]);
End();;
for ¢ = p; to ps step 1.0
Begin (LINE_STRIP) ;
for j = ¢ to g2 step 1.0
EvalCoord2(i * Au' + u} , j * Av' + v});
End(Q);

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin (POINTS) ;
for ¢ = ¢1 to g step 1.0
for j = p1 to po step 1.0
EvalCoord2(j * Au' + u} , i * Av' + v]);
EndQ;

Again, in all three cases, there is the requirement that 0 * Au' 4+ u} = uf,
nx Au' + v = ub, 0% Av' + 0] = v}, and m x Av' + v} = v}.
An evaluation of a single point on the grid may also be carried out:

void EvalPointl(int p);

Calling it is equivalent to the command
EvalCoord1(p * Au' + u});

with Au' and u} defined as above.

Version 1.2.1 - April 1, 1999

170 CHAPTER 5. SPECIAL FUNCTIONS

void EvalPoint2(int p, int q);

is equivalent to the command

EvalCoord2(p * Au' + u] , ¢ * Av' + v]);

The state required for evaluators potentially consists of 9 one-
dimensional map specifications and 9 two-dimensional map specifications,
as well as corresponding flags for each specification indicating which are en-
abled. Each map specification consists of one or two orders, an appropriately
sized array of control points, and a set of two values (for a one-dimensional
map) or four values (for a two-dimensional map) to describe the domain.
The maximum possible order, for either u or v, is implementation dependent
(one maximum applies to both v and v), but must be at least 8. Each con-
trol point consists of between one and four floating-point values (depending
on the type of the map). Initially, all maps have order 1 (making them con-
stant maps). All vertex coordinate maps produce the coordinates (0, 0,0, 1)
(or the appropriate subset); all normal coordinate maps produce (0,0, 1);
RGBA maps produce (1,1,1,1); color index maps produce 1.0; texture co-
ordinate maps produce (0,0,0,1); In the initial state, all maps are disabled.
A flag indicates whether or not automatic normal generation is enabled for
two-dimensional maps. In the initial state, automatic normal generation is
disabled. Also required are two floating-point values and an integer number
of grid divisions for the one-dimensional grid specification and four floating-
point values and two integer grid divisions for the two-dimensional grid
specification. In the initial state, the bounds of the domain interval for 1-D
is 0 and 1.0, respectively; for 2-D, they are (0,0) and (1.0, 1.0), respectively.
The number of grid divisions is 1 for 1-D and 1 in both directions for 2-D. If
any evaluation command is issued when no vertex map is enabled, nothing
happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is defined by the current model-
view and perspective matrices.

Selection works by returning an array of integer-valued names. This
array represents the current contents of the name stack. This stack is con-
trolled with the commands

Version 1.2.1 - April 1, 1999

5.2. SELECTION 171

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name
off the top of the name stack. PushName causes name to be pushed
onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-
ror INVALID OPERATION. Popping a name off of an empty stack generates
STACK_UNDERFLOW; pushing a name onto a full stack generates STACK_OVERFLOW.
The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebuffer. The
GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER
is the default, corresponding to rendering as described until now. SELECT
specifies selection mode, and FEEDBACK specifies feedback mode (described
below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer);

buffer is a pointer to an array of unsigned integers (called the selection
array) to be potentially filled with names, and n is an integer indicating the
maximum number of values that can be stored in that array. Placing the GL
in selection mode before Select Buffer has been called results in an error of
INVALID_OPERATION as does calling SelectBuffer while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates pro-
duced by a RasterPos command intersects the clip volume (section 2.11)
then this primitive (or RasterPos command) causes a selection hit. In the
case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,
then a hit record is written into the selection array.

Version 1.2.1 - April 1, 1999

172 CHAPTER 5. SPECIAL FUNCTIONS

A hit record consists of the following items in order: a non-negative
integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack
with the bottommost element first. The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the
clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0,1]) are each multiplied by
232 _ 1 and rounded to the nearest unsigned integer to obtain the values
that are placed in the hit record. No depth offset arithmetic (section 3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer
into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as
much of the record as fits in the array is written and an overflow flag is set.

Selection mode is exited by calling RenderMode with an argument
value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array
and resets the SelectBuffer pointer to its last specified value. Values are
not guaranteed to be written into the selection array until RenderMode
is called. If the selection array overflow flag was set, then RenderMode
returns —1 and clears the overflow flag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a
minimum and maximum depth value, and several flags. One flag indicates
the current RenderMode value. In the initial state, the GL is in the RENDER
mode. Another flag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This flag is reset upon entering
selection mode and whenever a name stack manipulation takes place. One
final flag is required to indicate whether the maximum number of copied
names would have been exceeded. This flag is reset upon entering selection
mode. This flag, the address of the selection array, and its maximum size
are GL client state.

Version 1.2.1 - April 1, 1999

5.3. FEEDBACK 173

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling

RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-

ments are written to the framebuffer. Instead, information about primitives

that would have been rasterized is fed back to the application using the GL.
Feedback is controlled using

void FeedbackBuffer(sizei n, enum type, float *buffer);

buffer is a pointer to an array of floating-point values into which feedback in-
formation will be placed, and n is a number indicating the maximum number
of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBuffer has been made, or if a call to FeedbackBuffer
is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or
bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to fill the array (if there is any room left at
all). The first block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-
lowed by values that describe the primitive’s vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons
with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). z, y, and z
coordinates returned by feedback are window coordinates; if w is returned,
it is in clip coordinates. No depth offset arithmetic (section 3.5.5) is per-
formed on the z values. In the case of bitmaps and pixel rectangles, the
coordinates returned are those of the current raster position.

The texture coordinates and colors returned are these resulting from the
clipping operations described in Section 2.13.8. The colors returned are
the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL

Version 1.2.1 - April 1, 1999

174 CHAPTER 5. SPECIAL FUNCTIONS

‘ Type ‘ coordinates ‘ color ‘ texture ‘ total values ‘
2D T,y - - 2
3D x, Y, 2 - - 3
3D_COLOR x,y, 2 k - 3+k
3D_COLOR_TEXTURE | z, y, z k 4 T+k
4D_COLOR_TEXTURE | z, y, z, w | k 4 8+ k

Table 5.2: Correspondence of feedback type to number of values per vertex.
k is 1 in color index mode and 4 in RGBA mode.

state and the values to be written to the feedback buffer completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK. When called while in feedback mode,
RenderMode returns the number of values placed in the feedback array
and resets the feedback array pointer to be buffer. The return value never
exceeds the maximum number of values passed to FeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be
written than the specified maximum number of values, then the value is not
written and an overflow flag is set. In this case, RenderMode returns —1
when it is called, after which the overflow flag is reset. While in feedback
mode, values are not guaranteed to be written into the feedback buffer before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-
ber of vertices. A vertex is fed back as some number of floating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-
tween feedback buffer and the number of values returned for each vertex.

The command
void PassThrough(float token);

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering
of any PassThrough commands with respect to primitive specification is
maintained by feedback. PassThrough may not occur between Begin and
End. It has no effect when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the
maximum number of values that may be placed there, and the feedback type.

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 175

An overflow flag is required to indicate whether the maximum allowable
number of feedback values has been written; initially this flag is cleared.
These state variables are GL client state. Feedback also relies on the same
mode flag as selection to indicate whether the GL is in feedback, selection,
or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The GL may be instructed to process
a particular display list (possibly repeatedly) by providing a number that
uniquely specifies it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains
to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the
client state in effect at that time applies to the command. Only server state
is affected when the command is executed. As always, pointers which are
passed as arguments to commands are dereferenced when the command is
issued. (Vertex array pointers are dereferenced when the commands Ar-
rayElement, DrawArrays, or DrawElements are accumulated into a
display list.)
A display list is begun by calling

void NewList(uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during
display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE_AND_EXECUTE then
commands are executed as they are encountered, then placed in the display
list. If n = 0, then the error INVALID VALUE is generated.

After calling NewList all subsequent GL commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state.
It is only when EndList occurs that the specified display list is actually asso-
ciated with the index indicated with NewList. The error INVALID_OPERATION
is generated if EndList is called without a previous matching NewList,

Version 1.2.1 - April 1, 1999

176

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:

POINT_TOKEN vertex
line-segment:

LINE_TOKEN vertex vertex

LINE_RESET_TOKEN vertex vertex

polygon:

POLYGON_TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex
bitmap:
BITMAP_TOKEN vertex

CHAPTER 5. SPECIAL FUNCTIONS

pixel-rectangle:
DRAW_PIXEL _TOKEN vertex
COPY_PIXEL_TOKEN vertex
passthrough:
PASS_THROUGH_TOKEN f

vertex:
2D:

i

3D:
Frr

3D_COLOR:

f f f color

3D_COLOR_TEXTURE:
f f f color tex
4D_COLOR_TEXTURE:

f [f f color tex

color:
Frrf
f

tex:
Frrf

Figure 5.2: Feedback syntax. f is a floating-point number. n is a floating-
point integer giving the number of vertices in a polygon. The symbols
ending with _TOKEN are symbolic floating-point constants. The labels under
the “vertex” rule show the different data returned for vertices depending
on the feedback type. LINE_TOKEN and LINE RESET_TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line

segment.

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 177

or if NewList is called a second time before calling EndList. The error
OUT_OF MEMORY is generated if EndList is called and the specified display list
cannot be stored because insufficient memory is available. In this case GL
implementations of revision 1.1 or greater insure that no change is made to
the previous contents of the display list, if any, and that no other change
is made to the GL state, except for the state changed by execution of GL
commands when the display list mode is COMPILE_AND_EXECUTE.
Once defined, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued
without using a display list. If n = 0, then the error INVALID VALUE is
generated.

The command

void CallLists(sizei n, enum type, void *lists);

provides an efficient means for executing a number of display lists. = is
an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of offsets. Each offset is constructed as
determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, or FLOAT indicating
that the array pointed to by lists is an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or floats, respectively. In this
case each offset is found by simply converting each array element to an
integer (floating point values are truncated). Further, type may be one of
2_BYTES, 3_BYTES, or 4 BYTES, indicating that the array contains sequences of
2, 3, or 4 unsigned bytes, in which case each integer offset is constructed
according to the following algorithm:

of fset < 0

fori=1tod
of fset + of f set shifted left 8 bits
of fset + of fset + byte
advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.

Each of the n constructed offsets is taken in order and added to a display
list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

Version 1.2.1 - April 1, 1999

178 CHAPTER 5. SPECIAL FUNCTIONS

void ListBase(uint base);

to specify the offset.

Indicating a display list index that does not correspond to any display
list has no effect. CallList or CallLists may appear inside a display list. (If
the mode supplied to NewList is COMPILE_AND_EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists’
constituent commands, is placed in the list under construction.) To avoid
the possibility of infinite recursion resulting from display lists calling one
another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integer n such that the indices n,...,n + s — 1 are previously
unused (i.e. there are s previously unused display list indices starting at n).
GenlLists also has the effect of creating an empty display list for each of
the indices n,...,n+s—1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if [ist is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the first display list to be deleted and range is
the number of display lists to be deleted. All information about the display
lists is lost, and the indices become unused. Indices to which no display list
corresponds are ignored. If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not
compiled into the display list but are executed immediately. These are:
IsList, GenLists, DeleteLists, FeedbackBuffer, SelectBuffer, Ren-
derMode, VertexPointer, NormalPointer, ColorPointer, Index-
Pointer, TexCoordPointer, EdgeFlagPointer, InterleavedArrays,
EnableClientState, DisableClientState, PushClientAttrib, Pop-
ClientAttrib, ReadPixels, PixelStore, GenTextures, DeleteTex-
tures, AreTexturesResident, IsTexture, Flush, Finish, as well as
IsEnabled and all of the Get commands (see Chapter 6).

Version 1.2.1 - April 1, 1999

5.5. FLUSH AND FINISH 179

TexImage3D, TexImage2D, TexImagelD, Histogram,
and ColorTable are executed immediately @ when called

with the corresponding proxy arguments PROXY_TEXTURE_3D,
PROXY_TEXTURE_2D, PROXY_TEXTURE_1D, PROXY_HISTOGRAM, and
PROXY_COLOR_TABLE, PROXY_POST_CONVOLUTION_COLOR_TABLE, or

PROXY _POST_COLOR_MATRIX_COLOR_TABLE.

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display
list creation, an index is required to indicate the current display list being
defined. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.
One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are
currently in use as display list indices. In the initial state, no indices are in
use.

5.5 Flush and Finish

The command
void Flush(void);
indicates that all commands that have previously been sent to the GL must
complete in finite time.
The command
void Finish(void);
forces all previous GL commands to complete. Finish does not return until

all effects from previously issued commands on GL client and server state
and the framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is specified using

void Hint(enum target, enum hint);

Version 1.2.1 - April 1, 1999

180 CHAPTER 5. SPECIAL FUNCTIONS

target is a symbolic constant indicating the behavior to be controlled, and
hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired
quality of parameter interpolation; POINT_SMOOTH HINT, indicating the desired
sampling quality of points; LINE_SMOOTH HINT, indicating the desired sampling
quality of lines; POLYGON_SMOOTH_HINT, indicating the desired sampling quality
of polygons; and FOG_HINT, indicating whether fog calculations are done per
pixel or per vertex. hint must be one of FASTEST, indicating that the most
efficient option should be chosen; NICEST, indicating that the highest quality
option should be chosen; and DONT_CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-
tation may ignore them entirely.

The initial value of all hints is DONT_CARE.

Version 1.2.1 - April 1, 1999

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2.
Most state is set through the calls described in previous chapters, and can
be queried using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The
values of these state variables can be obtained using a set of Get commands.
There are four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void GetIntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, floating-point, or double-precision
state variables. wvalue is a symbolic constant indicating the state variable to
return. data is a pointer to a scalar or array of the indicated type in which
to place the returned data. In addition

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or
disabled.

181

Version 1.2.1 - April 1, 1999

182 CHAPTER 6. STATE AND STATE REQUESTS

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the
type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a floating-point or integer value converts to FALSE if
and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted
as either 1 or 0, and a floating-point value is rounded to the nearest integer,
unless the value is an RGBA color component, a DepthRange value, a
depth buffer clear value, or a normal coordinate. In these cases, the Get
command converts the floating-point value to an integer according the INT
entry of Table 4.7; a value not in [—1,1] converts to an undefined value.
If GetFloatv is called, a boolean value is interpreted as either 1.0 or 0.0,
an integer is coerced to floating-point, and a double-precision floating-point
value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that
it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are
returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed to Mapl. Map2
returns R;; in the [(uorder)i + j]th block of values (see page 166 for i, j,
uorder, and R;j).

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a
category (clip plane, light, material, etc.) as well as a symbolic constant.
These are

void GetClipPlane(enum plane, double eqnf{]);
void GetLight{if}v(enum light, enum value, T data);
void GetMaterial{if}v(enum face, enum value, T data);
void GetTexEnv{if}v(enum env, enum value, T data);
void GetTexGen{if}v(enum coord, enum value, T data);
void GetTexParameter{if}v(enum target, enum value,
T data);
void GetTexLevelParameter{if}v(enum target, int lod,
enum value, T data);

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 183

void GetPixelMap{ui us f}v(enum map, T data);
void GetMap{ifd}v(enum map, enum value, T data);

GetClipPlane always returns four double-precision values in egn; these
are the coefficients of the plane equation of plane in eye coordinates (these
coordinates are those that were computed when the plane was specified).

GetLight places information about value (a symbolic constant) for light
(also a symbolic constant) in data. POSITION or SPOT_DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed
when the position or direction was specified).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter
are similar to GetLight, placing information about value for the target indi-
cated by their first argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-
TexGen, EYE LINEAR coefficients are returned in the eye coordinates that
were computed when the plane was specified; 0BJECT_LINEAR coeflicients are
returned in object coordinates.

GetTexParameter and GetTexLevelParameter parameter target
may be one of TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D, indicating the
currently bound one-, two-, or three-dimensional texture object. For
GetTexLevelParameter, target may also be one of PROXY_TEXTURE_1D,
PROXY_TEXTURE_2D, or PROXY_TEXTURE_3D, indicating the one-, two-, or three-
dimensional proxy state vector. walue is a symbolic value indicat-
ing which texture parameter is to be obtained. The lod argument to
GetTexLevelParameter determines which level-of-detail’s state is re-
turned. If the lod argument is less than zero or if it is larger than
the maximum allowable level-of-detail then the error INVALID VALUE oc-
curs. Queries of TEXTURE RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE BLUE_SIZE,
TEXTURE_ALPHA _SIZE, TEXTURE_LUMINANCE SIZE, and TEXTURE_INTENSITY SIZE
return the actual resolutions of the stored image array components, not
the resolutions specified when the image array was defined. Queries of
TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE_DEPTH, and TEXTURE BORDER return
the width, height, depth, and border as specified when the image ar-
ray was created. The internal format of the image array is queried as
TEXTURE _INTERNAL FORMAT, or as TEXTURE_COMPONENTS for compatibility with
GL version 1.0.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and

Version 1.2.1 - April 1, 1999

184 CHAPTER 6. STATE AND STATE REQUESTS

value must be one of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage(enum tez, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat different from the other get
commands; tex is a symbolic value indicating which texture is to be obtained.
TEXTURE_1D indicates a one-dimensional texture, TEXTURE_2D indicates a two-
dimensional texture, and TEXTURE_3D indicates a three-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.6, type
is a pixel type from Table 3.5, and #mg is a pointer to a block of memory.

GetTexImage obtains component groups from a texture image with
the indicated level-of-detail. The components are assigned among R, G, B,
and A according to Table 6.1, starting with the first group in the first row,
and continuing by obtaining groups in order from each row and proceeding
from the first row to the last, and from the first image to the last for three-
dimensional textures. These groups are then packed and placed in client
memory. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as
if the image were two-dimensional, except that the additional pixel storage
state values PACK_IMAGE HEIGHT and PACK_SKIP_IMAGES are applied. The cor-
respondence of texels to memory locations is as defined for TexImage3D
in section 3.8.1.

The row length, number of rows, image depth, and number of images
are determined by the size of the texture image (including any borders).
Calling GetTexImage with lod less than zero or larger than the maxi-
mum allowable causes the error INVALID VALUE . Calling GetTexImage with
format of COLOR_INDEX, STENCIL_INDEX, or DEPTH COMPONENT causes the error
INVALID_ENUM.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is
a non-zero value that is not the name of a texture object, or if an error condi-
tion occurs, IsTexture returns FALSE. A name returned by GenTextures,
but not yet bound, is not the name of a texture object.

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 185

‘ Base Internal Format ‘ R ‘ G ‘ B ‘ A ‘
ALPHA 0] 0| 0| A4
LUMINANCE (or 1) L;| 0] 0|1
LUMINANCE ALPHA (or2) | L; | O | O | A4;
INTENSITY L |00 1
RGB (or 3) R, |G;| B; | 1
RGBA (or 4) R, | G;| B; | 4;

Table 6.1: Texture, table, and filter return values. R;, G;, B;, A;, L;, and I;
are components of the internal format that are assigned to pixel values R,
G, B, and A. If a requested pixel value is not present in the internal format,
the specified constant value is used.

6.1.5 Stipple Query

The command
void GetPolygonStipple(void *pattern);

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height
and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR_INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set to
the appropriate variable name. The top matrix on the color matrix stack is
returned by GetFloatv called with pname set to COLOR.MATRIX. The depth
of the color matrix stack, and the maximum depth of the color matrix stack,
are queried with GetIntegerv, setting pname to COLOR.MATRIX_STACK DEPTH
and MAX_COLOR_MATRIX_STACK DEPTH respectively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

Version 1.2.1 - April 1, 1999

186 CHAPTER 6. STATE AND STATE REQUESTS

target must be one of the regular color table names listed in table 3.4. format
and type accept the same values as do the corresponding parameters of
GetTexImage. The one-dimensional color table image is returned to client
memory starting at table. No pixel transfer operations are performed on
this image, but pixel storage modes that are applicable to ReadPixels are
performed. Color components that are requested in the specified format,
but which are not included in the internal format of the color lookup table,
are returned as zero. The assignments of internal color components to the
components requested by format are described in Table 6.1.
The functions

void GetColorTableParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query.

target must be one of the regular or proxy color table names listed
in table 3.4. pname is one of COLOR_TABLE_SCALE, COLOR_TABLE BIAS,
COLOR_TABLE_FORMAT, COLOR_-TABLE_WIDTH, COLOR_-TABLE_RED_SIZE,
COLOR_TABLE_GREEN_SIZE, COLOR_TABLEBLUE_SIZE, COLOR_TABLE_ALPHA_SIZE,
COLOR_TABLE_LUMINANCE SIZE, or COLOR_TABLE_INTENSITY SIZE. The value of
the specified parameter is returned in params.

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the com-
mand

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION_1D or CONVOLUTION_2D. format and type accept the
same values as do the corresponding parameters of GetTexImage. The
one-dimensional or two-dimensional images is returned to client memory
starting at ¢#mage. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable filter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 187

target must be SEPARABLE 2D. format and type accept the same values as
do the corresponding parameters of GetTexImage. The row and column
images are returned to client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping
are identical to those of GetTexImage.

The functions

void GetConvolutionParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query. target must
be CONVOLUTION_1D, CONVOLUTION_2D, or SEPARABLE_2D. pname
is one of CONVOLUTION_BORDER_COLOR, CONVOLUTION_BORDER_MODE,
CONVOLUTION_FILTER_SCALE, CONVOLUTIONFILTER BIAS, CONVOLUTION_FORMAT,
CONVOLUTION_WIDTH, CONVOLUTION_HEIGHT, MAX_CONVOLUTION WIDTH, or
MAX_CONVOLUTION_HEIGHT. The value of the specified parameter is returned in
params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, void* values);

target must be HISTOGRAM. type and format accept the same values as do
the corresponding parameters of GetTexImage. The one-dimensional his-
togram table image is returned to values. Pixel processing and component
mapping are identical to those of GetTexImage.

If reset is TRUE, then all counters of all elements of the histogram are
reset to zero. Counters are reset whether returned or not.

No counters are modified if reset is FALSE.

Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. target must
be HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with
zero entries.

The functions

Version 1.2.1 - April 1, 1999

188 CHAPTER 6. STATE AND STATE REQUESTS

void GetHistogramParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query. target must be HISTOGRAM or
PROXY HISTOGRAM. pname is one of HISTOGRAM FORMAT, HISTOGRAM WIDTH,
HISTOGRAM_RED_SIZE, HISTOGRAM_GREEN_SIZE, HISTOGRAM BLUE_SIZE,
HISTOGRAM_ALPHA SIZE, or HISTOGRAM LUMINANCESIZE. pname may be
HISTOGRAM SINK only for target HISTOGRAM. The value of the specified
parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset,
enum format, enum type, void* values);

target must be MINMAX. type and format accept the same values as do the
corresponding parameters of GetTexImage. A one-dimensional image of
width 2 is returned to values. Pixel processing and component mapping are
identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum rep-
resentable value, and each maximum value is reset to the minimum repre-
sentable value. All values are reset, whether returned or not.

No values are modified if reset is FALSE.

Calling

void ResetMinmax(enum target);
resets all minimum and maximum values of target to to their maximum and
minimum representable values, respectively, target must be MINMAX.

The functions

void GetMinmaxParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query. target must be MINMAX. pname

is MINMAX FORMAT or MINMAX_SINK. The value of the specified parameter is
returned in params.

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 189

6.1.11 Pointer and String Queries

The command
void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the array
params. The possible values for pname are SELECTION_BUFFER_POINTER,
FEEDBACK_BUFFER_POINTER, VERTEX_ARRAY POINTER, NORMAL_ARRAY POINTER,
COLOR_ARRAY POINTER, INDEX_ARRAY POINTER, TEXTURE_COORD_ARRAY POINTER,
and EDGE_FLAG_ARRAY POINTER. Each returns a single pointer value.

Finally,

ubyte *GetString(enum name);

returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,
and EXTENSIONS. The format of the RENDERER and VERSION strings is imple-
mentation dependent. The EXTENSIONS string contains a space separated list
of extension names (The extension names themselves do not contain any
spaces); the VERSION string is laid out as follows:

<version number><space><vendor-specific information>

The version number is either of the form major_number.minor_number or
major_number.minor_number.release_number, where the numbers all have
one or more digits. The vendor specific information is optional. However, if
it is present then it pertains to the server and the format and contents are
implementation dependent.

GetString returns the version number (returned in the VERSION string)
and the extension names (returned in the EXTENSIONS string) that can be
supported on the connection. Thus, if the client and server support different
versions and/or extensions, a compatible version and list of extensions is
returned.

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. The PushAt-
trib, PushClientAttrib, PopAttrib and PopClientAttrib commands
are used for this purpose. The commands

Version 1.2.1 - April 1, 1999

190 CHAPTER 6. STATE AND STATE REQUESTS

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack. PushAttrib uses a server at-
tribute stack while PushClient Attrib uses a client attribute stack. Each
constant refers to a group of state variables. The classification of each vari-
able into a group is indicated in the following tables of state variables. The
error STACK OVERFLOW is generated if PushAttrib or PushClient Attrib is
executed while the corresponding stack depth is MAX_ATTRIB_STACK DEPTH or
MAX_CLIENT_ATTRIB_STACK DEPTH respectively. The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last cor-
responding PushAttrib or PopClientAttrib. Those not saved remain
unchanged. The error STACK_UNDERFLOW is generated if PopAttrib or Pop-
Client Attrib is executed while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic
constant names and stacks.

When PushAttrib is called with TEXTURE_BIT set, the priorities, border
colors, filter modes, and wrap modes of the currently bound texture objects,
as well as the current texture bindings and enables, are pushed onto the
attribute stack. (Unbound texture objects are not pushed or restored.)
When an attribute set that includes texture information is popped, the
bindings and enables are first restored to their pushed values, then the bound
texture objects’ priorities, border colors, filter modes, and wrap modes are
restored to their pushed values.

The depth of each attribute stack is implementation dependent but must
be at least 16. The state required for each attribute stack is potentially 16
copies of each state variable, 16 masks indicating which groups of variables
are stored in each stack entry, and an attribute stack pointer. In the initial
state, both attribute stacks are empty.

In the tables that follow, a type is indicated for each variable. Table 6.3
explains these types. The type actually identifies all state associated with
the indicated description; in certain cases only a portion of this state is
returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is
returned, with parameters describing lights, where only the value pertaining

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 191

Stack Attribute Constant

server | accum-buffer ACCUM_BUFFER_BIT
server color-buffer COLOR_BUFFER_BIT
server current CURRENT BIT
server depth-buffer DEPTH _BUFFER BIT
server enable ENABLE BIT

server eval EVAL BIT

server fog FOGBIT

server hint HINT_BIT

server lighting LIGHTING BIT
server line LINE BIT

server list LIST BIT

server pixel PIXEL _MODE BIT
server point POINT BIT

server polygon POLYGON BIT
server | polygon-stipple POLYGON_STIPPLE BIT
server scissor SCISSORBIT
server | stencil-buffer STENCIL BUFFER BIT
server texture TEXTURE BIT
server transform TRANSFORM_BIT
server viewport VIEWPORT BIT
server ALL_ATTRIB_BITS
client vertex-array CLIENT_VERTEX_ARRAY BIT
client pixel-store CLIENT PIXEL STORE BIT
client select can’t be pushed or pop’d
client feedback can’t be pushed or pop’d
client ALL_CLIENT_ATTRIB BITS

Table 6.2: Attribute groups

Version 1.2.1 - April 1, 1999

192 CHAPTER 6. STATE AND STATE REQUESTS
‘ Type code ‘ Explanation
B Boolean
C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-point s, t, r, ¢
values)
N Normal coordinates (floating-point x, y, 2z val-
ues)
v Vertex, including associated data
Z Integer
zZ+ Non-negative integer
Zyy Zix | k-valued integer (kx indicates k is minimum)
R Floating-point number
R* Non-negative floating-point number
Rla?] Floating-point number in the range [a, b]
RF k-tuple of floating-point numbers
P Position (z, y, z, w floating-point coordinates)
D Direction (z, y, z floating-point coordinates)
M* 4 x 4 floating-point matrix
I Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)
n X type | n copies of type type (n* indicates n is mini-
mum)

Table 6.3: State variable types

to the selected light is returned; with textures, where only the selected
texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a “-” in the attribute column
indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClient Attrib,
PopAttrib, or PopClientAttrib).

The M and m entries for initial minmax table values represent the max-
imum and minimum possible representable values, respectively.

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 193

6.2 State Tables

The tables on the following pages indicate which state variables are ob-
tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands — the one that is most appropriate given
the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv,
GetIntegerv, GetFloatv, and GetDoublev. State variables for which
any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see
section 3.6.2) are typeset against a gray background .

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

194

aIouI IO ‘7
‘T ‘0 :durys penb ur rej

- 197 0S S9OTIISA JO IoqUun N - — A -
UOI1ONIISUOD I9puUn

- 19T penb a1} Jo SOTHISA - — AXE _
djurod x9319A

- 197 q/v dins s[Sueny, - - ey -
aIouI 10 ‘T
‘0 :dirys o[3uer1) ur Iej

- 197 0S S9OTIISA JO IoqUuN N - — 4 -
dixjs s[3uerr)
pug/uidag © ut

- 19% S9OT)IOA OMY) SNOTAJIJ - — AXZ -
sa013490-u0bfijod

- 1°9'¢ JO I™qUINN — _ 7 ~
uo8Ajod puy/urSeg

- 1°9°C JO OPISUI SAOTHIOA - — A XU -

- S I9yunod o[ddrs aur - — A -
dooj aurf puyg/uideg

- 19¢C © JO X91I9A)SIT — — A _
18I 91} SI

- 1°0°C | Tog490-2ug) JT s91RIIPUT - — q -
sur| puy/uidsg

- 197 Ul X9)I9A SNOTADIJ - — A -
199(qo pue /utdaq

- 19¢C S99RIIPUL ‘() # TWOYAA 0 — iy -

9INQIIy "9 uonydrosa(g anfepA puw) odA], on[ea 1Y)
[emITuL D

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 1.2.1 - April 1, 1999

195

6.2. STATE TABLES

MURIINd | T°9°C ey 98pH | ondf Auea[o0g}or) q DVIIEDad
1nq
JUSIIND AN pirea uoryisod Iogsey | 9nNJ Auea[o0g}or) g AITVA"NOLLISOd HHLSVH LNHHEND
uonsod
I9)SeI YIIM PIJRIIOSS®
JUDIIND AN S91eUIpPIO0d 2INYXIT, | T°0‘0°0 AYeo[395 L SAYOOD EHNLXAL HALSVY LNEFIHND
uorjisod 199ser Yim
JUOIIND C1'C | porerdosse xopul I0[0)) 1 Ajeol 195 10 XEANTHELSVY LNEYYNO
‘AJa89jurlen)
uonsod 19)ser
JUSIIND AN UM poajeIdosse 10100 | T'TT'T AYeo[395 o) YOTOO ¥HLSVY LNEHUND
‘AT989jU1eD)
JUSIIND C1'C | @ouelsIp I9jsel jualIny) 0 AYeo[395 oy HONVLSIA ¥HLS VI LNEUYND
JUDIIND ¢1°Z | uwomisod 19)ser juoriny) | 1°0‘0°0 ARO[{195 v NOILISOd YELS VY- LNEYYND
X91I0A
1Se[M PIJeIdIOSSe
- 9'C S9)eUIPIO0D dIN)XIT, - - L -
X9)I0A 1Se[YIIM
— 9'C PpajeId0Sse Xapul I0[0)) - - 10 -
X91I0A)Se[
- 9°C)M PIJRIIOSSE I0[0)) - — 0 -
JUSIIND 2C [eurIou jualIny) | T‘0‘0 AYeo[395 N TVINYON INEHUND
$91eUIPIOO0D
JUDIIND 2C 2Injxay) juwarInd | 1°0°0‘0 AYeo[395 L SAYOOD FUNLXAL LNEHHND
JUOIIND N4 Xopul I0[0d JUSIIN,) 1 Ajeol 195 10 XEANILNEYENO
‘AJa89jurlen)
JUDIIND LT I0[00 JuoxIny) | TTT'r ARO[195 0 HOTOO™LNEYUND
‘AJa89jurlen)
INQIIN)Y '09G uo1)d1I0so(] anfeA puw) odAT, an[eA 10r)
[erug 1D

Table 6.5. Current Values and Associated Data

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

196

Ae1Ie-x0110A | Q7 Ke1re ey 93ps oY) 0} DIUIO] 0 AJIIUIOJ 195 X YALNIOd AVHYV DV14 8DAd
Ae1Ie-x0110A | Q7 s3ep 98po uvaM)aq dPLIIG 0 Azelejurlen) | L7 ArYLS AVIEV DYV 14 8DAd
Aelle-xo11oA | Q7 o[qeus Aeire ey o3pr | 2s)vg PeIqeuisy g AVHEV DVIL EDAH
Ke1re
KLe1re-x9110A | §°'7 9)RUIPIOOD 9INJXI)) 0 IUIOJ 0 AIJUIOJ)95) A YALNIOJ AVHUV QYOO @YNLXEAL
Aelle-xo11oA | Q7 S97RUIPIOO0D 9INIX) UYOMIO] IPIIIS 0 P EX-ELNi § iETS) A FATYLS AVHEY HOOD HYNLXAL
KLe1re-x9110A | §°'7 $99RUIPI00D 9IN)xX9Y) Jo odAT, | 1¥0T1d | AIeSajuIlex) v HIAL AVHYV QHOOO HYNLXHL
Aelle-xo11oA | Q7 Juewe[e Iod s91eUIPIOO)) ¥ P EX-ELNi § iETS) A AZIS AVHYV AHOOD HUNIXEL
%d.mhdnum@ph@.? R°G 9[qeus Aeire 9)RUIPIOO) 3INIXIT, 8]0 Pa[qeuysy q AVHYV AHOO0D0 HYNLXHL
Aelle-xo11oA | Q7 Kelre Xapul 9y} 0} I9UIO] 0 AJ3UIOJ)05 X HALNIOd AVHYV XEANI
Ae1Ie-x0110A | Q7 S9OIPUI U9dMI9(dPLIIG 0 AJe39juT}eNn) A AAIYLS AVIE Y XAANI
Ae11e-x9110A | Q7 sooIpul Jo odAT, | 1V0Td | AToS0UI)0D) A HIAL AVHYV XHANI
%d.mhdnum@ph@.? R°G 9[qeu9 Aeire Xopur 8]0 Pa[qeuysy q AVHYV XHANI
Aelle-xo11oA | Q7 Kelre 10700 91} 09 IAYUIOJ 0 AJ3UIOJ)05 X HHALNIOd AVHYV HOTOD
Aelle-xo11oA | Q7 SIO[0D UPaMIq IPLIIS 0 AJo89ju}er) 7 FAINLS AVHEY HOTOD
Aelre-xo11oA | Q7 syuauodurod 10109 Jo odAT, | 1¥0Td | AIe3ajurler) 87 HdAL AVIYY HOTOO
Ae11e-x91I10A | Q7 Xo1I0A Iad s10[0) % AI983jU}eD) 7z "ZIS"AVHYV H0TOD
%d.mhdnum@ph@.? R°G 9[qeu9 Aeire I010DH 8]0 Pa[qeuysy q AVHYV HOTOD
Aelle-xol1oA | Q7 Kelre [ewWIOU 91} 0} IAYUIOJ 0 AJ2UIOJ 105 X YALNIOd" AVHY Y TVINYON
%d.mhdnum@ph@.? R°G STeTLIOU U99M)9(9PLI}S 0 >H®m®a.ﬁHH®w +N HAMYLS AVHYYV TVINHON
Ae11e-x91I10A | Q7 S91ReUIPIOO0D TewlIou Jo odAT, | 1V0Td | AIo39UI)0D) A HJAL AVHHV TVINHON
Aelre-xo11oA | Q7 9[qeud Leire [eWLION | 28)DJ Porqeudsy q AVYYV IVINHON
Aelle-xo11oA | Q7 Kelre Xa119A 91} 0} I9YUIOJ 0 AJ3UIOJ)05 X HALNIOd AVHUV XEIMHA
AeI1Ie-x0110A | Q7 S9OTLIOA UIMID(OPLIIG 0 AJe39juT}eNn) A AAIYLS AVIYY XEIMEA
Ae11e-x9110A | Q7 S91RUIPIOOD X01I0A JO odAT, | LV0TI | AI9S9jUTIOD) v AL AVHEV XETIEA
AeI1Ie-x0110A | Q7 X9110A Iad S9)RUIPIOO)) 7 ATa80UuI}eNn) A AZIS AVHY Y XELHEA
Aelle-xo11oA | Q7 9[qeus Aeile XalIdA | 9s)nyg PeIqeuisy g AVHEV XEIHEA
NQLIIY BEIN uo1pd1I0so(] anfep puw) odAT, an[eA 10r)
ety D

Table 6.6. Vertex Array Data

Version 1.2.1 - April 1, 1999

197

6.2. STATE TABLES

po[qeus
o[qeus/wIojsURI} | TT'C ouerd Surddrp 19sn Y2 2SI pPeIqeuisy gx %9 MEANVIddITO
SYULIOIJO0D
wIojsuer) 112 ouerd Surddrp 19s) 0‘0‘0‘0 sue[ddI[DID | X *9 HANV I dITO
po/uo 3urressal
s]qeud/urrojsuer) | ¢'01°¢ [PULIOU JUSIIN,) 2801 Pa1qeussy g TVINHON @1VOSHY
Jo/uo uoryezifeurioun
o[qeus /uLIojSURI} | ¢'0T°C [eWLIOU JULSIIN) 2SI PeIqeuisy g "ZITVINYON
uLIoJsueI} 01T 9poW XIIeW JUDIIN.) | MATATAAON | AI28djurlen) vy FAOW XIYLVIN
Joqutod
- z01°T Jor)S XIIYRW 9INIXA]T, 1 AJo80juT}er) 7 HLJEA MOVLS BUNLXEL
Iojutod yoe)s
— z01°T XLI}eW uoI}joafo1J 1 P EX-ELNi § iETS) 7 HLJEA MOVLS NOLLOErodd
ojutod yoe)s
- 01T XLI)eU MAIA-]OPOIN 1 AJe39jur)eN) 7 HLJEd MOVLS MEIANTHAON
Jojurod
— €9¢ Jor)S XII)eW IO[O)) 1 AJe39jur)er) A HLJEQ MOVLS XIMLVIN 40100
Iej
110dmara 10T°C 23 1eau a3uel yida(] 10 AYyeo[195 LY X @ONVH HLJIEA
JU9)Xd
110dmatA 1°0T°C 29 urdrio 310dmoatIA | T°QT°C 998 AI983jU}eD) Z XY IMOJMEIA
- 01T }Oov)S XTIYRW 9INIXAT, £y1yuepy Afeol 1195 yNX * ¢ XIYLVIN BYNLXEL
Jorys
— z01°T XLI}eW uoI}joafo1J £y19uep] AYeo[395 TN X *C XTYLVIN"NOLLOHO¥d
yov)s
- z01°T XLIJReUW MIIA-[]OPOIA £y19uep] AYeo[395 I X * T8 XTYLVIT MEIATEAOW
— €9¢ Jor)S XII)eW IO[O)) £y1yuepy Ajeol 1195 2 X % XIYLVIN 40100
9INqLINY LIS uo1)dII0s9(J anfeA puw) adAT, anfea jon)
reryug D

Table 6.7. Transformation state

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

198

Sunyy31y L'€1°C 8u1))es [OPOJNOPRYS | HIOOKS | AJeSejurlen | .7 TEAOW HAVHS
s[qeua/Soy | Q1€ porqeus 8oy jtoniy, | as)ng PaIqeumg sy qg DOd
803 NIKS apow 30 dxd AJo89ju}er) 74 FAOW DO
80 NIKS pue 30j resur| 01 ARO[79D y aNg o4
Soj 01°¢ 11e)s S0 Teaur] 00 ARO[195 y IVILS DO
£y1suap
803 01°¢ 807 rerpueuodxr] 01 Ajeol 195 y ALISNEA D04
803 01'¢ xopur 304 0 Ajeol 1195 10 XHANT OO
803 01'¢ 10100 300 | 00‘0°0 Ajeol 195 o) HOT00™DOd
NQLIIYY REIY uor)drrosa(J anpeA puw) adLT, anpea 195
[emrug D

Table 6.8. Coloring

Version 1.2.1 - April 1, 1999

199

6.2. STATE TABLES

Suny3 1°¢1°C [01910D 1000 Y0100 TTIONIS AJ989juUT}eN) ty TOUILNOD HOTOO THAOW LHOIT
Suny3I|
Suny3 1€1°C popis-om) as) 280,y AUEBI[00 19D g "AIS OMI TEAON LHDIT
SuryS1y 1°¢1°¢ [e20[ST I9MIIA s|vq AUEBI[00g 9N g HEMEIA™TYOOT THAON LHOIT
10702
Suny3 1€1°C 9UADS JUAIqUIY (0'1'2°0'2°0C°0) AJeO[39D o) LNFIENY TEAON LHDIT
[etIoYRW
Jo juouodxo
Suny3 1°¢1°C Te[noadg 0°0 AJ[RLISJRIN[IOD) | Y X T SSENINIHS
1070D
Suny3r| T'€T'e “YeUI 9ATSSTUIY (0°T°'0°0°0°0°0°0) AJTeIIYRINIPY) | D X ¢ NOTSSING
100D TeLIe)RT
Suny3r| T'€1°¢g Temoadg (0T'0°0°0°0°0°0) AJ[eLIBJRINIIOD) | D X ¢ ¥VINOUdS
10702
Sunysy €17 | [elIdYeU 9SnyI((0'1'8°0°8°0°8°0) AJ[BLISIRIN[IOD) |) X ¢ gsnddia
100D TeLIe)RT
Sunys T'€1T jusrquIy (0T'2°0'C0C°0) AJ[BLISIRINIOD) |) X ¢ INATENY
Surypen)
Iojoo £q
SuryS1y €eT'c | porage (s)oorq MOVE ANy INOY AI289uUI}en) 574 HOVA TVIMALYIN-MOTOD
1070D
JueIIND SuryDeI}
soryrodoad
SuryS1y eeTe [e1IdYRIN | ISNAATIA ANV INATIGWY | AIa8ajurlen) Sy YALAN VYV TVIHELYIN 4OTOD
poIqeus
st Sunypoern
o[qews /3unySy | ¢'€T'C I0[0D J1 oNIT, 280,y Pa1qeussy g TVIYELVIN-HOTOD
PoIqeus st
o[qeus /SunySsiy | 1°¢1°¢ Sury31] ;1 oniy, aso PRIqeuUd ST g ONILHOIT
NQLIIYY PEIY uor)dLInsa(] anfep puw) odAT, an[eA 10r)
[emrug D

Table 6.9. Lighting (see also Table 2.7 for defaults)

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

200

Surnyy81y xopur 10702

SunyS81 1I°¢1°T 10] “s pue ‘p ‘p I‘T°0 AJ[RLIOJRIA[ION) | ¥ X € X T SEXEANT HOTOD
o[qeud/SuryySi | [°¢1°g | Pd[qeud 2 JySi[Ji onaf, 810 pPa[qeuqs] gx *8 NLHOIT
Suny3Iy [¢ 311 Jo o[due jodg 0°08T AJSITIOD LY X %8 440LND"LOdS
LN
Sunyy31 1°¢1°C Jo jusuodxos ySipodg 00 AJSTTI9D LYX %8 LNENOJXH LOJS
LN
Sunysi T'€r'g | Jo womdaap ysipiodg | (0°1-0°0°0°0) AJSITIPD ax*8 NOLLOGMIA LOJS
1030%]
Sunys IR R ‘ud))e dIYRIPRN]) 00 AJIY3TTI9D LY X *§ || NOLLVANELLV OILVHAVAD
Sunyy31 1°¢1°C 1030%] ‘US})e IedUIT 00 AJSTTI9D LY X xg NOLLVANELLV HVENIT
SunyS31 T°€1°C | 1070%] ‘Ud))e JURISUO)) 01 AJYSITID LYX %8 NOILVANZLLY"LNVLSNOD
SunysI[[2 9811 Jo worysod | (0°0°0°1°0°0°0°0) | AFISITISD dX *8 NOLLISOd
LN
SunyS31 1€1°C Jo £Lysuejur renoadg G'7 998 AJYSITID DX %8 ¥VI100ddS
Ul
SunyS31 1€1°C Jo Aj1sudyur asnyr(q G'7 998 AJYSITID DX %8 asnddia
Ul
Suny3Iy T'€1°¢g Jo Aysusgur yuarqury | (0°T°0°0°0°0°0°0) | AJIYSITIOD DX *8 INATTNY
NIy BEINY uo1)d1I0so(] anfep puw) odAT, onfeA 1or)
reryug D

Table 6.10. Lighting (cont.)

Version 1.2.1 - April 1, 1999

201

6.2. STATE TABLES

a[qeus/uo3Atod | g'g'¢ | o[qeus ajddiys uo3L[og | asimg PRIqeUdST q A1ddILS NODATOJ
orddns-uo84fod | ¢'¢ orddrys uo84j0q ST a1ddrjguoSA[og1en) T -
UOIYReZ1I9)Sel
apowr TIIJd 10}
s[qeus/uolLod | g'g'¢g 9[qeud jaspo uo3L[og | 28D Pa1qeussy g T4 LESII0NODATO
UOIYReZ1I9)Sel
opowr ANI'T 10}
s[qeus/uolLod | g'g'¢g 9[qeud jaspo uo3L[og | 28D Pa1qeussy g @NIT LESII0"NODATOd
UOIYReZ1I9)Sel
opowr LNIO0d 10j
a[qeus/uolAtod | ¢'g'¢ a[qeus josyo uo3AL[og | 2svg pPar1qeussy qg LNIOJd LESII0"NODATOd
uo3Aod G'Ge serq j9sygo uo3L[oq 0 Ajeo[19D g SLINN LESZ40"NODATOd
uo3£tod GGe 10)0%J 19spo uo34L[0g 0 Ajeol 1195 y YOLOVA LESIIO"NODATOJ
(speq 29 qu0I}) opowt
uo3A1od y'ee uorjeziIo)sel uoSA[od | TIId AI983jU}eD) €7 X T HAOW NODATOd
uo
s[qeua/uolLjod | g¢ Surserferjue uo3L[0g | 25T Pa1qeussy g HLOOWS NODATOJ
109e21pUT MDD/ MD
uo3£tod 1°¢'¢ ooejjuoIj uoSA[0gd | MDD AJe39jur)en) ty FOVA LNOYA
suo8ATod
uo3Aqod 1'¢'¢ | Sumej yoeq/quolf n) | Mdovd AJSS0UT}eD) €7 EAON EOVI 110D
porqeus
a[qeus/uo3Atod | 1°G'¢ urno uo3A[0J | osmg pPar1qeussy qg OV 1100
aqeua/oul| A A o[qeus o[ddr)s oury | 2807 PeIqeUHST q ATddLLS ENIT
auI| ve 1eadoa1 o[ddrs aury I AI983jU}eD) 7z LVEJEY @TddILS ENIT
aur| ve orddrs aury ST AJe39jur)en) A NYELLYd @TddILS @NIT
a[qeus /oul] ¥'e uo Jurselferjue Ul | 250 pPar1qeussy qg HLOOWS ENIT
auly v'e UIpIM ourg 01 ARO[79D oy HLAIM ENIT
e1qeus /qutod ¢e uo 3uiserferjue juoJ | 254 pPar1qeussy qg HLOOWS LNIOJ
jurod ee 9z1S JuI0d 0T ARO[79D oy @ZIS LNIOd
9INqLINY PEIY uondimsa(anfeA puw) odAT, anfea jon)
[enyuy D

Table 6.11. Rasterization

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

202

UOTIN[OSAI A}ISU)UL

- 8¢ §,2 98ewr 9In)x9} ([T 0 I910MRIRJ[IAITXILIRY) | 17 X U "ZIS ALISNELNI HYNLXHL
UOIIN[O0SOI 9OURUTN]

- 8¢ S,2 93eWI 2IN)X0) (IT 0 I9)0WRIRJ[SADTXIL,IOND | 7 X U AZIS EONVNINAT BYNLXAL
uorjnjosax eydpe

- 8¢ S,2 93eWI 2IN)X0) (IT 0 I9)0WRIRJ[SADTXIL,IOND | 7 X U AZIS VHITY BYNLIXAL
uOoIIN[OSAI dN[q

- 8¢ §,2 98ewr 9In)x9} ([T 0 I910MRIRJ[OATXILIPY) | 17 X U HZIS @01 HUNLXEL
UOTIN[OSAI I3

- 8¢ §,2 98ewr 9In)x9} ([T 0 I910MRIRJ[IAITXILIRY) | 17 X U HZIS NEEYD EHNLXEL
UOIIN[0SaI Pal

- 8¢ S,2 93eWI 2IN)X0) (IT 0 I9)0WRIRJ[SADTXIL,IOND | 7 X U AZIS” QY HHALXEL

1eULI0] 98U [RUIDIUL (SLNENOJIWOO BHNLXHL)

- 8¢ S,2 93eWI 2IN)X0) (IT 1 J9jomRIRJ[PATXSL,10D) | ¢V x u LYWHOd TYNYEINI HHNLXHL
IPIM I9pI0q payads

- 8¢ §,2 98ewr 9In)x9} ([T 0 I910MRIRJ[IAITXILIRY) | 17 X U MAHOS HUNLXEL
yydop paymads

- 8¢ S,2 93eWI 2IN)Xd] (€ 0 I9)0WRIRJ[SADTXIL,IOND | 7 X U HLJEA GENLXEL
131y paymads

- 8¢ S,2 93eWI 2IN)Xd} ([T 0 I9)0WRIRJ[SADTXIL,IOND | 7 X U LHOIEH BYNLXAL
[Ipis peymads

- 8¢ §,2 98ewr 9In)x9} ([T 0 JI310MRIRJ[OAITXILIPY) | 17 X U HLAIM HYNLXEL
L po

- 8¢ e oFewI 9IN)X) (JT | §'¢ 99 a8ew[xa],105) I XU Az @UNLXAL
az g4nLxYdL o3

2IN)x0) {'8°¢ punoq 129[qo a1njxay, 0 AJa30UI}en) L7 X¢e a® ONIANIE BUNLXEL
€ 10 ‘Z ‘T SI T ‘pojqeud

o[qeus/oInyxa) | OT'Q°¢ | SI SuLINIXe) (T JLoniL, | s porqeuss gxe¢ A @UNLXAL

NQLIIY EIY uon)drIosa(J anpeA puw) adLT, anpea 195
[emITuL D

Table 6.12. Texture Objects

Version 1.2.1 - April 1, 1999

203

6.2. STATE TABLES

[9A9] Aeire

9IN9)X9) 8¢ 9IN)X9) WNWIXRIA 000T AJID)auIRIR X3, 195 Y Xu TIAST XV EHNALXEL

2In)Xa9 8¢ Aeire aIn)xay) aseqg 0 AJI9jomreIR JX9] 105 Y Xu TEAET ESVE HHNLXEL
[re3ep

2In)Xa9 8¢ JO [PAS] WINWIIXRA] 000T AJI9jomreIR JX9] 105 Y Xu AOTXVIN F¥NLXHL
[re3ep

9IN9)X9) 8¢ JO [9AS] WINWITUTIA 0007~ AJID)auIRIR X3, 195 Yy Xu AOT NIN HYNLXEL

aIn)xa) | §°'8°¢ ADOUSPISAI 9INYXAT, | §'Q'C 998 | AlLIajoUIRIRJXST,}9Y) g% .7 LNEAISHY GUALXEL

9IN)X9] {'g'¢ | £rotad 109(qo 9IN)Xa]T, 1 AJIajauIRIRIXSL19D | [X 48 ALINMOINMJ BHALXEL

2In)Xa9 8¢ Y opowr deim aIn)xay, | LyAddY I9joureIRJXoT,105) €7 X 41 W IVHM TYNLXEL

2IN)X9)]'¢ I opour deim o1n)xay, 1ydadday J9jouIRIR X9 195 7804 +G I dVUM GUNLXEL

2In)Xa9 8¢ G opouwr deim aInyxe], | IydddY I9joureIRJXoT,105) €7 X . ¢ S dVIM EUALXEL
uorjouny

aIn)xXe) | 9°Q°¢ | UONRDYIUSRW 2INXA], | §'¢ 908 I9joureIRJXoT,105) e7 X 4T YELTIS DV FYNLXEL
uorjouny

9IN9X9) eafeales UOTIRIYIUTW dIN)XYT, 8'¢ 908 J9jouIRIR X9 195 97 X ¢ HELTIA NIN HUNLXEL

2In)Xa9 8¢ I0[0D Ieploq aInixal, | 0‘0°0‘0 I9joureIRJXoT,105) DX .7 YOTOO HHAYOT HUNLXEL

9INQLIYYy 09§ uo1pd1I0so(] anfeA puw)) odAT, anfeA 1or)
ey 1D

Table 6.13. Texture Objects (cont.)

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

204

O pue
‘g ‘L ‘S 10]) ueSxay

2IN)X9) 7'01°C I0J pasn uorpounyg | YYANIT HAH | ATUNX9T,39X) | €7 X § HEAON NED FYNLXEAL
(© pue
‘1, ‘S 10]) SIUSIIIFO0D
2INJx9) 7'01°C Teour] $99[q0 WASXYY, | F'0T'C 998 | AJUSDXILIdD | L4 X ¥ ANVTd LOELd0
(© pue
‘1, ‘S 10]) SHUSIOIFO0D
2IN)x0) 7'01°¢ | uoryenbo ouerd ueSxa, | §01°Z 998 | AJUSDXILID | ;¥ X ¥ ANVId gAH
(O 109 L’S
a[qeus/oIn)xa) | $0T°C SI T) po[qeus Ua8XaT, 28|04 pPar1qeussy gxy T NED HENLXAL
107109
9IN)X9} 6°'8°¢C JUOUIUOIIATD SINIXT, 0°0°0°0 AJAUNXO],}195) 0 YOTOO AN HUNLXAL
uorounj
9IN)X9) 6'%°¢ uorjedrjdde a1n)xa], ALVINAON ATAUXST,}05) v HAOW ANT FYNLXEL
9IMqLINY PEIY uonydrosa(g anfeA puw) adAT, anfea jon)
ey D

Table 6.14. Texture Environment and Generation

Version 1.2.1 - April 1, 1999

205

6.2. STATE TABLES

Iaynq-I0[0d I¥ uorjouny do 01307 Ad0D AJ989juUT}eN) 9y HAON dO™0IDOT
o[qeus/Iaynq-10[0d | §'T'F | porqeus do 5130] 10[0) 280 polqeuysy g dO™DIDOTHOTOD
o[qeus/1oynq-10100 | §TF | parqeus do 21307 xepuy as|vg Porqeuysy q (d0™DIDOTID :0°T4) dO™DIDOT XHAANI
o[qeus /IdYNq-I10[0d | L'T'F poalqeus SULILYII(] andJ, polqeuysy g YEHLIQ

Ia]ynq-I0[09 (O 7 I0[0D PUS[q JURISUO)) 0‘0‘0‘0 A9RO[{195 o) YOTOO ANETd

Iapng-10[02 o1V uoryenbs 3uipus[g | @@y ONNd | AI939jurlex) Sz NOILYNOE ANTTE

uorouny

I9jng-10[0d 9T¥ UoT)eur)sop Surpus(g 04HZ AJ989juUT}eN) cly Lsa and1d

uorouny

I9ynQ-10[09 o1V 901n0s 3urpud[g ANO AIa39UI)en) ey o¥s aNaTd
o[qeus/IdYNq-I10[0d | 9°'T'F poalqeus Surpua[g 280 polqeuysy g ana1g

uorouny

Tognq-yjdop STY 159) 1ognq yada(g SSAT AJ989juUT}eN) 87 ONAJ HLIAA
a[qeus/1oyng-adep | G'T'F perqeus 1aynqg yada(g 280 polqeuysy g LSEL HLJAA

uorjoe ssed
Iaynq-[oua)s VIV Iapgnq adep [DUIG dTay AJe89Uur)en) 97 SSVd HLJEA SSVd TIONILS
uorjoe [rej
Iaynq-[Iua)s VI'¥ Iaynq yadap [10ud)g daay AIa39UI)en) A IV HLJEA SSYd TIONELS
Iaynq-[oua)s VIV uoI10® [rey [10uslg dTay AJ939qUI)eN) 97 TIVI TIONELS
I9PNQ-TOUL)S 7TV | on[ea adusiojol [10Ud1g 0 AIa39UI)en) 7 JFYTIONELS
Iaynq-[oua)s VIV JSeu [10ud)g ST AJa30UI}en) A MSVINENTVA TIONILS
I9PNQ-TOUL)S VIV uonouny [VU)S | SAVMIV | AIeSajurlern) 87 ONNA TIONELS
o[qeus/IdYNq-DUdIS | F'1'F poalqeuL 3UI[DUd)G 280 polqeuysy g LSEL TIONELS
anfea

Iapnq-10[02 ol I 2 90UI9JaI 1599 RYd[y 0 AJa30UI}en) Yy JdEYLSEL VHATY

I2jng-I10[0d eIy uorpouny 159} eydyy SAVMIY AJ989juUT}eN) 87 ONNJ LSEL VHATY
o[qeus /IdYNq-I10[0d | €'T'F porqeus 3s9) eyd[y 280 polqeuysy g LSEL VHATY

I0SSIOS A7 X0(Q I0SSDS | g'T'F 998 | ATeBequl)er) | 7 X ¥ XOE HOSSIOS
o[qeud /108ST0S TV poa[qeus 3ULIOSSIDG 280 polqeuysy g LSEL MOSSIOS
NQLIIY PEIY uor)dLInsa(] anfep puw)) adAT, an[eA 10r)

rerrug 1D

Table 6.15. Pixel Operations

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

206

onfeA Iead

Iagng-wnodoe | €7 I9jng UOTIR[NWINIDY 0 AjYeo[19D LY X § || aaTvaavatomaoov
I_DPNQ-TOUdIS | ¢°CF anyeA Iesd [OUdIS 0 AI289uUI}en) 7 ENTVA MVETO TIONELS
anfea
rynq-yydep | €% Teo[d 1oynq yrde(g 1 AIa39UI)en) Y @NTVA MVETO HLJAA
(epowr Xopur 10[0D)
I9PNQg-I10[0d | €'Z'F | on[eA Iesd[d I9Pnq Io[o)) 0 AjYeo[19D)ie) FNTYA MVETO XHEANI
(opowr DY) onyea
Iaynq-Io[0d | ¢'C'¥ Ieo[d Iapnq 10100 | 0‘0‘0‘0 Ajeol 195 o) ENTYA VIO HOTOD
YSRUWOILIM
I_DYNQ-TOUdIS | 7°CF _YNg (UG S T AI289uUI}en) A MSVINELIMM TIONELS
SurIm 10§
ogng-yadep | Z°TF poiqeus 1aynqg yrda(g andf, AUe9[OO 9D g SISVINELIMM HLJIEA
v I0'g ‘D
I9PNQ-I10[00 | g'TF | ‘Y ‘se[qreud 9)1Im IO[0)) andf, Aueos[OOgIOD) | g X MSVINELIMM HOTOD
IDYNQ-I10[00 | g'C’y | JSeWSIIM XOpul I0[0)) S T AI289uUI}en) A MSVINELIMM XEANI
SuimeIp
Iagng-10[0d | T°T'¥H I0J pojooes sIvyng | 1°¢'F @9S | AJaSajurlen) *0Ty7 UELINT MVEA
NIy BEIN uor)dLInsa(] anfeA puw)) adAT, an[eA 10r)
reryrug 1D

Table 6.16. Framebuffer Control

Version 1.2.1 - April 1, 1999

207

6.2. STATE TABLES

INAWNDITY MDVd

ar0)s-oxid | ¢'§ Jo onyeA % AJ989jUT}eN) A LNENNDITV MOVd
STIXId dINS MOVd
ar0s-oxid | ¢€'F Jo anyep 0 AJa30UI}eN) A STEXId dIsSSIOVd
SM0Y dINXS XDVd
aros-oxid | ¢€F Jo anyep 0 AJa30UI}eN) A SMOY dIMS MOVd
HIDNIT MOY d0Vd
ar0)s-oxid | ¢y Jo onyeA 0 AJ989jUT}eN) A HLONET MOY MOVd
SHDYWI dINS MOVd
ar0)s-oxid | ¢'§ Jo onyeA 0 AJ989jUT}eN) A SEDVINT dINS MOVd
LHDIHH IDVWI XDVd
aros-oxid | ¢€F Jo anyep 0 AJa30UI}eN) A LHDIEH @DVINI MOVd
LSHIA ST A0Vd
ar0)s-oxid | ¢'§ Jo oan[eA | 23S | AUed[00HIIN) q LSUIA- ST MOVd
SHLAT dYMS MDVd
ar0)s-oxid | ¢'§ Jo oanfeA | 23S | AUeI[00HIIN) q SHLAG dVMS MOVd
LNIWNDITY ¥DVdNN
ar0s-oxid | €'F Jo anyep ¥ AJa30UI}eN) A LNENNDITY OVAINN
STHXId dINS MDVdNN
ar0s-oxid | €'F Jo anyep 0 AJa30UI}eN) A STEXIddIMSSIOVANN
SMOY dINS ¥DVdNN
ar0)s-oxid | ¢y Jo onyeA 0 AJ989jUT}eN) A SMOY dINS MOVANN
HIDNIT MOY MOVdNN
ar0)s-oxid | ¢y Jo onyeA 0 AJ989jUT}eN) A HLONET MOY MOVAINN
SIDYWI dINS MDVdNN
aros-oxid | ¢€F Jo anyep 0 AJa30UI}eN) A SEDVINI dINS MOVINA
IHDTIH IDVWI MDVdNN
ar0)s-oxid | ¢y Jo onyeA 0 AJ989jUT}eN) A LHDIEH @DVNIMOVINN
LSHIJL ST ADVdNN
ar0)s-oxid | ¢ Jo oan[eA | 23S | AUed[00HIIN) q LSUIA ST MOVANN
STLAT dVMS MOVdNN
ar0s-oxid | €'F Jjo onfep | ospg | Aues[oogilen) g SHLAS JVMS SIDVINN
9INQLIYYY 'D9G uo1)dLI0so(] anfeA puw) adAT, an[eA 10r)
reryrug D

Pixels

Table 6.17.

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

208

S9LIUS 9[qe} I0[0D AJI9joUIRIR g
exid ¢'9'¢ | o3 parjdde s1090e] seig | 0‘0‘0°0 | -°IqRIIO[0DIOD) »d X € SVIE @TaVI HOT0D
SOLIYUd d[qe} I0[0d 0} AJIdjoUIRIR g
exid €0¢ porpdde si03oey o1edS | [‘T‘T‘T | -9[qeLIO[0DI9D) v X € @TVOS @TAVL Y0100
ALISNALNT
10 “FONVNIWAT
‘VHA'TY “3NTE ‘NIIYD
‘qdy ST T ‘{uoI)N[0S9I AlIojoureiRg
- €'9'¢ | Jyueuodurod s[qe) I0[0)) 0 -9[qBLIOI0DI®D) | L Z X EX T X9 AZIS T @TIVI HOTOD
TIpm AlI9jomaeaedq
- €'9'¢ | poeymads s9[qe) 10[0) 0 -9[qeLI10[0)3°o5) L7 XEXT HLAIM @T8VL ¥0T00
JeuIIo] 98ewl AlI9jouTRIR J
= €'9'¢ [euIsjur So[qe) I0[0)) | YoYU -9[qeJ,10[0)I°5) Yy X ¢ X(g LYWHOJ ET19VL HOTOD
- €9'¢ sa[qe} 10[0)) | figdwa 9[qeL,I0[0D 105 IX¢ ATEVI HOTOD
auop st dnxjoof
9[qe) I0[0D XIIjeur
o[qeus/roxid | ¢'9'¢ 10700 3sod JT oni, | osImyg PaIqeuisy q ATEVI HOTOD XIULYIN HOTOD LSOd
auop st dnxjoof
9[qe) IO[0D UOI)N[OATOD
o[qeud/foxid | ¢9'¢)sod J1 onay, | aspg PaIqeuds] q @19VL 4OTOD NOLLNTOANOD LSOd
auop st dnyoof
o[qeud/foxid | ¢9'¢ 9[qe) 1070 JT oNIT, | 23SV PaIqeuds] q @1gvL 9OTOD
H1dAd 10 ‘YHJTY “AnTd
‘NFFYD ‘@Y Jo duo
exid ey S1 T ‘SYIg T JO onjeA 0 AJeo[195 g sviae
H1ddd 1o ‘YHJTY
‘An1d ‘NIIYD ‘Y
[oxid e ST T ‘{TYDS™T JO onfeA 1 Ajeol 195 y ATVOS *
exid ey I1HSAA0 XHANT JO anfep 0 AJe39jur)en) 7 LASAAO XHANI
[oxid e LATHS XAQNI JO anfeA 0 AJo89ju}er) 7 LJAIHS XEANI
poddeur axe
[oxid e sonyeA [IDUL)S JT onIT, | 2507 AUR3[O0g 19N g TIONELS dVIN
poddew
exid ey 9IR SIO0D JT oNIT, | 38V Auea[00g)oX) q HOTOD dVIN
9INqLINY PEIY uo1)d1I0s9(J anfeA puw) adAT, anfeA jor)
[enuy 1D

Table 6.18. Pixels (cont.)

Version 1.2.1 - April 1, 1999

209

6.2. STATE TABLES

Y317 ALIS)oWIRIRJ
- ey I9)[1J UOIIN[OAUO)) 0 -UOIIN[OAUODIOD) | 7 X T LHDITH NOILATOANOD
qIps ALIS)oWIRIRJ
- o I9)[IJ UOIIN[OAUO)) 0 -UOIN[0ATODIY) | ;7 X ¢ HLAIM NOILATOANOD
JeULIOJ [RUISIUL AlI9jowIRIR g
- ey I9)[1J UOIIN[OAUO)) ¥goy |-uornoAuo)Iexr) | ¢y x ¢ LVINYOJ NOILATOANOD
SOLIYUd
I9)[1} UOTIN[OAUOD AJIojourereJ
exid €9'¢ | o3 perdde siojoey serg | 0°0°0°0 |-uoIn[oAuUOILRD) | Y X € SVIE HELTId NOLLATOANOD
SOLIYUd
I9)[1J UOIIN[OAUOD O} AJIojomuered
exid ¢'9'¢ porjdde s1ojoey ofedg | TTT'T |-UoIn[oAuonIdy) | ;4 X ¢ @TVOS HELTII NOLLATOANOD
apout ALIS)oWIRIRJ
exid ey I9pIoq UOIIN[OATUOY) | HONJHY |-UOIIN[OAUODIE) | 77 X ¢ EAOW HEAHOT NOILATOANOD
10709 AJIojomuered
exid ey I9PI0Q UOIN[OAUOY) | 0‘0‘0°0 |-UoIIn[oAU0)ILE) |) X ¢ HOTOO HEAYOT NOILNTOANOD
191G It
- ¢'9'¢ | uornjoauod o[qeredsg | fizdwao -o1qeredaglon) IXT NOLLNTOANOD
It
- €'9'¢ SIoNYJ UoIN[oAU0)) | fizdwa |-UOIIN[OAUODPOE) | [X NOILNTOANOD
QUOP ST UOTIN[OATUOD
s[qeud/foxid | ¢9'¢ (¢ °1qeredss J1 oniy, | as)nq PeIqeudSsT g aza1avyavdas
Quop SI
o[qeud/foxid | ¢'9'¢ | WOTIN[OAUOD (g JL ANIL, | 3S)T PeIqeudSsT g @z NOILATOANOD
Quop SI
o[qeus/foxid | ¢'9'¢ | UOIIN[OAUOD ([T JI oNIL, | a0 PaIqeuisy g arNOILLATOANOD
NQLIIY BEIN uor)dLInsa(] anfeA puw) adAT, anfeA 1or)
[erug D

Table 6.19. Pixels (cont.)

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

210

sdnoi8 [ox1d sewnsuod ALI9joUIRIR]
- ¢'9'¢ | Suruureilo)sty Ji oniy, | oseq -ureI809STH 195 q SINISTINVYDOLSIH
AONYNIWAT I0 ‘YHATY
‘INTE ‘NATYD ‘qHY ST T
‘uorpn[osoa1 yusuodurod AlLI9)oUIRIR]
- €'9¢ 9[qe} wrei30)sTfy 0 -weIS0)ISIHI®D) | 17 X T X G "ZIS" T NVEDOLSIH
110} [RUISIUT AlI9joumnRIR J
= €'9¢ 9[qe) wreid0)SIy | ygHY -ureI809STH 195 vy X T LYVINHOL NVUDOLSIH
AlI9jounRIR J
- €9'¢ | YIpIM d[qe) ureido)sIfy 0 -RIS0)STE195) L7 XT HLAIM WVHDOLSIH
— €9¢ o[qe) ureidolsty | fizdwa ureiS09sIg 195 I NVHUDOLSIH
pa[qeus st
o[qeud/foxtd | ¢'9'¢ | Surtrurer3o)sTy Ju onIL, | osTeq PeIqeudSsT q INVIDOLSIH
YHdTY 10 ‘4nTd ‘NITYD
‘@ay SI T X1jew
I0]0D IojJe S1030%]
exid ¢9¢ serq jusuoduo)) 0 Ajeo[g9195) Yy SVIE 2z XIHLVIN-4OTOD LSOd
YHdTY 10 ‘4nTd ‘NITYD
‘@ay SI T X1jew
1010 I9)Je SI1030%]
exid ¢9¢ 9[eds jusuoduo)) T Ajeo[g9195) y FTVOS & XIYLVIN 40100 LS0d
YHJTY 10 ‘4nTd ‘NITYD
‘@dy ST TUOTIN[OATOD
I9)Je SI0}0e]
exid ¢9¢ serq jusuoduo)) 0 Ajeo[g9195) Yy SVIE ' NOLLNTOANOD LSOd
YHJTY 10 ‘4nTd ‘NITYD
‘qay ST T :UOTIN[OAUOD
I9)Je SI0}0e]
exid ¢9¢ 9[eds jusuoduo)) T Ajeo[g9195) Yy @TVOS & NOILATOANOD LSOd
9IMNqLINY PEIY uo1)d1I0s9(J anfeA puw) odAT, anfeA 1ox)
renuyg D

Table 6.20. Pixels (cont.)

Version 1.2.1 - April 1, 1999

211

6.2. STATE TABLES

Pxid ey I9pnq 90IN0S peay Al A AJe39jur)eN) g7 ¥aJING AVEY

- ey T 9[qe} Jo 9ZI§ 1 AI3S0UT}eD) A azIs e

€€ °IqBL
woiy suwreu deur e
SI T {s9[qe} UoIje[suRI}

- €Y deN[eXId Xopuf S0 deIN[PXIJI9D | ZX *TE X T ’

€€ °IqBL
woij suwreu deur e
SI T {s9[qe} UoIje[sueI}

- €Y deextd vdDYd S0 deN[PXIJ19D | ¥ X *TE X 8 ’
exud S 7 10)0%J wWooz fi 0T Afeol 195 y ATNOOZ
exid ¢y 1070®] WOO0Z T 01 ARO[19D y X WOOZ

sdnoi8 [ox1d sewnsuod AlIojoureiRg

- €'9'¢ XewulwW JI oniy, asreq -XRUWIUIA[}95) g SINIS" X VINNIIN

1eULIO] ALIS)oWIRIRJ

= €°9°¢ | [eUIdUI J[qR} XRUWIUIIA a4 -XRUIUITA[}95) (4474 LVINHOI XVINNIN

- €9'¢ o[qe) xewrurpy | (wr‘ur‘wr‘ur)‘(IN‘IN‘IN‘IN) XRUWIUIIA[}9D) uY XVINNIN

porqeus
a[qeus/toxid | ¢'9'¢ ST XewulwW JI oniy, asreq Pa1qeussy g XVINNIN
NIy BEIN uor)dLInsa(] anfep puw) odAT, an[eA 10r)
rerrug 1D

Table 6.21. Pixels (cont.)

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

212

parqeus
UOIIRISUSS [RULIOU

s[qeud/[esd | 1°g JorIyewIoIn® JI oniy, | 9s)ny | Pa[qeuds] g TYINYON OLNV
Teas 1°¢ SUOISIATP PLIS Py, ‘T Afeol 19D L7 XT SINEWDHS AIYD ZdVIN
Teae 1°G SUOISIATP PLIS PT 1 Afeol 195 A SLNENOHS AIYD TdVIN
[eao 1°G syutodpus ptI8 pg | T°0‘T°0 | AYeo[3D Y X¥ NIVINOQ ardD edviN
[ead NS syutodpus prid py 10 ARO[195 Y Xg NIVINOQ aI¥D 1dVIN
od £ dewx
s[qeud/[esd | 1°g st T :so[qeus dewr pg | 950 | PO[qeUHST qgx%x6 LAV
od £ dewx
a[qeus/Tead | 1°G st T :so[qeus dewt pT | 9s)py | PeIqeUHS] qgx%x6 TIIVIN
- 1°G syutodpue urewop pg, | 1°G 99s | Ajdepren) YX¥H X6 NIVINOQ
- IS syutodpus urewop pT | 1°G 99s | Ajdepren) Y XTX6 NIVINOQ
- 1°G syutod [013U0D P | T°G 99S | AJARIAII9D) | LU X *x8X x 8§ X § EE c(ele)
- 1°G syutod [o13u0d PT | T°G¢ 99s | ajdeAren WX *8 X6 EE clelo)
- 1°G s1opio dew pg 11 Atrdepn[19n) B X T X6 piiclegife}
- 1°G Iopio dew pT I ardep[en *87 X 6 "AAHO
NQLII)y 09§ uor)dLInsa(] anfeA puw) adAT, an[eA 10r)
reryug D

Table 6.22. Evaluators (GetMap takes a map name)

Version 1.2.1 - April 1, 1999

213

6.2. STATE TABLES

g 9°'G Wty 8o | YYD INOd | AIeSajurlen) A LNIH DOJ

jury 9°G Jury yjoows uo3A[0g | HYYD INOQ | AILS9jurlan) A LNIH HLOOWS NODATOd

g 9°'G JUIY }O0WS dUIT | FYYD INOd | AISSajurl}ex) A INIH HLOONS HNIT

g 9'G Jury yloowrs Juiod | FYYY INOA | AIe88jurlax) A INIH HLOONS LNIOJ

g

g 9'G UOT)09110D 9A1109dSI9 g | YYD INOQ | AIS9jurlaxn) A LNIH NOLLOEHHOD HALLOHISHAJ

9INQUIYy 09§ uot)d1I0sa(J anfeA puw) adAT, anfea jon)
renyug 1RO

Table 6.23. Hints

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

214

a[qe) ureido)sty

- €9°¢ 93 JO 9718 WnuITXeIN (43 - +Z -
9[qe) 1070
- €9°¢ ® JO 9718 WNWIXeN (43 - +Z X € -
YorIS 9INQLIYIR JUSID
— 9 QQP .WO Qﬂ@@ﬂv wWNwIxep 91 >H®WQG.HHHH®.U +N HLJEA MOVLS dI4LLYV LNHITO XVIN
Jor)S 9INQLIYIR IDAIAS
- 9 91} Jo yydep wnwrxey 9T AI983jU}eD) 7z HLJEA MOVLS aIdLLIV XVIN
SUOTISUSWIIP
- 1012 170dMaTA WNWIXRIN | T°0T'C 998 | ATOS0UI}Y) | 7 X ¢ SWIA" TMOdMEIA"XVIN
I9pi10 [erwouijod
- 1°G I0)eN[eAd WINWIXRA 8 AJe39jur)en) A YEQUO TVAT XVIN
Surjseu [[ed
- ¥'C 9817 AR[dSIp WNWIXRA ¥9 AJe39jur)en) A ONILSEN LSIT XVIN
yydop Moe)s awreu
- Al 0110908 WNWIXBA 79 AJSS0UT}eD) A HLJEA SOVIS HNVN XVIN
o[qel
uoryesuer) dej[exid
- €9¢ ® JO 9Z1S WNWIXBN S AJSS0UT}eD) A ATAVL VN TIXIT XVIN
'8¢ UONSg
- 8¢ ur UOISSNOSIP YY) 99G 79 AT389uUI}en) 7 AZIS YNLXIL XV
'8¢ UOIIag
- 8¢ ur UOISSNOSIP YY) 99G 97 AJe39jur)en) A @ZIS @UNLXEL dE XV
™f; pue ™T UADIOS
ur uotsmald [axidqns
- ¢ JO s31q Jo IaquIny ¥ AJSS0UT}eD) A SLIE TAXIdaNs
Jor)s XLIjeW
21n)xa1 jo ydop
- 01T IoquINU WNWIXe]A 4 AJSS0UT}eD) A HLJEA MOVLS BUNLXTL XVIN
yadop yoels xrrjewr
- 201°C uoryoeford wnwixey b4 AI983jU}eD) A HLJEA MOVLS NOLLOErOdd XVIN
yadop yoels
- Z0T°'C | MOIA-]OpPOW WNWIXRIA 4 AT389uUI}en) A HLJEA MOVLS MEIATHAON XVIN
3dep yoels
- €'9°'¢ | XIIjeur I0[0d WINWIXCIA C AJe39jur)er) A HLJEA MOVLS XIHLVIN HOTOO XVIN
soured Surddr 19sn
- 112 JO IaqUINU WNUWIXRJA 9 AJSS0UT}eD) A SENVTI dITO"XVIN
SUEN|
- IR N4 JO IdqUINU WINWIXRA 8 AJe39jur)en) 7 SLHDITXVI
NQLIyY 9§ uonydriosa(g anfeA puw) odAT, anfea jon)
WINTWITUTIA 1D

Table 6.24. Implementation Dependent Values

Version 1.2.1 - April 1, 1999

215

6.2. STATE TABLES

S9OI}JI9A SjuaIa

-o[foSueymer(g
JO I9qUINU WNWIXEW

- 87T PopULTITIOdY - ATaSajur}en) A SHOIIMEA SLNEWETE XV
S9OTPUI SjUatI
-o[foSueymer(g
JO I9qUINU WNWIXEW

- 8% popusmruiodsy — AJ989jUT}eN) +7 SEOIANT SLNENATE XVIN

I9)[J UOIIN[OATOD AlI9joureTeJ
- (57 J0 Sy WnuIIXeN ¢ -uoIN[oAUC)ISY) | |7 X G LHOIEH NOILATOANOD XVIN
I9)[J UOIIN[OATOD AlI9joureTeJ

- ¥ JO IPIM WINWIXEIA e -UOIIN[OAUODIBE) | .7 X ¢ HLAIM NOILOTOANOD XVIN

£Lyrenueid (ALIMVINNVYD HLAIM ENIT T°TA)

- ¥'e)PIM QUI] PaseI[eljuy - Ajeol[195 oy ALINVINNVED HLAIM ENIT HLOONS

SUYIPIM 2UI[pasererjue (FONVH HLAIM ENIT ‘T°T4)

- ve Jo (1q 09 of) e3uey 1T ARO[19D | LY X T @ONVY HLAIM ENITHLOONS
SUIPIAM oUl] paserfe

- ¥e jo (17 03 of) a3uey 1T AYeo[qIen) | (Y X ¢ EONVE HLAIM ENIT AdSVITY

£Lyrenueid (ALIMVINNVED EZIS LNIOJ ‘T'TA)

- ¢e oz1s jutod paserferjuy - AjYeo[19D Wy ALIMVINNVED HZIS LNIOd HLOOWS

soz1s jutod paserferjue (EONVY EZIS LNIOd T'TA)

- ¢e Jo (1q 0% of) e3uey 1T AYeO[d19D) | LY X T @ONVY EZIS LNIOd HLOOWS
soz1s jutod paserfe

- ee Jo (1q 0% of) e3uey 11 Ajeo[30D | (Y X ¢ IONVY EZIS LNIOJ AdSVITY
1SIXd SISJnq

- 9 TSI 29 130T J1 oNd], - AUe9[OO 9D g OFUALS
1SIXd SIJNq

- 1°¢¥ yoeq 29 JUOIJ JT oNIJ, - AUEDd[00{}9D) g YEAINEETINOA
SOX9pUI 91098

- LT sIopgnq IO[0d JI 9NIT, - AUEDd[00{}9D) g @AOW XHEANI
v(q31 21098

- N4 sIaynq IO[0d JI 9NIT, - AUe9[OO 9D g EAOW VEDY
s1opgnq

- 1'C¥ ATeT[IXN® JO IOqUINN 0 AJa30UI}en) A SHELING XAV

INQIINY 'D9G uor)dLInsa (g anfeA puw) odAT, an[eA 10r)
WNWIuty D

Table 6.25. More Implementation Dependent Values

Version 1.2.1 - April 1, 1999

CHAPTER 6. STATE AND STATE REQUESTS

216

YHJTY 10 ‘HNTd ‘NIIYD
‘@Y st r) yusuodurod

Iang uorje[nundde

— T Ul $31q JO IoquInpN - ATe80U}eD) | 7 SLIE *"WNDOV
souerd
— [IDU9)S JO Iaquun - AISSRUIID) | .7 SLIE TIONHLS
soue[d ropgnq
— yadep jo roquuny - AJe39jur)eNn) +7 SLIE HLJEA
XHANI 10 ‘YHJTY
‘ANTd ‘NIIYD ‘Y
Jo duo s1 = {yuauoduwod
Iagnq 10702
— T Ul $31q JO IoquInpN - AISSRUIID) | .7 sLIE®
NIy uon)drrosa(J anfep puw) adLT, anfeA jor)
[erug D

Table 6.26. Implementation Dependent Pixel Depths

Version 1.2.1 - April 1, 1999

217

6.2. STATE TABLES

10110 Surpuodsaiiod

- e ® ST 9I9Y) JI ONIL, | 28D - g xu -
- (e (s)opoo 10110 JUAIINY) 0 I0II)9 87 X u -
oeqpasy | ¢°¢ ad£y yoeqposg az AJ989jUT}eN) Sz HdAL YEdINg MOVEadad
Yoeqpao} | €6 9ZIS IoJnq YovqpPad 0 AJ989jU}eN) 7 AZIS HHEJING IOV Iaaad
Tojutod
JoeqpPoad] ¢°g Ianq Yoeqpasq 0 AJ9IUIOJI9X) A HELNIOd HHIANG MOVaagad
109708 G 9Z1S IoJJNq UOT}I_[AS 0 AJ989jU}eN) 7 AZIS HHIINE NOLLOATHS
Tojutod
109[9S Al Iapnq UOI109[eS 0 AJ2UIOJ 105 A YALNIOd 4HAING NOLLOHTHS
- 2'G | Suijes spoAlIepUSYy | YAANAY | AIaS8jurlex) 74 FAOW YEANTY
- Al ydep yoels awreN 0 AID89JUI)eD) 7 HLJEA MOVLS @NVN
Tojutod
— 9 Jyoels 9nqrijye JudI) 0 AJ989juUT}eN) +7 HLJEQ MOVLS 9IYLLY LNAITD
— 9 yorys onqriyre qual) | Lydure — VX % 9T -
Tojutod
- 9 Yor)s 9INqLIl)e I9AIS 0 AID89JUI)eD) 7 HLJEA MOVLS gIM.LLY
- 9 yor)s 9nquiyye wAarRg | Ljdue - VX %91 -
QUOU JI pauyeopun
{I0130NIISUO0D IapuUn
- ¥'G 9S1] A[dSIp JO 9pOIA 0 AID89JUI)eD) 7 HAOW LSIT
Quou J1
0 ‘UOTONIISU0D IOpuUN
- ¥'G 981] A®dsIp Jo Iequinu 0 AID89JU)eD) 7 XEANILSIT
981] ¥'C aseqsI Jo 3ur))eg 0 AJ989juUT}eN) A "SVE LSIT
INqIIYy 09§ uorydiIosa(anfeA puw) adAT, anfea jon)
[enuy 1D

Table 6.27. Miscellaneous

Version 1.2.1 - April 1, 1999

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee
an exact match between images produced by different GL implementations.
However, the specification does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix
is to identify and provide justification for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebuffer state vector, and for
any GL command, the resulting GL and framebuffer state must be identical
whenever the command is executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a
double-buffered scene is redrawn. If rendering is not repeatable, swapping
between two buffers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon
changed in position might differ at every pixel. Such a difference, while
within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

218

Version 1.2.1 - April 1, 1999

A.2. MULTI-PASS ALGORITHMS 219

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a different GL mode vec-
tor, to eventually produce a result in the framebuffer. Examples of these
algorithms include:

o “Erasing” a primitive from the framebuffer by redrawing it, either in
a different color or using the XOR logical operation.

o Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity
of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement significantly constrains a parallel implementation of the GL.
Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something
that may be very difficult to achieve (for example, if the hardware does
floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to
port to OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given
GL command, the resulting GL and framebuffer state must be tdentical each
time the command is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use
of any other state value is not affected by the change):

Required:

e Framebuffer contents (all bitplanes)

e The color buffers enabled for writing

Version 1.2.1 - April 1, 1999

220 APPENDIX A. INVARIANCE

o The values of matrices other than the top-of-stack matrices

e Scissor parameters (other than enable)

e Writemasks (color, index, depth, stencil)

e Clear values (color, index, depth, stencil, accumulation)

o Current values (color, index, normal, texture coords, edgeflag)

o Current raster color, index and texture coordinates.

o Material properties (ambient, diffuse, specular, emission, shini-
ness)

Strongly suggested:

o Matriz mode

o Matriz stack depths

e Alpha test parameters (other than enable)

o Stencil parameters (other than enable)

e Depth test parameters (other than enable)

e Blend parameters (other than enable)

e Logical operation parameters (other than enable)
o Pizel storage and transfer state

e Ewvaluator state (except as it affects the vertexr data generated by
the evaluators)

e Polygon offset parameters (other than enables, and except as they
affect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state val-
ues marked with e in Rule 2.

Corollary 2 The window coordinates (z, y, and z) of generated fragments
are also invartant with respect to

Required:

e Current values (color, color index, normal, texture coords, edge-
flag)
e Current raster color, color index, and terture coordinates

e Material properties (ambient, diffuse, specular, emission, shini-
ness)

Version 1.2.1 - April 1, 1999

A.4. WHAT ALL THIS MEANS 221

Rule 3 The arithmetic of each per-fragment operation is invariant except
with respect to parameters that directly control it (the parameters that control
the alpha test, for instance, are the alpha test enable, the alpha test function,
and the alpha test reference value).

Corollary 3 Images rendered into different color buffers sharing the same
framebuffer, either simultaneously or separately using the same command
sequence, are pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak
repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine.

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when
blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because floating point values may be represented using different formats
in different renderers (hardware and software), many OpenGL state values
may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

Version 1.2.1 - April 1, 1999

Appendix B

Corollaries

The following observations are derived from the body and the other ap-
pendixes of the specification. Absence of an observation from this list in no
way impugns its veracity.

1.

The CURRENT RASTER_TEXTURE_COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and
when the GL is in color index mode.

. When requested, texture coordinates returned in feedback mode are

always valid, including periods while texture mapping is not enabled,
and when the GL is in color index mode.

The error semantics of upward compatible OpenGL revisions may
change. Otherwise, only additions can be made to upward compat-
ible revisions.

. GL query commands are not required to satisfy the semantics of the

Flush or the Finish commands. All that is required is that the
queried state be consistent with complete execution of all previously
executed GL commands.

Application specified point size and line width must be returned as
specified when queried. Implementation dependent clamping affects
the values only while they are in use.

Bitmaps and pixel transfers do not cause selection hits.

The mask specified as the third argument to StencilFunc affects the
operands of the stencil comparison function, but has no direct effect on

222

Version 1.2.1 - April 1, 1999

10.

11.

12.

13.

14.

15.

223

the update of the stencil buffer. The mask specified by StencilMask
has no effect on the stencil comparison function; it limits the effect of
the update of the stencil buffer.

. Polygon shading is completed before the polygon mode is interpreted.

If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

A display list is just a group of commands and arguments, so errors
generated by commands in a display list must be generated when the
list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not
change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster
color can be queried, however, regardless of the color mode of the GL
context.

A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to
change that material property via Material calls have no effect.

Material and ColorMaterial can be used to modify the RGBA ma-
terial properties, even in a color index context. Likewise, Material

can be used to modify the color index material properties, even in an
RGBA context.

There is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-
terized in FILL mode, and the fragments generated by the rasterization
of “narrow” polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the
object coordinate system is right-handed; (2) the only commands used
to manipulate the model-view matrix are Scale (with positive scaling
values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value

Version 1.2.1 - April 1, 1999

224

16.

17.

18.

19.

20.

21.

APPENDIX B. COROLLARIES

is less than the far value for DepthRange. If these conditions are all
satisfied, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

ColorMaterial has no effect on color index lighting.

(No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,
and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),
and the state of the the coordinate transfomations is identical when
A, B, C, and D are specified). Then, when the fragments produced
by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.

OpenGL state continues to be modified in FEEDBACK mode and in
SELECT mode. The contents of the framebuffer are not modified.

The current raster position, the user defined clip planes, the spot direc-
tions and the light positions for LIGHT:, and the eye planes for texgen
are transformed when they are specified. They are not transformed
during a PopAttrib, or when copying a context.

Dithering algorithms may be different for different components. In
particular, alpha may be dithered differently from red, green, or blue,
and an implementation may choose to not dither alpha at all.

For any GL and framebuffer state, and for any group of GL commands
and arguments, the resulting GL and framebuffer state is identical
whether the GL commands and arguments are executed normally or
from a display list.

Version 1.2.1 - April 1, 1999

Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was
released on 1 July 1992. Version 1.1 is upward compatible with version 1.0,
meaning that any program that runs with a 1.0 GL implementation will also
run unchanged with a 1.1 GL implementation. Several additions were made
to the GL, especially to the texture mapping capabilities, but also to the
geometry and fragment operations. Following are brief descriptions of each
addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer com-
mands than were previously necessary. Six arrays are defined, one each
storing vertex positions, normal coordinates, colors, color indices, texture
coordinates, and edge flags. The arrays may be specified and enabled inde-
pendently, or one of the pre-defined configurations may be selected with a
single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was
to improve the efficiency of the transfer; especially to allow direct memory
access (DMA) hardware to be used to effect the transfer. The additions
match those of the EXT_vertex_array extension, except that static array data
are not supported (because they complicated the interface, and were not
being used), and the pre-defined configurations are added (both to reduce
subroutine count even further, and to allow for efficient transfer of array
data).

225

Version 1.2.1 - April 1, 1999

226 APPENDIX C. VERSION 1.1

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window
coordinate depth slope of the polygon. Shifted depth values allow copla-
nar geometry, especially facet outlines, to be rendered without depth buffer
artifacts. They may also be used by future shadow generation algorithms.

The additions match those of the EXT_polygon_offset extension, with two
exceptions. First, the offset is enabled separately for POINT, LINE, and FILL
rasterization modes, all sharing a single affine function definition. (Shifting
the depth values of the outline fragments, instead of the fill fragments, allows
the contents of the depth buffer to be maintained correctly.) Second, the
offset bias is specified in units of depth buffer resolution, rather than in the
[0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the frame-
buffer using a logical operation, just as color index fragments are in GL
version 1.0. Blending is disabled during such operation because it is rarely
desired, because many systems could not support it, and to match the se-
mantics of the EXT_blend logic_op extension, on which this addition is loosely
based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather
than a simple count of components. The internal format is represented as
a single enumerated value, indicating both the organization of the image
data (LUMINANCE, RGB, etc.) and the number of bits of storage for each image
component. Clients can use the internal format specification to suggest the
desired storage precision of texture images. New base formats, ALPHA and
INTENSITY, provide new texture environment operations. These additions
match those of a subset of the EXT_texture extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be specified only indirectly

Version 1.2.1 - April 1, 1999

C.6. TEXTURE PROXIES 227

in GL version 1.0, which required that client specified “white” geometry
be modulated by a texture. GL version 1.1 allows such replacement to be
specified explicitly, possibly improving performance. These additions match
those of a subset of the EXT_texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum
texture image sizes as a function of some other texture parameters, especially
of the internal image format. Clients may use the proxy query mechanism
to tailor their use of texture resources at run time. The proxy interface is
designed to allow such queries without adding new routines to the GL inter-
face. These additions match those of a subset of the EXT_texture extension,
except that implementations return allocation information consistent with
support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as
from client memory, and rectangular subregions of texture arrays can be
redefined either from client or framebuffer memory. These additions match
those defined by the EXT copy_texture and EXT_subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a
single object. Such treatment allows for greater implementation efficiency
when multiple arrays are used. In conjunction with the subtexture capabil-
ity, it also allows clients to make gradual changes to existing texture arrays,
rather than completely redefining them. These additions match those of the
EXT texture_object extension, with slight additions to the texture residency
semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

Version 1.2.1 - April 1, 1999

228

APPENDIX C. VERSION 1.1

. Texture coordinates s, ¢, and r are divided by g during the rasterization

of points, pixel rectangles, and bitmaps. This division was documented
only for lines and polygons in the 1.0 version.

The line rasterization algorithm was changed so that vertical lines on
pixel borders rasterize correctly.

. Separate pixel transfer discussions in chapter 3 and chapter 4 were

combined into a single discussion in chapter 3.

Texture alpha values are returned as 1.0 if there is no alpha channel
in the texture array. This behavior was unspecified in the 1.0 version,
and was incorrectly documented in the reference manual.

Fog start and end values may now be negative.

Evaluated color values direct the evaluation of the lighting equation if
ColorMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland
Andy Bigos, 3Dlabs

Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment
Bruce D’Amora, GE Medical Systems
John Dennis, Digital Equipment

Fred Fisher, Accel Graphics

Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland
Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software
Dave Higgins, IBM

Phil Huxley, 3Dlabs

Version 1.2.1 - April 1, 1999

C.10. ACKNOWLEDGEMENTS 229

Dale Kirkland, Intergraph

Hock San Lee, Microsoft

Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM

Tim Misner, SunSoft

Jeremy Morris, 3Dlabs

Israel Pinkas, Intel

Bimal Poddar, IBM

Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel

Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft

Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs

Linas Vepstas, IBM

Andy Vesper, Digital Equipment
Henri Warren, Megatek

Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 1.2.1 - April 1, 1999

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since
the original version 1.0. Version 1.2 is upward compatible with version 1.1,
meaning that any program that runs with a 1.1 GL implementation will also
run unchanged with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping ca-
pabilities and the pixel processing pipeline. Following are brief descriptions
of each addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats
for three-dimensional images, and pixel storage modes to support them, are
also defined. The additions match those of the EXT_texture3D extension.

One important application of three-dimensional textures is rendering
volumes of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Specifically, it pro-
vides a component order matching file and framebuffer formats common on
Windows platforms. The additions match those of the EXT bgra extension.

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The fields with the packed pixel

230

Version 1.2.1 - April 1, 1999

D.4. NORMAL RESCALING 231

are not proper machine types, but the pixel as a whole is. Thus the pixel
storage modes and their unpacking counterparts all work correctly with
packed pixels.

The additions match those of the EXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,
while resulting in the same unit normals.

The additions are based on the EXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of
emissive, ambient and diffuse terms of the usual GL lighting equation, and
a secondary color consisting of the specular term. Only the primary color
is modified by the texture environment; the secondary color is added to
the result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather
than surface properties.

The additions match those of the EXT_separate specular color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly
the range [0,1]. When a texture coordinate is clamped using this algorithm,
the texture sampling filter straddles the edge of the texture image, taking
half its sample values from within the texture image, and the other half from
the texture border. It is sometimes desirable to clamp a texture without
requiring a border, and without using the constant border color.

A new texture clamping algorithm, CLAMP_T0 EDGE, clamps texture coor-
dinates at all mipmap levels such that the texture filter never samples a
border texel. The color returned when clamping is derived only from texels
at the edge of the texture image.

The additions match those of the SGIS_texture_edge_clamp extension.

Version 1.2.1 - April 1, 1999

232 APPENDIX D. VERSION 1.2

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter A are added.
One constraint clamps A to a specified floating point range. The other limits
the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

Together these constraints allow a large texture to be loaded and used
initially at low resolution, and to have its resolution raised gradually as more
resolution is desired or available. Image array specification is necessarily in-
tegral, rather than continuous. By providing separate, continuous clamping
of the A parameter, it is possible to avoid ”popping” artifacts when higher
resolution images are provided.

The additions match those of the SGIS_texture lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the
range of vertices referred to by the index set is added. Implementations can
take advantage of this additional information to process vertex data without
having to scan the index data to determine which vertices are referenced.
The additions match those of the EXT_draw_range_elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image pro-
cessing applications, and may not be present in all GL implementations.
The are collectively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel trans-
fer process, providing additional lookup capabilities beyond the existing
lookup. The key difference is that the new lookup tables are treated as
one-dimensional images with internal formats, like texture images and con-
volution filter images. Thus the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal for-
mat ALPHA modifies only the A component of each pixel group, leaving the
R, G, and B components unmodified.

Version 1.2.1 - April 1, 1999

D.9. IMAGING SUBSET 233

Three independent lookups may be performed: prior to convolution;
after convolution and prior to color matrix transformation; after color matrix
transformation and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in
addition to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing
the entire table. The affected portions may be specified either from host
memory or from the framebuffer.

The additions match those of the EXT color_table and
EXT_color_subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the
first color table lookup in the pixel transfer process. The convolution kernels
are themselves treated as one- and two-dimensional images, which can be
loaded from application memory or from the framebuffer.

The convolution framework 1is designed to accommodate three-
dimensional convolution, but that API is left for a future extension.

The additions match those of the EXT_convolution and
HP _convolution border modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the
pixel transfer path. The matrix operates on RGBA pixel groups, using the
equation

C' = MC,

where

C =

> Qm

and M is the 4 x 4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased
by a programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components.
It can also be used to implement simple color space conversions.

The additions match those of the SGI_color matrix extension.

Version 1.2.1 - April 1, 1999

234 APPENDIX D. VERSION 1.2

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values
(histogram) and that track the minimum and maximum color component
values (minmax) are performed at the end of the pixel transfer pipeline. An
optional mode allows pixel data to be discarded after the histogram and/or
minmax operations are completed. Otherwise the pixel data continues on
to the next operation unaffected.

The additions match those of the EXT_histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be
defined. A typical usage is blending two RGB images. Without the constant
blend factor, one image must have an alpha channel with each pixel set to
the desired blend factor.

The additions match those of the EXT_blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and des-
tination components may be used.

Two of the new equations produce the minimum (or maximum) color
components of the source and destination colors. Taking the maximum is
useful for applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation,
but produce the difference of its left and right hand sides, rather than the
sum. Image differences are useful in many image processing applications.

The additions match those of the EXT blend minmax and
EXT blend_subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 235

Pierre-Luc Bisaillon, Matrox Graphics
Drew Bliss, Microsoft

David Blythe, Silicon Graphics

Jon Brewster, Hewlett Packard

Dan Brokenshire, IBM

Pat Brown, IBM

Newton Cheung, S3

Bill Clifford, Digital

Jim Cobb, Parametric Technology
Bruce D’Amora, IBM

Kevin Dallas, Microsoft

Mahesh Dandapani, Rendition

Daniel Daum, AccelGraphics

Suzy Deffeyes, IBM

Peter Doyle, Intel

Jay Duluk, Raycer

Craig Dunwoody, Silicon Graphics
Dave Erb, IBM

Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics

Allen Gallotta, ATT

Ken Garnett, NCD

Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link

Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics

Paul Ho, Silicon Graphics

Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel

Phil Huxley, 3Dlabs

Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx

Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics

Tim Kelley, Real3D

Jon Khazam, Intel

Louis Khouw, Sun

Dale Kirkland, Intergraph

Chris Kitrick, Raycer

Version 1.2.1 - April 1, 1999

236 APPENDIX D. VERSION 1.2

Don Kuo, S3

Herb Kuta, Quantum 3D

Phil Lacroute, Silicon Graphics
Prakash Ladia, S3

Jon Leech, Silicon Graphics

Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics

Kent Lin, S3

Dan McCabe, S3

Jack Middleton, Sun

Tim Misner, Intel

Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs

Gene Munce, Intel

William Newhall, Real3D

Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter Pfister, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel

Rob Putney, IBM

Mike Quinlan, Real3D

Nate Robins, University of Utah
Detlef Roettger, Elsa

Randi Rost, Hewlett Packard

Kevin Rushforth, Sun

Richard S. Wright, Real3D

Hock San Lee, Microsoft

John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA

Mark Segal, Silicon Graphics

Bob Seitsinger, S3

Min-Zhi Shao, S3

Colin Sharp, Rendition

Igor Sinyak, Intel

Bill Sweeney, Sun

William Sweeney, Sun

Nathan Tuck, Raycer

Doug Twillenger, Sun

John Tynefeld, 3dfx

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 237

Kartik Venkataraman, Intel

Andy Vesper, Digital Equipment

Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics

Steve Wright, Microsoft

David Yu, Silicon Graphics

Randy Zhao, S3

Version 1.2.1 - April 1, 1999

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB ex-
tensions (see Appendix F). The only ARB extension defined in this version
is multitexture, allowing application of multiple textures to a fragment in
one rendering pass. Multitexture is based on the SGIS multitexture exten-
sion, simplified by removing the ability to route texture coordinate sets to
arbitrary texture units.

A new corollary discussing display list and immediate mode invariance
was added to Appendix B on April 1, 1999.

238

Version 1.2.1 - April 1, 1999

Appendix F

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural
Review Board (ARB) are described in this chapter. These extensions are
not required to be supported by a conformant OpenGL implementation, but
are expected to be widely available; they define functionality that is likely
to move into the required feature set in a future revision of the specification.

In order not to compromise the readability of the core specification,
ARB extensions are not integrated into the core language; instead, they are
presented in this chapter, as changes to the core.

F.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

e A unique name string of the form "GL_ARB_name" is associated with
each extension. If the extension is supported by an implementation,
this string will be present in the EXTENSIONS string described in sec-
tion 6.1.11.

e All functions defined by the extension will have names of the form
FunctionARB

e All enumerants defined by the extension will have names of the form
NAME_ARB.

239

Version 1.2.1 - April 1, 1999

240 APPENDIX F. ARB EXTENSIONS

F.2 Multitexture

Multitexture adds support for multiple texture units. The capabilities of
the multiple texture units are identical, except that evaluation and feedback
are supported only for texture unit 0. Each texture unit has its own state
vector which includes texture vertex array specification, texture image and
filtering parameters, and texture environment application.

The texture environments of the texture units are applied in a pipelined
fashion whereby the output of one texture environment is used as the input
fragment color for the next texture environment. Changes to texture client
state and texture server state are each routed through one of two selectors
which control which instance of texture state is affected.

The specification is written using four texture units though the actual
number supported is implementation dependent and can be larger or smaller
than four.

The name string for multitexture is GL_ARB multitexture.

F.2.1 Dependencies

Multitexture requires features of OpenGL 1.1.

F.2.2 Issues

The extension currently requires a separate texture coordinate input for each
texture unit. Modification to allow routing and/or broadcasting texcoords
and TexGen output would be useful, possibly as a future extension layered
on multitexture.

F.2.3 Changes to Section 2.6 (Begin/End Paradigm)

Amend paragraphs 2 and 8

Each vertex is specified with two, three, or four coordinates. In addition,
a current normal, multiple current terture coordinate sets, and current color
may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that
may be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive. Multiple sets
of texture coordinates may be used to specify how multiple texture images
are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least one. The number of active
textures supported can be queried with the state MAX_TEXTURE UNITS_ARB.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 241

Primary and secondary colors are associated with each vertex (see sec-
tion 3.9). These associated colors are either based on the current color or
produced by lighting, depending on whether or not lighting is enabled. Tex-
ture coordinates are similarly associated with each vertex. Multiple sets of
texture coordinates may be associated with a vertex. Figure F.1 summa-
rizes the association of auxiliary data with a transformed vertex to produce
a processed vertez.

Amend paragraph 6

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex’s coordinates, the current normal, the current edge flag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the multiple current texture coordinate sets. Because color assignment is
done vertex-by-vertex, a processed vertex comprises the vertex’s coordinates,
its edge flag, its assigned colors, and its multiple texture coordinate sets.

F.2.4 Changes to Section 2.7 (Vertex Specification)

Amend paragraph 2

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoordl family of commands set the s coordinate to the provided
single argument while setting ¢t and r to 0 and ¢ to 1. Similarly, TexCoord?2
sets s and t to the specified values, r to 0 and ¢ to 1; TexCoord3 sets s, t,
and r, with ¢ set to 1, and TexCoord4 sets all four texture coordinates.

Implementations may support more than one texture unit, and thus more
than one set of texture coordinates. The commands

void MultiTexCoord{1234}{sifd}ARB(enum tezture,T
coords)

void MultiTexCoord{1234}{sifd}vARB(enum texture,T
coords)

take the coordinate set to be modified as the texture parameter. texture
is a symbolic constant of the form TEXTURE: ARB, indicating that texture
coordinate set ¢ is to be modified. The constants obey TEXTURE;_ARB =

Version 1.2.1 - April 1, 1999

242 APPENDIX F. ARB EXTENSIONS

Vertex
Coordinates In
vertex / normal Transformed
p— transformation 1)
Coordinates
Current
Normal -
Processed
- Vertex
\ Out
Current lighing Qo | g1 Associated
Color and T> T Data
Materials (Colors, Edge Flag,
and Texture
Coordinates)
Current A
Edge Flal
g g ¢—o (
Current
Texture texgen | r:]e;tr"iti
Coord Set 1 —| T
e—o (
Current
Texture texgen Qe texture
matrix 2
Coord Set 2 —| T
e—o (
Current
Texture texgen [Qe_| lexure
matrix 3
Coord Set 3 —| T
o(
Current
Texture texgen | rtrz(ttr?;i
Coord Set 4 —| T
Figure F.1. Association of current values with a vertex. The heavy lined
boxes represent GL state. Four texture units are shown; however, multitex-
turing may support a different number of units depending on the implemen-
tation.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 243

TEXTUREO_ARB+ ¢ (i is in the range 0 to k — 1, where k is the implementation-
dependent number of texture units defined by MAX_TEXTURE_UNITS_ARB).

The TexCoord commands are exactly equivalent to the corresponding
MultiTexCoord ARB commands with texture set to TEXTUREQ_ARB.

Gets of CURRENT_TEXTURE_COORDS return the texture coordinate set defined
by the value of ACTIVE_TEXTURE_ARB.

Specifying an invalid texture coordinate set for the terture argument of
MultiTexCoord ARB results in undefined behavior.

F.2.5 Changes to Section 2.8 (Vertex Arrays)

Amend paragraph 1

The vertex specification commands described in section 2.7 accept data
in almost any format, but their use requires many command executions to
specify even simple geometry. Vertex data may also be placed into arrays
that are stored in the client’s address space. Blocks of data in these arrays
may then be used to specify multiple geometric primitives through the ex-
ecution of a single GL command. The client may specify up to 5 plus the
value of MAX_TEXTURE_UNITS_ARB arrays: one each to store vertex coordinates,
edge flags, colors, color indices, normals, and one or more texture coordinate
sets. The commands ...
Insert between paragraph 2 and 3

In implementations which support more than one texture unit, the com-
mand

void ClientActiveTexture ARB(enum texture);

is used to select the vertex array client state parameters to
be modified by the TexCoordPointer command and the array af-
fected by EnableClientState and DisableClientState with parame-
ter TEXTURE_COORD_ARRAY. This command sets the client state variable
CLIENT_ACTIVE_TEXTURE_ARB. Each texture unit has a client state vector which
is selected when this command is invoked. This state vector includes the
vertex array state. This call also selects which texture units’ client state
vector is used for queries of client state.

Specifying an invalid tezture generates the error INVALID_ENUM. Valid val-
ues of terture are the same as for the MultiTexCoord ARB commands
described in section 2.7.

Amend final paragraph

Version 1.2.1 - April 1, 1999

244 APPENDIX F. ARB EXTENSIONS

If the number of supported texture units (the value of
MAX_TEXTURE UNITS_ARB) is k, then the client state required to imple-
ment vertex arrays consists of 5 + k boolean values, 5+ k£ memory pointers,
5 + k integer stride values, 4 + k symbolic constants representing array
types, and 3 + k integers representing values per element. In the initial
state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are each FLOAT, and the
integers representing values per element are each four.

F.2.6 Changes to Section 2.10.2 (Matrices)

Amend paragraph 8
For each texture unit, a 4 X 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

mip ms Mg MM13 S
my Mg Mip M4 t
m3 m7 mi1 Mis r|’
Mg Mg Mi12 Mie q

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is also a corresponding texture matrix stack for each texture unit.
To change the stack affected by matrix operations, set the active texture
unit selector by calling

void ActiveTextureARB(enum texture);

The selector also affects calls modifying texture environment state, texture
coordinate generation state, texture binding state, and queries of all these
state values as well as current texture coordinates and current raster texture
coordinates.

Specifying an invalid tezture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoord ARB commands
described in section 2.7.

The active texture unit selector may be queried by calling GetIntegerv
with pname set to ACTIVE_TEXTURE_ARB.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 245

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode,
the stack depth is at least 32 (that is, there is a stack of at least 32 model-
view matrices). For the other modes, the depth is at least 2. Texture matrix
stacks for all texture units have the same depth. The current matrix in any
mode is the matrix on the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix off a stack with only one entry generates the error STACK_UNDERFLOVW;
pushing a matrix onto a full stack generates STACK_OVERFLOV.

When the current matrix mode is TEXTURE, the texture matrix stack of
the active texture unit is pushed or popped.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, one stack of at least
two 4 x 4 matrices for each of COLOR, PROJECTION, each texture unit, TEXTURE,
and a stack of at least 32 4 x 4 matrices for MODELVIEW. Each matrix stack
has an associated stack pointer. Initially, there is only one matrix on each
stack, and all matrices are set to the identity. The initial matrix mode is
MODELVIEW. The initial value of ACTIVE_TEXTURE_ARB is TEXTUREO_ARB.

F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-
dinates)

Amend paragraph /

The state required for texture coordinate generation for each texture
unit comprises a three-valued integer for each coordinate indicating coor-
dinate generation mode, and a bit for each coordinate to indicate whether
texture coordinate generation is enabled or disabled. In addition, four co-
efficients are required for the four coordinates for each of EYE_LINEAR and
OBJECT LINEAR. The initial state has the texture generation function dis-
abled for all texture coordinates. The initial values of p; for s are all 0
except p; which is one; for ¢ all the p; are zero except pe, which is 1.
The values of p; for r and ¢ are all 0. These values of p; apply for both

Version 1.2.1 - April 1, 1999

246 APPENDIX F. ARB EXTENSIONS

the EYE LINEAR and OBJECT LINEAR versions. Initially all texture generation
modes are EYE_LINEAR.

For implementations which support more than one texture unit, there is
texture coordinate generation state for each unit. The texture coordinate
generation state which is affected by the TexGen, Enable, and Disable
operations is set with ActiveTextureARB.

F.2.8 Changes to Section 2.12 (Current Raster Position)

Amend paragraph 2

The state required for the current raster position consists of three window
coordinates x,, Yw, and z,, a clip coordinate w. value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and multiple
texture coordinate sets. It is set using one of the RasterPos commands:

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(T coords);

RasterPos4 takes four values indicating z, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only z, y, and z with w implicitly set
to 1 (or only z and y with z implicitly set to 0 and w implicitly set to 1).
Gets of CURRENT RASTER _TEXTURE_COORDS are affected by the setting of the
state ACTIVE_TEXTURE_ARB.
Modify figure 2.7
Amend paragraph 5
The current raster position requires five single-precision floating-point
values for its zy, yw, and z, window coordinates, its w, clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for each texture unit. In the initial state,
the coordinates and texture coordinates are all (0, 0,0, 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1,1,1,1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

F.2.9 Changes to Section 3.8 (Texturing)

Amend paragraphs 1 and 2

Texturing maps a portion of one or more specified images onto each
primitive for which texturing is enabled. This mapping is accomplished by
using the color of an image at the location indicated by a fragment’s (s, t,r)

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 247
| — K
[" vaid f———
Rasterpos In — Clip | Project : I
|
' Raster |
_ Vertex/Normal | Position ! |
Current =1 Transformation I I
Normal : |
|
' Raster I
Current Lighting _Q\e— I Distance >|
Color & T - | :
Materials it I I
Associated !
L —<___| Texture I Data _>:
Current '_:_ Texgen T Matrix O T |
|
Tegture | ‘ A Current |
Coord Set 0 : Raster :
| Position I
[—<___| Texture “r11—————""""—
Current '_:_ Texgen Matrix 1
Texture T
Coord Set 1
L —<_ | Texture
Current '_:\— Texgen Matrix 2
Texture T
Coord Set 2
—K_ Texture
Current __e Texgen Matrix 3
Texture T
Coord Set 3
Figure F.2. The current raster position and how it is set. Four texture units
are shown; however, multitexturing may support a different number of units
depending on the implementation.

Version 1.2.1 - April 1, 1999

248 APPENDIX F. ARB EXTENSIONS

coordinates to modify the fragment’s primary RGBA color. Texturing does
not affect the secondary color.

An implementation may support texturing using more than one image at
a time. In this case the fragment carries multiple sets of texture coordinates
(s,t,r) which are used to index separate images to produce color values
which are collectively used to modify the fragment’s RGBA color. Texturing
is specified only for RGBA mode; its use in color index mode is undefined.
The following subsections (up to and including Section 3.8.5) specify the
GL operation with a single texture and Section 3.8.10 specifies the details
of how multiple texture units interact.

F.2.10 Changes to Section 3.8.5 (Texture Minification)

Amend second paragraph under the Mipmapping subheading

Each array in a mipmap is defined using TexImage3D, TexImage2D,
CopyTexImage2D, TexImagelD, or CopyTexImagelD; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array
through p = max{n,m,(} + TEXTURE BASE LEVEL with each unit increase in-
dicating an array of half the dimensions of the previous one as already de-
scribed. If texturing is enabled (and TEXTURE MIN FILTER is one that requires
a mipmap) at the time a primitive is rasterized and if the set of arrays
TEXTURE_BASE_LEVEL through ¢ = min{p, TEXTURE_MAX_LEVEL} is incomplete,
then it is as if texture mapping were disabled for that texture unit. The set
of arrays TEXTURE BASE _LEVEL through ¢ is incomplete if the internal formats
of all the mipmap arrays were not specified with the same symbolic constant,
if the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX_LEVEL < TEXTURE_BASE_LEVEL, or if TEXTURE_BASE_LEVEL > p.
Array levels k& where k < TEXTURE BASE LEVEL or k£ > ¢ are insignificant.

F.2.11 Changes to Section 3.8.8 (Texture Objects)

Insert following the last paragraph
The texture object name space, including the initial one-, two-, and
three-dimensional texture objects, is shared among all texture units. A
texture object may be bound to more than one texture unit simultaneously.
After a texture object is bound, any GL operations on that target object
affect any other texture units to which the same texture object is bound.
Texture binding is affected by the setting of the state ACTIVE_ TEXTURE_ARB.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 249

If a texture object is deleted, it as if all texture units which are bound
to that texture object are rebound to texture object zero.

F.2.12 Changes to Section 3.8.10 (Texture Application)

Amend second paragraph

Each texture unit is enabled and bound to texture objects independently
from the other texture units. Each texture unit follows the precendence
rules for one-, two-, and three-dimensional textures. Thus texture units can
be performing texture mapping of different dimensionalities simultaneously.
Each unit has its own enable and binding states.

Each texture unit is paired with an environment function, as shown
in figure F.3. The second texture function is computed using the texture
value from the second texture, the fragment resulting from the first texture
function computation and the second texture unit’s environment function.
If there is a third texture, the fragment resulting from the second texture
function is combined with the third texture value using the third texture
unit’s environment function and so on. The texture unit selected by Ac-
tiveTexture ARB determines which texture unit’s environment is modified
by TexEnv calls.

Texturing is enabled and disabled individually for each texture unit. If
texturing is disabled for one of the units, then the fragment resulting from
the previous unit, is passed unaltered to the following unit.

The required state, per texture unit, is three bits indicating whether
each of one-, two-, or three-dimensional texturing is enabled or disabled. In
the intial state, all texturing is disabled for all texture units.

F.2.13 Changes to Section 5.1 (Evaluators)

Amend paragraph 7

The evaluation of a defined map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The evaluator map generates only coordinates for texture unit TEXTUREO_ARB.
The error INVALID_VALUE results if either ustride or vstride is less than k, or
if 41 is equal to u2, or if vy is equal to ve. If the value of ACTIVE TEXTURE_ARB
is not TEXTUREO_ARB, calling Map[12] generates the error INVALID_OPERATION.

F.2.14 Changes to Section 5.3 (Feedback)

Amend paragraph /

Version 1.2.1 - April 1, 1999

250 APPENDIX F. ARB EXTENSIONS

Ct —m
TE, |—
CTo—m TE, [—
cTy > TE, |—®
€Ty > TE, |—®C
CT, -

C; =fragment color input to texturing

C'; = fragment color output from texturing
CT; = texture color from texture lookup

TE,- = texture environment j

Figure F.3. Multitexture pipeline. Four texture units are shown; however,
multitexturing may support a different number of units depending on the
implementation. The input fragment color is successively combined with each
texture according to the state of the corresponding texture environment, and
the resulting fragment color passed as input to the next texture unit in the
pipeline.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 251

The texture coordinates and colors returned are those resulting from the
clipping operations described in Section 2.13.8. Only coordinates for tex-
ture unit TEXTUREO_ARB are returned even for implementations which support
multiple texture units. The colors returned are the primary colors.

F.2.15 Changes to Section 6.1.2 (Data Conversions)

Insert following the last paragraph

Most texture state variables are qualified by the
value of ACTIVE_ TEXTURE_ARB to determine which server texture state vector
is queried. Client texture state variables such as texture coordinate array
pointers are qualified by the value of CLIENT ACTIVE TEXTURE_ARB. Tables 6.5,
6.6, 6.7, 6.12, 6.14, and 6.25 indicate those state variables which are qualified
by ACTIVE TEXTURE_ARB or CLIENT_ACTIVE_TEXTURE_ARB during state queries.

F.2.16 Changes to Section 6.1.12 (Saving and Restoring
State)

Insert following paragraph 3

Operations on groups containing replicated texture state push or pop
texture state within that group for all texture units. When state for a
group is pushed, all state corresponding to TEXTUREO_ARB is pushed first,
followed by state corresponding to TEXTURE1_ARB, and so on up to and in-
cluding the state corresponding to TEXTUREk_ARB where k + 1 is the value of
MAX_TEXTURE UNITS_ARB. When state for a group is popped, the replicated tex-
ture state is restored in the opposite order that it was pushed, starting with
state corresponding to TEXTUREk_ARB and ending with TEXTUREO_ARB. Identical
rules are observed for client texture state push and pop operations. Matrix
stacks are never pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib.

Version 1.2.1 - April 1, 1999

APPENDIX F. ARB EXTENSIONS

252

Aeire
9)RUIPIOOD 9INIXIY

ARIIR-X9)I0A 8T 9} 03 IjutoJ 0 AJIIUIOJ 05 AX *T YHLNIOd AVHHY AHOOD @YNLXHL
$91RUIPIO0D 9INJIXDY
Aelre-xo110A | §°C U90M)Dq OPLIYG 0 AIOSRYUIIN) | L Z X * EAIYLS AVEEY QOO0 HHALXAL
$91eUTPIOOD
Aeire-xo110A | §'7 aInyxa} jJo odAT, | 1¥01d | AJe8ojuIIen) | Tz X % [HdAL AVHYY QY000 EUNLXHL
JUSUIS[®
Aelre-xo110A | §°C Iad seyeUIpIO0)) ¥ AIRSUIIND) | [ZX * T GZIS" AVHY QY000 EYNLXEL
o[qrUD ARIIe
Aelre-xo110A | Q7 9)RUIPIOOD 2INIXAT, | 98I0 pPoIqeudsT gx *1 AVHEV QYOO HHNLXHL
9°9 S1q®1 Ul 93e}s PagIpoN
uorjisod 19)sel
IIM POIRIDOSSE
JI2IIND CI'C | soreurprood aan)xal, | 1°0°0°'0 | AYeo[19D IX %1 SAYO0O BUNLXAL HALSVH LNEHUND
$91eUTPIOOD
JUSIIND N4 2Injixo) Juermy) | 1°0°0°0 | Ajeo[oD IX *1 SAYOO0O HHALXEL LNEHUND
G'9 9[qe} Ul 93e}s PagIpoN
IMLINY PETY uor)drIdsa(g anfeA puw)) odAT, on[eA 105
[enug D

Table F.1. Changes to State Tables

Version 1.2.1 - April 1, 1999

253

F.2. MULTITEXTURE

O pue
‘g ‘L ‘S 10]) wa8xe)

2IN9x9} 70T°C IO Posn uorjounj | YYANITHAHT | AIUSXILIOD) | €7 X FX * QO NED HUNLXEL
(O pue g
‘I, ‘S 10J) SIUDIOIJO0D
9IMN)0} $'0T'c | Teaur] 399[q0 UaBxXaL, | F'0T'G 998 | AJUIDXILIPD | 4 X FX * [ANVTdLOELE0
(O pue g ‘T, ‘g 10§)
SJUSTOJo0d uorjenbd
9IMN)0} 701°C oue[d ueSXaY, | §01'C 298 | AJUIDXILID | 4 X FX * T ANVId HAE
CERRE
a[qeus/eIn)xa} | F0T°g | SI T) po[qeus ua8xa], 8]0, porqeuysy g XX *1 T NED HHNLXEL
10702
2In1x9} 6'8°¢ | JIOWIUOIIATS 9IN)XAT, 0‘0‘'0‘0 AJAUXIT,195) OX *T HOTOO ANT @YNIXEAL
uorjouny
SIN)X} 68°€ uorjedridde aIn)xay, | ILYINAOW | ATAUHXILI0D VZX * 1 HAONW ANE HUALXEL
Y179 °19®) Ul 9383S PIgIPON
az ZYNLXHIL 0) punoq
9IM)X0)]'R'¢ 199[qo a1n)xa]T, 0 AJo30jUTIeD 1Z XEX %] A= DNIANIE BHALXEL
€ 10
‘T ‘T ST T {parqrud SI
o[qeud /0IMIX0) | OT'R'¢ | SuULM)Xe) T J onif, a8 porqeud st g Xex*1 AT EENLXEL
G1°9 °19®} Ut 93e3s poyIpoN
Iajurod
- 20T'C | Yoels XIIpeu 2Im)xa], 1 AJo30jUTIeD LZX*T HLJEA SMOVLS FUNLXEL
_ ¢0T'C | Yoels X1ipeuwr aIn)xa], | A)IUap] Ajeo[195 pUX % TX % T XIMLVN @YNLXEL
L9 °1qe} Ul 93e3s pagIpoN
IMLINY PETY uor)diIdsa(g anfeA puw)) adAT, anfeA o5
[eryrug D

Table F.2. Changes to State Tables (cont.)

Version 1.2.1 - April 1, 1999

APPENDIX F. ARB EXTENSIONS

254

10399[98
2IN)X9) 1T JIUN 9INYXD) ATIY | UV OFUNALYAL | AIS9jUI}RN) | *1y UV EYNLXEL HALLOY
¥1'9 919k} O} PapPV
10309[0s jTun
AeI11e-X01I0A | '7 | 9INIX9) 9AIJOR JUSI[D) | UV OFUALXIAL | AJASojuIlen | *Iy AUV EYNLXHEL HALLOY LNEITO
9°9 °9[q®} 0} PepPpPVY
NIy PEIY uorydiIosa(] anyeA puw)) adAT, anpeaA 3or)
[erjruy D

Table F.3. New State Introduced by Multitexture
Version 1.2.1 - April 1, 1999

255

F.2. MULTITEXTURE

(zg
Pa90xe 03 jou) sjrun

- 97 9IMN}X3) JO ISqUUNN 1 AmRSeUIIeD) | |7 UV SLINA @UALXEL XVIN
G¢'9 °19®31 03 PappPVY
MQLINY 298 uo1}drIosa(] anpep puw)) odAT, anpea 39x)
WINWIUIIA 1D

Table F.4. New Implementation-Dependent Values Introduced by Multitexture

Version 1.2.1 - April 1, 1999

Index of OpenGL Commands

z_BIAS, 78, 208

z_SCALE, 78, 208

2D, 174, 176, 217

2 BYTES, 177

3D, 174, 176

3D_COLOR, 174, 176
3D_COLOR_TEXTURE, 174, 176
3_BYTES, 177
4D_COLOR_TEXTURE, 174, 176
4 BYTES, 177

1, 113, 120, 131, 136, 137, 185, 202,
253

2, 113, 120, 136, 137, 185, 202, 253

3, 113, 120, 136, 137, 185, 202, 253

4, 113, 120, 136, 137, 185

ACCUM, 155

Accum, 155, 156

ACCUM_BUFFER_BIT, 154, 191

ACTIVE_.TEXTURE_ARB, 243246,
248, 249, 251

ActiveTextureARB, 244, 246, 249

ADD, 155, 156

ALL_ATTRIB_BITS, 191

ALL_CLIENT_ATTRIB_BITS, 191

ALPHA, 78, 92, 103, 104, 114, 115,
136, 137, 159, 160, 185, 208,
210, 216, 226, 232

ALPHA12, 115

ALPHA16, 115

ALPHA4, 115

ALPHAS, 115

ALPHA BIAS, 101

ALPHA SCALE, 101

ALPHA _TEST, 143

AlphaFunc, 143

ALWAYS, 143-145, 205

AMBIENT, 50, 51

AMBIENT_AND_DIFFUSE, 50, 51,
53

AND, 151

AND_INVERTED, 151

AND_REVERSE, 151

AreTexturesResident, 134, 178

ArrayElement, 19, 23, 24, 175

AUTO_NORMAL, 167

AUXi, 151, 152

AUXn, 151, 158

AUXOo0, 151, 158

BACK, 49, 51, 52, 70, 73, 151, 152,
158, 159, 183, 201

BACK_LEFT, 151, 152, 158

BACK_RIGHT, 151, 152, 158

Begin, 12, 15-20, 23, 24, 28, 55, 62,
67, 70, 73, 168, 169, 174

BGR, 92, 159, 162

BGRA, 92, 94, 98, 159, 230

BindTexture, 133

BITMAP, 72, 80, 83, 90, 91, 98, 110,
160, 185

Bitmap, 110

BITMAP_TOKEN, 176

BLEND, 135, 137, 146, 150

BlendColor, 77, 146

BlendEquation, 77, 146, 147

BlendFunc, 77, 146, 147, 149

BLUE, 78, 92, 159, 160, 208, 210, 216

BLUE_BIAS, 101

BLUE_SCALE, 101

BYTE, 22, 91, 160, 161, 177

Version 1.2.1 - April 1, 1999

INDEX

C3F_V3F, 25, 26

C4F_N3F_V3F, 25, 26

C4UB_V2F, 25, 26

C4UB_V3F, 25, 26

CallList, 19, 177, 178

CallLists, 19, 177, 178

CCW, 48, 201

CLAMP, 124, 127

CLAMP_TO_EDGE, 124, 125, 127,
231

CLEAR, 151

Clear, 153, 154

ClearAccum, 154

ClearColor, 154

ClearDepth, 154

ClearIndex, 154

ClearStencil, 154

CLIENT_ACTIVE_.TEXTURE._
ARB, 243, 251

CLIENT_PIXEL_STORE_BIT, 191

CLIENT_VERTEX_ARRAY BIT,
191

ClientActiveTextureARB, 243

CLIP_PLANEi, 39

CLIP_PLANEO, 39

ClipPlane, 38

COEFF, 184

COLOR, 31, 34, 81, 85, 86, 120, 162,
245

Color, 1921, 43, 56

Color3, 20

Color4, 20

COLOR_ARRAY, 23, 27

COLOR_ARRAY_POINTER, 189

COLOR_BUFFER_BIT, 153, 191

COLOR_INDEX, 72, 80, 83, 90, 92,
102, 110, 159, 162, 184, 185

COLOR_INDEXES, 50, 54

COLOR_LOGIC_OP, 150

COLOR_MATERIAL, 51, 53

COLOR_MATRIX, 185

COLOR_MATRIX_STACK_DEPTH,
185

COLOR._TABLE, 80, 82, 103

COLOR_TABLE_ALPHA _SIZE, 186

257

COLOR_TABLE_BIAS, 80, 81, 186
COLOR_TABLE_BLUE_SIZE, 186
COLOR_TABLE_FORMAT, 186
COLOR_TABLE_GREEN_SIZE, 186
COLOR_TABLE_INTENSITY_
SIZE, 186
COLOR_TABLE_LUMINANCE._
SIZE, 186
COLOR_TABLE_RED _SIZE, 186
COLOR_TABLE_SCALE, 80, 81, 186
COLOR_TABLE_WIDTH, 186
ColorMask, 152, 153
ColorMaterial, 51-53, 167, 223, 228
ColorPointer, 19, 21, 22, 27, 178
ColorSubTable, 81, 82
ColorTable, 79, 81-83, 108, 109, 179
ColorTableParameter, 80
ColorTableParameterfv, 80
Colorub, 56
Colorui, 56
Colorus, 56
COMPILE, 175, 223
COMPILE_AND_EXECUTE, 175,
177, 178
CONSTANT_ALPHA, 77, 148, 149
CONSTANT_ATTENUATION, 50
CONSTANT_BORDER, 105, 106
CONSTANT_COLOR, 77, 148, 149
CONVOLUTION_1D, 84, 86, 103,
117, 186, 187
CONVOLUTION_ 2D, 83-85, 103,
117, 186, 187
CONVOLUTION_BORDER._
COLOR, 106, 187
CONVOLUTION_BORDER._
MODE, 105, 187
CONVOLUTION_FILTER_BIAS,
83-85, 187
CONVOLUTION_FILTER_SCALE,
83-86, 187
CONVOLUTION_FORMAT, 187
CONVOLUTION_HEIGHT, 187
CONVOLUTION_WIDTH, 187
ConvolutionFilter1D, 84-86
ConvolutionFilter2D, 83-86

Version 1.2.1 - April 1, 1999

258

ConvolutionParameter, 84, 105
ConvolutionParameterfv, 83, 84, 106
ConvolutionParameteriv, 85, 106
COPY, 150, 151, 205
COPY_INVERTED, 151
COPY _PIXEL_TOKEN, 176
CopyColorSubTable, 81, 82
CopyColorTable, 81, 82
CopyConvolutionFilter1D, 85
CopyConvolutionFilter2D, 85
CopyPixels, 75, 78, 81, 85, 86, 103,
120, 156, 162, 163, 173
CopyTexImagelD, 103, 120, 121, 129,
248
CopyTexImage2D, 103, 118, 120, 121,
129, 248
CopyTexImage3D, 121
CopyTexSubImagelD, 103, 121, 123
CopyTexSublmage2D, 103, 121, 122
CopyTexSublmage3D, 103, 121, 122
CULL_FACE, 70
CullFace, 70
CURRENT_BIT, 191
CURRENT_RASTER._
TEXTURE_.COORDS, 222,
246
CURRENT_TEXTURE_COORDS,
243
CW, 48

DECAL, 135, 137

DECR, 144

DeleteLists, 178

DeleteTextures, 133, 178

DEPTH, 162, 208

DEPTH_BIAS, 78, 101

DEPTH_BUFFER_BIT, 153, 191

DEPTH_COMPONENT, 80, 83, 90,
92, 112, 158, 159, 162, 184

DEPTH_SCALE, 78, 101

DEPTH_TEST, 145

DepthFunc, 145

DepthMask, 153

DepthRange, 30, 182, 224

DIFFUSE, 50, 51

INDEX

Disable, 35, 38, 39, 44, 51, 60, 64,
67, 70, 72, 74, 108, 109, 138,
143-146, 149, 150, 166, 167,
246, 249

DisableClientState, 19, 23, 27, 178,
243

DITHER, 150

DOMAIN, 184

DONT_CARE, 180, 213

DOUBLE, 22

DRAW_PIXEL_TOKEN, 176

DrawArrays, 23, 24, 175

DrawBuffer, 151, 152

DrawElements, 24, 25, 175, 232

DrawPixels, 72, 75, 76, 78, 80, 83, 89—
93, 98, 100, 103, 110, 112,
113, 156, 158, 160, 162, 173

DrawRangeElements, 25, 215

DST_ALPHA, 148

DST_COLOR, 148

EDGE_FLAG_ARRAY, 23, 27

EDGE_FLAG_ARRAY_POINTER,
189

EdgeFlag, 18, 19

EdgeFlagPointer, 19, 21, 22, 178

EdgeFlagv, 18

EMISSION, 50, 51

Enable, 35, 38, 39, 44, 51, 60, 64,
67, 70, 72, 74, 108, 109, 138,
143-146, 149, 150, 166, 167,
181, 246, 249

ENABLE_BIT, 191

EnableClientState, 19, 23, 27, 178,
243

End, 12, 15-20, 23, 24, 28, 55, 62, 70,
73, 168, 169, 174

EndList, 175, 177

EQUAL, 143-145

EQUIV, 151

EVAL_BIT, 191

EvalCoord, 19, 167

EvalCoord1, 167-169

EvalCoord1d, 168

EvalCoord1f, 168

Version 1.2.1 - April 1, 1999

INDEX

EvalCoord2, 167, 169, 170

EvalMeshl, 168

EvalMesh2, 168, 169

EvalPoint, 19

EvalPoint1, 169

EvalPoint2, 170

EXP, 139, 140, 198

EXP2, 139

EXT_bgra, 230

EXT _blend_color, 234

EXT_blend_logic_op, 226

EXT _blend_minmax, 234

EXT _blend_subtract, 234

EXT _color_subtable, 233

EXT _color_table, 233

EXT _convolution, 233

EXT_copy_texture, 227

EXT _draw_range_elements, 232

EXT _histogram, 234

EXT _packed_pixels, 231

EXT _polygon _offset, 226

EXT _rescale normal, 231

EXT _separate_specular_color, 231

EXT _subtexture, 227

EXT _texture, 226, 227

EXT _texture3D, 230

EXT_texture_object, 227

EXT_vertex_array, 225

EXTENSIONS, 77, 189, 239

EYE_LINEAR, 37, 38, 183, 204, 245,
246, 253

EYE_PLANE, 37

FALSE, 18, 19, 46-48, 76, 78, 87, 88,
98, 101, 109, 110, 134, 158,
182, 184, 187, 188

FASTEST, 180

FEEDBACK, 171, 173, 174, 224

FEEDBACK_BUFFER_POINTER,
189

FeedbackBuffer, 173, 174, 178

FILL, 73-75, 169, 201, 223, 226

Finish, 178, 179, 222

FLAT, 54, 223

259

FLOAT, 22, 26, 27, 91, 160, 161, 177,
196, 244, 252

Flush, 178, 179, 222

FOG, 138

Fog, 139, 140

FOG_BIT, 191

FOG_COLOR, 139

FOG_DENSITY, 139

FOG_END, 139

FOG_HINT, 180

FOG_NDEX, 140

FOG_MODE, 139, 140

FOG_START, 139

FRONT, 49, 51, 70, 73, 151, 152, 158,
159, 183

FRONT_AND_BACK, 49, 51-53, 70,
73, 151, 152

FRONT_LEFT, 151, 152, 158

FRONT_RIGHT, 151, 152, 158

FrontFace, 48, 70

Frustum, 32, 33, 223

FUNC_ADD, 147, 149, 205

FUNC_REVERSE_SUBTRACT, 147

FUNC_SUBTRACT, 147

GenlLists, 178

GenTextures, 133, 134, 178, 184

GEQUAL, 143-145

Get, 30, 178, 181, 182, 243, 246

GetBooleanv, 181, 182, 193

GetClipPlane, 182, 183

GetColorTable, 83, 158, 185

GetColorTableParameter, 186

GetConvolutionFilter, 158, 186

GetConvolutionParameter, 187

GetConvolutionParameteriv, 83, 84

GetDoublev, 181, 182, 193

GetError, 11

GetFloatv, 181, 182, 185, 193

GetHistogram, 88, 158, 187

GetHistogramParameter, 188

GetIntegerv, 25, 181, 182, 185, 193,
244

GetLight, 182, 183

GetMap, 183

Version 1.2.1 - April 1, 1999

260

GetMaterial, 182, 183
GetMinmax, 158, 188
GetMinmaxParameter, 188
GetPixelMap, 183
GetPointerv, 189
GetPolygonStipple, 185
GetSeparableFilter, 158, 186
GetString, 189
GetTexEnv, 182, 183
GetTexGen, 182, 183
GetTexImage, 103, 132, 184, 186-188
GetTexImagelD, 158
GetTexImage2D, 158
GetTexImage3D, 158
GetTexLevelParameter, 182, 183
GetTexParameter, 182, 183
GetTexParameterfv, 132, 134
GetTexParameteriv, 132, 134
GL_ARB_multitexture, 240
GREATER, 143-145
GREEN, 78, 92, 159, 160, 208, 210,
216
GREEN_BIAS, 101
GREEN_SCALE, 101

Hint, 179
HINT_BIT, 191
HISTOGRAM, 87, 88, 109, 187, 188
Histogram, 87, 88, 109, 179
HISTOGRAM_ALPHA SIZE, 188
HISTOGRAM_BLUE_SIZE, 188
HISTOGRAM_FORMAT, 188
HISTOGRAM_GREEN_SIZE, 188
HISTOGRAM_LUMINANCE_SIZE,
188
HISTOGRAM_RED_SIZE, 188
HISTOGRAM_SINK, 188
HISTOGRAM_WIDTH, 188
HP_convolution_border_modes, 233

INCR, 144

INDEX, 216

Index, 19, 21

INDEX_ARRAY, 23, 27
INDEX_ARRAY_POINTER, 189

INDEX

INDEX_LOGIC_OP, 150

INDEX_OFFSET, 78, 101, 208

INDEX_SHIFT, 78, 101, 208

IndexMask, 152, 153

IndexPointer, 19, 22, 178

InitNames, 171

INT, 22, 91, 160, 161, 177

INTENSITY, 87, 88, 103, 104, 114,
115, 136, 137, 185, 208, 226

INTENSITY12, 87, 88, 115

INTENSITY16, 87, 88, 115

INTENSITY4, 87, 88, 115

INTENSITYS, 87, 88, 115

Interleaved Arrays, 19, 25, 26, 178

INVALID_ENUM, 12, 13, 38, 49, 77,
83, 87, 88, 90, 120, 132, 184,
243, 244

INVALID_OPERATION, 13, 19, 77,
90, 94, 133, 151, 156, 158,
159, 171, 173, 175, 249

INVALID_VALUE, 12, 13, 22, 25, 30,
33, 49, 60, 64, 76, 78-80, 82—
84, 87, 113, 114, 116, 121-
123, 130, 134, 139, 143, 154,
165, 166, 168, 175, 177, 183,
184, 249

INVERT, 144, 151

IsEnabled, 178, 181, 193

IsList, 178

IsTexture, 178, 184

KEEP, 144, 145, 205

LEFT, 151, 152, 158

LEQUAL, 143-145

LESS, 143-145, 205

Light, 49, 50

LIGHTj, 49, 51, 224

LIGHTO, 49

LIGHT_.MODEL_AMBIENT, 50

LIGHT_MODEL_COLOR.
CONTROL, 50

LIGHT _MODEL_LOCAL_VIEWER,
50

LIGHT _MODEL_TWO_SIDE, 50

Version 1.2.1 - April 1, 1999

INDEX

LIGHTING, 44

LIGHTING_BIT, 191

LightModel, 49, 50

LINE, 73-75, 168, 169, 201, 226

LINE_BIT, 191

LINE_LOOP, 15

LINE_RESET_TOKEN, 176

LINE_SMOOTH, 64

LINE_.SMOOTH_HINT, 180

LINE_STIPPLE, 67

LINE_STRIP, 15, 168

LINE_TOKEN, 176

LINEAR, 124, 127, 130, 131, 139

LINEAR_ATTENUATION, 50

LINEAR_MIPMAP LINEAR, 124,
129, 130

LINEAR_MIPMAP NEAREST, 124,
129, 130

LINES, 16, 67

LineStipple, 66

LineWidth, 62

LIST BIT, 191

ListBase, 178, 179

LOAD, 155

LoadIdentity, 31

LoadMatrix, 31, 32

LoadName, 171

LOGIC.OP, 150

LogicOp, 150, 151

LUMINANCE, 92, 99, 103, 104, 113—
115, 136, 137, 159, 160, 185,
208, 210, 226

LUMINANCEI12, 115

LUMINANCE12_ALPHA12, 115

LUMINANCE12_ALPHAA4, 115

LUMINANCEL16, 115

LUMINANCE16_ALPHA16, 115

LUMINANCEA4, 115

LUMINANCE4_ALPHA4, 115

LUMINANCEG6_ALPHA2, 115

LUMINANCES, 115

LUMINANCES8_ALPHAS, 115

LUMINANCE_ALPHA, 92, 99, 103,
104, 113-115, 136, 137, 159,
160, 162, 185

261

Mapl, 165, 166, 182
MAP1_COLOR 4, 165
MAP1_INDEX, 165
MAP1_NORMAL, 165
MAP1_TEXTURE_.COORD_1, 165,
167
MAP1_ TEXTURE_.COORD_2, 165,
167
MAP1_TEXTURE_COORD_3, 165
MAP1_TEXTURE_COORD_4, 165
MAP1_VERTEX 3, 165
MAP1_VERTEX 4, 165
Map2, 165, 166, 182
MAP2_VERTEX_3, 167
MAP2_VERTEX 4, 167
Map[12], 249
MAP_COLOR, 78, 101, 102
MAP_STENCIL, 78, 102
MAP_VERTEX_ 3, 167
MAP_VERTEX 4, 167
MapGridl, 168
MapGrid2, 168
Material, 19, 49, 50, 54, 223
MatrixMode, 31
MAX, 147
MAX_3D_TEXTURE_SIZE, 116
MAX_ATTRIB_STACK_DEPTH,
190
MAX_CLIENT_ATTRIB_STACK_
DEPTH, 190
MAX_COLORMATRIX_STACK_
DEPTH, 185
MAX_CONVOLUTION_HEIGHT,
83, 187
MAX_CONVOLUTION_WIDTH,
83, 84, 187
MAX_ELEMENTS_INDICES, 25
MAX_ELEMENTS_VERTICES, 25
MAX_EVAL_ORDER, 165, 166
MAX_PIXEL_MAP_TABLE, 79, 101
MAX_TEXTURE_SIZE, 116
MAX_TEXTURE_UNITS_ARB, 240,
243, 244, 251
MIN, 147
MINMAX, 88, 109, 188

Version 1.2.1 - April 1, 1999

262

Minmax, 88, 110
MINMAX_FORMAT, 188
MINMAX_SINK, 188
MODELVIEW, 31, 34, 245
MODULATE, 135, 136
MULT, 155, 156
MultiTexCoord, 241
MultiTexCoordARB, 243, 244
MultMatrix, 31, 32

N3F_V3F, 25, 26

NAND, 151

NEAREST, 124, 127, 130, 131

NEAREST _MIPMAP_LINEAR, 124,
129-131

NEAREST MIPMAP _NEAREST,
124, 129-131

NEVER, 143-145

NewList, 175, 177, 178

NICEST, 180

NO_ERROR, 11, 12

NONE, 151, 152

NOOP, 151

NOR, 151

Normal, 19, 20

Normal3, 8, 9, 20

Normal3d, 8

Normal3dv, 9

Normal3f, 8

Normal3fv, 9

NORMAL_ARRAY, 23, 27

NORMAL_ARRAY_POINTER, 189

NORMALIZE, 35

NormalPointer, 19, 22, 27, 178

NOTEQUAL, 143-145

OBJECT_LINEAR, 37, 38, 183, 245,
246

OBJECT_PLANE, 37

ONE, 148, 149, 205

ONE_MINUS_.CONSTANT_ALPHA,
77, 148, 149

ONE_MINUS_.CONSTANT_COLOR,
77, 148, 149

ONE_MINUS_DST_ALPHA, 148

INDEX

ONE_MINUS_DST_COLOR, 148
ONE_MINUS_SRC_ALPHA, 148
ONE_MINUS_SRC_COLOR, 148
OR, 151

OR_INVERTED, 151
OR_REVERSE, 151

ORDER, 184

Ortho, 32, 33, 223
OUT_OF_MEMORY, 12, 13, 177

PACK_ALIGNMENT, 158, 207
PACK_IMAGE_HEIGHT, 158, 184,
207
PACK_LSB_FIRST, 158, 207
PACK_ROW_LENGTH, 158, 207
PACK_SKIP_IMAGES, 158, 184, 207
PACK_SKIP_PIXELS, 158, 207
PACK_SKIP_ROWS, 158, 207
PACK_SWAP_BYTES, 158, 207
PASS_THROUGH_TOKEN, 176
PassThrough, 174
PERSPECTIVE_CORRECTION.
HINT, 180
PIXEL.MAP_A_TO_A, 79, 101
PIXEL.MAP_B_TO_B, 79, 101
PIXEL.MAP_G_TO_G, 79, 101
PIXEL.MAP_I.TO_A, 79, 102
PIXEL.MAP_I.TO.B, 79, 102
PIXEL MAP I TO.G, 79, 102
PIXEL.MAP_I.TO., 79, 102
PIXEL MAP_I.TO.R, 79, 102
PIXEL MAP R_TOR, 79, 101
PIXEL.MAP_S_TO.S, 79, 102
PIXEL.MODE_BIT, 191
PixelMap, 75, 78, 79, 162
PixelStore, 19, 75, 76, 78, 158, 162,
178
PixelTransfer, 75, 78, 107, 162
PixelZoom, 100
POINT, 73, 74, 168, 169, 201, 226
POINT_BIT, 191
POINT_SMOOTH, 60
POINT_SMOOTH_HINT, 180
POINT_TOKEN, 176
POINTS, 15, 168

Version 1.2.1 - April 1, 1999

INDEX

PointSize, 60
POLYGON, 16, 19
POLYGON_BIT, 191
POLYGON_OFFSET_FILL, 74
POLYGON_OFFSET_LINE, 74
POLYGON_OFFSET_POINT, 74
POLYGON_SMOOTH, 70
POLYGON_SMOOTH_HINT, 180
POLYGON_STIPPLE, 72
POLYGON_STIPPLE_BIT, 191
POLYGON_TOKEN, 176
PolygonMode, 69, 73, 75, 171, 173
PolygonOffset, 74
PolygonStipple, 72
PopAttrib, 189, 190, 192, 224, 251
PopClientAttrib, 19, 178, 189, 190,
192, 251
PopMatrix, 34, 245
PopName, 171
POSITION, 50, 183
POST_COLOR_MATRIX_z_BIAS,
78
POST_COLOR_MATRIX z_SCALE,
78
POST_COLOR_MATRIX_ALPHA_
BIAS, 108
POST_COLOR_MATRIX_ALPHA_
SCALE, 108
POST_COLOR_MATRIX BLUE_
BIAS, 108
POST_COLOR_MATRIX BLUE_
SCALE, 108
POST_COLOR_MATRIX_COLOR._
TABLE, 80, 109
POST_COLOR_MATRIX_GREEN_
BIAS, 108
POST_COLOR_MATRIX_GREEN_
SCALE, 108
POST_COLOR_MATRIX_RED_
BIAS, 108
POST_COLOR_MATRIX_RED_
SCALE, 108
POST_CONVOLUTION_z_BIAS, 78
POST_CONVOLUTION _z_SCALE,
78

263

POST_CONVOLUTION_ALPHA_
BIAS, 107
POST_CONVOLUTION_ALPHA_
SCALE, 107
POST_CONVOLUTION_BLUE_
BIAS, 107
POST_CONVOLUTION_BLUE_
SCALE, 107
POST_CONVOLUTION_COLOR.-
TABLE, 80, 108
POST_CONVOLUTION_GREEN_
BIAS, 107
POST_CONVOLUTION_GREEN_
SCALE, 107
POST_CONVOLUTION_RED._
BIAS, 107
POST_CONVOLUTION_RED_
SCALE, 107
PrioritizeTextures, 134, 135
PROJECTION, 31, 34, 245
PROXY_COLOR_TABLE, 80, 82,
179
PROXY_HISTOGRAM, 87, 88, 179,
188
PROXY_POST_COLOR_-MATRIX_
COLOR._TABLE, 80, 179
PROXY_POST_CONVOLUTION._
COLOR._TABLE, 80, 179
PROXY_TEXTURE_1D, 117, 132,
179, 183
PROXY_TEXTURE_2D, 116, 132,
179, 183
PROXY_TEXTURE.3D, 112, 132,
179, 183
PushAttrib, 189, 190, 192, 251
PushClientAttrib, 19, 178, 189, 190,
192, 251
PushMatrix, 34, 245
PushName, 171

Q, 36, 38, 183

QUAD_STRIP, 17
QUADRATIC_ATTENUATION, 50
QUADS, 18, 19

R, 36, 38, 183

Version 1.2.1 - April 1, 1999

264

R3.G3_B2, 115

RasterPos, 41, 171, 223, 246

RasterPos2, 41, 246

RasterPos3, 41, 246

RasterPos4, 41, 246

ReadBuffer, 158, 159, 162

ReadPixels, 75, 78, 91-93, 103, 156—
160, 162, 178, 184-186

Rect, 28, 70

RED, 78, 92, 159, 160, 208, 210, 216

RED_BIAS, 101

RED_SCALE, 101

REDUCE, 105, 107, 209

RENDER, 171, 172, 217

RENDERER, 189

RenderMode, 171-174, 178

REPEAT, 124, 125, 127, 128, 131,
203

REPLACE, 135, 136, 144

REPLICATE_BORDER, 105, 106

RESCALE_NORMAL, 35

ResetHistogram, 187

ResetMinmax, 188

RETURN, 155, 156

RGB, 92, 94, 98, 103, 104, 113-115,
136, 137, 159, 162, 185, 226

RGB10, 115

RGB10_A2, 115

RGBI12, 115

RGBI16, 115

RGB4, 115

RGB5, 115

RGB5_A1, 115

RGBS, 115

RGBA, 81, 82, 85-88, 92, 94, 98, 103,
104, 113-115, 136, 137, 159,
162, 185, 208-211

RGBA12, 115

RGBA16, 115

RGBA2, 115

RGBA4, 115

RGBAS, 115

RIGHT, 151, 152, 158

Rotate, 32, 223

INDEX

S, 36, 37, 183

Scale, 32, 33, 223

Scissor, 143

SCISSOR_BIT, 191

SCISSOR_TEST, 143

SELECT, 171, 172, 224

SelectBuffer, 171, 172, 178

SELECTION_BUFFER_POINTER,
189

SEPARABLE_2D, 85, 103, 117, 187

SeparableFilter2D, 84

SEPARATE SPECULAR_COLOR,
47

SET, 151

SGI_color_matrix, 233

SGIS_multitexture, 238

SGIS_texture_edge_clamp, 231

SGIS_texture_lod, 232

ShadeModel, 54

SHININESS, 50

SHORT, 22, 91, 160, 161, 177

SINGLE_COLOR, 46, 47, 199

SMOOTH, 54, 198

SPECULAR, 50, 51

SPHERE_MAP, 37, 38

SPOT_CUTOFF, 50

SPOT_DIRECTION, 50, 183

SPOT_EXPONENT, 50

SRC_ALPHA, 148

SRC_ALPHA _SATURATE, 148

SRC_COLOR, 148

STACK_OVERFLOW, 13, 34, 171,
190, 245

STACK_UNDERFLOW, 13, 34, 171,
190, 245

STENCIL, 162

STENCIL_BUFFER _BIT, 154, 191

STENCIL_INDEX, 80, 83, 90, 92,
100, 112, 156, 158, 159, 162,
184

STENCIL_TEST, 144

StencilFunc, 144, 222

StencilMask, 153, 156, 223

StencilOp, 144, 145

Version 1.2.1 - April 1, 1999

INDEX

T, 36, 183

T2F_C3F_V3F, 25, 26

T2F_C4F_N3F_V3F, 25, 26

T2F_C4UB_V3F, 25, 26

T2F_N3F_V3F, 25, 26

T2F_V3F, 25, 26

T4F_C4AF_N3F_VA4F, 25, 26

TA4F _VA4F, 25, 26

TABLE_TOO.LARGE, 13, 80, 87

TexCoord, 19, 20, 241, 243

TexCoordl, 20, 241

TexCoord2, 20, 241

TexCoord3, 20, 241

TexCoord4, 20, 241

TexCoordPointer, 19, 21, 22, 27, 178,
243

TexEnv, 135, 249

TexGen, 36-38, 240, 246

TexImage, 121

TexImagelD, 76, 103, 105, 113, 117,
118, 120, 121, 129, 132, 179,
248

TexImage2D, 76, 87, 88, 103, 105,
113, 116-118, 120, 121, 129,
132, 179, 248

TexImage3D, 76, 112-114, 116-118,
121, 129, 132, 178, 184, 248

TexParameter, 123

TexParameter(if], 126, 130

TexParameterf, 134

TexParameterfv, 134

TexParameteri, 134

TexParameteriv, 134

TexSubImage, 121

TexSublmagelD, 103, 121, 123

TexSubImage2D, 103, 120-122

TexSublmage3D, 120-122

TEXTURE, 31, 34, 244, 245

TEXTURE:_ARB, 241

TEXTUREO_ARB, 243, 245, 249,
251, 254

TEXTURE1_ARB, 251

TEXTURE_zD, 202, 253

TEXTURE_1D, 103, 117, 120, 121,
124, 132, 133, 138, 183, 184

265

TEXTURE_2D, 103, 116, 120, 121,
124, 132, 133, 138, 183, 184
TEXTURE_3D, 112, 121, 124, 132,
133, 138, 183, 184
TEXTURE_ALPHA SIZE, 183
TEXTURE_BASE_LEVEL, 116, 117,
124, 126, 127, 129-132, 248
TEXTURE_BIT, 190, 191
TEXTURE_BLUE_SIZE, 183
TEXTURE_BORDER, 183
TEXTURE_.BORDER_COLOR, 124,
129, 131, 132
TEXTURE_.COMPONENTS, 183
TEXTURE_.COORD_ARRAY, 23,
27, 243
TEXTURE.COORD_ARRAY._
POINTER, 189
TEXTURE_DEPTH, 183
TEXTURE_ENV, 135, 183
TEXTURE._ENV_COLOR, 135
TEXTURE_ENV_MODE, 135
TEXTURE.GEN_MODE, 37, 38
TEXTURE_GEN_Q, 38
TEXTURE_GEN R, 38
TEXTURE_GEN_S, 38
TEXTURE_GEN._T, 38
TEXTURE.GREEN SIZE, 183
TEXTURE_HEIGHT, 183
TEXTURE_INTENSITY _SIZE, 183
TEXTURE_INTERNAL_FORMAT,
183
TEXTURE_.LUMINANCE_SIZE,
183
TEXTURE_MAG_FILTER, 124, 131
TEXTURE_.MAX_LEVEL, 116, 124,

130, 132, 248
TEXTURE.MAX_LOD, 124-126,
132
TEXTURE_MIN_FILTER, 124, 127,
129-131, 248

TEXTURE_MIN_LOD, 124-126, 132
TEXTURE_PRIORITY, 124, 132,
134
TEXTURE_RED_SIZE, 183
TEXTURE_RESIDENT, 132, 134

Version 1.2.1 - April 1, 1999

266

TEXTURE_WIDTH, 183

TEXTURE_-WRAP_R, 124, 128

TEXTURE_-WRAP_S, 124, 127, 128

TEXTURE_WRAP_T, 124, 128

TRANSFORM_BIT, 191

Translate, 32, 223

TRIANGLE_FAN, 17

TRIANGLE_STRIP, 16

TRIANGLES, 17, 19

TRUE, 18, 19, 40, 46-48, 76, 78, 87,
88, 134, 153, 158, 178, 182,
184, 187, 188

UNPACK_ALIGNMENT, 76, 93,
112, 207
UNPACK_IMAGE_HEIGHT, 76,
112, 207
UNPACK_LSB_FIRST, 76, 98, 207
UNPACK_ROW_LENGTH, 76, 90,
93, 112, 207
UNPACK_SKIP_IMAGES, 76, 112,
117, 207
UNPACK_SKIP_PIXELS, 76, 93, 98,
207
UNPACK_SKIP_ROWS, 76, 93, 98,
207
UNPACK_SWAP_BYTES, 76, 90, 92,
207
UNSIGNED_BYTE, 22, 24, 26, 91,
95, 160, 161, 177
UNSIGNED_BYTE_2_3_3_REV, 91,

93-95, 161
UNSIGNED_BYTE_3.3.2, 91, 93-95,
161
UNSIGNED_INT, 22, 24, 91, 97, 160,
161, 177
UNSIGNED_INT_10.10_10_2, 91, 94,
97, 161
UNSIGNED_INT_2_10_10_10_REV,
91, 94, 97, 161
UNSIGNED_INT_8.8.8.8, 91, 94, 97,
161
UNSIGNED_INT_8.8 8 8. REV, 91,
94, 97, 161

INDEX

UNSIGNED_SHORT, 22, 24, 91, 96,
160, 161, 177
UNSIGNED_SHORT_1.5_5_5_REV,
91, 94, 96, 161
UNSIGNED_SHORT _4.4.4.4, 91, 94,
96, 161
UNSIGNED_SHORT 4.4 4 4 REV,
91, 94, 96, 161
UNSIGNED_SHORT_5_5_5_1, 91, 94,
96, 161
UNSIGNED_SHORT_5.6_5, 91, 93,
94, 96, 161
UNSIGNED_SHORT_5_6_5_REV, 91,
93, 94, 96, 161

V2F, 25, 26

V3F, 25, 26

VENDOR, 189

VERSION, 189

Vertex, 7, 19, 20, 41, 167
Vertex2, 20, 28

Vertex2sv, 7

Vertex3, 20

Vertex3f, 7

Vertex4, 20
VERTEX_ARRAY, 23, 27
VERTEX_ARRAY_POINTER, 189
VertexPointer, 19, 22, 27, 178
Viewport, 30
VIEWPORT_BIT, 191

XOR, 151

ZERO, 144, 148, 149, 205

Version 1.2.1 - April 1, 1999

	Title Page
	Contents
	List of Figures
	1 Introduction
	1.1 Formatting of Optional Features
	1.2 What is the OpenGL Graphics System
	1.3 Programmer's View of OpenGL
	1.4 Implementor's View of OpenGL
	1.5 Our View

	2 OpenGL Operation
	2.1 OpenGL Fundamentals
	2.1.1 Floating Point Computation

	2.2 GL State
	2.3 GL Command Syntax
	2.4 Basic GL Operation
	2.5 GL Errors
	2.6 Begin/End Paradigm
	2.6.1 Begin and End Objects
	2.6.2 Polygon Edges
	2.6.3 GL Commands within Begin/End

	2.7 Vertex Specification
	2.8 Vertex Arrays
	2.9 Rectangles
	2.10 Coordinate Transformations
	2.10.1 Controlling the Viewport
	2.10.2 Matrices
	2.10.3 Normal Transformation
	2.10.4 Generating Texture Coordinates

	2.11 Clipping
	2.12 Current Raster Position
	2.13 Colors and Coloring
	2.13.1 Lighting
	2.13.2 Lighting Parameter Specification
	2.13.3 Color Material
	2.13.4 Lighting State
	2.13.5 Color Index Lighting
	2.13.6 Clamping or Masking
	2.13.7 Flatshading
	2.13.8 Color and Texture Coordinate Clipping
	2.13.9 Final Color Processing

	3 Rasterization
	3.1 Invariance
	3.2 Antialiasing
	3.3 Points
	3.3.1 Point Rasterization State

	3.4 Line Segments
	3.4.1 Basic Line Segment Rasterization
	3.4.2 Other Line Segment Features
	3.4.3 Line Rasterization State

	3.5 Polygons
	3.5.1 Basic Polygon Rasterization
	3.5.2 Stippling
	3.5.3 Antialiasing
	3.5.4 Options Controlling Polygon Rasterization
	3.5.5 Depth Offset
	3.5.6 Polygon Rasterization State

	3.6 Pixel Rectangles
	3.6.1 Pixel Storage Modes
	3.6.2 The Imaging Subset
	3.6.3 Pixel Transfer Modes
	3.6.4 Rasterization of Pixel Rectangles
	3.6.5 Pixel Transfer Operations

	3.7 Bitmaps
	3.8 Texturing
	3.8.1 Texture Image Specification
	3.8.2 Alternate Texture Image Specification Commands
	3.8.3 Texture Parameters
	3.8.4 Texture Wrap Modes
	3.8.5 Texture Minification
	3.8.6 Texture Magnification
	3.8.7 Texture State and Proxy State
	3.8.8 Texture Objects
	3.8.9 Texture Environment and Texture Functions
	3.8.10 Texture Application

	3.9 Color Sum
	3.10 Fog
	3.11 Antialiasing Application

	4 Per-Fragment Operations and the Framebuffer
	4.1 Per-Fragment Operations
	4.1.1 Pixel Ownership Test
	4.1.2 Scissor test
	4.1.3 Alpha test
	4.1.4 Stencil test
	4.1.5 Depth buffer test
	4.1.6 Blending
	4.1.7 Dithering
	4.1.8 Logical Operation

	4.2 Whole Framebuffer Operations
	4.2.1 Selecting a Buffer for Writing
	4.2.2 Fine Control of Buffer Updates
	4.2.3 Clearing the Buffers
	4.2.4 The Accumulation Buffer

	4.3 Drawing, Reading, and Copying Pixels
	4.3.1 Writing to the Stencil Buffer
	4.3.2 Reading Pixels
	4.3.3 Copying Pixels
	4.3.4 Pixel Draw / Read state

	5 Special Functions
	5.1 Evaluators
	5.2 Selection
	5.3 Feedback
	5.4 Display Lists
	5.5 Flush and Finish
	5.6 Hints

	6 State and State Requests
	6.1 Querying GL State
	6.1.1 Simple Queries
	6.1.2 Data Conversions
	6.1.3 Enumerated Queries
	6.1.4 Texture Queries
	6.1.5 Stipple Query
	6.1.6 Color Matrix Query
	6.1.7 Color Table Query
	6.1.8 Convolution Query
	6.1.9 Histogram Query
	6.1.10 Minmax Query
	6.1.11 Pointer and String Queries
	6.1.12 Saving and Restoring State

	6.2 State Tables

	Appendix A: Invariance
	A.1 Repeatibility
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 What All This Means

	Appendix B: Corollaries
	Appendix C: Version 1.1
	C.1 Vertex Array
	C.2 Polygon Offset
	C.3 Logical Operation
	C.4 Texture Image Formats
	C.5 Texture Replace Environment
	C.6 Texture Proxies
	C.7 Copy Texture and Subtexture
	C.8 Texture Objects
	C.9 Other Changes
	C.10 Acknowledgements

	Appendix D: Version 1.2
	D.1 Three-Dimensional Texturing
	D.2 BGRA Pixel Formats
	D.3 Packed Pixel Formats
	D.4 Normal Rescaling
	D.5 Separate Specular Color
	D.6 Texture Coordinate Edge Clamping
	D.7 Texture Level of Detail Control
	D.8 Vertex Array Draw Element Range
	D.9 Imaging Subset
	D.9.1 Color Tables
	D.9.2 Convolution
	D.9.3 Color Matrix
	D.9.4 Pixel Pipeline Statistics
	D.9.5 Constant Blend Color
	D.9.6 New Blending Equations

	D.10 Acknowledgements

	Appendix E: Version 1.2.1
	Appendix F: ARB Extensions
	F.1 Naming Conventions
	F.2 Multitexture
	F.2.1 Dependencies
	F.2.2 Issues
	F.2.3 Changes to Section 2.6 (Begin / End Paradigm)
	F.2.4 Changes to Section 2.7 (Vertex Specification)
	F.2.5 Changes to Section 2.8 (Vertex Arrays)
	F.2.6 Changes to Section 2.10.2 (Matrices)
	F.2.7 Changes to Section 2.10.4 (Generating Texture Coordinates)
	F.2.8 Changes to Section 2.12 (Current Raster Position)
	F.2.9 Changes to Section 3.8 (Texturing)
	F.2.10 Changes to Section 3.8.5 (Texture Minification)
	F.2.11 Changes to Section 3.8.8 (Texture Objects)
	F.2.12 Changes to Section 3.8.10 (Texture Application)
	F.2.13 Changes to Section 5.1 (Evaluators)
	F.2.14 Changes to Section 5.3 (Feedback)
	F.2.15 Changes to Section 6.1.2 (Data Conversions)
	F.2.16 Changes to Section 6.1.12 (Saving and Restoring State)

	Index of OpenGL Commands

