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ABSTRACT
Applying advanced signal processing and artificial intelligence al-
gorithms is often constrained by power and energy consumption
limitations, in high performance and embedded, cyber-physical
and super-computing devices and systems. Although Graphics Pro-
cessing Units (GPUs) helped to mitigate the throughput-per-Watt
performance problem inmany compute-intensive applications, deal-
ing more efficiently with the autonomy requirements of intelligent
systems demands power-oriented customized architectures that
are specially tuned for each application, preferably without manual
redesign of the entire hardware and capable of supporting legacy
code. Hence, this work proposes a new SCRATCH framework that
aims at automatically identifying the specific requirements of each
application kernel, regarding instruction set and computing unit
demands, allowing for the generation of application-specific and
FPGA-implementable trimmed-down GPU-inspired architectures.
The work is based on an improved version of the original MIAOW
system (here named MIAOW2.0), which is herein extended to sup-
port a set of 156 instructions and enhanced to provide a fast prefetch
memory system and a dual-clock domain. Experimental results with
17 highly relevant benchmarks, using integer and floating-point
arithmetic, demonstrate that we have been able to achieve an av-
erage of 140× speedup and 115× higher energy-efficiency levels
(instructions-per-Joule) when compared to the original MIAOW
system, and a 2.4× speedup and 2.1× energy-efficiency gains com-
pared against our optimized version without pruning.

CCS CONCEPTS
•Computer systems organization→ Parallel architectures; •
Hardware→Hardware-software codesign; •Computingmethod-
ologies → Machine learning;
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1 INTRODUCTION
The evolution of General-Purpose Processing on GPU (GPGPU) has
been aided by the emergence of parallel programming frameworks,
especially the Compute Unified Device Architecture (CUDA) [8, 27]
and Open Computing Language (OpenCL) [6, 13]. These tools allow
programmers to easily use the hardware resources of massively
parallel processors for their applications, processing large amounts
of data in relatively shorter periods of time when compared to pre-
vious Central Processing Unit (CPU)-based architectures. However,
although GPUs provide high throughput performance, off-the-shelf
devices demand high power levels to operate (∼200W to ∼300W
per device) and have fixed designs that cannot be adapted towards
the specific needs of the target applications.

Application-specific architectures can be designed and imple-
mented in reconfigurable fabric and can be tailored to maximize
the throughput-per-Watt performance [9, 25]. However, such fully
customizable approaches often require a profound manual archi-
tectural redesign, even at the presence of minimal algorithmic
changes. Moreover, such designs do not often deal well with legacy
code, which can only be solved by constraining the efficiency of
the design. Also, they involve a substantial design effort–either
through manual register-transfer level (RTL), or using specialized
OpenCL-to-hardware translation [3, 42] and bitstream comple-
tion [10, 12, 20, 24] tools–that many application developers do
not have or are unwilling to take.

Recently, research efforts have been made in the development
of general-purpose parallel and programmable architectures on re-
configurable fabric, often referred to as soft-general-purpose-GPU
(soft-GPGPU), either by relying on existing commercial Instruction-
Set Architectures (ISAs), or by developing special-purpose ones.
In particular, Flexgrip [4], based on NVIDIA’s G80 architecture,
supports the Single-Instruction Multiple-Thread (SIMT) model and
the utilization of code binaries generated directly from unmodified
NVIDIA compilation tools. It implements 27 instructions and runs
5 benchmarks. Another distinct approach, also limited in terms of
functionality, consists of FGPU [2], which is based on a custom ISA
that takes into account the OpenCL specification. The implemented
ISAmixes instructions from both MIPS and other, OpenCL-inspired,
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Figure 1: Two different trimmed architectures generated for two distinct soft-kernels. During compile time, the instructions
present in kernel A indicate that only scalar and vectorized integer FUs shall be instantiated on the reconfigurable fabric. In
kernel B both integer and floating-point instructions are detected and thus the architecture is trimmed (e.g., by considering
available resources and/or power consumption limitations) to support both FU types.

architectures to create a soft SIMT processor. It supports 18 assem-
bly instructions and runs 4 benchmarks. Although valid, these
approaches present severe limitations at the functional level, which
restrain the adoption by a vast set of real-world applications.

A new SCRATCH framework is herein proposed that builds on
top of the recently developed MIAOW implementation [5] of the
AMD Southern Islands architecture [17], which is extended in this
work to support a wide set of 156 fully usable instructions (up from
42 in the original synthesizable design [5]), henceforth designated
as MIAOW2.0 FPGA implementation. This comprehensive ISA ex-
tension allows testing a variety of well-known benchmarks (taken
from the Rodinia [7] and the AMD SDK [18] suits) that were not
possible in the original design. Furthermore, to tackle important
performance bottlenecks associated with both the critical path of
the original MIAOW architecture and its memory access latency,
a set of architectural improvements were introduced, namely: a
separate clock domain to decouple the critical paths of the compute
unit and the ultra-threaded dispatcher, and a prefetch memory sys-
tem to mitigate the penalizing data access latency of the original
design, which was strictly based on accesses to slow global memory.
The SCRATCH framework also includes a new compile-time tool
that, by trimming down the implemented resources and instruction
set (see Figure 1), allows tailoring the soft-GPGPU architecture
towards the application-specific characteristics, therefore minimiz-
ing the used resources without compromising the correct program
execution.

The proposed SCRATCH framework is therefore a full end-to-
end solution, providing users a way to compile an OpenCL pro-
gram (through AMD CodeXL [1]), trim the design to satisfy the
application-specific requirements, synthesize, download it and run
the application on Xilinx FPGAs.

The framework was validated on Xilinx Virtex 7 FPGAs, by re-
lying on a set of both integer and single-precision floating-point
benchmarks that have a direct application in the processing pipelines
of many signal processing and Artificial Intelligence (AI) systems.
In particular, it fully supports state-of-the-art image classification al-
gorithms relying on Convolutional Neural Networks (CNNs) [11, 15,
33] that achieve the best accuracy results known so far [16, 19, 37].

The contributions of this work can be summarized as follows:

• MIAOW2.0, an extension to the original MIAOW architec-
ture, has been fully validated on FPGA and bug-fixed to sup-
port a set of 156 instructions (including new floating-point
ones); and enhanced with two clock domains, to isolate the
critical paths of the compute unit and the remaining com-
ponents, and a prefetch buffer within the compute unit to
reduce the occurrence of slow global memory transactions;
• A compile-time trimming tool that is able to identify the
requirements of each application and prune the MIAOW2.0
Compute Unit architecture to the application specific needs,
releasing chip area for adding more compute units, cores
and thus computational power to the parallel reconfigurable
architecture;
• Demonstration of the performance and energy benefits of
trimming down the architecture to the requirements of each
specific application.

Such advantages are not only important for power and/or energy-
constrained systems, including in exascale computing, where pro-
cessing power is believed to be on the same order of magnitude as
the human brain [29].

Hence, in this work the reader is confronted with a customized
and flexible soft-GPGPU parallel architecture supporting native
OpenCL code that is fully implementable on FPGA, as well as a
trimming tool that helps adapting the architecture. Also, as Field-
Programmable Gate Array (FPGA) technology progresses, it turns
more amenable for system developers. As long as the desired per-
formance metrics are met, the proposed soft-GPGPU tool is more
friendly and attractive for application developers, which usually
don’t have the skills for programming the FPGA using Hardware
Description Languages (HDLs). Furthermore, by releasing an open
source soft-GPGPU that is implementable on FPGAs, it is possible
to develop and test the impact of additional application-specific ar-
chitectural optimizations that can provide additional performance
gains, while validating its impact on area, frequency and power.
For example, one can adjust the bitwidth of the datapath to pro-
vide additional gains in terms of area and power, since in many AI
applications (including CNNs) it is perfectly acceptable to use less
than 32 bit precision [22, 39].
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The MIAOW2.0 architecture and SCRATCH tool are made pub-
licly available online at https://github.com/scratch-gpu, un-
der repositories MIAOW2 and Trimming-Tool, respectively, for the
community to enroll. They represent ongoing work and are there-
fore subject to continual updates with new releases.

2 THE MIAOW2.0 DESIGN
This work relies on the Many-Core Integrated Accelerator of Wis-
consin (MIAOW), originally developed based on AMD’s notion of
an OpenCL compute unit [5] and on AMD’s Southern Islands ISA.

2.1 MIAOW2.0 Core Architecture
The MIAOW Compute Unit (CU) has a single scalar ALU (SALU)
and multiple–up to four–vector ALUs (VALUs), which can operate
in, up to, 64 scalar words at once. MIAOW was mostly developed
in Verilog, using a few C/C++ modules, through Programming Lan-
guage Interface (PLI), to model the memories, memory controllers,
and on-chip network (OCN). By using a synthesizable architecture
mapped on an FPGA, instead of a simple simulator, conclusions can
be drawn that are applicable to real hardware systems, which can
then be constructed using the provided hardware description files.

2.1.1 The Pipeline: As shown in Figure 2, MIAOW’s pipeline
is composed of seven stages (Fetch, Decode, Issue, Schedule, Ex-
ecute/Memory Access, and Write Back), with some being stages
decomposed into multiple sub-stages, depending on instruction
type. Hence, application kernels are executed as follows. The CU
receives a program in wavefronts, i.e., a collection of 64work-items,
which share the same program counter. Each wavefront has a set
of associated data, such as the program counter, the wavefronts’
identifier, and the base address for both scalar and vector registers,
and local memory. Since the Fetch unit is the input port for new
wavefronts, it has to receive the supra-mentioned data and place
the wavefront instructions on a queue (Wavepool), where they wait
until being selected for decoding. The instruction fetch controller
works in round-robin mode and supports up to 40 wavefronts to
concurrently execute in the same CU.

Upon selection, a wavefront is passed to the Decode stage, which
is responsible for extracting the operation to be executed; the source
operands, which range from one to three; the destination; and
multiple flags, depending on the type of instruction. Since some
instructions use a 64-bit word length (namely, any VOP3 instruction
and any other instructions using 32-bit literals), it requires two
fetches and the joining of the two halves, before the decoding
process can begin. Based on the extracted values, the Decode unit
will automatically select the type of execution unit to be used, either
VALU, SALU, or load-store unit (LSU), and translate logical register
addresses into physical addresses. The decoded instruction then
reaches the Issue stage where it waits until all dependencies have
been resolved, only starting execution when all operands are ready
to be accessed. If the instruction happens to be a barrier or a halt, the
Issue unit will handle it immediately, not requiring any intervention
from the remaining stages. For all other instructions, as soon as the
operands are ready, it is scheduled for execution, causing a read
from the register files. According to the unit selected in the Decode
stage, one of three possible types of operation will be executed.
If the instruction operates only on scalar operands, then SALU

will be selected and an arithmetical or logical operation will be
performed on the operands. A different scenario occurs for vector
instructions, as VALU will be selected and multiple values will be
operated at once, each value corresponding to a different work-
item. To determine which work-items within a single wavefront are
executed, an execute mask is used, which can be read and modified
using normal scalar operations. Finally, if a memory instruction
is casted, the LSU will be activated and a memory access will be
performed. Before issuing the memory access request, however, the
LSU performs an address calculation. Once execution finishes, a
Write-Back will occur to either a result register, the execution mask,
or to the conditional control flags, which, among other things, serve
as a primary output for compare instructions.

2.1.2 Vector Register Direct Access Interface: To guarantee exe-
cution correctness across a wide set of applications, a set of registers
must be initialized when a new workgroup starts executing. This
is performed by the MicroBlaze, which acts as the Ultra-threaded
Dispatcher. However, and although the original MIAOW system fea-
tured an interface for the scalar general-purpose registers (SGPRs),
this was not implemented for vector operations. Adding an inter-
face to provide concurrent access to vector general-purpose reg-
isters (VGPRs) required changing two major blocks: the advanced
extensible interface (AXI) [43] interconnect peripheral, and the CU
top level module, which is responsible for multiplexing input sig-
nals. The AXI interconnect peripheral has a set of memory mapped
registers, through which the MicroBlaze processor [44] can com-
municate with the CU. The new interface requires expanding the
existing register set to support it. Since the vector length is de-
fined as 2048 bits[17], and a MicroBlaze processor only outputs
32 bit words, a set of 64 data registers is added to the peripheral.
An address register is also set–controlling which VGPR is written.
Additionally, to control which words of a vector are written, two
32 bit registers contain the write mask. Finally, a special address is
defined to signal a write command, which causes the values in the
data registers to be propagated to the VGPR.

2.1.3 ISA Extensions: The currently proposed CU architecture
implementation supports 156 instructions from the AMD’s South-
ern Islands ISA, being able to run unmodified OpenCL applications.
This has been accomplished through exhaustive testing of the com-
plete set of supported instructions, in order to validate and correct
the CU behavior when dealing with all the supported scalar, vector,
or memory instructions. For this, specific microbenchmarks (writ-
ten in AMD’s Southern Islands [17] machine code) and validation
scripts were developed, each testing a different instruction domain.
As a result of this validation procedure, the developed MIAOW 2.0
CU can run kernels generated by standard AMD OpenCL compilers
(e.g. codeXL [1]) without hand tuning.

On the other hand, given that a large set of applications requires
single-precision floating-point arithmetic, both the CU decode and
execution stage were properly modified to incorporate new floating-
point operations, thus considerably extending the range of possible
applications, regarding other solutions [2, 4]. As in the previous case,
the execution of the newly added instructions were also extensively
validated to guarantee correctness.

https://github.com/scratch-gpu
https://github.com/scratch-gpu/MIAOW2
https://github.com/scratch-gpu/Trimming-Tool
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Figure 2: MIAOW2.0 GPGPU architecture and Compute Unit pipeline with the introduced optimizations. The blocks high-
lighted in red indicate changes to the original design, including architectural improvements to support additional instructions
(solid red line) and new architectural elements to improve application performance (dashed red line).

2.1.4 Fast in-FPGA Prefetch Memory Buffer: To further decrease
memory access latency, a set of FPGA block RAMs (BRAM) blocks
are instantiated near the CU and used as a dedicated fast prefetch
memory system. To maximize performance, at the beginning of
execution, specific MicroBlaze commands pre-load the fast mem-
ory with application specific data. As a result, the average access
latency becomes considerably reduced, not only because the data
is closer to the execution units, but also because the access to such
memory blocks does not require direct communication with a pro-
grammable processor/controller (a MicroBlaze in the current design,
as described in the next subsection).

2.2 The FPGA Base System
2.2.1 Base Blocks and Debugging: The base system has four

major components, which consist of a soft microprocessor from
Xilinx–aMicroBlaze–, a DDR3 RAMmemory controller, a timer and
a debugmodule for theMicroBlaze. The timermodule is usedmainly
to monitor MicroBlaze’s execution times. MicroBlaze’s debug mod-
ule allows the debugging of a MicroBlaze processor through a joint
test action group (JTAG) interface. It also emulates a Universal
asynchronous receiver/transmitter (UART) module, not originally
featured in the considered FPGA board (an AlphaData ADM-PCIE-
7V3), enabling printing to the console. All major modules are con-
nected to the MicroBlaze by an advanced extensible interface (AXI)
bus [43], where the processor acts as a master, and all other periph-
erals are considered slaves. For debug purposes the general-purpose
input/output (GPIO) pins were also instantiated as part of an AXI
slave peripheral. These are responsible for on board light emitting
diode (LED) lights.

The FPGA version of MIAOW (called NEKO in the original de-
sign [5] and MIAOW2.0 henceforth), like the other major compo-
nents, needs to be connected to the MicroBlaze through an AXI

interface. To guarantee that MIAOW2.0, or MIAOW for that mat-
ter, remains compatible with all FPGA boards, instead of adding
AXI capability directly to the CU, this feature should be added to
an intermediary interconnect peripheral. This peripheral acts as a
bridge between the processor and the CU, by having a set of mem-
ory mapped registers that allows the compute unit to communicate
with the processor, and vice versa.

After adding the interconnect peripheral as an AXI slave, it is
necessary to guarantee that all timing constraints are satisfied. In
order to do so, the clock frequency should be set to 50 MHz.

Once all modules are placed in the design, a top level entity
(known as top level wrapper) is added to the project. This wrapper
instantiates and connects the design and the CU and sets the sys-
tem’s inputs and outputs. Finally, the synthesis, implementation,
and bitstream generation tools are executed. This allows the board
to be programmed with the designed system. After downloading
the system’s bitstream to the FPGA, it can be directly programmed
through Xilinx software development kit (SDK), in C. This pro-
grammability concedes an evaluation of the running state of the
MIAOW2.0 CU.

2.2.2 Microblaze: The MicroBlaze soft processor is responsible
for controlling the execution of OpenCL applications, working both
as host processor and also acting as the Ultra-Threaded Dispatcher
for the instantiated CUs. Hence, much like the host processor, it
is responsible for implementing all non-accelerated application
code, including data initializations, controlling the execution of the
OpenCL kernels (by instructing the CU to execute new kernels),
and retrieving the results.

On the other hand, the MicroBlaze also acts as Ultra-Threaded
Dispatcher. Hence, it is responsible for managing and distributing
the work across the CUs, tacking track of their execution state and
launching new workgroups whenever the CU resources become
ready. However, prior to execution, the CU needs to be initialized
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with state data registers, which is performed by the MicroBlaze,
acting as an Ultra-Threaded Dispatcher. Naturally, since each appli-
cation may require different register sets and state, such informa-
tion must be retrieved at compile time. This is achieved through
CodeXL (currently used for compilation purposes), which provides
the detailed information about the initial register state.

Usually, the first three sets of scalar registers are used to con-
tain memory descriptors. These are defined in AMD’s Southern
Islands ISA as a combination between a 48 bit address and state
data for the memory access. The first set (IMM_UAV) is present in
scalar registers four to seven and contains an offset for data gath-
ering accesses. The second set of registers (IMM_CONST_BUFFER0),
contains the base address of OpenCL call values. For instance, if
a thread inquires its global ID this memory area is accessed, us-
ing a specific offset, to retrieve the required value. The third set
of registers (IMM_CONST_BUFFER1), holds a pointer to the space in
memory where the kernel arguments are kept. The fourth set of
scalar registers contains the thread group ID across the three possi-
ble dimensions (X, Y, and Z). Naturally, if dimensions Y and Z are
not set, only the first register of this set is initialized.

Finally, the vector registers (v0, v1 and v2) are pre-initialized
to contain the thread IDs on the different dimensions (X, Y, or Z),
where the dimensions depend on the type of application. A program
whose data consists of an one-dimensional array only operates on
the X dimension. If working on a two-, or three-dimensional matrix
then the second, or third, dimension–Y and Z, respectively–, are
also operated upon.

Although the MicroBlaze performs a wide set of operations, its
execution code, highly resembles that of the OpenCL application
host code, which must, however, be carefully modified in order to
include the code responsible for the management of the workgroups
and of the initialization of the prefetch memory. However, this can
be easily achieved through a set of provided templates, which are
constructed to implement basic algebraic functions.

2.2.3 Memory interface controller: The memory controller, also
known as memory interface generator (MIG) [41], is responsible for
intermediating memory accesses, as would be expected, but also for
clocking and resetting the system. The latter is due to the constraint,
set by Vivado, that MIG has to be connected to the boards clock
and reset ports. In the used FPGA (AlphaData ADM-PCIE-7V3),
the memory controller demands slight modifications in order to
function properly. For instance, due to Vivado restrictions (version
2015.1 in the current work), the input clock period needs to be set to
a value higher than 1500ps, while the original value is 1250ps. The
value 2500ps (or 400MHz) was used, since this is the highest clock
frequency directly available on the board. Moreover, it is desirable
to have the system clock set with the highest possible frequency.
MIG controls the system’s clock by applying a ratio between the
input and output clocks. This ratio is set to its lowest value (2:1),
guaranteeing the maximum possible frequency for the system’s
clock. With this setting, for an input clock of 400MHz, the system’s
clock is 200MHz.

2.2.4 Dual-clock Domain: To run a program, a system includ-
ing a MicroBlaze soft-processor and DDR3 memory is required in
order to supply the instructions and data to the compute unit (see
Figure 2). Also, the MIAOW’s original system uses the MicroBlaze

to communicate with the Memory Interface Generator (MIG). How-
ever, this significantly increases the latency for memory accesses
and reduces the overall performance. Nonetheless, this delay can
be mitigated by accelerating MicroBlaze’s response time via an
operating frequency increase (the architecture critical path resides
within the CU pipeline), or by providing an infrastructure with
lower memory access latency [23, 26, 35].

Hence, to directly tackle the first optimization direction, the orig-
inal clock network was divided into two clock domains: the CUs
domain with a clock frequency of 50MHz, limited by the critical
path of the Issue stage [14]; and the MicroBlaze and the memory
access controllers domain, which operate at a substantially higher
frequency (200 MHz).

2.3 MIAOW2.0 FPGA Validation
The complete design was carefully validated not only by ensuring
a correct interaction between the system elements, but also by
guaranteeing the proper execution of a wide set of applications and,
in particular, their result. The connection between the modules was
carefully assessed by writing values to the corresponding memory
mapped registers and, afterward, by reading the values back after
an operation by the corresponding component.

Following this step, a set of simple programs, specifically devel-
oped in AMD’s Southern Islands machine code, was initially run on
the CU, through the MicroBlaze processor. These programs consist
of a few instructions that operate on the data registers, created
by consulting AMD’s ISA [17]. The generated binaries were hard-
coded to the C program in hexadecimal form, through an unsigned
int table. Accordingly, MicroBlaze was instructed to start by writ-
ing a few values to the CU’s registers and populating the CU’s
instruction buffer with the given machine code. After initializing
MIAOW2.0, the processor sends the start execution command and
waits until the CU finishes. Finally, it recovers the resulting values
present in the registers, and prints them on the screen.

The program flow allowed testing each type of instruction sup-
ported by the current implementation. Thus, a test script was de-
veloped with the goal of identifying the correctly implemented
instructions from the complete listing present in the ISA [17]. The
script was separated into three different programs, each working
with either scalar, vector, or memory instructions. The main flow,
for all three programs, was the same. For each type of instruction,
one opcode (specific operation) is selected, following a sequential
approach. The instruction binary was then generated in a set of
functions which receive all the operands and output the correspond-
ing machine code. Thereupon, the CU was initialized with both
the instructions and data, and execution started. Once MIAOW2.0
finished executing, the results were recovered and compared with
the expected output from a reference implementation.

3 SCRATCH SOFTWARE TOOLCHAIN
The SCRATCH framework was originally developed for the purpose
of supporting a wide range of embedded applications, particularly
related to signal processing and artificial intelligence. Hence, it
provides the means for end-to-end OpenCL to FPGA implementa-
tion, by relying on a set of tools (as depicted in Figure 3), namely:
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Figure 3: The SCRATCH end-to-end software toolchain,
available online at https://github.com/scratch-gpu, under
repositories MIAOW2 and Trimming-Tool, respectively.

(i) an OpenCL compilation tool, currently implemented by AMD
CodeXL; (ii) an architecture specialization tool, responsible for trim-
ming down the architecture and allowing for the development of
application-specific soft-GPGPU; and (iii) the Vivado Design suite
(in this work relying on version 2015.1), to validate, map and test
the design on Xilinx FPGAs.

Hence, this section describes the procedure used to generate the
binary code, trim the architecture and run on the FPGA. It starts
by motivating the need and design space for architecture trimming
(subsection 3.1). It then describes the overall functionality of the
SCRATCH trimming tool (subsection 3.2). Finally, it details the
main steps in order to compile and execute the code on the FPGA
(subsection 3.3).

3.1 The Need for Architecture Trimming
Even though a wide set of operations is required in a static design
to support general-purpose applications, at the level of a single
application, a significantly reduced number of operations is often
required. Nonetheless, the hardware resources needed for support-
ing such a broad range of useless instructions still impact both area
and power consumption. For example, consider a set of 25 bench-
marks, retrieved from the AMD Application Parallel Programming
(APP) software development kit (SDK) version 2.5 [18] presented
in Figure 4. The different computational requirements are naturally
translated into a different number and type of instructions. Hence,
to evaluate such requirements, the applications kernels execution
is analyzed using the Multi2Sim Simulator [38] (used to guarantee
full support to all instructions including double-precision floating-
point) and the instructions are classified into scalar or vector, and
integer or floating-point operations of one of the following com-
putational types: mov (register-to-register move operations); logic
(including bit mask and bit compare); shift (including rotates); bit-
wise (bit search and bit count); convert (numeric format conversion);
control (any control or communication operation, excluding logic
and arithmetic compares); and arithmetic add (addition, subtraction
and compare), mul (multiply with and without subsequent add),
div (any divide or reciprocal operation), and trans (transcendental

operations such as sine, cosine, exponential, and also square root
and logarithmic operations).

Figure 4 presents the results of such an analysis at the level of the
whole set of application kernels. By inspecting the figure, it can be
concluded that although there is a small subset of instructions that
is typically used by all benchmarks (namely those classified into
mov, logic and shift), in most cases there is a substantial amount
of instructions that is never used. For example, when consider-
ing arithmetic operations, 12 out of the 25 considered benchmarks
require only add and multiply instructions, with half of them re-
quiring no floating-point support. On the other hand, although
Black Scholes, DWT Haar 1D, Mersenne Twister and Monte Carlo
Asian require a large range of arithmetic operations, neither of
those use double-precision floating-point arithmetic. On the same
note, although several bit count and bit search operations are fun-
damental for bioinformatics applications (among others), neither
of the considered benchmarks made use of these instructions.

Another interesting observation regards the use of the tran-
scendental and other complex operations, whose implementation
usually requires a high number of hardware resources. As a con-
sequence, trimming unnecessary logic and functional units can
provide for significant area and power savings, and can even lead
to a processing throughput increase by using the saved area to
instantiate additional compute units. The efficiency gains of the
trimming methodology are presented in section 4.

3.2 Tool Overview
To deal with current FPGA limits and allow for an efficient exploita-
tion of the reconfigurable logic, a Python-based trimming tool was
developed to restrict the underlying logic to the specific applica-
tion requirements. Hence, the SCRATCH trimming tool attempts to
discard all functionality that is not required by each specific appli-
cation. By disabling non-necessary functionalities, a simpler core is
obtained, with a reduced size, saving area (resources) on the board.
This core requires less power since there are fewer hardware com-
ponents to feed, which translates into lower energy-consumption,
given that the removal of unused resources does not affect execution
time or throughput performance. The obtained core is, therefore,
optimized regarding area, power, and energy for each application.

As shown in Figure 2, the CU is composed of eight major compo-
nents, namely, fetching, decoding and scheduling units, scalar and
vector register files, and execution units (LSU, SALU, and VALU).
The units responsible for fetching and scheduling instructions–
Fetch and Issue, respectively–have a relatively generic functionality
and do not alter their behavior for a specific instruction. Further-
more, as previous studies also show [5], such components have
limited impact on power (< 11%) and area (< 6%) requirements. On
the other hand, the register file size can be significantly trimmed
for particular applications. However, given the large bandwidth
requirements of GPGPU applications and the specific arrangement
of FPGA RAM blocks, it becomes difficult to exploit such design
parameters. Nonetheless, these parameters remain as interesting
optimization points in future architecture or technological revision,
e.g., if the target implementation technology allows for fine-grained
register file optimizations. The remainder units, highlighted with
red color and with a solid line in Figure 2, perform specific tasks

https://github.com/scratch-gpu
https://github.com/scratch-gpu/MIAOW2
https://github.com/scratch-gpu/Trimming-Tool
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Figure 4: Characterization of the instructions executed on aAMD Southern Islands GPU for a set of 25 benchmark applications
(retrieved from the AMD APP SDK version 2.5 [18]).

according to the instruction they are operating upon and were all
specifically optimized while taking into consideration the applica-
tion requirements.

The Decode unit receives the fetched instruction and produces a
number of control signals, including the execution unit selector and
register addresses. For each instruction, the control output changes.
Hence, reducing the number of supported instructions simplifies
the decode unit since part of the control circuit is eliminated.

Each execution unit, or functional unit, performs a second in-
struction decode, which selects the correct operation to be exe-
cuted. Moreover, they perform complex operations–from memory
accesses (LSU) to floating-point scalar (SALU) or vector (VALU)
arithmetic–becoming responsible for a large number of hardware
resources (> 30%) and power consumption (> 50%) [5]. As a con-
sequence, simplifying these units significantly helps to reduce the
occupied area, which can then be used to instantiate additional
(and application useful) computing resources (i.e., introducing par-
allelism).

With such architectural knowledge, the application-specific cores
can be developed. The proposed tool constructs, at compile-time,
a histogram of the number of instructions that use each decoding
block and execution unit. Then, by taking the MIAOW’s hardware
description files as input, the tool, developed as a Python script,
attempts to remove any unnecessary decoding or execution units,
with the whole SIMD/SIMF units being removed if they remain
unused by any instruction.

As shown in Algorithm 1, the proposed tool can be viewed as the
sequence of two high-level steps. Initially, as shown in lines 2 to 11,
the binary file of the application is processed and a list of required
instructions per functional unit is returned. Upon obtaining this
information from the binary, the framework is able to trim the core,
in a second step, as illustrated in lines 13 to 28.

Algorithm 1 Core-trimming framework’s algorithm
1: import miaow

Ensure: Open the application’s binary file
Ensure: required_instructions = empty_dictionary()
2: First step:
3: for line in app_binary_file: do
4: [opcode, operands, type, FU] = miaow.decode(line)
5: if FU not in required_instructions.keys(): then
6: required_instructions[FU] = empty_list()
7: end if
8: if opcode not in required_instructions[FU]: then
9: required_instructions[FU].append((opcode,type))
10: end if
11: end for
Ensure: Step one is finished
Ensure: Get required_instructions dictionary
12: Second step:
Ensure: req_func_units = required_instructions.keys()
13: for FU in miaow.fu_list(): do
14: if FU not in req_func_units: then
15: out_signals = get_output_signals(FU)
16: miaow.remove_instantiation(FU)
17: miaow.ground_signals(out_signals)
18: end if
19: end for
20: for FU in req_func_units: do
21: FU_instructions = miaow[FU].instructions()
22: for instruction in FU_instructions: do
23: if instruction not in required_instructions[FU]: then
24: miaow["decode"].remove(instruction)
25: miaow[FU].remove(instruction)
26: end if
27: end for
28: end for
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/* OpenCL / C: */
    for(uint i = left; i <= right; ++i)
        for(uint j = top ; j <= bottom; ++j)    
        {
            /* performing wighted sum within the mask boundaries */
            uint maskIndex = (j - (y - hstep)) * maskWidth  + (i - (x - vstep));
            uint index     = j * width + i;
            
            sumFX += (input[index] * mask[maskIndex]);
        }

/* Assembly: */
label_0067:
0x00019C V_CMP_GT_U32 vcc,     v6, v5
0x0001A0 S_AND_SAVEEXEC_B64 s[8:9], vcc
...                      ...
0x0001B4 V_MOV_B32 v8, v1
0x0001B8 V_MOV_B32 v10, v3
label_006F:
0x0001BC V_ADD_I32 v11, vcc, s0, v8
0x0001C0 V_ADD_I32 v12, vcc, s1, v10
...                      ...
0x0001D8 S_WAITCNT vmcnt(0)
0x0001DC V_MUL_LO_I32 v8,  v8, v10
...                      ...
0x0001F8 V_MOV_B32 v8, v11
0x0001FC V_MOV_B32 v10, v12
0x000200 S_BRANCH label_006F
label_0081:
0x000204 S_MOV_B64 exec, s[8:9]
0x000208 V_ADD_I32 v13, vcc, 1, v13
0x00020C V_CMP_GT_U32 s[14:15], v13, v4
0x000214 V_ADD_I32 v1,     vcc,   4, v1
...                      ...
label_008C: ...

Memory (LSU)
SMRD

S_BUFFER_LOAD_DWORD
S_BUFFER_LOAD_DWORDX2

S_LOAD_DWORDX

MTBUF
TBUFFER_LOAD_FORMAT_X

TBUFFER_STORE_FORMAT_X
TBUFFER_LOAD_FORMAT_XY

S_LOAD_DWORDX2
S_LOAD_DWORDX4

TBUFFER_STORE_FORMAT_XY
...

... ...

Vectorized (SIMD & SIMF)
SIMD
VOP1

V_MOV_B32

SIMF
VOP2

V_ADD_F32
VOP2

V_ADD_I32
V_SUB_F32

V_SUBREV_F32
V_SUB_I32

V_CNDMASK_B32
V_MUL_F32

...
V_LSHLREV_B32

V_MAX_U32
VOP3a

V_MAX_F32
V_SUBREV_I32 ...

Scalar (SALU)
SOP1

S_MOV_B64
S_AND_SAVEEXEC_B64

S_NOT_B2

SOP2
S_MIN_U32
S_MUL_I32

S_MOV_B32
......

S_ADD_U32
S_AND_B64

Figure 5: High-level illustration of the SCRATCH core-
trimming framework for an integer conv2D benchmark sce-
nario. After receiving as input the hardware descriptionfiles
and the binary code for a certain application, the SCRATCH
framework outputs the application-specific hardware de-
scription files. The figure illustrates a part of the Assembly
code generated and the corresponding instructions synthe-
sized for the particular case of the conv2D, where the shad-
owed instructions represent the units removed. For the par-
ticular case of the SIMF units, the complete FUwas trimmed
off from the design.

It is worth noticing that there are applications which use only
some of the available execution units. This situation occurs for
instance if a given application only performs integer operations, in
which case the whole floating-point VALU (SIMF) can be removed.
Such applications immediately achieve a significant decrease in
resource usage as the floating-point VALU uses almost twice the
resources of an integer VALU, becoming the single largest unit in
the design [5].

Figure 5 illustrates the case of the conv2D benchmark. A part
of the instruction set synthesized, resulting from the binary code
produced, is depicted for the three types of SALU, VALU and LSU
resources used. Also, it is shown in shadow a subgroup of unused in-
structions that result in area and power savings. For this particular
case they are quite significant since the kernel strictly performs in-
teger operations and thus the vectorized SIMF FU can be completely
scratched from the design.

The released hardware resources can then reallocated for replicat-
ing dedicated compute or functional units, fostering the throughput
acceleration of that particular benchmark.

3.3 From OpenCL to FPGA Implementation
The proposed SCRATCH framework also relies on a set of tools
such as to provide end-to-end OpenCL to FPGA implementation.
The full mechanism works as follows. The framework currently
relies on the AMD CodeXL [1]1 to compile the application as well
as to provide the necessary information for both the trimming tool
1Requires the existence of an AMD GPU for correct operation.

and FPGA kernel loading. Hence, it is not only used to provide
the Assembly code (which is currently used as the input to the
Trimming Tool), but also identifies the set of registers that must be
initialized when the Ultra-threaded Dispatcher (implemented by
the MicroBlaze) is loading a new workgroup. Moreover, it is also
used to generate the actual binary code, which must also be loaded
by the MicroBlaze at the beginning of execution.

On the other hand, the MicroBlaze is currently used to perform
a wide set of operations (see also subsection 2.2.2), such as host
processor and Ultra-threaded Dispatcher. Hence, and although in
practice the MicroBlaze code highly resembles that of the OpenCL
host, a set of templates are provided to help the user develop the
MicroBlaze program. Such templates, which are based on basic
algebraic functions, extend beyond the traditional OpenCL host
code by including the initialization of registers, the handling of
data to/from the global main memory (i.e., which falls outside of
the prefetch buffer) and the management of OpenCL kernels and
workgroups.

The compilation of the MicroBlaze code is handled by the Xilinx
Vivado Design Suite (that in the current work uses version 2015.1).
This application is also used for logical validation, synthesis and
FPGA implementation.

4 EXPERIMENTAL RESULTS
The developed work targeted an AlphaData ADM-PCIE-7V3 board,
containing a Xilinx Virtex 7 XC7VX690T FPGA. The board was
used in a CentOS 6.7 host system equipped with an Intel Core
i7-4770K CPU operating at 3.50GHz. The hardware designs were
synthesized and implemented using Vivado 2015.1 and the kernels
were developed and compiled under OpenCL v1.2 using AMD’s
CodeXL version.

To validate the proposedwork, benchmarks from both Rodinia [7]
and the AMD OpenCL SDK 2.5 [18] were selected. Additional AI-
specific benchmarks were also developed to evaluate CNN-based
applications [19] in the context of automatic image classification
challenges, namely: a CNN using a fully connected 3-layer topology,
with 16 feature maps per layer, and a 2 × 2 max pooling function at
the end of each layer; and a multi-layer Network-in-Network (NIN)
adapted from [21, 28] with each convolutional Multi-Layer Per-
ceptron (MLP) layer featuring 16 feature-maps, a partially sparse
MLP-010 neural network [28], and an average pooling function at
the output. The networks, implemented in both floating-point and
fixed-point numerical precision, were used to classify RGB images
of different input sizes (namely 32 × 32, which correspond to the
CIFAR-10 challenge, as well as images of size up to 512 × 512).

A total of 17 fixed- and floating-point applications were bench-
marked, namely: K-Means (K-M) and Gaussian elimination from the
Rodinia benchmark suite; and both integer and floating-point ma-
trix addition, multiplication and 2D convolution, as well as bitonic
sorting, and matrix transpose from the AMD OpenCL SDK 2.5.
Additionally, three pooling algorithms were implemented–namely
max, median and average pooling in a 2 × 2 matrix vector–as well
as the referred floating-point and integer CNNs and NINs.

From the selected applications a small subset requires host pro-
cessing operations (implemented in the MicroBlaze), namely K-
means clustering and Gaussian elimination. K-means is an iterative
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algorithm which partitions N observations into K clusters. Between
iterations, MicroBlaze has to recompute the center of mass for each
cluster. Gaussian elimination, on the other hand, only requires
MicroBlaze to act after MIAOW2.0 finishes. Initially, the CU puts
the matrix in triangular form. Then, the MicroBlaze performs the
back-substitution to obtain the final result.

The execution time, for all applications, was measured using a
cycle counter internal to the CU, and the MicroBlaze processing
time was quantified using the timer module presented in the de-
sign. To guarantee correct behavior, the output of all applications
were compared and validated with the corresponding standard
implementations.

4.1 Efficiency of the Trimmed Architecture
To evaluate the impact of architecture trimming, two distinct stages
must be analyzed. First, the resource savings that are attained by
trimming off the architecture are analyzed. At a second stage, the
freed resources are directly employed to increase the architecture
parallel processing power and improve performance and energy-
efficiency.

4.1.1 Pruning and Resource Utilization. The results for the FPGA
resource utilization for both the original MIAOW architecture, and
also for the introduced dual-clock domain (DCD) and prefetch mem-
ory (PM) are presented in Figure 6. From the analysis of this figure,
it is clear that the addition of a second clock domain (DCD) does
not cause any increase in the reported resource utilization. The
addition of the prefetch memory, however, significantly raises the
utilization of BRAM units. However, this is a result of the used
design methodology, which distributes most of the (otherwise un-
used) BRAM units to generate the CUs prefetch memory (since
this generally leads to superior performance). Hence, while in this
design most BRAM units are used by the prefetch memory of a
single CU, for the multi-core parallel configurations (see below),
these blocks are distributed across the instantiated CUs.

To analyze the architecture trimming potential for the consid-
ered benchmarks, Figure 6 (first column) presents the percentage
of instructions used, when comparing with the original number
of supported instructions (grouped by target execution unit). As it
can be observed from the figure, many of the benchmarks use only
a rather reduced number of instructions, especially when consider-
ing scalar and vector, logic and arithmetic operations. In particular,
although floating-point arithmetic is fundamental in certain appli-
cations, the actual number of used floating-point instructions is
rather low in most cases, with the 2D convolution benchmark (SP
FP) using the highest number of such instructions (15%).

By relying on such instruction usage analysis, we then apply the
proposed architecture adaptations and trim unnecessary resources,
namely related to instruction decode and execution. Figure 6 (sec-
ond column) presents the resource savings regarding the Baseline
architecture (i.e., considering both DCD+PM). Such results show a
significant decrease in the usage of both slice flip-flops and LUTs
(average of 41% and 36%, respectively), mostly arising from the
elimination of unused vector execution units. The most striking
examples are related to matrix transpose and pooling benchmarks
that, due to their intrinsic nature, require a very limited number
of execution units. In such cases, the resource savings reach 72%
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Figure 6: Resource and instruction utilization, power con-
sumption, and exploited parallelism for both the original
and application-aware trimmed architectures.
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and 47% in Slice flip-flops and slice LUTs, respectively. On the other
hand, the floating-point 2D convolution benchmark attains the
lowest reduction in resource utilization. In particular, although the
benchmark uses a small number of instructions, those instructions
scatter along a large number of functional units, which reduces the
potential for architecture trimming (although additional savings
could be attained by specifically constraining the compiler to use
certain operations). Nonetheless, when considering the total num-
ber of logic cells available in the considered FPGA, the attained area
savings already provide the means to increase the number of in-
stantiated computational elements, thus allowing for a throughput
performance increase (see subsection 4.2).

When analyzing the area savings related with DSP48 slices, it can
be perceived that only a limited reduction in resource utilization
is attained. This is concerned with the fact that such resources are
used in the context of general scalar and vector operations, typically
required in the control flow of all benchmarks. Similar results are
also obtained when considering BRAM units, where limited savings
are achieved, since FPGA fixed size units do not allow for a more
efficient adjustment of memory sizes.

4.1.2 Throughput and Energy-efficiency Gains. The results ex-
posed in Figure 6 show that with each change proposed in Section 2
the system’s power requirement increases, which could be seen as
an undesirable result. The introduction of a second clock domain
(DCD system), with a higher frequency, increases the power re-
quirement by 1.02× while adding a prefetch memory block to the
system increases the same unit by 1.10× (see Figure 6). In contrast
with this relatively small increase in power requirement, there is
a substantial decrease in computation time–and thus an increase
in throughput performance, or speedup–, which offsets the cor-
responding energy-efficiency values. When comparing the DCD
system with the original one, the minimum registered speedup for
the integer 2D convolution of a 256 × 256 matrix with a 15 × 15
kernel, is 1.17×. Therefore, in the worst case scenario observed
for the DCD system, the energy efficiency is increased by a factor
of 1.147×–as a reminder E = P × t . For the DCD+PM system, the
minimum speedup achieved is 4.27×, which results in an energy
efficiency increase of 3.88×, while the maximum speedup of 95.79×
results in an 87× improvement on energy consumption. Attending
to the data, the conclusion that can be drawn is that both improve-
ments increase energy efficiency and throughput performance. On
average, the energy-efficiency is increased by 1.17× for the DCD
system and 55.87× for the DCD+PM case.

The customized cores optimize the DCD+PM system even further
by removing non-necessary functionalities. When compared to the
DCD+PM system, the matrix transpose achieved a further rise
in energy efficiency of 1.23×, representing the system with the
lowest power requirement. The floating-point matrix convolution
system, on the other hand, achieved the lowest increase in energy
efficiency, when compared to the DCD+PM, with an improvement
of 1.02×. In general, all the non-floating-point systems achieved an
improvement of at least 1.15×, compared to the DCD+PM, while
the floating-point ones usually fared between 1.02× and 1.10×. The
exception to the previous case is the floating-point matrix addition
which observed an improvement of 1.15×, similar to the integer
kernels. The aforementioned kernel does not contain floating-point

multiplications or divisions which are considerably more complex
than floating-point additions, therefore explaining the improvement
seen in this kernel. Overall, when comparing to the original system,
the floating-point matrix addition obtains the best energy efficiency
improvement of more than 100×.

4.2 Multi-thread and Multi-core Parallelism
The last improvement consists in the exploitation of the attained
resource savings to increase the systems’ parallel processing power.
Clearly, two parallelization approaches are possible: increasing the
number of FUs per CU to introduce additional multi-threaded par-
allelism; or increasing the number of CUs in general to augment
the multi-core parallelism. By taking into account the maximum
number of units that can still fit in the considered FPGA, new
application-aware architecture designs were constructed, as illus-
trated in the last two columns of Figure 6. The achieved throughput
performance and energy-efficiency gains when increasing the sys-
tems’ parallel processing power are presented in Figure 7.

For the multi-core parallel processing approach (illustrated in
Figure 7A), throughput speedups of up to 240× and 3.0× regarding
the original and the baseline (DCD+PM) designs, respectively, are
attained.When considering the corresponding power increase, such
performance improvements result in maximum energy-efficiency
(instructions-per-Joule) gains of 220× and 3.3×, respectively, for the
CNN benchmark, with the minimum values being observed for the
Gaussian Elimination benchmark (20× and 1.5×, respectively). For
the NIN benchmark, and following recent trends in Deep Neural
Networks (DNNs) [31, 39], we also vary the numerical precision
from a 32-bit format to shortened 8-bit format. As could be expected,
this further reduces per-CU resource usage, and allows to instantiate
up to 4 CUs. As a consequence, there is an additional performance
and energy-efficiency gain, regarding the 32-bit solution.

For the multi-thread parallel processing approach (see Figure 7B),
higher throughput speedups are observed. In particular, a maxi-
mum speedup of 3.5× regarding the baseline architecture (or 260×
regarding the original solution) is observed for the CNN bench-
marks. Such performance improvements are translated into a 3.7×
(or 252×) energy-efficiency increase.

4.3 Discussion
Although constrained by a frequency of operation 20× inferior
to those of conventional multi-core processors and by a limited
amount of resources, which impose a maximum number of 3 CUs,
the proposed trimmed architectures are more efficient in area and
have lower power requirements. Furthermore, they are fully cus-
tomizable, capable of accommodating additional computing ele-
ments (given larger FPGAs), and have applicability in many areas
that do not require the throughput and compute-power of high-end
thousand-core GPUs, which can be traded for power and energy-
efficiency. Modern examples that impose such constraints are the
use of robots, drones or other mobile equipment that typically have
to capture and process image and other forms of data from sensors,
that more often operate far away from power supplies. Addition-
ally, even data centers can benefit from such approaches given
that energy consumption has a large impact on their annual run-
ning costs. Hence, compute power can be more efficiently targeted



SCRATCH: An End-to-end Application-aware Soft-GPGPU Arch. & Trim. Tool MICRO-50, October 14–18, 2017, Cambridge, MA, USA

128x128
256x256
512x512

128x128
256x256
512x512

128x128
256x256
512x512

vs Orig.

vs Baseline

vs Baseline

vs Original
vs Original

vs Bas.

vs Original

vs Baseline

vs Original

vs Baseline

10
5
10
5

vs Original

vs Baseline
Max
Avg
Medvs Baseline

vs Original
Max
Avg
Med

vs Original

vs Bas.

vs Original

vs Baseline

Bitonic Sort

32 12
8

51
2

20
48

Chunk size

2D Conv.
(K=5)

2x2 Pooling NiN

INT8 vs Bas.

Matrix
Add

Matrix
Multiply

Matrix
Transpose

Gaussion
Elimination

K-Means
(512 points)

2D Conv.
(B=512x512)

CNN
Square
Image
of size=

1.0

1.5

2.0

2.5

3.0

3.5

Speed-up

vs Original

Speed-up

vs Bas.

(DCD+PM)

A. MULTI-CORE PARALLELISM (several CUs, but only 1 VALU per CU)

B. MULTI-THREAD PARALLELISM (1 CUs, but multiple VALUs)

1.0

1.5

2.0

2.5

3.0

4.0

Energy 

Efficiency

Gain vs

Original

Energy

Efficiency

Gain vs

Baseline

(DCD+PC)

IPJDCD+PM

IPJProposed( )
IPJBaseline

IPJProposed( )

0

60

120

180

240

300

0

50

100

150

250

300

200

3.5

vs Orig.

vs Bas.

vs Orig.

vs Bas.

INT8 vs Orig.

INT32 vs Bas.

INT8 vs Bas.

INT32 vs Orig.

32 512128
Block size (B)

32 512128
Image size

3 7 15
#Layers

118 32 12
8

Block size
51

2

Block size

8 32 12
8

51
2 32 512128

Block size
4 8 16 32

Block size #Features
4 6416 3 5 7 15

Kernel size (K)
3 5 7 15

Kernel size

#clusters=

Block Size
of 512x512

Square
Image
of size=

vs Baseline

vs Original

vs Baseline

vs Orig.

vs Baseline

vs Orig.Med
Avg
Max

Med
Avg
Max

vs Baseline

vs Original

512x512
256x256
128x128

512x512
256x256
128x128vs Orig.

vs Orig.

vs Bas.

vs Bas.
vs Orig.

vs Orig.

vs Bas.

vs Bas.
vs Original

vs Original

vs Baseline

vs Baseline

vs Orig.

vs Baselinevs Baseline
vs Original

vs Orig.
vs Baseline

vs Orig.

vs Bas.

vs Bas.

vs Orig.

vs Original

vs Baseline

vs Original

vs Baselinevs Original

vs Baseline 10
5
10
5Max

Avg
Med

vs Baseline

vs Original Max

Avg
Med

128x128
256x256
512x512

128x128
256x256
512x512

vs Bas.

vs Bas.

vs Orig.

vs Orig.

Bitonic Sort

32 12
8

51
2

20
48

Chunk size

2D Conv.
(K=5)

2x2 Pooling NiNMatrix
Add

Matrix
Multiply

Matrix
Transpose

Gaussion
Elimination

K-Means
(512 points)

2D Conv.
(B=512x512)

CNN Square
Image
of size=

1.0

1.5

2.0

2.5

3.0

3.5

Speed-up

vs Original

Speed-up

vs Bas.

(DCD+PM)

1.0

1.5

2.0

2.5

3.0

4.0

Energy 

Efficiency

Gain vs

Original

Energy

Efficiency

Gain vs

Baseline

(DCD+PM)

IPJDCD+PC

IPJProposed( )
IPJBaseline

IPJProposed( )

0

60

120

180

240

300

0

50

100

150

250

300

200

3.5

32 512128
Block size (B)

32 512128
Image size

3 7 15
#Layers

118 32 12
8

Block size
51

2

Block size

8 32 12
8

51
2 32 512128

Block size
4 8 16 32

Block size #Features
4 6416 3 5 7 15

Kernel size (K)
3 5 7 15

Kernel size

#clusters=

Block Size
of 512x512

Square
Image
of size=

vs Orig.

vs Bas.

vs Orig.

vs Bas.

vs Original

vs Baseline

vs Original

vs Baseline

vs Baseline

vs Original

vs Original

vs Baseline

vs Original

vs Baseline

vs Orig.

vs Bas.

vs Orig.

vs Bas.

vs Orig.

vs Bas.

vs Bas.

vs Orig.

Med
Avg
Max

Med
Avg
Max

vs Baseline

vs Originalvs Baseline

vs Original
vs Baseline

vs Original

vs Baseline

vs Orig.
vs Original

vs Baseline

vs Original
vs Baseline

INT32 vs Orig.

INT32 vs Bas.

INT8 vs Orig.10
5

10
5vs Baseline

vs Original

#clusters=
vs Orig.

vs Baseline

vs Original

vs Baseline

Block Size
of 512x512

512x512
256x256
128x128

512x512
256x256
128x128vs Orig.

vs Original

vs Baseline

vs Baseline

10
5

10
5vs Baseline

vs Original

#clusters=

Block Size
of 512x512

Kernel Size
of 5x5

Kernel Size
of 5x5

INT8 vs Bas.
INT32 vs Bas.

INT8 vs Orig.
INT32 vs Orig.

INT8 vs Bas.
INT32 vs Bas.

INT8 vs Orig.

INT32 vs Orig.

vs Baseline
INT32
SP FP

vs Original
INT32
SP FP

vs Baseline
INT32
SP FP

vs Original
INT32
SP FP

Figure 7: Throughput performance and energy-efficiency gains attained by first applying architecture trimming and then
using the freed resources to increase multi-core/multi-thread parallelism.

for application-specific contexts, as it has been proposed recently
for search engines [30], where considerable energy savings are
obtained.

At this respect, and even though the reconfiguration of the FPGA
represents an obvious advantage, one can go a step further of what is
already performed in this work, where the soft-GPGPU is trimmed
at a per-application level. Hence, trimming could be applied at a
per-kernel level, with reconfiguration occurring between kernel
calls. Naturally, this will impose additional overheads related with
FPGA reconfiguration, whose actual impact on throughput perfor-
mance depends on the ratio between kernel execution time and
architecture reconfiguration time. To mitigate the latter, the best
strategy would be to fix the number of CUs and, by applying careful
floor-planning, to allow for partial reconfiguration [40] of the area
allocated to vector execution units (SIMD and SIMF blocks in Fig-
ure 2). On the other hand, many applications are characterized by a
reduced number of kernels with minimal differences being observed
in the per-kernel requirements. For example, in many applications
there is no specific requirements for floating-point arithmetic, even
across different kernels (e.g., typical DNN inference applications
where fixed-point arithmetic with reduced numerical precision can
be adopted). Moreover, in many cases, a single functional unit can

be used to implement multiple instructions. Under such conditions,
it may be preferable to apply trimming at an application level, rather
than at kernel level.

5 RELATEDWORK
In recent years, significant research efforts have been made in
the development of soft-GPGPUs, either by relying on existing
commercial ISAs, or by developing special-purpose ones.

Soft-GPGPUs: Andryc et al. proposed FlexGrip [4] based on
NVIDIA’s G80 architecture. The reported implementation is based
on a Single Instruction Multiple Thread model in which the Stream-
ing Multiprocessor (SM) is composed of multiple Scalar Processors
(SPs) all running the same instruction on different threads. The core
has a five stage pipeline consisting of Fetch, Decode, Read, Execute
and Write-Back, where the SPs correspond to the Execute stage.
Each scalar processor operates on a single 32 bit word, with an SM
being composed of 8 SPs in the FPGA implementation. The main
novelty in FlexGrip is the support for direct GPU compilation, i.e.,
the binaries to program the system are generated by unmodified
standard NVIDIA tools. The architecture has 27 CUDA 1.0 integer
instructions implemented, being able to run five CUDA benchmarks.
The design was successfully implemented on an ML605 Virtex-6,



MICRO-50, October 14–18, 2017, Cambridge, MA, USA Pedro Duarte, Pedro Tomas, and Gabriel Falcao

using a MicroBlaze microprocessor as a host processor that supplies
the SM with both the program memory and the application data.

A different approach was followed with FGPU [2], which pro-
poses a custom ISA taking into account the OpenCL specification.
The implemented ISA mixes instructions from both MIPS and other,
OpenCL-inspired, architectures in order to create a soft SIMT pro-
cessor. The architecture’s RTL design was performed using VHDL
and optimized for FPGA implementation. Contrary to FlexGrip’s
approach, which presented a single SM with multiple SPs, FGPU
was successfully implemented in a ZC706 Zynq board with up to 8
cores, each one containing 8 processing elements (PEs), with the
on-board ARM processor acting as the host processor. Apart from
the original MIPS instructions, designers implemented 18 assembly
instructions, which, although limited, were sufficient to run four
benchmarks, namely memcopy, vecmul and vecadd, FIR (5 taps),
and cross correlation.

Application-specific Architecture Adaptation: the idea of
GPU architecture adaptation has been previously exploited with
different goals. In particular, [36] identifies that the usage of archi-
tecture components is highly dependent on the application kernel
characteristics, and may even cause contention on the over-utilized
components. The authors propose to dynamically monitor resource
usage and adjust the concurrency level (number of threads), core
frequency and memory frequency to improve performance or save
energy. Similarly, but with the specific goal of minimizing energy
consumption while fulfilling user-specified performance goals, [34]
proposes a control scheme to optimize the number of compute units,
the number of warps/wavefronts, as well as the core and memory
operating frequencies. Although such approaches focus mostly on
the memory/compute-bound duality, they represent complemen-
tary approaches to our work.

Another interesting methodology focused kernel-specific adap-
tations to mitigate flow divergence, memory divergence, and to
improve locality [32]. To accomplish this, the authors rely on a
hierarchical warp scheduler to force convergent threads to operate
in lockstep, while divergent threads are allowed to split and exe-
cute different instruction flows. As in the previous case, this is an
alternative strategy, which can complement the proposed approach
to further improve the GPU energy-efficiency.

6 CONCLUSIONS
GPUs have emerged as an alternative approach to tackle the through-
put performance-per-Watt problem, particularly in data-centers and
embedded processing systems. However, off-the-shelf GPU designs
are tailored for a wide range of applications, therefore supporting
a large number of operations that most of time are not required by
the target application. To overcome such an issue, an application-
aware soft GPGPU architecture is proposed, which is based on the
MIAOW’s implementation of the AMD Southern Island architec-
ture, although augmented to support a wider range of instructions
(with 156 correctly implemented instructions) and to improve over-
all throughput performance. Additionally, an architecture trimming
methodology is proposed that, by discarding unnecessary logic
elements, is able to adapt the GPU architecture towards the charac-
teristics of the target application. By implementing the proposed
architecture on a Xilinx Virtex 7 FPGA (AlphaData ADM-PCIE-7V3

board), we show that the proposed methodology is able to signifi-
cantly reduce the hardware resources, with an average 41% and 36%
savings in slice flip-flops and LUTs, respectively. By employing such
area savings to increase the GPU parallel processing power, these
resource savings allow for a peak throughput performance increase
in over 3× regarding the baseline architecture (260× regarding the
original MIAOW design), and 3.5× (250×) energy-efficiency peak
improvement.

The complete framework, including the MIAOW2.0 design and
the SCRATCH trimming tool are made publicly available online at
https://github.com/scratch-gpu/MIAOW2 and https://github.com/
scratch-gpu/Trimming-Tool, respectively, for the community to
enroll. The framework corresponds to ongoing work, being subject
to continual updates and new releases.
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