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Abstract—Over the last years positioning systems have become
increasingly pervasive, covering most of the planet’s surface.
Although they are accurate enough for a large number of uses,
their precision, power consumption and hardware requirements
establish the limits for their adoption in mobile devices.

In this paper, the energy consumption of a proposed deep
learning-based millimeter wave positioning method is assessed,
being subsequently compared to the state-of-the-art on accurate
outdoor positioning systems. Requiring as low as 0.4 mJ per
position fix, when compared to the most recent assisted-GPS
implementations the proposed method has energy efficiency gains
of 47× and 85× for continuous and sporadic position fixes
(respectively), while also having slightly lower estimation errors.
Therefore, the proposed method significantly reduces the energy
required for precise positioning in the presence of millimeter
wave networks, enabling the design of more efficient and accurate
positioning-enabled mobile devices.

Index Terms—5G, Beamforming, Deep Learning, Low-Power,
mmWaves, Outdoor Positioning

I. INTRODUCTION

NOWADAYS, an increasing number of tasks rely on
Global Navigation Satellite Systems (GNSSs)’ precise

localization capabilities for their operating success. Since
positioning capabilities are required by mobile devices, the
energy efficiency of the used method have a major influence
on their operation, being one of the most significant causes of
battery drain on smartphones [1]. For small and light devices,
such as location trackers or Internet of Things (IoT) devices,
it can even dictate their design and capabilities, due to severe
battery limitations.

5G brought back to attention Millimeter Wave (mmWave)
communication systems [2], resulting in new proposals for
positioning systems [3]. The accuracy attainable in controlled
conditions is very high, reaching sub-meter precision in indoor
[4] and ultra-dense Line-of-Sight (LOS) outdoor scenarios [5].
Nevertheless, in order to be broadly applicable to outdoor
localization, a mmWave positioning system must be able
to accurately locate devices in non-Line-of-Sight (NLOS)
locations, while employing a limited number of Base Stations
(BSs). These requirements, combined with multiple, often
overlapping non-linear propagation phenomena such as re-
flection and scattering, pose serious challenges to the tradi-
tional geometry-based positioning methods. In fact, the recent
mmWave experimental work in [6] shows that geometry-
based methods cannot be applied to locate NLOS targets,

and thus different approaches are required. As it was demon-
strated in our previous work [7], the properties of mmWave
transmissions can be leveraged to create an information-rich
fingerprint, coined as Beamformed Fingerprint (BFF). With the
availability of the BFF, Deep Learning (DL) methods [7] and
hierarchy techniques [8] are then suggested to infer accurate
position estimates, obtaining state-of-the-art results for single-
point estimates (3.3 m), in a scenario containing mostly NLOS
positions and employing a single BS.

The goal of any positioning system is to estimate the
position of a target, which is a direct consequence of its
movement. The movement of a user, in its turn, is limited
by physical restrictions, such as velocity and acceleration,
as well as human-made constraints, such as traffic rules. As
a consequence, it is possible to leverage additional sources
of information if sequences are considered, as opposed to
single-point estimates. When sequences of BFFs are available,
the use of sequence-based DL architectures was proposed to
effectively enable the system to track a mobile device [9]. The
result was a state-of-the-art average estimation error as low as
1.78m, even in the presence of heterogeneous movement types
and NLOS locations, using BFFs from a single BS.

The advent of mmWaves did brought a new set of tech-
niques that can potentially displace GNSS-based predictions,
especially in urban environments. However, to have a chance
of doing so, namely in mobile and autonomous devices,
a critical question remains unanswered: are they energy-
efficient? Therefore, the key contribution of this paper is the
demonstration that mmWave positioning methods can not only
provide accurate estimates, but also do so with high energy
efficiency.

Since, from the proposed method, each beamformed trans-
mission only lasts for a couple of microseconds [7], the
complete BFF will only require a few milliseconds to obtain.
As result of such short listening time, the majority of the
device-side energy costs for each position fix will be result of
either the uplink transmission of the received data, for further
processing at the BS, or of the position estimate computation
at the device. For the former, the received data patterns are
sparse, which means that the data can be heavily compressed
before transmission to the BS. As for the later, the advent
of highly efficient embedded systems with small form factor
tailored for DL systems [10][11] also enable a highly efficient
solution. Regardless of where the BFF position estimate is
computed, the results section in this paper will show that it is
more energy efficient that the existing positioning approaches.

Therefore, this paper makes the following contributions:
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• It closes the loop on a previously proposed BFF posi-
tioning method for mmWaves, by assessing its energy
efficiency over multiple DL architectures. It has been
shown that this method achieves unmatched accuracy
levels in the presence of NLOS (one order of magnitude
better than the previous state-of-the-art);

• To the best of our knowledge, this is the first paper
that addresses comparative energy consumption stud-
ies for positioning and tracking systems working with
mmWaves. A significant number of conclusions are trans-
ferable to other fingerprint positioning methods, since
they can share the same DL architectures;

• We have developed and tested a system that shows
superior results, as compared to GNSS-based systems,
simultaneously in terms of accuracy, energy efficiency,
and, if the device also uses mmWaves for communica-
tions, hardware requirements.

The remaining of this paper is organized as follows. In
Section II, the non-mmWave positioning methods are revised,
as well as their energy consumption, while Section III provides
an overview of the state-of-the-art for mmWave positioning.
Section IV fully describes and discusses the herein proposed
positioning method, including the theoretical background re-
quired to estimate its energy consumption, and Section V
summarizes the possible DL architectures that can be used
to solve the problem. Section VI lays out the full simulation
apparatus, while Section VII exposes our experimental results,
focusing on the energy efficiency. Finally, in Section VIII, the
conclusions will be drawn.

II. POSITIONING SYSTEMS

Nowadays, an increasing number of tasks rely on GNSSs’
precise localization capabilities for their operating success.
The Global Positioning System (GPS), a GNSS, was launched
in the 1970s, based on a fleet of satellites broadcasting data
frames at the very low rate of 50 bps to receivers on the
Earth’s surface. The signal is encoded using a pseudo-random
sequence, unique to each satellite, transmitted at 1.023 million
pulses (chips) per second, and each frame consists of 5 sub-
frames of 300 bits each [12], as depicted below:

• Sub-frame 1: accurate timing information generated by
the atomic clock embedded into the satellite itself;

• Sub-frames 2 and 3: its precise orbital information used
to compute its location, which remains valid for up to 4
hours (the ephemeris);

• Sub-frames 4 and 5: ionospheric conditions and the
operating status of the whole system, typically updated
every 24 hours (the almanac).

Depending on the existing information on the mobile de-
vice, the Time to First Fix (TTFF) of a stand-alone GNSS
localization system can vary significantly. When the device
lacks a valid almanac, then it must receive the full signal,
consisting of 25 frames (12.5 minutes), also known as cold
start. If the receiver was recently active, then it can perform a
warm start by obtaining the ephemeris data, which takes up to
30 seconds. In optimal conditions, the receiver can acquire the

GPS signal right away, returning a position estimate within a
couple of seconds. This is known as hot start.

When the GPS was conceived, the system was designed
for long periods of continuous navigation with relatively short
TTFF. However, with the advent of heterogeneous mobile
services, a low TTFF became vital for the user experience.

Since a mobile network BS can view the same satellites
as a nearby mobile device, it has access to the desired
satellites’ time and orbital information, as well as to the de-
vice’s coarse location. Thus, with Assisted Global Positioning
System (A-GPS), the BS is capable of providing assistance to
the device, minimizing its TTFF [12]. Depending on whether
the position estimate is computed on the device or offloaded
to the BS, A-GPS technologies can be classified as:
• Mobile Station Based (MSB) - the mobile device receives

the ephemeris, almanac, time, and coarse location from
the BS, enabling a hot start regardless of the starting
conditions;

• Mobile Station Assisted (MSA) - the mobile device
acquires raw satellites’ signals and sends them to the BS,
which computes and then returns the device location.

With MSB, the cold start TTFF is often below 10 seconds,
with typical latency values akin to a standard hot start [13].
Its main energy consumption is driven by the GNSS signal
processing, although acquiring the assistance data from the
BS has significant costs [13]. State-of-the-art low-power im-
plementations claim requiring about 18 mJ per position fix
when continuously tracking [14][15], with significant penalties
when sporadic tracking is desired (e.g. [14] requires 504 mJ
per fix when tracking the device once per minute).

MSA was proposed to avoid the sporadic tracking penalty,
where the mobile device has to perform the costly signal
synchronization with each visible satellite before an estimate
[16]. With MSA, the mobile device just needs to capture and
send a snapshot of the received GNSS signal. The duration
of the captured signal must be a multiple of approximately
1 ms (i.e. the period of the pseudo-random sequence signal
sent by the satellites), to ensure a coherent integration time.
Considering the minimum sampling frequency of 2.046 MHz,
each position fix requires transmitting at least 2046 bits.
However, to obtain the desired GNSS positioning accuracy,
most practical implementations capture the signal at more than
16 MHz, with durations exceeding 10 ms [17], requiring a
transmission of hundreds of kilobits per position fix. This leads
to significant energy costs, and thus MSB A-GPS approaches
are often preferred over MSA.

Although A-GPS can solve the majority of problems as-
sociated to the start up latency, it still requires dedicated
GNSS hardware and has a high peak power consumption when
downloading the assistance data from the BS [13]. To provide
an alternative, multiple network-operated localization systems
were considered in the past decade [3]. With Release 9 of
Long Term Evolution (LTE) networks, the Observed-Time-
Difference-of-Arrival (OTDoA) was introduced, possessing a
theoretical achievable error similar to GNSS devices [18].
However, to achieve that error level, OTDoA has to operate
under optimal conditions and has to employ expensive detec-
tion mechanisms, unfit for low-power devices, as discussed in
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[19] (and further addressed in LTE Release 14). In practical
scenarios, the average error fairly exceeds 20 m [20], and
thus cannot be considered a high-accuracy outdoor positioning
system. More recently, the works in [21] and [22] proposed
enhancements to OTDoA through additional opportunistic
measurements and Compressive Sensing (CS), respectively,
obtaining near GNSS accuracy at the cost of expensive signal
processing on the mobile device.

In addition to methods described above, which are deployed,
other outdoor positioning methods for conventional frequen-
cies (< 6 GHz) have been proposed, such as the works in
[23], [24], or [25]. In [23], an unsupervised DL-based system
is designed to perform a lower-dimensionality mapping for the
Channel State Information (CSI), which can be expanded into
a semi-supervised siamese network to learn the conversion
of that mapping into a user’s position. The work in [24]
also leverages the CSI of the received signal that, combined
with the Received Signal Strength Indicator (RSSI), can be
used to train a Deep Neural Network (DNN) for positioning.
These two methods achieve good average accuracies (below
5 m and 6.45 m, respectively), but still cannot displace the
A-GPS. Finally, the work in [25] explores intelligent surface-
based positioning, where the antennas are embedded within
building walls, with promising performance bounds (sub-meter
precision).

III. MILLIMETER WAVE POSITIONING SYSTEMS

The works developed in [26], [27], [28], [29], [30] aim
to locate devices in both LOS and NLOS outdoor locations.
The work in [26] uses multiple access points to build a
fingerprint database of received powers and Angle-of-Arrival
(AoA), while in [27] CS is applied on information gathered
from static listeners. In [28], multiple Beamforming (BF)
transmissions are used together with an iterative algorithm to
estimate the position and orientation of the device. The same
parameters are achieved in [29], through the estimation of the
AoA, Time-of-Arrival (ToA), and Angle-of-Departure (AoD),
making concurrent use of LOS and NLOS transmissions.
However, the methods described so far do not comply with
typical outdoor positioning requirements: [27] and [26] assume
that each mobile device is always in range of multiple static
transceivers, while the other two methods struggle with NLOS
positions, requiring transmission paths from at least three
scattering points [28] or preferring to not expose the results
for those locations [29].

The work in [30] overcomes the restrictions discussed above
by creating a fingerprint database of uplink pilots transmitted
to a single massive Multiple-Input Multiple-Output (MIMO)
BS that contains multiple antennas distributed over a confined
area. Using a Gaussian process regression to predict the po-
sition, this work achieves a Root-Mean-Square-Error (RMSE)
of 34 m. For sake of comparison, let us consider the network-
enabled OTDoA and the ubiquitous GNSS. The former has a
theoretical average error of approximately 10 m [18], assuming
optimal conditions and complex detection systems. On the
other hand, state-of-the-art GNSS receivers are capable of
obtaining superior accuracy, averaging 3 m in continuous

measurement scenarios [15], with significant penalties for
sporadic measurements due to the extensive use of Kalman
filters [31]. Thus, in the presence of NLOS positions, there is
a significant precision gap between state-of-the-art mmWave
systems and the existing outdoor positioning solutions.

In a typical deployment, BSs are placed in elevated positions
and, in urban scenarios, the majority of the surrounding
obstacles found with mmWave transmissions to ground users
are buildings. As a consequence, we can expect most of
obstacles to be static. Therefore, consecutive measurements
of the received Power Delay Profile (PDP) at a given location
are expected to remain comparable until a significant change in
the surrounding space occurs. If a BS transmits a sequence of
directive beamformed signals, so as to cover all transmission
angles (maximizing the covered space), then the receiver is
able to measure numerous distinct PDPs, one for each beam-
formed signal. Due to the non-linear propagation phenomena
found in mmWaves, that set of PDPs is expected to have
noticeable discontinuities throughout the target localization
space, which provide important spatial information. In [7],
the use of the set of PDPs to produce the aforementioned
BFF was proposed as a foundation for an accurate mmWave
outdoor positioning method. The BFF positioning method has
an additional attractive aspect: contrarily to most accurate
positioning methods (including the method suggested in [30],
GNSS, or OTDoA), it only requires a single-anchor [3][32].
In other words, the system should be able to provide accurate
estimates whenever there is mmWave coverage.

The information held in a BFF is a result of non-linear
interactions and, consequently, it requires a method that is
able digest non-linear relationships in order to extract any
meaningful conclusion. Given the requirements of the problem
and the recent state-of-the-art results in datasets containing
non-linear relationships, DL techniques become a solid can-
didate to untangle the BFF. In [7], use of Convolutional
Neural Networks (CNNs) [33] was proposed to exploit the data
structure within a BFF. The previous system was improved
in [8] with a hierarchical structure, taking advantage of the
BFFs’ expected similarity along adjacent positions, at the cost
of additional processing power. Finally, in [9], sequence-based
DL techniques were added to the BFFs position estimates,
enabling the system to track a mobile device. However,
there is no implementation of such a system, which allows
an experimental evaluation of its capacity, namely in what
concerns power and energy consumption.

IV. BEAMFORMED FINGERPRINT POSITIONING

The transmitted mmWave radiation, suffering from phe-
nomena such as reflection and scattering, is shaped by the
encountered obstacles. As result, a transmitted signal can have
more than one propagation path between the BS and the
receiver, each with a unique power attenuation and delay.
From an information theory point of view, each new path
carries additional spatial information, and thus enhances the
predictive power of the system. Based on this principle, the
BFF can transport enough information to locate a listening
mobile device.
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Fig. 1. Diagram with a summary of the beamformed fingerprint positioning
system [7]. The mobile device samples the received PDPs from beamformed
transmissions, resulting in a beamformed fingerprint that can then be translated
into its position.

A. System Model

A critical component of any learnable dataset is its consis-
tency, as it then allows the system to extract helpful infor-
mation from a trained mathematical model. In other words,
the distribution of the data that is used at test time must be
comparable to the distribution of the data seen at train time.
To ensure so, the input data generation must be constrained to
a constant set of rules, especially in terms of the transmission
and receiving procedures of the signal, in order to build
an appropriate fingerprinting system. To comply with such
requirements, the system depicted in Fig. 1 was originally
suggested in [7]. It operates in four distinct phases, as labeled
in the diagram, whose role is further described below. In phase
A, a BS broadcasts radiation using a fixed BF codebook, while
phase B focuses on measuring the resulting PDP at the target
device. After all the required measurements are performed
and transmitted back to the BS, phase C infers the device’s
position, which is communicated back to it in phase D.

One of the critical aspects that define the resolution of
the information held in the BFF is the directivity of the
beamformed BS transmissions, which are defined in phase A.
The directivity determines how narrow the beam of transmitted
radiation is and, as such, increasing the directivity of a given
transmission results in a PDP containing information with
higher specificity. In other words, that transmitted beam is now
more focused in a particular sub-set of possible propagation
paths. Additionally, given that the radiation is more focused,
there is a higher fraction of transmission paths whose energy
can be found above the receiving antennas’ detection thresh-
old. Unfortunately, there is no free lunch: to cover all possible
angles of transmission, higher BF directivities correspond to
a higher number of BS transmissions, which results in a
higher number of PDP measurements required per position
fix. Throughout this paper, the exact mechanism to capture a
PDP is abstracted, knowing that it can be done through various
real implementations, as mentioned in [9].

Let us consider a fixed codebook CTx containing BTx BF
patterns. To generate enough data for a position fix, the BS
must transmit a sequence of signals employing the BTx BF
patterns. Assuming a BS with NS antennas, the frequency-
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Fig. 2. Alternative mode of operation of the system depicted in Fig. 1, where
the DL inference is performed in the mobile device. Although it does not
require the upload of the sampled data, this mode of operation has additional
storage and processing requirements.

domain received signal for the i-th transmitter BF at a mobile
device with NR antennas, r ∈ C, can be written as

r = wTHf is+wT z, (1)

where the superscript T denotes a matrix transpose, w ∈
CNR×1 corresponds to the BF at the receiver, H ∈ CNR×NS

is the channel matrix, fi ∈ CNS×1 denotes the currently
selected transmitter BF, s ∈ C is the signal to be detected,
and z ∈ CNR×1 represents noise. Since the transmitter BF
is codebook-based, it is important to state that fi ∈ CTx

(CTx = {f1, . . . , fBTx
}).

As the BS transmits the sequence of beamformed signals, it
is important to avoid losing information due to interference. To
safeguard the correct measurement of each PDP, a small time
interval (Tguard) should be considered between successive
transmissions. This value should be designed so as to account
for the longest paths.

The process of obtaining the BFF from the BS transmissions
must result in similar data regardless of the listening device.
To ensure so, the second key information resolution dictating
aspect, the PDP sampling rate in phase B, must be the same
for all devices. To understand how close the sampling rate is
related to the resolution of the embedded information, consider
a single propagation path between the BS and the mobile
receiver. As discussed in [34], the maximum theoretical spatial
resolution for a single time-based measurement is given by

dth = T × c, (2)

where dth is the theoretical resolution of the distance in
meters, T is the sampling period in seconds, and c is the
speed of light in meters per second. As we can observe, the
maximum resolution of the hidden information provided by
the measured delay of each path is inversely proportional to
the selected sampling rate. However, the sampling rate has
associated trade-offs: using a higher sampling rate requires
the allocation of additional radio spectrum resources, raises
the energy requirements for the detection of each path due to
thermal noise, and also places tougher hardware requirements
for the mobile devices. In summary, it places harder practical
constraints.
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Fig. 3. Standard example of a noiseless beamformed fingerprint from the
experimental simulations, containing the PDP (sampled at 20 MHz) for each
beamformed transmission on the vertical axis.

A fixed BF gain should also be established for all re-
ceivers, to guarantee that the BFFs are device-invariant (and
thus removing an undesirable degree of freedom from the
system). In that case, the receivers would have to define
their own BF codebook, CRx, containing BRx elements
(CRx = {w1, . . . ,wBRx

}). The codebooks would have to be
designed so as to search over all AoAs with similar gain, so as
to avoid a scenario akin to the orientation unaware situation
described in [32], where the device orientation becomes an
extra variable (i.e., to make the system as rotation-invariant as
possible). With BF at the receiver, the device would have to
sample each transmitter BF BRx times, storing the maximum
measured value for each sample within a PDP. The acquired
data from the i-th transmitter BF, xi, can thus be written as

xi[n] = max
j=1,...,BRx

rj(nT ), n = 0, 1, . . . , N − 1, (3)

where rj is the time-domain sampled signal using the receiver
beamforming wj , and N is the number of samples considered
per PDP. Since eq. (3) considers the maximum value among all
receiver BFs, the obtained fingerprint data (X) has a negligible
dependency on the mobile device orientation if the codebook
was designed as described above.

After the BFF is obtained, a trained DL method will infer
the device position in phase C (Fig. 1). With a DL method,
the system learns to interpret the non-linearities introduced
by reflections and other propagation artifacts. Interestingly,
the work in [6], released shortly after the original proposal
of the BFFs [7], pointed out machine learning methods as a
possible solution to cope with the non-linearities, which were
the flagged cause for their lack of positive NLOS experimental
measurements. It should be noted that each BS will generate
their own dataset and, therefore, will need their own model.
Nevertheless, just like with image-processing DL systems, the
BFFs relative to different BSs are still a result of the same
physical world, and thus it should be possible to generate a
pre-trained model to speed up downstream training procedures.

During phase D, the BS sends the position estimate to the
mobile device. Alternatively, phase C could be performed at
the mobile device, avoiding the data upload to the BS, as de-
picted in Fig. 2. However, the device would have to download

a DLmodel for each BS, placing a significant memory and
energy constrain on the device, and thus herein the predictions
are suggested to be computed at the BS (as depicted in Fig.
1). Nevertheless, it is an option to be considered, as it will be
analysed throughout this paper.

B. Beamformed Fingerprint Data Analysis

In the previous subsection, two key drivers of the amount of
information found within a BFF were flagged: the directivity
of the beamformed transmissions and the PDP sampling rate.
This subsection will expand on those topics, in reverse order.

Let us consider a mobile device with a given sampling
period, T . Besides the theoretical limit described by eq. (3),
there is an additional detail that we should consider when
defining T , in order to obtain high-quality data. If the sampling
frequency exceeds 10 MHz (i.e., T < 100 ns), the radiation
arriving from the multiple propagation paths is detected in
clusters, as described in [35]. Consequently, if such sampling
frequencies are applied in the BFF positioning system, the
PDPs will contain voids large enough to be detected. The
ability to distinguish these voids provides a meaningful shape
to the resulting data, enhancing the learning capabilities of the
system (as further analysed in [9]).

The existence of strong reflections in the transmitted
mmWave radiation suggests the existence of long propagation
paths that can stay confined to limited areas. As such, the
mobile device should gather a substantial number of samples
per transmitter BF (N ), so as to account for those infrequent,
yet powerful sources of information. A consequence of this
approach is the sparseness of the data, as it can be observed in
the example plotted in Fig. 3. In fact, due to this sparseness, the
relative position of the acquired non-zero samples in the data
contains the majority of the extractable information, and we
can use that to compress the BFF signal (as will be seen in the
next subsection). In fact, it was shown in [7] that using binary-
sampled PDPs has a marginal impact on the final accuracy,
while greatly reducing the requirements for the mobile device.

When examining a BFF, it is interesting to notice a visual
pattern that arises when the sequence of transmitted BF indices
correspond to a continuous sweep over the azimuth (as in the
simulation that resulted in Fig. 3). That visual pattern consists
in distinct lines along the BF axis, which means that adjacent
BF patterns will likely end up having similar clusters when
measured from the same location, carrying partially redundant
information. This characteristic indicates that there are clear
diminishing returns if additional beamformed transmissions
are sent without increasing their directivity.

C. Beamformed Fingerprint Power Requirements

Any positioning system will be mostly used by mobile
devices, and thus it is of paramount importance to assess their
energy requirements. For the BFF positioning method, it is
observable from Fig. 1 that the energy requirements can be
broken down to:
• a) Sampling the received radiation, so as to extract the

desired data;
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• b) Sending that data back to the BS and receiving the
position fix; OR

• c) Performing inference on the device.
The energy necessary to sample the PDP consists mostly on

the energy required by whole mmWave Radio Frequency (RF)
front-end during the listening time (ERx). Considering the
listening time needed by each of the BTx ×BRx transmitted
pulses required in order to obtain a BFF, we can estimate ERx

as

ERx = PRx

(
(T ×N) + Tguard

)(
BTx ×BRx

)
, (4)

where PRx is the average power required by the RF front-
end, and ((T ×N)+Tguard) is the time per pulse. In [36], an
assessment of the state-of-the-art for mmWave RF components
concluded that a device’s receiver front-end should require
about 125 mW – the mmWave systems are under exhaustive
study, and thus these figures should improve throughout the
following years.

Let’s assume now that inference is to be performed at the
BS. In that case, the obtained data must now be transmitted to
the BS. Considering that each of the N × BTx data samples
contains k bits, if the system has an energy efficiency of Eef

Joules per transmitted bit, the required transmit energy (ETx)
can be written as

ETx = (k ×N ×BTx)Eef . (5)

Since the device will have mmWave antennas installed, it
should be able to use a 5G-enabled mmWave connection. With
the data from the study performed in [37], it is conservative
to assume an uplink energy consumption of 0.2 µJ per
transmitted bit (or 5 Mbits per Joule).

As mentioned in the previous sub-section, when a small
sampling period is used, the resulting data is sparse, and thus
it can be efficiently compressed. For instance, if the transmitted
data contains exclusively pairs of non-zero values (the received
power) and their respective positions in the data sample, the
required transmit energy can be rewritten as

ETx =
(
V ×

(
dlog2 (N ×BTx)e+ k

))
Eef , (6)

where V is the number of valid entries (i.e., non-zero entries),
dlog2 (N ×BTx)e is the number of bits required to encode all
possible positions, and k represents the actual data for each
valid entry. Furthermore, when the data is obtained through
the simpler binary detection, the data in k (received power)
becomes redundant, and thus

ETx =
(
V × dlog2 (N ×BTx)e

)
Eef . (7)

Considering that the power required to receive the final
result is negligible, the total required energy per position fix
can be approximated by adding (4) to either (6) or (7) (for
non-binary and binary data, respectively).

Let’s now consider the other alternative for the position
inference – the mobile device performs its own machine
learning computations. Although DL architectures are often
considered computationally demanding, in practice, one can
build a complex model with a very limited set of compu-
tational operations. This spurred the development of energy-
efficient computing architectures specifically tailored to them,

often based on Graphics Processing Unit (GPU) or Field-
Programmable Gate Array (FPGA) architectures [10][11] .
In fact, for general purpose mobile devices such as the
smartphone, a large number of them are currently sold with
dedicated hardware for DL computations. As such, to assess
the energy consumption of the BFF position inference when
it is computed in the mobile device, one must measure the
energy consumption at the used dedicated hardware.

V. LEARNING THE BEAMFORMED FINGERPRINTS

A. Positioning

The BFF positioning problem can be seen as the supervised
learning of the training set T , with samples obtained from a
fixed distribution DX×Y . The input space X = R(N×BTx)

corresponds to the set of possible BFFs, whereas the target
space Y = Rd represents the set of all possible positions, and
d is the number of dimensions of the positioning space. The
objective of the BFF positioning system is to train a mapping
function f : X 7→ Y using T , so that it can generalize to new,
unseen samples.

The simplest DL architecture applicable to BFF positioning,
typically called a DNN, contains a sequence of fully con-
nected layers with multiple neurons each. This layer type is
ubiquitous and is used in most DL architectures. The vector
containing the output of the i-th layer of neurons ni can be
described as

ni = a (Ui ni−1 + bi) , (8)

where Ui represents the weight matrix, bi is the bias, and a
depicts an activation function, a non-linear subdifferentiable
function. The input data X, a BFF in the context of this
section, feeds the first layer (n0), which is also known as
input layer.

The presence of a non-linear activation function is abso-
lutely critical, as it enables learning non-linear relationships.
To map the input BFF data to the target label, the network
is trained using a gradient-based algorithm [33]. This super-
vised training is guided by a loss function that represents a
measurement of the average similarity between the true labels
and the model’s predictions. For the proposed system, all DL
architectures are trained to perform a regression in the output
layer, minimizing the Mean-Square-Error (MSE) to the labeled
position y, i.e.,

ŷ∗ = argmin
ŷ

E
{(

ŷ − y
)T(

ŷ − y
)}
, (9)

where ŷ∗, the output of the last layer of the neural network,
denotes the position estimate given the input data X.

Let us now consider the two indexing dimensions of the
BFF, the PDP sample number and the transmitter BF index
(see Fig. 3). As described in Section IV-B, if the sequence of
BF indices represents to a continuous sweep over the azimuth,
it also becomes possible to extract coherent information from
the sequence of data points along the dimensions. Even though
the different dimensions have completely different meanings
(as opposed to images), the nature of the problem at hand
makes CNNs a suitable candidate, as illustrated in Fig. 4.
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Fig. 4. Even though the two dimensions in a BFF have distinct meanings,
as opposed to an image, the data sequences along both dimensions carry
significant information. For that reason, the system can efficiently tap an
additional source of information by using a CNN [7]

CNNs introduce the convolutional layer, where the model
can learn the most effective set of short bi-dimensional filters
to apply to the received data. These allow the extraction of
information from the neighborhood of each data point within
a sample, in addition to the information contained in the data
point itself, building a more efficient representation. For the
i-th convolutional layer of neurons N, which is now a matrix,
the output of the f -th filter can be described as

Nf
i = a

(
F̃∑

f̃=1

(
Uf,f̃

i Nf̃
i−1

)
+ 1× bfi

)
, (10)

where F̃ is the number of filters in the previous layer, 1 is
a bi-dimensional matrix of ones, bias bfl becomes a single
scalar, and each Uf,f̃

i , now denoting a bi-dimensional filter, is
a double block circulant matrix (a special case of a Toeplitz
matrix). Due to the new structure, if Uf,f̃

i is built from a L1 by
L2 bi-dimensional filter, it only contains L1×L2 parameters.
The number of learnable parameters in a convolutional layer
is then much smaller than a fully connected layer’s, for neural
networks with similar performance [33]. Another major benefit
that arises from the use of convolutional layers is the enhanced
generalization capability, as the model will use the same filters
in different parts of the input data.

The outdoor positioning problem maps a set of input data to
a continuous space Y , the position. Due to physical laws that
determine electromagnetic propagation, a given transmitted
signal is expected to be highly correlated when measured in
adjacent positions. In fact, if it was not for the non-linear phe-
nomena introduced with mmWave frequencies, the received
BFFs would show smooth changes throughout the considered
space. The non-linear phenomena introduces discontinuities
to the BFF data, if assessed throughout a continuous route,
segmenting the output space into multiple potential sub-
regions, each with specific patterns in the input data. In [8], a
hierarchical system that makes use of this abstract sub-region
concept was proposed, to further refine the single BFF learning
mechanism.

Let us consider a given BS’s covered space, which can be
seen as a set of K sub-regions with arbitrary boundaries1

1Please note that the methods that can be used to define the sub-regions S,
briefly discussed in [8], are outside the scope of this paper.

S (S = {s1, . . . , sK},
⋃K

k=1sk = Y). If a dedicated CNN
is assigned to each sub-region, these K CNNs will become
specialists in their own data partition. Adjacent positions are
very likely to be highly correlated and, as a consequence, they
are expected to contain similar data patterns. This implies that
each dedicated CNN regressor has to learn fewer patterns,
facilitating its learning process. Moreover, we can train a CNN
classifier to predict ŝk, the sub-region that is most likely to
hold the present input, to select the dedicated CNN regressor
that should be used to estimate the device location. Such an
architecture is further referred to as Hierarchical Convolutional
Neural Network (HCNN), where the positioning problem is
split in a hierarchical manner: sub-region selection followed
by the position estimation.

To train the aforementioned CNN classifier ,which attempts
to select the correct sub-region, cross-entropy between predic-
tion and ground truth is minimized, such as

p(̂s) = argmin
p(ŝk), k=1,...,K

E
{
−
∑
k

p(sk|X) log(p(ŝk))
}
, (11)

where p(̂s) denotes the output vector of the classifier neural
network, containing the predicted probabilities p(ŝ = sk) for
an input data X. The above formulation allows S to contain
overlapped subregions, as p(sk|X), the true probability of
being in sk given the input data X, can be 1 for multiple
k. Once the classifier’s output is obtained, the most suitable
dedicated CNN regressor ŝ is selected by determining

ŝ = argmax
k=1,...,K

p(ŝ = sk), (12)

which in turn provides the final position estimate ŷ.

B. Tracking

The previous subsection concerned DL architectures that
can convert a single BFF into a position estimate. Neverthe-
less, many systems continuously request localization services
during a significant amount of time, and their movement
is a strong information source. Not only there are physical
constraints, such as the velocity of the mobile device carrier,
but also there are human-imposed restrictions, such as traffic
rules. Therefore, by accessing information regarding recent
positions, expected trajectory, and other devices’ movement
history, the system can infer the range plausible positions, and
thus significantly narrow down its final estimate.

In this subsection, sequence-based DL architectures for
the BFF positioning system are proposed. This new set of
architectures aims to learn the mapping function f : XM 7→ Y ,
where M is the input sequence length (or the system’s memory
size). Consequently, the training set T is now obtained from
the fixed distribution DXM×Y , where XM is now the set of
possible BFF sequences.

The historical default DL architecture to deal with se-
quences is the Recurrent Neural Network (RNN). In recent
years, multiple variants of RNNs were proposed, namely Long
Short-Term Memorys (LSTMs) [38], which were developed
to handle the vanishing and exploding gradient problems that
often plagued vanilla RNNs’ training. LSTMs are known for
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Fig. 5. Core of a TCN model, excluding the output layer after the last residual
block’s output (ỹ) [9]. With each subsequent residual block, the receptive field
increases exponentially, due to the dilation factor d. The dashed lines depict
the residual connections.

their good results in multiple sequence-based tasks, including
indoor tracking using WiFi fingerprints [39].

Unlike DNNs, RNN-based architectures hold an internal
state that retains information as a sequence is processed. This
mechanism allows a model to digest sequences of arbitrary
length, while keeping an understanding of the chain of events.
It also shares the model’s trained weights as it traverses the
sequence (the same operations are applied to each BFF),
which, as mentioned in the previous subsection, results in
better generalization capabilities.

Each step of the sequential model can be abstracted within
a LSTM module. The output of the m-th LSTM module is
described as

hm = om � tanh (Cm) , (13)

where Cm is the cell state, om is the output gate, � denotes
the Hadamard product, and tanh(·) represents the hyperbolic
tangent function. The output gate, containing a mixture of the
current input sample being assessed and the previous module’s
output, selects which parts of the cell state’s information are to
be passed to the output module. More specifically, the output
gate is

om = σ (Uo [hm−1;xm] + bo) , (14)

with σ (·) denoting the sigmoid function. Consistently with
the previous sections’ notation, U, b and x represent weights,
bias and BFF data (as a vector), respectively.

The cell state can be defined as

Cm = fm �Cm−1 + im � C̃m, (15)

where fm represents the forget gate, and im the input gate.
The forget gate controls the information to be discarded by
the cell state, relative to its own past state, while the input
gate filters the information contained in C̃m, which is then
added to the cell state. These two expressions are given by

fm = σ
(
Uf [hm−1;xm] + bf

)
and (16)

im = σ
(
Ui [hm−1;xm] + bi

)
, (17)

and the candidate values to be added to the cell state, C̃m, are
given as

C̃m = tahn
(
Uc [hm−1;xm] + bc

)
. (18)

Equations (13)-(18) imply two different activation functions:
the sigmoid and the hyperbolic tangent. The former, whose
output ranges from 0 to 1, is used as an information filter
(gates), while the later, ranging from −1 to 1, adds critical
non-linearities and limits the output range of the data passed
between LSTM modules. Frequently, fully connected layers
are usually placed after the last LSTM module, mapping the
output vector hM to the desired output format (ŷ).

Although LSTMs are a proven tool to learn from sequences,
they are known to be difficult to train [40]. Also, there are
multiple sequence-based problems for which CNN provide the
best solution [41]. To harness the potential of the convolution
operation, well known to the signal-processing community and
designed to handle sequences, while being able to process long
sequences, TCNs were proposed in [41].

Compared to typical CNNs, TCNs present three main
differences. First and foremost, any non-sequence-dimension
(feature) size mismatch between two subsequent layers is
processed through a 1D convolution [42]. This guarantees
that for each step in the input sequence, there is a single
corresponding step in each hidden layer (as observable in Fig.
5).

If the convolution operation is applied directly over the
sequence dimension, its size grows linearly with the expected
sequence size, which is undesirable. For instance, RNN-based
architectures in theory do not need to scale with the sequence
length. Consequently, the second feature of a TCN lies on
the introduction of dilated convolutions, which enable an
exponentially large receptive field. The dilated convolution
operation F on element m of the sequence x, using a filter f ,
is defined as

F [m] =
(
x ∗d f

)
[m] =

L∑
l=1

f [l] · x[m− d · l], (19)

where L is the length of the dilated convolution and d the
dilation factor. Since d is set to grow exponentially with the
depth of the network, each subsequent layer can be interpreted
as a zoom out in the sequence data, enabling the network
to perceive larger sequences with a limited set of learnable
parameters. If the TCN’s receptive field is larger than the input
sequence, the input sequence can be zero-padded.

Finally, the last key element of a TCN consists on the use
of the residual block [43]. In it, the network accesses the
original input data every two dilated convolution layers, which
is critical to stabilize large networks. More formally, if x is
the input of a given residual block, its output ỹ is defined as

ỹ = a
(
F(x) + x

)
, (20)

where a represents an activation function, and F a series
of transformations corresponding to the two dilated convo-
lutions within the residual block (and 1D convolutions being
performed to match x to F(x), if needed). The stack of all
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Legend:

Fig. 6. Ray-tracing simulation in the NYU area, using the parameters in
Table I. The results shown correspond to the maximum received power for
all possible transmit BFs. In [44], it was shown that this simulation matched
the experimental measurements in [35], depicted by the symbols.

these residual blocks builds a TCN. The output of the last
residual block, ỹ, must then go through the output layer, so
as to produce the desired prediction (ŷ).

VI. SIMULATION APPARATUS

To evaluate the proposed system’s accuracy and its power
consumption, a ray tracing-based dataset is used. That dataset
was built from ray tracing simulations in the NYU area,
containing BFF data from 160801 different positions in a
400 × 400 m area. The propagation specifications in Table
I were inherited from the experimental measurements in [35]
and, in [44], it was shown that these ray tracing simulations
(briefly presented in Fig. 6) matched those experimental mea-
surements. Although the acquired dataset has some limitations
that negatively impact the accuracy results, such as a minimum
distance of 1 m between samples, the results shown in this
paper do not consider some adverse scenarios, such as weather
effects (which are known to have a significant effect on
mmWave systems).

The ray tracing software used, Wireless InSite 3.0.0.1 [45],
was unable to control BF patterns. A physically rotating horn
antenna was used instead, producing similar directive radiation
patterns. For each of the 32 elements in CTx, the correspond-
ing PDP was sampled at 20 MHz over a spawn of 4.1 µs,
which contained over 99% of the path data. Regarding BF at
the receiver, a 10 dBi gain was considered (as in the mobile
device in [46], which contains a codebook with 8 entries). In
the forthcoming simulations, noise is added to the obtained
ray tracing data following a log-normal distribution (slow
fading). The noise was introduced before applying a detection
threshold of −100 dBm, which was selected due to the thermal
noise at room temperature for the considered bandwidth (−101

TABLE I
RAY-TRACING SIMULATION PARAMETERS

Parameter Name Value
Carrier Frequency 28 GHz
Transmit Power 45 dBm
Tx. Antenna Gain 24.5 dBi (horn antenna)
HPBW 10.9◦
Transmitter Downtilt 10◦
Codebook Size 32 (155◦ arc with 5◦ between entries)
Receiver Grid Size 160801 (400× 400 m, 1 m between Rx,

1 m above the ground)
Samples per Tx. BF 82 (4.1 µs @ 20 MHz)
Assumed Rx. Gain 10 dBi (as in [46])
Detection Threshold −100 dBm
Added Noise σ = [2, 10] dB (Log-Normal)

TABLE II
SYNTHETIC PATH GENERATION PARAMETERS

Parameter Name Pedestrian-like Vehicle-like
Default Speed (m/s) 1.4 8.3
Maximum Speed (m/s) 2.0 13.9
Maximum Acceleration (m/s2) 0.3 3
Maximum Direction Change ( ◦/s) 10.0 5.0
p( No Movement Change ) 0.8 0.8
p( Full Stop ) 0.1 0.02
p( Speed Change ) 0.05 0.05
p( Direction Change ) 0.05 0.13

dBm). In all simulations, the data is binarized after applying
the detection threshold.

Data resulting from the experiments was labeled with the
corresponding bi-dimensional position, in a 400×400 m2 area
centered at the BS. Regarding the HCNN, the sub-regions
correspond to subsequent bisections of the output space (e.g.
when 64 partitions are considered, each dimension is bisected
8 times, resulting in partitions with 50× 50 m2).

The sequences of BFFs generated for the LSTMs and the
TCNs simulations consider three distinct types of synthetic
user paths: static, pedestrian-like, and vehicle-like. While static
users remain in the same position for the duration of the
sequence, users following the other two path types move
according to the specifications depicted in Table II. The
pedestrian-like paths were generated with the typical human
preferred walking speed (5 km/h), but that can quickly stop
or change their direction. On the other hand, vehicle-like
paths were generated with higher default speed (30 km/h) and
maximum acceleration, but with a restricted steering angle.
The probabilities depicted in the second half of Table II are
applied once per second, where a full stop stops a user for a
second, before restarting its movement in a random direction
(uniformly sampled) with the default speed, and the speed and
direction changes modify the existing speed or direction by
a value uniformly sampled between the specified maximum
and its negation (e.g. a vehicle-like path can accelerate or
decelerate by an amount ranging from −3 to 3 m/s2).

In an attempt to emulate the behavior or typical civilian
GNSS receivers, the sequences of BFFs are created by drawing
a noisy BFF sample once per second (i.e. sampled at 1 Hz).
To be representative of a real-life scenario, where most users
are moving, there is a ratio of 8 : 1 moving to static paths (the
moving paths are uniormly distributed between pedestrian-
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TABLE III
POSITIONING HYPERPARAMETERS

Parameter Name Value
Convolutional Layers 1 layer (8 features with 3× 3 filters)
Pooling Layers 2× 1 max-pooling
Hidden Layers 12 (256 neurons each)
Regression Output Linear with 2 Neurons (2D position)
Classification Output Softmax with K = 64 classes
(HCNN’s 1st model)
Epochs Up to 1000 (early stopping [48]

after 50 non-improving epochs)
Batch Size 64
Optimizer ADAM[49]
Learning Rate 10−4

Learning Rate Decay 0.995
Dropout 0.01

and vehicle-like paths). The test paths, corresponding to 20%
of the generated paths, are hidden while training, to avoid
a simple memorization of possible paths. The total training
time required for the presented results was also considered
– training any of the assessed architectures with the defined
parameters takes less than 10 hours on an Nvidia GTX 780
Ti GPU, using Google’s TensorFlow framework [47]. In a
practical setting, this train time can be further reduced by
employing better hardware, through pre-trained models, or
by cherry-picking a dataset that contains more samples in
regions hard to locate. Finally, we believe that reproducibility
is fundamental to validate proposals and to push research
forward, and thus we made the simulation code and used
dataset publicly available2.

The next section addresses the experiments that assess the
energy efficiency of the positioning method. When the position
inference is performed in the BS, the equations from Section
IV-C are used. However, to assess the energy consumption
when the computations are to be performed in the mobile de-
vice, a low-power, mobile-friendly GPU is used (Nvidia Jetson
TX2 [10]). This particular device contains the possibility of
probing its own internal power consumption counters through
software, from which we can derive the energy consumed per
position fix. The repository linked above contains simulation
code and includes all the instructions required to reproduce
the energy consumption measurements for the present family
of devices used.

VII. EXPERIMENTAL RESULTS

In this section, the proposed system is simulated and evalu-
ated by applying the data and the parameters discussed in the
previous section. The results are obtained using a 32-element
codebook dataset with binary detection, K = 64 for HCNN
and M = 7 for sequence-based approaches. For the impact of
different codebook sizes and different sampling frequencies,
the use of non-binary BFF samples, and different values for
K and M , please refer to the accuracy results in [7] and [9].

In Fig. 7, the achievable accuracy for the DL architectures
presented throughout Section V is shown. It can be seen that
the accuracy improves in the same order as the DL architec-
tures were presented, with a noticeable performance increase

2https://github.com/gante/mmWave-localization-learning

TABLE IV
TRACKING HYPERPARAMETERS

Parameter Name LSTMs TCNs
LSTM Units 512 —
TCN Blocks — 2
TCN Filter Length — 3
TCN Features — 512
MLP Layers 2 0

(512 neurons each)
Regression Output Linear with 2 Neurons (2D position)
Total # of Sequences 720918
Sequence Length (M ) 7
Epochs Up to 100 (early stopping [48]

after 5 non-improving epochs)
Batch Size 64
Optimizer ADAM
Learning Rate 5× 10−5 5× 10−4

Learning Rate Decay 0.995

when sequence-based architectures are used. Furthermore, the
use of sequence-based architectures is particularly effective
at containing the 95th percentile error, due to the fact that
they use multiple BFFs, and thus can handle noise spikes in
an individual sample. The best accuracy results are obtained
when TCNs are used, with an average and 95th percentile
errors of 2.03 and 5.81 meters, respectively, when σ = 6 dB.
These results indicate that BFF positioning methods can have
a better accuracy than commercial GNSS positioning devices.
Moreover, in [9], it was shown that these results were obtained
with a single anchor in a heavy presence of NLOS positions,
and that they are nearly 10× more accurate than the previous
state-of-the-art [30] for mmWave positioning with NLOS.

As mentioned throughout the paper, the proposed system
has two modes of operation: either the mobile device sends
the BFFs to the BS, delegating the inference process, or
the mobile device computes the position estimate itself. The
first mode of operation, where the mobile device can be
oblivious of the methods used to estimate its position, has its
energy requirements independent of the DL architecture used.
The equations shown in Section IV-C are evaluated with the
parameters from Table I. Considering PRx = 125 mW [36]
and Tguard = 2.9 µs, so that a PDP is collected every 7 µs, the
system would require 0.224 mJ to obtain the data regarding
the received radiation. The previous value considers BTx = 32
and BRx = 8, as discussed in the previous apparatus section.
From the simulations performed, the average number of non-
zero entries per sample (V ) ranged from 63.38 to 68.62, for
σ = 10 dB and σ = 0 dB, respectively. Therefore, assuming
a network energy efficiency of 0.2 µJ per transmitted bit [37],
the system would need between 0.152 mJ (σ = 10 dB) and
0.165 mJ (σ = 0 dB) to upload the gathered information to
the BS, on average. Combining both, the mobile device would
need to spend between 0.376 mJ and 0.389 mJ per position
fix.

For the mode of operation that makes computations happen
at the mobile device, the energy consumption greatly depends
on the DL architecture used. The DL architectures mentioned
throughout Section V were implemented in a mobile GPU
(Nvidia Jetson TX2 [10]), with the results shown in Table
V. In this Table, it is shown the power consumption of the
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TABLE V
ENERGY CONSUMPTION OF INFERENCE FOR THE TESTED DL ARCHITECTURES ON A MOBILE GPU (NVIDIA JETSON TX2).

Samples/s GPU Power (mW) Memory Power (mW) Total Power (mW) mJ/sample
CNN 3194.4 780 1141 3820 1.196
HCNN 1577.3 773 1210 4010 2.542
TCN 1367.1 4284 2271 9259 6.773
LSTM 1833.4 3747 2273 8682 4.735
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Fig. 7. A summary of the accuracy for the discussed DL architectures. As
it can be seen, sequence-based positioning can achieve far greater precision,
particularly with respect to the 95th percentile error in the presence of noise.

Jetson TX2’s components that are DL-related, as well as the
total power consumption of the device (which includes, among
other things, the system-on-a-chip). Together with the system’s
inference throughput, we can infer the energy cost of each
position estimate. To the values shown, depicting the cost of
the inference for each position estimate, the energy required to
obtain the BFF must be added (0.224 mJ). Although this mode
of operation seems to be less energy-efficient, the used GPU is
still over-dimensioned for the problem (only a few samples per
second are required), and there are known techniques to reduce
the energy consumption at the inference stage, as elaborated
in Section VIII.

In order to contextualize these values, let’s recap the energy
consumption methods for other positioning methods (to the
best of our knowledge, the energy consumption for other
mmWave positioning methods has yet to be studied). For the
MSB A-GPS systems, the used data was taken directly from
[14] and [15], which correspond to two state-of-the-art low-
power A-GPS chips. Since the periodicity of the position fixes
has a great impact on the energy consumption and accuracy of
the MSB A-GPS method, two data points were considered: one
for continuous measurements of one fix per second, resulting
in full A-GPS accuracy and an average energy consumption
of 18 mJ [15], and another for sporadic measurements (once
per minute), with decreased accuracy and an average energy
consumption of 504 mJ [14]. When evaluating MSA A-GPS
systems, the majority of the energy consumption goes to the
uplink transmission, which depends on the network used.
Therefore, to enable a fair comparison, it is assumed that
the MSA A-GPS system also has access to energy efficient
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Fig. 8. Average error vs average energy required per position fix for the
positioning technologies discussed in this paper. The proposed system is
plotted for its two operation modes, depending on where the DL inference
is computed. It is assumed that BS inference mode of operation uses the
most accurate DL architecture available (TCN, in our experiments) As it is
observable, the proposed system has an accuracy comparable to A-GPS, while
achieving energy efficiency gains exceeding 47× per position fix.

mmWave networks. In order to obtain a position fix, the system
in [17] takes binary samples of the GNSS signal at 16.368
MHz during 10 ms. Considering a network energy efficiency
of 0.2 µJ per uploaded bit [37], that system would require
32.736 mJ to obtain a position fix with an average error of 14
m.

Fig. 8 plots the energy consumption versus the accuracy
for the aforementioned methods. For better visualization, all
data points for BFF positioning use the same noise value,
σ = 6 dB, and for the case where the inference is done at the
BS, the most accurate method is used. When compared to the
assessed A-GPS implementations, the BFF positioning system
with the inference made at the BS shows energy efficiency
gains of 47× for continuous measurements (vs A-GPS MSB),
and 85× for sporadic position fixes (vs A-GPS MSA using
a mmWave network), while keeping slightly better accuracy
levels. Furthermore, the proposed method is available when-
ever there is mmWave coverage, while requiring no additional
hardware at devices with mmWave capabilities. As such,
in this thesis we can conclude that BFF-based positioning
methods can dethrone GNSS-based methods as the default
low-power commercial positioning system.

VIII. CONCLUSION

In the context of 5G, millimeter wave communications will
release a massive amount of bandwidth and introduce signif-
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icant theoretical improvements. However, the transformation
of such improvements into practice is far from being trivial,
as the physics underlying the radiation propagation change
dramatically.

In the context of outdoor positioning, the use of millimeter
waves implies that the typical geometrical approaches are no
longer reliable for NLOS positions. The concept of beam-
formed fingerprint, which was coined recently, enabled the
application of deep learning techniques so as to achieve accu-
rate outdoor positioning. The result is state-of-the-art accuracy
for NLOS millimeter wave outdoor positions, while using a
moderate bandwidth, binary data samples and a single anchor.
In this paper, it was shown that the newly proposed system
is far more energy efficient than conventional positioning
strategies, while preserves similar precision, paving the way
for smaller positioning-enabled autonomous devices.

A. Future Work

A significant portion of recent machine learning papers
concern more complex DL architectures, leveraging the in-
creasing amount of computing power available in the systems.
However, it is also possible to alter the model in the opposite
direction, sacrificing some accuracy in order to obtain higher
model energy efficiency. In [50], the authors show that it
is possible to train a smaller model from a larger model,
retaining most of the larger model’s precision, in a technique
called distillation. The drawback of using distillation is that not
only some precision is lost, but also training becomes more
expensive – given that a model per BS is needed, the cost can
be non-negligible. Finally, if the hardware used for the DL
inference allows it, it is possible to trade some accuracy for
energy efficiency through operations with fewer bit resolution.
In fact, it was shown in [51] that representing the weights of
a DNN with a single bit can result in very competitive results.
This particular solution is particularly beneficial if the BFF
position inference is to be computed at the mobile device, as
the cost for transmitting and storing the networks’ weights is
drastically reduced.
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