Consumer's problem

Note: in the model below, P_t^{G2H} is the power from grid to home (G2H) and P_t^{H2G} is the power from home to grid (H2G) in time *t* (kW). The energy sold to the grid (home to grid) in each time interval is $E_t^{G2H} = P_t^{G2H} \Delta t$ and the energy bought is $E_t^{H2G} = P_t^{H2G} \Delta t$.

The parameters and the other variables are defined after the model formulation.

$$\begin{split} & \min_{\substack{p \in \mathcal{D}_{1}^{m}, p \notin \mathcal{D}_{2}}} f = \sum_{l=1}^{l} \sum_{i \in P_{l}} (x_{i} P_{t}^{\mathcal{C}\mathcal{D}_{1}} \Delta t) - \sum_{l=1}^{T} (c - P_{t}^{\mathcal{H}\mathcal{D}_{2}} \Delta t) \\ \text{s.t.} & \text{Shiftable loads:} \\ & \sum_{l=r_{1}, r_{1}}^{T_{2} - d_{j} + 1} s_{jl}^{SR} = 1 \qquad j = 1 \dots J \\ & p_{jl}^{SR} = \sum_{l=1}^{d} \sum_{\substack{r=1 \ (r \leq t \land r \leq t + 1 - T_{1j})}}^{T} f_{jr} \times s_{jl(t-r+1)}^{SR} \qquad j = 1, \dots, J, \quad t = T_{1j}, \dots, T_{2j} \\ & p_{jl}^{SR} = 0 \qquad j = 1, \dots, J, \quad t = T_{1j}, \dots, T_{2j} - d_{j} + 1 \\ & \text{Electric water heater:} \\ & P_{l}^{Iasses} = A.U \left(\tau_{l} - \tau_{l}^{rmb}\right) , \quad t = 1, \dots, T \\ & \tau_{t+1} = \left(\frac{M - m_{t}}{M} + \tau_{t} + \frac{m_{t}}{M} + \tau^{nel}\right) + \frac{p^{R_{u} - p_{l}^{Dsses}}{M \in \mathcal{P}} \cdot \Delta t, \quad t = 0, \dots, T - 1 \\ & \tau_{t} \geq \tau^{conf} (1 - v_{t}) \qquad t = 1, \dots, T \\ & \tau_{t} \geq \tau^{conf} (1 - v_{t}) \qquad t = 1, \dots, T \\ & p_{l}^{TwH} = p^{R} v_{l} \\ & \sum_{l=1}^{T-t} \tau^{req} \times n_{l-l'+1} \qquad t = 1, \dots, T \\ & \tau_{l} \geq \sum_{l'=1}^{T-t} \tau^{req} \times n_{l-l'+1} \qquad t = 1, \dots, T \\ & \sigma t = 0, \dots, T - 1 \\ & \tau_{l} \geq \sum_{l'=1}^{T-t} \tau^{req} \times n_{l-l'+1} \qquad t = 1, \dots, T \\ & p_{l}^{RWH} = p^{R} v_{l} \\ & \sum_{l=1}^{T-t} \tau^{req} \times n_{l-l'+1} \qquad t = 1, \dots, T \\ & p_{l}^{RW} = p^{R} v_{l} \\ & \sum_{l' \in S^{R} \in D_{l}} p_{l}^{Ri_{1}} + \beta \theta_{l}^{Ext} + \gamma P^{AC} s_{l}^{Ac_{l}}, \quad t = 1, \dots, T \\ & \sigma t = 0, \dots, T - 1 \\ & \sigma t = 0, \dots, T \\ & \sigma t = 0, \dots, T - 1 \\ & \sigma t = 1, \dots, T \\ & \sigma t = 0, \dots, T \\ & \sigma t = 0, \dots, T \\ & \sigma t = 0, \dots, T \\ & \sigma t = 1, \dots, T \\ & \sigma t^{R} \leq \theta^{max} + \mathcal{M}(1 - s_{l}^{AC}) \qquad t = 1, \dots, T \\ & \sigma t^{R} \leq p_{R}^{Rim} = \delta^{TB} \\ & \sigma t = 1, \dots, T \\ & Static battery: \\ & E_{t}^{R} = E_{t}^{R} + \left(\eta_{t}^{R} P_{t}^{HTB} \Delta t\right) - \left(P_{t}^{RB} \Delta t / \eta_{d}^{R} \\ & t = 1, \dots, T \\ & \sigma t = 1, \dots, T \\ & \sigma \in S_{t}^{RD} \leq P_{t}^{RD} \\ & \sigma t = 1, \dots, T \\ & \sigma \in S_{t}^{RD} \leq P_{t}^{RD} \\ & \sigma t = 1, \dots, T \\ & \sigma \in S_{t}^{RD} \leq P_{t}^{RD} \\ & \sigma t = 1, \dots, T \\ & \sigma \in S_{t}^{RD} \leq P_{t}^{RD} \\ & \sigma t = 1, \dots, T \\ & \sigma t = 1,$$

$$\begin{split} s_t^{\mu 2B} + s_t^{B 2H} &\leq 1 & t = 1, ..., T \\ E_T^B &\geq E_0^B \\ s_t^{\mu 2B}, s_t^{B 2H} &\in \{0,1\} & t = 1, ..., T \\ & \text{Electric vehicle battery:} \\ E_t^V &= E_{t-1}^V + (\eta_{ch}^V P_t^{\mu 2V} \Delta t) - (P_t^{V 2H} \Delta t / \eta_{dch}^V) & t = t_a + 1, ..., t_d \\ E_{min}^V &\leq E_t^V &\leq E_{max}^V & t = t_a + 1, ..., t_d \\ 0 &\leq P_t^{\mu 2V} &\leq P_{max}^{\nu dch} s_t^{\mu 2V} & t = t_a + 1, ..., t_d \\ 0 &\leq P_t^{\mu 2V} &\leq P_{max}^{\nu dch} s_t^{\mu 2V} & t = t_a + 1, ..., t_d \\ 0 &\leq P_t^{\nu 2H} &\leq P_{max}^{\nu 2H} & t = t_a + 1, ..., t_d \\ s_t^{\mu 2V} + s_t^{\nu 2H} &\leq 1 & t = t_a + 1, ..., t_d \\ s_t^{\mu 2V} + s_t^{\nu 2H} &\leq 1 & t = 1, ..., T \\ Power flows: \\ 0 &\leq P_t^{\mu 2G} &\leq P^{G,max} s_t^{\mu 2G} &, t = 1, ..., T \\ 0 &\leq P_t^{\mu 2G} &\leq P^{G,max} s_t^{\mu 2G} &, t = 1, ..., T \\ s_t^{G 2H} + s_t^{\mu 2G} &\leq 1 &, t = 1, ..., T \\ P_t^{G 2H} - P_t^{\mu 2G} + L_t^{PV} = L_t^{Base} + \sum_{j=1}^{j} P_{j,t}^{\beta h} + P_t^{EWH} + P_t^{AC} + (P_t^{\mu 2B} - P_t^{B 2H}) , t \leq t_a \lor t \\ &> t_d \\ P_t^{G 2H} - P_t^{\mu 2G} + L_t^{PV} = L_t^{Base} + \sum_{j=1}^{j} P_{j,t}^{\beta h} + P_t^{EWH} + P_t^{AC} + (P_t^{\mu 2B} - P_t^{B 2H}) + (P_t^{\mu 2V} - P_t^{\nu 2H}), t \\ &= t_a + 1, ..., t_d \\ s_t^{G 2H}, s_t^{\mu 2G} \in \{0,1\}, t = 1, ..., T \end{split}$$

Parameters and variables

 Δt : length of the time interval (unit of time) in hours corresponding to the discretization of the planning horizon

Shiftable loads:

Parameters:

J: number of shiftable loads $(j \in \{1, ..., J\})$

 d_j : duration of load j operation cycle

 f_{jr} : power requested by load j at stage (time) $r = 1, ..., d_j$ of its working cycle (kW)

 $[T_{1_j}, T_{2_j}] \subset T$: comfort operation time slot allowed by the consumer for load *j*

Variables:

$$s_{jt}^{Sh} = \begin{cases} 1 & \text{if shiftable appliance } j \text{ begins its operation in time } t \\ 0 & \text{otherwise} \end{cases}, t = T_{1j}, \dots, T_{2j} - d_j + 1$$

 P_{jt}^{Sh} : power required by load j in time $t \in T$ (kW) (implicit variable determined by s_{jt}^{Sh})

Electric water heater

Parameters:

 P^R : power of the resistive heating element (kW)

 τ_t^{amb} : ambient temperature around the EWH in time *t* (°C), *t* = 1, ..., *T*

 τ^{net} : inlet water temperature (°C)

 m_t : water withdrawal for consumption in time t (kg), t = 0, ..., T

M: hot water tank capacity (kg)

A: area of the tank envelope (m^2)

U: heat transfer coefficient of the tank (kW/m^2 .°C)

 c^p : specific heat of the water (J/kg.°C)

 τ^{max} : maximum allowed temperature (°C)

 τ^{conf} : comfort temperature (°C)

 t^{req} : number of time units required to maintain a certain temperature to eliminate the legionella bacteria

 τ^{req} : temperature specified to be kept for t^{req} to eliminate the legionella bacteria (°C)

Variables (for $t \in T$):

 $v_t \in \{0,1\}$: binary variable defining the off/on control of the heating element in time t (v_0 is a constant) τ_t : hot water temperature inside the tank in time t (°C), (τ_0 is a constant)

 $n_t \in \{0,1\}$: binary variable equal to 1 in the first t of the period with duration t^{req} in which $\tau_t > \tau^{req}$, $t = 1, ..., T - t^{req} + 1$.

 P_t^{losses} : power losses through the envelope in time t (kW), (implicit variables determined by τ_t ; P_0^{losses} is a constant)

 P_t^{EWH} : power required by the EWH in time t (kW), (implicit variables determined by v_t)

Air conditioner

Parameters:

 $\theta^{min}, \theta^{max}$: minimum and maximum allowed indoor temperature during the planning horizon (°C)

 θ_t^{ext} : outdoor temperature in time t (°C), t = 0, ..., T

 P_{AC}^{nom} : nominal power of the AC system (kW)

 α, β, γ : coefficients associated with the thermal modeling of the space being conditioned

 \mathcal{M} : big positive number

Variables (for t = 1, ..., T):

 $s_t^{AC} \in \{0,1\}$: binary variable defining the off/on control of the AC system in time t (s_0^{AC} is a constant) θ_t^{in} : indoor temperature in time t (°C), (implicit variables determined by s_t^{AC} ; θ_0^{in} is a constant) P_t^{AC} : power required by the AC in time t (kW)

Static battery:

Parameters:

 $\eta^{B}_{ch}, \eta^{B}_{dch}$: charging and discharging efficiency of the battery

 E_{min}^{B} , E_{max}^{B} : minimum and maximum allowed battery charge

 E_0^B : initial battery charge (kWh)

 $P_{max}^{Bch}/P_{max}^{Bdch}$: maximum charge/discharge power allowed for the battery (kW)

Variables (for t = 1, ..., T):

 $s_t^{H2B} \in \{0,1\}$: binary variables that are 1 (0) when the battery B is (is not) charging in time t

 $s_t^{B2H} \in \{0,1\}$: binary variables that are 1 (0) when the battery B is (is not) discharging in time t

 E_t^B : energy in the battery in time t (kWh), (E_0^B is a constant)

 P_t^{B2H} : power withdrawn from the battery to home (B2H) in time t (battery discharge)

 P_t^{H2B} : power withdrawn from the home to the battery (H2B) in time t (battery charge)

Electric vehicle battery:

Parameters:

 t_a , t_d : time of arrival and departure of the EV

 $\eta_{ch}^{V}, \eta_{dch}^{V}$: charging and discharging efficiency of the EV battery

 E_{min}^{V}, E_{max}^{V} : minimum and maximum allowed EV battery charge (kWh)

 $E_{t_a}^V$: initial EV battery charge, at the time of arrival t_a (kWh)

 E_{reg}^V : EV battery charge requested at the time of departure t_d (kWh)

 P_{max}^{Vch} , P_{max}^{Vdch} : maximum charge and discharge power allowed for the EV battery (kW)

Variables (all for $t = t_a + 1, ..., t_d$):

 $s_t^{H2V} \in \{0,1\}$: binary variables that are 1 (0) when the EV battery is (is not) charging in time t

 $s_t^{V2H} \in \{0,1\}$: binary variables that are 1 (0) when the EV battery is (is not) discharging in time t

 E_t^V : energy in the EV battery in time t ($E_{t_a}^V$ is a constant)

 P_t^{H2V} : power withdrawn from the home to the EV battery (H2V) in time t (EV battery charge)

 P_t^{V2H} : power withdrawn from the EV battery to home (V2H) in time t (EV battery discharge)

Power flows:

Parameters:

 P_{max}^{G} : maximum power allowed for exchanges with the grid

 L_t^{Base} : power of non-controllable base load in time t (kW), corresponding to appliances that are not deemed for control (e.g., lighting, fridge, oven, etc.)

 L_t^{PV} : local PV power in time t (kWh)

Variables (for t = 1, ..., T):

 $s_t^{G2H} \in \{0,1\}$: binary variables that are 1 (0) when the energy is (is not) flowing from grid to home in time t

 $s_t^{H2G} \in \{0,1\}$: binary variables that are 1 (0) when the energy is (is not) flowing from home to grid in time t