An efficient algorithm for
sequential generation of failure states
in a network with multi-mode components

by
Teresa Gomes
José Craveirinha,

Licia Martins

INESC - Coimbra

Research Report ET-N7
July 2000

Work supported by FCT, project PRAXIS/P/EEI/13219/1998, Um estudo sobre encam-
inhamento dindmico multi-objectivo e dependente do estado em redes multi-servigo

An efficient algorithm for sequential generation of
failure states in a network with multi-mode
components

Teresa Gomes
José Craveirinha
Licia Martins

Departamento de Engenharia Electrotécnica.
Pélo II da Universidade de Coimbra,
Pinhal de Marrocos, 3030 COIMBRA, Portugal.

INESC-Coimbra, Rua Antero de Quental 199,
3000-033 COIMBRA. Portugal.

e-mail: teresa@dee.uc.pt, jecrav@dee.uc.pt, lucia@dee.uc.pt

26th July 2000

Abstract

In this work a new algorithm for the sequential generation of failure states in
a network with multi-mode components is proposed. The presented algorithm
transforms the state enumeration problem into a K-shortest paths problem.

Taking advantage of the inherent efficiency of an algorithm for shortest paths
enumeration and also of the characteristics of the reliability problem in which
it will be used, we obtain an algorithm with lower complexity than the best
algorithm in the litterature for solving this problem.

Results will be presented for used CPU time for both algorithms.

1 Introduction

The models of reliability analysis of communications/computer networks are hased on
the idea of associating, in a probabilistic manner, the states of a system, with perfor-
mance measures. This methodology was mainly developed by Meyer (see eg. Meyer

8] leading to the concept of “performability”. In this type of approach the possible
g y P

o

T. Gomes. J. Craveirinha and L. Martins, An efficient algorithm. ..

network states are enumerated alongside their steady state probabilities and an overall
performability measure is calculated as the network performance averaged over all net-
work state probabilities. An exhaustive reliability study of a network with significant
number of components quickly becomes computationally unfeasible having in mind the
exponential increase in the state space dimension. This problem becomes more criti-
cal as the computational cost of the performance calculation for each state increases.
Li & Silvester [6] suggested that only the most probable network states. enabling a
certain minimum coverage of the space state. needed to be considered and developed
an algorithm for selecting those states. The efliciency of this algorithm was improved
by Lam & Li [5] and later by Yang & Kubat [11], taking as a basis an algorithm [10]
developed by the same authors for networks with multi-mode components. An algo-
rithm for components with two states, with lower complexity than those algorithms
was proposed by Teresa & Craveirinha [4]. For networks with multi-mode components
(the focus of this paper) an algorithm, generalizing the Lam & Li [5] approach was
introduced by Chiou & Li [1]. The performance degradation of each component is here
characterized by up to N different modes (or states) and the algorithm enumerates
network states in order of decreasing probability. For a network with n components
the complexity of the algorithm by Chiou & Li is O (n?Nm + Nmlogm) where m
is the number of enumerated states. This algorithm also requires the selected value

of m to be predermined. Another more efficient algorithm was proposed by Yang &

IKubat [10] which was shown to have an upper limit complexity O (nN|Q.|) when used
for generating the most probables states corresponding to the minimal set Q. which
satisfies the requirement of a coverage probability of the state space not less than 1 —«.
It is at least n times faster than the one by Chiou and Li [1]. Other feature of this
algorithm is that it does not need to “guess” the dimension of .: the algorithm keeps
generating states until the required coverage of the state space is obtained.

In this paper a new algorithm is proposed for efficiently generating the sequence
of most probable states in a network with multimode components. This algorithm
is based on the transformation of the enumeration problem into a K-shortest path
problem. The major advantage of the proposed algorithm results its lower complexity
and therefore lower running CPU time and also from the quite significant reduction
in memory requirement as compared with the Yang & Kubat [10] algorithm. These
two characteristics are an important criterion of performance comparison, particularly
decise in network of great dimension as is usually is the case of communication networks.,
such as multiexchange networks.

The paper is organised as follows. Section 2 introduces basic concepts of the under-

lying model and previous results necessary for justifying the algorithm. The formalisa-

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . 3

tion of the algorithm, its complexity analysis and memory requirements are presented
in section 3, some computational results comparing, in terms of CPU time the Yang
& Kubat [10] approach and the proposed algorithm can be found in section 4, which

1s followed by some conclusions.

2 Foundations of the model

2.1 Basic concepts

Le us consider a network with n components where each component can be in =
0,1.2,...,d(z) different modes, corresponding to different operational, partially oper-
ational or inoperational conditions of the component. It is assumed that component
failures are statisclly independent and that the probability of any component being in
state j is p(7,7), such that Zj(zll)) p(2,5) = 1. Let op(i) = p(7,70) be the probability of
the component being fully operational, then the probability of being in any inoperabil-
ity sate is ip(z) = 1 — op(i). In pratical situations it only interest 1/2 < op(i) < 1,
p(i,jo) > 1/2. Nevertheless in order to mantain the algorithm as general as possible
the follwing definitions are introduced, inspired in the definitions in [6]. A compo-
nent is said to be connected if it is in its most probable state; otherwise is said to
be disconnected. Let p(i,j,) = max; p(i,7) and p(i) = p(i, j) be the probability of
component ¢ being connected. If op(i) > ip(z) then ip(:) = op(s). If op(i) < ip(i) the
p(i) = p(i,jm) (probability of the most probable inoperational state). The probabil-
ity of being disconnected is ng;m p(z,7) and d(1) represents the number of modes of

disconnection. Let the probability of the disconnected states be (i, 7):

q(1,7) = pe(t, 7)), with 1=1,2,...,n (1)
j, = 0717 e 7j7n - 13].7’11 + 17 tee ad(l)a
I+ A < gm
J= Y] . - -
J if 7> gm

Let 54 designate the states of the network. Then similarly to [6]
P(8y) = [T p()' =" q(d, 5) 5 (2)
i=1

where

- 0 if ¢ is connected in state S
T:(5:) = {

1 if 1 isin the j-th disconnected mode in stateS,

It is assumed that S; is the state where all the network components are connected, and

has probability P(S1) = 1%, p(i).

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. .. 4

2.2 Target graph of the algorithm

In order to specify a graph where the algorithm finds A™-shortest paths in order to solve
the state enumeration problem the following definitions are introduced. Let R be a
vector such that R(v) is associated with a given disconnected mode of some component
of the network:

q(z,7)

(r) = —=-, 1

- =1,2,...,m; Jg=1,2,...,d(1); (4)
p(7) dr(i

=di —1)+d(i); r=dr(i —1)+1,....d7p(i)

where by assumption d(0) =0, and dr(0) = 0.

A function id is defined, that transforms the index v = {1,2,...,dr(n)} of R into
the pair (z,7) which identifies the j—th disconnected state of component ¢, according
to (1) and (4). Other function id. is defined that transforms the index v of R into
the label 7 of the component such that (7,7) is the pair associated with v, through
equations (1) and (4).

Let Sp = {e1,€2,..., e} with e, = {1,2,...,dr(n)} and » = 1,2,...,w, represent

a state of the network . Then:

Vey, e, € Sg i ide(e,) #id.(e,) (5)

and from (2) and (4):

w

P(5y) = P(51) HR(Gi) (6)

Note that, in this manner Sy is completely defined by the set of the disconnected modes
(of the components) which characterize the state.
In order to obtain an additive metric required by the shortest path algorithms the

probability of each state is transformed by:

it
~—

—~InP(S) = —In P(S1) — > _In R(e;) (
=1

where the signal “-” guarantees that only positive values are considered.

A graph is then considered where paths are originated at a fictitious node s = 0
and terminated at a fictitious node ¢t = dy(n) + 1. The intermediate nodes of a path
will represent the elements of Sy if the matrix of the costs associated with the arcs is
constructed in a convenient form, as analyzed hereafter.

Let V = {s,v1,v3,...,v_1,t} be the node set of of a directed graph and £ the arc
set, composed of ordered pairs of elements in V. The k-th path generated by the algo-

rithm in this graph will be specified by the sequence p; = (s, (s,v1),v1, - .., (Vu,), 1).

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. .. 5

The corresponding state is Sy = {vy,ve,..., vy}, where the auxiliary nodes s,t were
excluded. The cost of such path will be given by:

w

c(Pk) = D Cuuvuy

u=0

—
o0
R

where c,,,, represents the cost of arc (v;,v;).

In order to guarantee that there is a strict mapping of state probabilities and path

-

costs, from (7)

—In P(Sk) = —1n P(S1) + e(pr) (9)
This implies that
w41
clpp) = — Z In R(v,) (10)
u=1
and:
Copvayy, = —IMR(vq1), u=0,1,....dr(n) —1As=wvy=0 (11)
Cot = 0, t=vyp =dr(n)+1 (12)

Next a cost matrix [¢,;] of dimension (¢) x (f + 1) is defined such that the cost of an
arc is the additional cost of introducing a new disconnected component (in a certain

disconnected mode), while satisfaying relations (4), (11) and (12)

e =cCop = —InR(k) with k<t (13)
Cak = 00, 1f a>k (14)
Car = 00, if 0<a<kAid(a)=1d.(k) (15)
cak = —InR(R), of 0<a<kAidl(a)#1d.(k) (16)
Cat = 0, with t=dr(n)+1 (17)

The elements of row 0 represent the cost of passing from the most probable state
51 to a state S, = k. The element ¢, takes the value 0 so that the shortest path
p1 = (s, (st),t), corresponds to state S; =). The costs c,; just enable that all nodes
may reach the auxiliary node ¢ without additional cost. Relation (15) prevents the
generation of paths associated with any given state S,, containing two or more dis-
connection modes of the same component, since such states can not exist. Equation
(14) prevents the generation o paths including repeated nodes and the generation of
different paths, formed by the same set of nodes, placed in different order. Finally
equation (17) implies that adding node ¢ to a path does not have any cost, according
to (12). It should be pointed out that the obtained matrix is acyclic, that is no path

can be constructed with identical orignal and terminal nodes. Therefore A-shortest

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . 6

paths algorithms will always obtain loopless paths. when applied to a graph whose
arcs’ cost are given by (13)-(17).
An illustrative example of the calculation of R is presented int Table 1 for 3 com-

ponents with 2 and 3 possible modes. Table 2 presents the corresponding matrix.

[[R) [aw

|2 [pe(d,0) [pe(i-1) [pe(7.2) | (1,1) [[1]0.3/0.7 | 0.84730

1 0.7 0.3 (2.1) [[270.2/0.5 | 0.91630

2 05 0.2 0.3 (2,2) [310.3/0.5 | 0.510826

3 03 0.2 (3.1) || 4 [0.2/0.8 | 1.38629
(a) (b)

Table 1: (a) Probabilities of components” modes and (b) calculation of R.

oo 0.84730 0.91630 0.510826 1.38629 0
o0 00 0.91630 0.510826 1.38629 0
o0 00 o0 00 1.38629 0
oC o0 00 00 1.38629 0
o0 00 00 00 00 0

Table 2: Cost matrix

In order to justify that the sequential enumeration of the most probable states is
equivalent to obtaining the k-shortest paths from s to ¢ in the directed graph above

defined two auxiliary propositions are now presented.
Proposition 2.1 Any path from s to t:

p= <S’ (33 ‘Ul)v U1, (1’17 1”2)a V2annvy (l’u,, t),t)

obtained from a shortest path algorithm, in the graph the arcs of which have the costs
defined by equations (13)-(17) and the arcs with oo cost deleted, then s < vy < vy <
<y, < T

Proof: Vi,5 € [0,1....,dp(n)+1]:i > j = ¢;; = oo, according to (14).

Proposition 2.2 Let p be a path from s to t:
P =(s(8,01), 01, v, (Ve ;) vp, - U1, (o1, 05)s ooy (Vg B), 1)

then ide(vq) # ide(vy), Vg, vp € p.

~1

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . .

Here it is conventioned that ide.(s) = 0 and id.(t) = n + 1
Proof: Let us assume v; < v;. v;,v; € p.
Let p:
P= (0 0im (Vin 1, 03), Vi 0 (V1))
If (vi,v;) € p' then from (15), id.(v;) # 1d.(v;), since otherwise the arc would have oc
cost. If (v;,v;) & p' and (vl,v]) € p thenvi = s =0 orv; =t and the proposition
is obviously verified. If (v, v;) € p' and (vi,v;) € p then, it is possible to construct a

sub-path p* from v; to v;, in p:
P = (o0 (01,00, 0 1) 5)

such that v; <vj <...v; <wv; and from equations (4) and (15) the arcs in p* only may

exist if the extreme nodes have different values of id,. which concludes the proof.

3 The algorithm

Next we formalize the algorithm for enumerating the A most probable states. taking
as a basis the graph defined in the previous section, the nodes of which represent the
different disconnected modes of all the components; the arcs and their associated costs
are defined by matrix [c,x] and the cost of a path, representing state S,, when added
to —In P(5)) gives the values —In P(Sy). For calculating the A-shortest paths we
will use algorithm MPS in [7], which is, to best of our knowledge, the most efficient
algorithm available in the literature.

The variable P. and P; represent the calculated and the desired probability cover-

age, repectively.

Algorithm 3.1 (State generation in a multimode component network)

L Input: pe(iyg), 1 =1,2,...,n, 3 =0,1,2,....d(i). and P,, the desired coverage
probability of the state space and assume without loss of generality: p.(i,0) =

max;—o,...d(i) Pe(?, 7)-
2. Calculate P(5y), P(S1) = [T, p(,0).

3. Construct a vector R. such that:

Rir) = Pelt)) =1,2,....1 G=1,2.. ., d(3);
dT (1) = 7—1)+d(); r=dr(e—=1)+1,....dp(z);

with d(0) =0 and dr(0) = 0.

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . S

Define the graph the arcs of which have associated costs [cqr] given by (13)-(17)

s

S

Construct the shortest tree of all nodes to t. This is trivial because such tree is
formed by the paths < v, (v,t),t > of cost 0, withv =0,1,2,...t — 1.

6. Obtain a representation of the graph in the ordered forward star form (see details

in Dial & et al. [2])

7. u=0;FP.=0

o

. While (P. < Py)

(a) ©we—u+1;

(b) caleulate the next shortest path. p,, from s 1o t using the MPS algorithm:
let its cost be ¢(p,).

(¢) Calculate the associated state probability: P(S,) = e~ “P) P(S))
(d) P.+ P.+ P(S,)

EndWhile

3.1 Algorithm complexity

Firstly note that the re-labelling operations have a cost proportional to the number of
relabelled elements. The complete expression of the complexity of the used A-shortest

path algorithm MPS is given in [7]:
O(I£]+ [V[log, VI + L] + | L] log, [V + K|V]) (18)
where each of the parcels is due to:
o [L| +|V]log, [V|: obtaining the tree of shortest paths to ¢, 7;°;

o |£]|: calculation of reduced costs in the arcs[3, 7], necessary for applying MPS

algorithm;
o |L|log |V|: storing the arcs in the sorted forward star form:

o K|V|: cost of obtaining the A" shortest paths in 7, after performing the previous
operations. This results from the fact that, in MPS, each time a shortest path is

selected, at most |V| new paths have to be generated.

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. .. 9

This gives rise to a simplified expression for the complexity of the form [7]:
O (I£]log |V| + K|V|) (19)
We now present the complexity calculation for our simplified version of MPS:

¢ Having in mind the particular structure of the cost matrix, the construction of
the tree of the shortest paths from every node to ¢ is trivial (all its arcs have null

cost) and its cost in terms of complexity is O (V).

e Also in the context of the proposed algorithm it is not necessary to calculate
reduced costs in the arcs (reported to the shortest path tree rooted at t) since

they are equal to the arcs costs.

e As for the construction of the graph in the sorted forward star form, it may be
done in the following manner, with a complexity proportional to the number of

arcs of the graph, having in mind the particular structure of the cost matrix:

— order all the arcs originated at node s = 0 by decreasing cost using the

quicksort algorithm, which has complexity O ([V]log, |V]) [9];

— then define straightforwardly the remaining forward star form structure (no
further sorting algorithm is needed) since the successors of the arcs origi-
nated at nodes » > 0 appear in the same order as for node 0, whenever they

exist.

In this manner it is possible to create the forward star form structure with com-
plexity:

O(I£]+ Vllog, V]) = O (|£])
assuming |£]| < |V[%

¢ Due to the fact that all nodes in V are adjacent to ¢ in 7/, every time a new

shortest path is selected at most two new paths are generated?,
Therefore the overall complexity of the algorithm hecomes:

(L

+ i) (20)

It should be noted that |£] is due to the initial operations that precede the sequen-

tial generation of the states, this is what could be called the algorithm “overhead”.

'This can be deduced from the MPS algorithm with this particular 7.

T. Gomes. J. Craveirinha and L. Martins, An efficient algorithm. . . 10

Therefore, if the number of selected states is sufficiently large, the complexity of the
algorithm will depend solely on the number of selected states, K.

As the cost matrix is upper triangular the maximum |£] is (|V]* — |V|)/2, with
VI =24+ (N, —1) <2+ (N — 1)n:

O(L

+Ajg0(mm?+ﬁ) (21)

or,
O (K) if K > [aN]?

O(l£l+ K) < { @ ([721\’]2) if K < [nN]? (22)

3.2 Comparing with the Yang and Kubat algorithm

Yang & Kubat [10] proposed a state enumeration algorithm with multi-mode com-
ponents where the state enumeration problem for a given state coverage probability
is transformed into a tree search problem. This algorithm, the most efficient so far,
was show to have a complexity O (K'Y F, N;) < O (AnN), where i is the number of
states which had to be generated in order to attain a given coverage probability; also

n and N have the same meaning as in this text. Therefore it may be concluded:

o if ' > [nN]2 the presented algorithm has an upper bound complexity of O (L),

which is much lower than O (A'nN)

The situation A" > [nN]2 will occur for small and medium size problems, because
1s nlV is high, lets say greater than 1000 then 1000 = 1EG6, and probably it will

be unfeasible to consider such a significant number of states .

o if A" < [nN]? the proposed algorithm will have an upper bound complexity of

O ([711\/’]2) which is smaller than O (A'nN), for K > Nn.

This situation, &K < [nN]?, will occur only for large problems, and in that case
having A" > Nn, will be the most comom in reliability studies! In fact. taking
K = (N —1)n 4+ 1 would result in considering the most probable state and a

number of states equal to the number of differente states, Sy, of cardinality 1.

Therefore usually, for large problems nN < A" < (nN)?, and the complexity of
the proposed algorithm will be apparently only slightly inferior to the Yang &

Kubat approach.

3.3 Complexity versus memory requirements

The implementation of the MPS algorithm [7], the complexity of which was presented

in the previous sub-section, uses most likely an address calculation method [2], for

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . 11

orderly storing the candidate paths. This method is extremelly efficient, when the
arcs’ costs are integers.

The constructed cost matrix is made of real numbers obtained from using logarithms
over probability values. Many of these real numbers will differ only their fractional
parts, and the effciency gained by using address calculation method [2], will be lost.

The computional results, in the next section, refer to an implementation where
a binary heap [9] was used for orderly storing the candidate paths. This paticular
implementation of the MPS algorithm has complexity (see appendix A for detailled

calculations):

O(|L| + K log, K) (23)

This complexity is still lower then the one achieved by the algorithm by Yang & INubat
as long as log, A" is smaller than N'n, which will be true for i of significant value when
compared to the total number of states of single failure in the network.

Therefore we may conclude that regardless of the implementation our algorithm
presents lower complexity.

As for memory requirements, the proposed algorithm stores at most 2 + 1 paths
and therefore has a memory complexity of O (L), because each path can be stored
using a record of fixed size, which does not depend on n or N.

The memory requirements of the algorithm of Yang & Kubat [10] is not so easily
obtained. From the calculations in the appendix, a lower bound for the number of nodes
needed, to represent \" states, is given by n+1—h + L' Y% 1/N%. Considering only
the first three parcels of them sum we have n+1—h-+RK + A (1/N +1/N?) Considering
that everyone of these nodes (except the I leafs) has associated an array of size N; (for
storing the wheight of the most heavy leaf of its i-th sub-tree), than an approximate
lower bound for the memory requirement of this algorithm is K(2+1/N)+N(n+1-h).
Therefore a lower bound for memory complexity is O (K + Nn).

The lower bound for the Yang and Kubat algorithm is therefore similar to the upper
bound of the proposed algorithm, and the computional results will show that indeed

the results are for from the best case.

4 Experimental results

In the graphics that follow we will use “YK” for the Yang and Kubat algorithm and
“MM?™ for the proposed algorithm.

The O symbol is a rather crude operator, and the experimental results will show
that althoug the complexity of the two algorithms seems to be close values of K,

k € [nN,(nN)?], the experimental results show otherwise, as can be seem from figures

T. Gomes. J. Craveirinha and L. Martins, An efficient algorithm. . . 12

Networks with 50 Multi-Mode Components Networks with 500 Multi-Mode Components
—— T ———————— 800 —_——
CYREh ——
70 F- - 700 ____' e - S T e
60 | 600 Lo -
g son Z 500 b
Q Q !
£ 40 Z 400 |-k
E 30 E K11 ——
3] o i
20 F 200 F - --
10 I 100 .
0 AN H PO H i A 0 i i i ; . . i
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 60G 700 800 900 1000
Number of network states Number of network states
(a) (b)
Figure 1: Comparison of the algorithms for N = 3,5 and (a) 50 (b) 500 network
elements

I{a) and (b). For neworks with a small number of components (n = 50, 100, 200) the
performance of MM is superior to YI; for larger problems such as networks with 500
components, only when the number of selected states is relatively very low (in the
example A" = 50,100, in a 500 element network with at most 5 diferent modes) does
MM performs worse than YI. Nevertheless this result does not compromise the use of
MM because in any reliability study the number of network states will have to be larger
than n, and indeed superior to n(/N — 1), which is the number of states of single failure
— and for those conditions the prosposed algorithm is significantly more efficient.

The almost flat line in figures 1(a) and (b) for MM is due to the fact that if the
number of states K is not very large with n/N most of the CPU time is overhead time
and therefore the time used to actually select the states in almost irrelevant. In figure
3(a), for n = 1000 this condition still holds, but for n = 50, 100, 200, 500 the situation
is different. The situation reverses, as can be seen in figure 3, where the time after the
overhead becomes dominant for n = 50,100,200, 500; still for n = 1000 and N = 5
the overhead time is aproximately equal to the time remaining time for state state
selection, therefore the they have identical importance.

Please note the different scales for CPU time in figures 2(a) and (b) for both algo-
rithms. For example for n = 1000, N =5 (nN = 5000), and the results show a CPU
time of 15.8s for YI and 0.55s for MM (of which 0.5s are due to the initial overhead
cost). It is precisely in large problems that the proposed algorithm performs the best
when compared with the Yang & Kubat approach, as can be seem from figures 2(a)
and (b). In fact for n = 1000 the tree heigh will be n in Yang & Kubat algorithm, but
in the MM algoritm, appart form the initial cost (0.5s for N = 5) the CPU time for

MM grows linearly with n, as well as the memory.

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . 13

Network states: 10,000 Network states: 100,000
20 ——— 1 W—— 1.2
1 ; YK (N=3) —— i i i ; YK (N=3) —e—
: YK (N=4) —— 1 YK (N=4) ——
16 F- woo. YK (N=5) —=— | 0.8 0 YK (N=5) ——— 11
MM (N=3) - e : MM (N=3) e
o MM (N=4) - = 2 o MM (N=4) 0g &
3 2 2 -
g 127 - E
= 22 0.6 o
U gl ; O ;
M x :
> s = 4 g
= 0.2
0 e A (N N 0 0 Y W S N (N N N 0
0 100 200 300 400 500 600 700 800 900 (000 0 100 200 300 400 500 600 700 800 900 1000
Number of network components Number of network components
(a) (b)

Figure 2: Comparison of the algorithms for N = 3.4,5, (a) 10,000 states and (b)
100,000

In figure 2(b) there are no CPU times for YIX for n = 500, 1000 because the Yang and
Kubat algorithm uses all available memory, then starts do use disk space as memory,
finally uses all of the swap disk available and then terminates due to lack of resources.
before obtaining the desired 100,000 states. In figure 2(b) the CPU values for n = 100
are still without swapping but for n = 200, swapping already occurs. This results
confirm what was expected from the analys the memory requirements for the worst
case and best case for MM and YN algorithms respectively, which were shown to be
close.

In MM the initial cost, which grows with the problem dimension, and where lies the
most part of the CPU effort, for larger problems (n=200,500,1000) and small number
of paths, can be seen in figures 3(a) and 3(b), where (MM-total represents the total
CPU time and MM-k represents the part of that CPU time which used for enumerating
the K" = 10000,100000 states, after the initial overhead). This steems from the fact
that in those problems the complexity of the proposed algorithm is established by the
algorithm “overhead”: the effort that preceeds the first path selection, regardeless of
the number of selected paths K, as long as & < (nN)? (according to the complexity
calculations). Nevertheless as the number of paths becomes more significant, the cost
of the paths surpassses the initial cost and makes more clear the extreme effciency of

MM.

5 Conclusions

In the context of performability analysis of telecomunications networks it is necessary

to select the states to analyse, and a commomly accepted criterion is the selection of

T. Gomes. J. Craveirinha and L. Martins, An efficient algorithm. . . 14

Network states: 10,000 Network states: 100,000
600 T T T r -ll((N=j) = 1100 T T T v r MM-kl (N=3') —
i i : MM-k (N=4) - ; MM-k (N=4)
500 bt MM-k (N=5) o] 1000 k- - . S - MM-k (N=5)

MM-total (N=3) —=—
B MM-total (N=4) —+—
) MM-tolaI (N=5) —ﬁ/’"

MM-total (N=3) ———
MM-total (N=4).-——
MM-total N=5) ——.7]

-

400 b - P

300

MM CPU time (ms)

200 F-ccr oo g

MM CPU time (ms)

600 | = : B

[1110 Rt S R |

H i H H i H i H H 500 H H i L H 1 H
0 100 200 300 400 500 60O 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of network components Number of network components
(a) (b)

Figure 3: Total CPU time (MM-total) versus part of that time which was used for
state enumeration (MM-k), after the initial overhead, for N = 3,4, 5, (a) 10,000 states
(b) 100,000 states

states by decreasing probability until a certain probabilistic coverage of the state space
1s attained.

We present a new algorithm for the purpose of enumerating, by decreasing or-
der the most probable states ins a network with multi-mode components. This algo-
rithm efficiency results from using a simplified version of an already extremely efficient
I —shortest paths algorithm. For this purpose an adequate cost matrix as to build, so
that each path represents a network state.

This algorithm presents lower complexity than the most efficient one known in the
literature [10] when the number o selected states is of pratical interest. Also it uses
much less memory, which may be an important factor in the context of a large reliability
tool analysis.

Some computational results were presented that showed the signifcant improvement
which can be achieved by using this algorithm instead of the Yang & Kubat [10]

approach.

Acknowledgements: Célia Reis implemented both algorithms and collected some of

the data used in the figures of this report.

A Complexity calculations

Let [Xi| be the size of the set of candidate paths before the removal of the k-th shortes
path; let | Xy o| be the size of the set of candidate states after the removal of the k-

shortest path; and let | Xy 1], | X;,| be the size of the set of candidate paths after the

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . 15

first and second insertion made after the removal of the k-shortest path. Then, in the

worst case (two insertions for every selected path):

| Xkol = |Xx| -1 (24)
IXiil = [Xkol+1 =X, (25)
Xeal = [Xeal+1 =X +1 (26)
| Niepr] = | X3 +1 (27)
So the cost of maintaining a heap of the shortest paths is:
K-1
1+ AZ_; (2logy [Xk| + log, [Njta|) + log, Ni (23)

But |X;| =1 (initially the set of candidate paths is just the shortest path from s to ¢

in 77), |Xao| = 2,...,|Xi| = &, and the previous expression can be rewritten:
K-1 K-1
L+ > (2log, k+logsk + 1) +log, ' = 1+2log, A +3 > logy, ko (29)
k=1 k=1
I
< 3Zlog2/c (30)
k=1
< 3Klog, IV (31)

Therefore the cost of the algorithm is now O (|£]| + K log,).

B Memory requirements

The calculation of the memory requirements of the Yang & Kubat [10] algorithm is
not simple.

The number of nodes in the tree, of height n necessary for calculating the " most
probable states, depends on the values of the p(i,) for every component 1.

A lower bound on the number of nodes can nevertheless be obtained. Lets consider
that the tree of the K" most probable states has a subtree of height 1og N i_'(that is the
most densest sub-tree with A" leafs), hanging from an arm with n+1 — A nddes, where
h = [Logn K] ([2] represents the smallest integer greater or equalt to x).

So the total number of nodes is n +1 —h + K'Y 1/N'. It should be noted
that such a tree is a very unlikely structure although something of that type might be
achieved if all nodes are ordered by decreasing cost of their more probable state the

different modes of each componet is also ordered by decreasing probability.

T. Gomes, J. Craveirinha and L. Martins, An efficient algorithm. . . 16

References

[

(0]

5.-N. Chiou and V. O. K. Li. Reliability analysis of a communication network
with multimode components. IEEE Journal on Selected Areas in Communications,

SAC-4(7):1156-1161, October 1986.

R. Dial, F. Glover, D. Karney, and D. Klingman. A computational analysis of
alternative algorithms and labeling techniques for finding shortest path trees. Net-
works, 9:275-323, 1979.

D. Eppstein. Finding the & shortest paths. STAM Journal on Computing, 28:652-
673, 1998.

T. Gomes and J. Craveirinha. An algorithm for the sequential generation of states
in a failure prone communication network. IEE Proceedings - Communications,
145(2):73-79, April 1998.

Y. F. Lam and V. O. K. Li. An improved algorithm for performance analysis of
networks with unreliable components. IEEE Transactions On Communications,

Com-34(5):496-497, 1986.

V. O. IX. Liand J. A. Silvester. Performance analysis of networks with unreliable
components. [EEE Transactions On Communications, Com-32(10):1105-1110,
1984.

E. Martins, M. Pascoal, and J. Santos. Deviation algorithms for ranking shortest
paths. International Journal of Foundations of Computer Science, 10(3):247-263,

1999. http://www.mat.uc.pt/” marta/research.thml.

J. F. Meyer. Performability: a retrospective and some pointers to the future.

Performance Evaluation, 14(3,4):139-156, 1992.
R. Sedgewick. Algorithms in C++. Addison-Wesley Publishing Company, 1992.

C.-L. Yang and P. Kubat. Efficient computation of most probable states for com-
munication networks with multimode components. IEEE Transactions on Com-
munications, 37(5):535-538, May 1989.

C.-L. Yang and P. Kubat. An algorithm for network reliability bounds. ORSA
Journal on Computing, 2(2):336-345, 1990.

