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Abstract—We propose an algorithm for two-frame stereo
reconstruction that generates an accurate semi-dense piecewise
planar model of the 3D scene. First, we use the SymStereo
framework [1], [2] for obtaining a semi-dense stereo recon-
struction, which exploits symmetry cues for estimating depth
along virtual cut planes. Next, the energy-based multi-model
fitting algorithm PEARL [3] is applied for estimating the plane
models, and labeling the lines of intersection between the vir-
tual and epipolar planes. This procedure involves three steps:
(i) generate an initial set of plane hypotheses by extracting line
cuts from each virtual cut plane, (ii) inlier classification, and
(iii) a plane model refinement step.

We provide experiments of our approach on a variety
of challenging indoor and outdoor stereo pairs. The results
show that we successfully detect and reconstruct the planar
surfaces contained in the scene, as well as are able to obtain
plausible piecewise planar descriptions of non-planar objects.
In contrast to existing approaches, the accuracy of our plane
hypotheses are not limited by an initial 3D reconstruction, but
are iteratively refined after each plane labeling.

Keywords-Piecewise planar reconstruction; SymStereo;
Semi-dense reconstruction; PEARL

I. INTRODUCTION

Piecewise planar models have recently become popular

for the reconstruction of man-made environments [4], [5],

[6], [7], [8]. The strong planarity assumption is useful

as a prior for stereo reconstruction, helping to overcome

difficulties caused by poorly textured surfaces and non-

Lambertian reflections. In addition, the computed 3D models

are perceptually pleasing and geometrically simple and, thus,

their rendering, storage and transmission is computationally

less complex. It is important to emphasize that by Piece-

wise Planar Reconstruction (PPR) we mean detecting and

reconstructing dominant plane surfaces in the scene, which

is different from approximating surfaces by small planes,

as typically done in several dense stereo methods (e.g. [9],

[10]).

PPR is in a large extent a ”chicken-and-egg” problem.

If the dominant planes in the scene are known ’a priori’,

then accurate stereo matching and depth estimation can be

easily achieved (e.g. the stereo aggregation can be carried

along the known plane orientations [9]). On the other hand,

if we have correct depth maps, then the problem of detecting,

segmenting, and estimating the pose of dominant planes

is relatively trivial. Unlike other methods that treat stereo

matching and plane detection sequentially, the algorithm

herein proposed accomplishes both goals in a simultaneous

and integrated manner. We show how to determine the planar

surfaces in the scene while accurately reconstructing the line

segments where these surfaces are intersected by a set of

pre-defined virtual cut planes (semi-dense PPR). This can be

accomplished using only two calibrated images, and without

making any assumption about number or relative pose of

planes in the scene. In addition, the method can be tuned to

be more or less strict about what is considered to be a planar

surface, which is a useful feature that enables approximating

entire scenes by piecewise planar models.

A. Related Work

Several works in PPR start by obtaining a sparse 3D

reconstruction of the scene (e.g. point clouds, edge lines,

etc), then establish plane hypothesis by applying multi-

model fitting to the reconstructed data, and finally use these

hypotheses to guide the dense stereo process and/or perform

a piecewise planar segmentation of the input images [4],

[11], [5]. Furukawa et al [6] proposes to perform PPR

assuming a Manhattan-world model. They reconstruct 3D

patches in textured image regions from multiple views using

[12], and use the patches’ normals to establish plane surface

hypotheses. These hypotheses are then used in a MRF

formulation for pixel-wise plane labeling. In [7], Sinha et

al. propose a probabilistic framework for assigning plane

hypotheses to pixels with the evidences of planar surfaces

being provided by point cloud reconstruction, estimation of

vanishing lines, and sparse reconstruction of edges. All these

works use multiple cues from multiple views to robustly

detect the dominant planes in the scene. As discussed in

[1], these approaches are not meant for two-view stereo,

that would hardly provide enough sparse 3D evidence for

supporting the plane hypotheses.

An alternative strategy is to over-segment the stereo

images based on color information and fit a 3D plane to

each segment region. The number of planes to be considered

is defined by the segmentation result, acting as a smooth-

ness prior during global optimization. This segmentation

information can be either used as a hard minimization

2012 Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization & Transmission

978-0-7695-4873-9/12 $26.00 © 2012 IEEE

DOI 10.1109/3DIMPVT.2012.49

230



������ �	
��	��	����

��������������	�����	�	���
����������������	�

������������	��	�

����������	�

��
��	�	��������
��	�

Figure 1. Overview of the algorithm. The input images I and I′ denote, respectively, the left and the right views. The SymStereo framework is applied
for obtaining a discrete set of energies E which quantify the occupancy likelihood in 3D in a sparse manner. We show the resulting sparse energy maps for
points lying on the epipolar planes Ψa and Ψb (see overlay in the input images). The highlighted energies correspond to the points of intersection with
the virtual cut planes Πc and Πd. The PEARL approach is used for estimating the different planes contained in the scene. We show in grey the lines of
intersection between the initial plane label space for PEARL and the epipolar planes Ψa and Ψb. A MRF-based regularization framework is used to assign
plane labels to each back-projection ray bq,r of the cyclopean eye, corresponding to the intersection of the virtual cut plane Πq and the epipolar plane
Ψr . After the plane labeling, the inlier planes are re-fined based on the SymStereo energies E. We iterate between discrete plane labeling and continuous
plane optimization until the energy of Equation 1 stops decreasing. The output of our algorithm is an accurate semi-dense piecewise planar description of
the 3D scene. We show on the right the input images with the final line cuts overlaid, where each color corresponds to a different plane; and two views
of the final semi-dense 3D reconstruction.

constraint [13], [14], [15] or as a soft constraint [16]. The

main weakness of this strategy is the assumption that planar

surfaces in the scene have different colors, which is often

not the case in most man-made environments (e.g. walls,

corridors, doors, windows, etc).

Gallup et al [8] propose a stereo method capable of

handling both planar and non-planar objects contained in

the scene. It uses a robust procedure for fitting planes

hypotheses to dense depth maps, that minimizes the chances

of a wrong plane labeling. Although the approach was

originally meant for multi-view stereo, we tested it in two-

view stereo obtaining reasonable results. The main drawback

is the fact that depth estimation and plane fitting are carried

in a sequential, decoupled manner. The errors in the stereo

matching affect the accuracy of plane pose estimation, and

the plane surface assumption is not used to refine the initial

depth estimates.

Antunes et al. have recently proposed a stereo approach

that is specially effective for recovering depth along arbitrary

virtual planes passing in-between the cameras [2]. The

framework, named SymStereo, has been employed in [1]

for the purpose of PPR using just two images. The strategy

consists in probing the work volume by a discrete set of

virtual planes, and reconstructing the contours where these

planes intersect the scene structure. Since in the case of

planar surfaces these curves are straight lines, they proceed

by extracting line segments with Hough transform, followed

by clustering the reconstructed line cuts into planes using

a RANSAC-like approach. The method has the advantage

of avoiding dense disparity estimation, which helps to keep

the computation tractable whenever handling high-resolution

images [2]. However, and in a similar manner to [8], the

depth estimation and the planar surface detection are carried

in a sequentially, decoupled manner.

In [17], Birchfield and Tomasi describe a method for car-

rying stereo matching and 3D plane fitting in simultaneous.

The strategy consists in alternating between segmenting the

input images into non-overlapping regions and finding the

affine parameters describing the disparity function of each

region. As acknowledged by the authors, the algorithm can

become easily stuck in a local minimum whenever it faces

low-textured surfaces.

In this article, we combine the semi-dense stereo recon-

struction described in [1], [2], which uses symmetry energy

for estimating the depth along virtual cut planes, with the

energy-based model fitting recently proposed in Isack and

Boykov [3]. The main advantage of our algorithm is that

it enables to refine the plane hypothesis after each plane

labeling, which means that, unlike [8] or [1], the accuracy

of the PPR is not limited by the initial dense disparity maps

or line cut reconstruction, respectively.

B. Overview of the algorithm

The algorithm presented in this paper is briefly summa-

rized in Figure 1. The input is a pair of rectified stereo

images. We use the SymStereo framework (Section I-B) and
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(a) IS (b) ES (c) IA (d) EA (e) E

Figure 2. SymStereo: Let ̂I be the result of warping I′ by the plane-homography induced by a virtual cut plane Π intersecting the baseline (see Πc

and Πd in Figure 1). The image signals IS and IA, obtained by adding and subtracting I with ̂I, are respectively symmetric and anti-symmetric around
the image of the profile cut (colored line segments in (a) and (c)). Remark that the intersections with the locus where the profile cut is projected can be
identified with almost no ambiguity by searching common pixel locations for which IS and IA are respectively locally symmetric and anti-symmetric along
the epipolar lines. (b) The symmetry energy ES , (d) the anti-symmetry energy EA, and (e) the final joint energy E is computed by pixel-wise multiplication
of ES and EA in order to highlight pixel locations for which both symmetry and anti-symmetry arise (low to high energy varies from white, yellow to
shades of red and black).

employ a sparse set of N virtual cut planes intersecting the

baseline in its midpoint for obtaining the energy E for each

virtual plane. The approach can be understood as follows:

consider a cyclopean eye located between the cameras that

scans the 3D scene by a discrete set of virtual cut planes.

For a particular virtual scan plane, the likelihood of each

point location being occupied is quantified by an energy E

obtained using the SymStereo framework [1], [2]. In order

to detect and locate planar surfaces in the scene, we take

advantage of the prior that two planes always intersect into

a line, meaning that the intersection of the virtual plane

with a scene plane is always a line cut. We formulate

the multi-model plane fitting as an optimization problem

using the PEARL algorithm [3] (Section III). The initial

plane labels are proposed by first extracting line segments

from each energy E using the weighted Hough transform,

and then each set of two lines provides a plane hypothesis

for the initial label set. The objective in the expand step

is to assign to each back-projection ray of the cyclopean

eye, that is the intersection of a virtual cut plane and an

epipolar plane, a plane label of the initial plane set. This is

accomplished using an energy regularization framework and

α-expansion optimization. In the third step, we re-estimate

the parameters of each plane model with non-empty set of

inliers by minimizing over the energies E via Levenberg-

Marquardt [18]. All labels with no inliers are discarded, and

the new plane set is used in the expand step. We iterate

between inlier classification and re-estimation steps until a

new α-expansion does not decrease the global energy. The

results (Section IV) show that our approach successfully

recovers accurate semi-dense piecewise planar descriptions

of challenging scenes containing multiple planar and non-

planar surfaces.

II. SYMSTEREO

The SymStereo framework was presented in [1], [2] and

relates with plane-sweep stereo [19] in the sense that it also

samples the 3D space by a family of virtual planes and back-

projects the input images onto these planes for searching

corresponding image locations. However, SymStereo exclu-

sively considers virtual planes that intersect the baseline in a

point between the cameras. In this case, corresponding image

locations are not photo-consistent, but instead are reflected

one with respect to the other around the curve where the

virtual plane intersects the scene structure (the profile cut).

SymStereo explores this mirroring effect for reconstructing

the profile cut using symmetry analysis.

A. Processing each virtual cut plane

We show in Figure 2 the processing of two virtual cut

planes, where the final detection results of our algorithm are

overlaid in the input images in Figure 1. Let Î be the result

of warping the right image I′ by the plane-homography

associated with a virtual cut plane. Since the virtual plane

intersects the baseline, then I and Î are reflected around

the image of the profile cut. Thus, the sum of I and Î

yields an image signal IS that is symmetric around the locus

where the profile cut is projected. In a similar manner, the

difference between I and Î gives rise to an image signal IA

that is anti-symmetric at the exact same location. SymStereo

detects the image of the profile cut by jointly evaluating

the symmetry and anti-symmetry of IS and IA at every

image pixel location. This provides an implicit manner of
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recovering depth along a virtual cut plane and achieving data

association across views.

The quantification of the signal symmetry and anti-

symmetry along the epipolar lines in IS and IA, respec-

tively, is accomplished by analyzing the local frequency

information using a bank of log-Gabor wavelets [20]. This

allows to obtain the symmetry energies ES and EA from IS
and IA, respectively. In order to highlight the pixel locations

that are both symmetric and anti-simetric in IS and IA,

respectively, the joint energy E is computed by pixel-wise

multiplication of ES and EA. As can be observed in Figure

2, this operation enables to discard many spurious local

maxima that arise in both the symmetry and anti-symmetry

energies.

III. PIECEWISE PLANAR RECONSTRUCTION USING

SYMSTEREO AND PEARL

This section describes the algorithm that combines the

SymStereo framework with the geometric multi-model fit-

ting algorithm PEARL [3] for semi-dense piecewise planar

reconstruction of the scene. The PEARL algorithm consists

in three main steps: (i) propose an initial set of plausible

models (labels) from the observations, (ii) expand the label

set for estimating its spatial support (inlier classification),

and (iii) re-estimate the inlier models by minimizing some

error function. We assume that we have N energies Eq
obtained using SymStereo from a set of N virtual cut planes

Πq that belong to a vertical pencil with the axis intersecting

the baseline in its middle point.

(a) Left View I (b) Right View I′

Figure 3. Detection of line cuts from 25 virtual cut planes. Line cuts
belonging to the same virtual plane have the same color. The independent
detection for each virtual plane of the image of the profile cut contains
holes, poor estimations and mis-detections.

A. Initial plane set for PEARL

Following an approach similar to [1], each energy Eq is

used as input to a weighted Hough transform for extracting

line cuts (Figure 3). Each 3D line segment is a possible

location of intersection of a virtual cut plane with a planar

surface contained in the scene. In order to propose an initial

set of plane models P for PEARL, we generate all possible

planes that can be obtained from two 3D lines. Remark that

only line cuts from different virtual planes generate a valid

plane hypothesis for P .

B. Graph-Cut labeling and plane refinement

Given the initial set of plane hypotheses P , the objective

is to expand the models and estimate their spatial support.

LetΠq , with q = 1, 2, ..., N , be the set of vertical virtual cut

planes that meet the baseline in its midpoint, and Ψr, with

r = 1, 2, ...,M , the set of epipolar planes (one epipolar plane

per image row). Consider also line bq,r where Πq intersects

Ψr, which can be understood as a back-projection ray of the

cyclopean eye. The objective of our approach is to estimate

the point on bq,r that most likely belongs to a planar surface.

This problem can be cast as a labeling problem, in which

the nodes of the graph are the back-projection rays bq,r∈B,

and to each bq,r we want to assign a plane label fbq,r
.

The set of possible labels is F={P, non−planar}, with

non−planar meaning that no point on bq,r belongs to a

plane surface. Please note that we use b instead of bq,r
whenever the virtual and epipolar plane specification is not

strictly necessary. The objective energy E is defined as

E(f)=
∑
b∈B

Db(fb)

︸ ︷︷ ︸
data term

+λ
∑

b,c∈N
Vb,c(fb, fc)

︸ ︷︷ ︸
smoothness term

+β · |Ff |︸ ︷︷ ︸
label term

, (1)

where f is a particular labeling being considered, the neigh-

borhood N for bq,r is defined by the four back-projection

rays bq−1,r, bq+1,r, bq,r−1 and bq,r+1 (see Figure 4),

and Vb,c is the spatial smoothness term that encourages

piecewise smooth labeling by penalizing configurations f
that assign to neighboring nodes b and c different labels.

The label term is used for describing the 3D scene using as

few unique plane surfaces as possible, with Ff being the

subset of different plane models assigned to the nodes b
by the labeling f (see [3] for further details). The data and

smoothness terms are further described below.

1) Data term: The data term Dbq,r for the back-

projection ray bq,r is defined as

Dbq,r
(f)=

{
min(1− Eq(r, xf ), τ) if f ∈P
τ if f=non−planar

(2)

where Eq is the energy associated with Πq , r is the row

corresponding to Ψr, xf is the column defined by the plane

hypothesis f (intersection of bq,r with the plane indexed by

f ), and τ is a constant. Note that similarly to [8], the non−
planar label indicates that no satisfactory plane hypothesis

can be assigned to bq,r. In this case, the back-projection ray

bq,r has high probability of not intersecting the scene in a

planar surface.

233



Figure 4. We use the PEARL algorithm for assigning to each back-
projection ray bq,r , corresponding to the intersection between a virtual cut
plane Πq and an epipolar plane Ψr , a plane surface label fb. C and C′
represent, respectively, the left and the right cameras. The neighborhood N
of the red line b2,2 is constituted by the green lines b1,2 and b3,2 that
are on the same epipolar plane, but belong to neighboring virtual planes;
and by the blue lines b2,1 and b2,3, which are on the same virtual plane,
but are intersected by neighboring epipolar planes.

(a) Crease Edges (b) Detected Line Segments

Figure 5. Crease edges arise from the intersection of planar surfaces in the
scene. We show in (a) the crease edges obtained from our piecewise planar
3D reconstruction. The location of occlusion edges is usually coincident
with visible 2D line segments. We show in (b) the result of the clustering of
concurrent lines, such that each group of lines provides a possible vanishing
point location. The white line segments did not received any vanishing point
label.

2) Smoothness term: Inspired by [7], the smoothness

term of neighboring nodes b and c is given by

Vbc(fb, fc) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if fb = fc
λ1 if (fb ∨ fc) = non−planar
λ2 if (b, c, fb, fc) ∈ S1
λ3 if (b, c, fb, fc) ∈ S2
λ4 if (b, c) ∈ S3
1 else

(3)

where 0 < λ2 < λ3 < λ4 < 1, and the content of the sets S1,

S2 and S3 is shortly described. No penalization is assigned

to neighboring nodes receiving the same plane label, while

in the case of one node obtaining the non−planar label, a

non-zero cost is added to the plane configuration f .

Let pb,fb be the projection onto the left view I of the point

on the ray b intersected by the plane surface associated to

fb. Following the same reasoning as in [7], the assignment of

different plane labels fb and fc to neighboring nodes b and

c is less penalized if pb,fb and pc,fc are separated by either

a crease or an occlusion edge. A crease edge (Figure 5(a))

corresponds to the projection of the 3D line of intersection

between a pair of planes onto I. For this purpose, we store

in the set S1 the quadruples (b, c, fb, fc) whose points pb,fb
and pc,fc are located on different sides of the crease edge

defined by fb and fc.

Occlusion edges often coincide with visible 2D line

segments in the input images (Figure 5(b)). In order to

find possible occlusion edges, we detect 2D line segments

s in I using the Line Segment Detector [21]. Then, single-

view multi-vanishing point fitting is performed for clustering

concurrent lines. This is achieved using a simple PEARL

fitting, whose data term is given by∑
s

d(ss,v × sm) + d(se,v × sm), (4)

where × indicates the vector cross product, and d(p, l)
represents the euclidean distance between point p and line

l; ss, sm and se are the start, middle and end points

of the line segment s, respectively, and v is a vanishing

point. A constant label cost is used for explaining the line

segments using as few unique vanishing point labels as

possible (see Figure 5(b)), and no smoothness penalization is

applied. We store in the set S2 the quadruples (b, c, fb, fc),
with points pb,fb and pc,fc being located on different sides

of a line segment s clustered to the vanishing point v,

whose vanishing direction is orthogonal either to the plane

associated to fb or fc. Finally, the set S3 contains the

remaining pairs (b, c) whose points pb,fb and pc,fc in I are

on different sides of a line segment s to which no vanishing

point was assigned (white line segments in Figure 5(b)).

Remark that different from [7], we do not perform any line

matching between the stereo views.

3) Plane refinement: The third step of the PEARL algo-

rithm is to re-estimate the model parameters using the inliers

of the discrete labeling. Let Ωα be the plane associated with

the label fα, that has been assigned to a non-empty set of

inliers I(fα) = {b ∈ B|fb = fα}. Each plane Ωα is refined

by minimizing its plane parameters over the energies E via

Levenberg-Marquardt [18]:

ΩLM = min
Ω

∑
bq,r∈I

(1− Eq(r, xΩ)) , (5)

where xΩ is the column defined by the intersection of bq,r
with Ω. The new set of labels P={ΩLM} is then used in

a new expand step, and we iterate between discrete labeling

and plane refinement until the α-expansion optimization

does not decrease the energy of Equation 1.
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IV. RESULTS

We performed experiments of our semi-dense piecewise

planar approach on various challenging indoor and outdoor

scenes (see Figure 6) acquired using a Bumblebee stereo

camera from PointGrey, with a baseline of 24 cm and

image resolution of 1024 × 768 pixels. The scenes contain

planar and non-planar surfaces, as well as a variety of

complicated situations to traditional stereo methods e.g.

low and/or repetitive textures, high surface slant, specular

structures. As discussed previously, we apply the SymStereo

framework using a vertical pencil of N = 25 virtual cut

planes with the axis intersecting the baseline in its middle

point. The average runtime using a straightforward Matlab

implementation takes about 2 minutes for the processing

of a stereo pair. Most of the time is spent computing the

symmetry energies E, which can be parallelized in the GPU

in further versions of the algorithm.

For all the experiments, we used the same parameters

{λ, β,λ 1, λ2, λ3, λ4}={0.04, 10, 0.5, 0.5, 0.55, 0.75}, which

were empirically selected without much effort. Concerning

the parameter τ , we tested two different values, namely 0.8
and 0.6. The parameter τ works as a control for the rigor of

the plane selection. Higher values means more permissive

with respect to what is considered a planar surface, while

for lower values the algorithm only outputs strict planes.

For all the stereo pairs of Figure 6 we show some crease

edges that can be used as indicators of the accuracy of

the plane estimation. Concerning τ = 0.8, the first two

scenes (rows) are only composed by planar surfaces that are

accuractelly reconstructed, as proven by the crease edges.

We added to the scenes of rows 3 and 4 non-planar objects,

which are well approximated by one or more plane surfaces.

Additionally, the scene of row 4 contains, besides large

planar and non-planar surfaces, a small plane corresponding

to the blue book, which is well estimated from only 4 virtual

cut planes (please see the crease edge between the book and

the floor). The last row of the office dataset contains and

example of poor segmentation of the chair back (red plane).

This is due to two reasons: (i) in order to overcome low-

textured regions, we use a significant number of log-Gabor

wavelets with large spatial support. In situations in which we

intersect the scene close to depth discontinuities, the larger

log-Gabor kernels favor the smaller object depth, and (ii)

on the left of the chair back we have few virtual cut planes

intersecting the wall, so that the smoothness term in this

region prefers the red label.

In the first example of the stairs data set we detect 9
planar surfaces, from which 6 planes correspond to the steps,

the red plane is the floor, and 2 planes refer to the right

wall and the handrail. Remark that the reconstruction of the

floor and steps is almost perfect. In the second example, the

top steps are approximated by a single plane (red). This

occurs because the image resolution is not sufficient for

discriminating depth at such large distances, and SymStereo

is not able to accurately guide the matching process. Ad-

ditionally, we are able to detect a plane on the right of

the stairs which apparently corresponds to the white wall

(magenta). However and since the estimation is deceived by

the handrail, the plane model is incorrect as proven by the

crease edges.

The Lift stereo pair shows that our algorithm is able to

handle specular surfaces (lift door and floor). We accurately

estimate the 3 large planar surfaces, and our approach also

attempts to estimate a very thin specular plane with almost

no texture corresponding to the corner of the lift (blue).

Finally, in the outdoor dataset we show non-trivial 3D

scenarios containing high slant and very low texture. In

the first example, the green and blue planes are parallel

(floor and roofing), while the red plane refers to the white

wall being orthogonal. The three lines were the planes

intersect (two visible crease edges and the vanishing line

of the horizontal planes) perfectly intersect in a vanishing

point, which proves high accuracy. In the top right corner,

two small line cuts are correctly clustered as being in the

vertical plane. There is one plane that is not detected, namely

the thin vertical plane of the roofing. This occurs mainly

due to lack of texture. In the last example, we accurately

estimate the vertical blue plane of the roofing, as well as

the small magenta plane near the window. Our approach is

able to detect and distinguish the window, however the plane

estimation is misled by strong specularities.

So far, most of the nodes b received a plane label even

though belonging to non-planar objects (see rows 3 and 4).

The control of labeling just strict planes can be achieved

using the truncation parameter τ . We show on the two right

columns of Figure 6 results on the same datasets, however

decreasing τ from 0.8 to 0.6. In this case, the non-planar

objects in rows 3 and 4, as well as the red plane in the

second stairs example are not reconstructed, because the

algorithm only outputs plane models with high probability

of being really contained in the scene. However, this has

the drawback of discarding planes, and erroneously labeling

nodes b with the non−planar label, in regions of low texture

(e.g. white part of the walls in row 5) or containing specular

reflections (e.g. lift door in row 8).

V. CONCLUSIONS

We presented an automatic algorithm for semi-dense

piecewise planar reconstruction from just two views. Unlike

other methods, the stereo depth estimation and the detection

of planar surfaces are accomplished in a tight, coupled

manner by combining SymStereo [1], [2] with PEARL

clustering [3]. This enables to take full advantage of the

strong planarity prior, with the algorithm being able to output

very accurate 3D reconstructions of the line segments where

the virtual cut planes meet the planes in the scene. No

assumptions are made about the number or the pose of
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the 3D plane surfaces. The effectiveness of the scheme is

proved by several experiments in challenging indoor and

outdoor scenarios. It is also shown that, depending on the

tuning of the parameter τ , it is possible to either obtain strict

3D plane detections or approximate the scene surfaces by a

suitable piecewise-planar model. It is important to note that a

vertical pencil of virtual planes was employed in SymStereo,

so that using few planes can lead to entirely missing thin

objects. This problem can be solved by applying oblique

virtual planes for a better coverage of the 3D scene.

As a final comment, it can be claimed that the energy-

based model fitting can either be applied to dense stereo

reconstruction or to a sparse point-cloud model. The former

would substantially increase the computational complexity

without bringing obvious benefits, while the latter would

avoid the use of the smoothness term for regularizing the

PEARL energy minimization. Thus, the symmetry-based

semi-dense stereo provides a nice trade-off between the two,

playing a key role in the success of the overall approach.
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Figure 6. Results produced by our semi-dense piecewise planar algorithm (10 stereo pairs). From left to right: the left and right views with the images of
the profile cuts overlaid (compare the matching between the views), different colors indicate different planes; the left view with crease edges (black) that
can be used as indicators of the estimation accuracy; and two views of the textured 3D reconstruction rendered from different viewpoints. For the results
on the right (two columns), we decreased the parameter τ .
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